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Abstract. As a form of the Axiom of Choice about relatively simple structures (posets), Hausdorff’s Maximal Chain Principle
appears to be little amenable to computational interpretation. This received view, however, requires revision: maximal chains are
more reminiscent of maximal ideals than it seems at first glance. The latter live in richer algebraic structures (rings), and thus are
readier to be put under computational scrutiny. Exploiting this, and of course the analogy between maximal chains and maximal
ideals, the concept of Jacobson radical carries over from a ring to an arbitrary set with an abstract inconsistency predicate: that is,
a distinguished monotone family of finite subsets. All this makes possible not only to generalise Hausdorff’s principle, but also
to express it as a syntactical conservation theorem. The latter, which encompasses the desired computational core of Hausdorff’s
principle, is obtained by a generalised inductive definition. The over-all setting is constructive set theory.

Keywords: axiom of choice, maximal chain, maximal ideal, consistent theory, Jacobson radical, syntactical conservation,
computational content, constructive set theory, inductive definition, finite binary tree

1. Introduction
Hausdorff’s Maximal Chain Principle asserts that every totally ordered subset of a partially ordered set S is

contained in a maximal one. In first-order terms, a chain C is maximal precisely when, for every a ∈ S , if C ∪ { a }
is a chain, then a ∈ C; or, equivalently, either a ∈ C or a is incomparable with at least one b ∈ C. Especially the
latter characterisation, which is to say that

a ∈ C or (∃b ∈ C) (a 
 b ∧ b 
 a) , (1)

is somewhat reminiscent of one of the characterisations of a maximal ideal in a commutative ring A with 1: a proper
ideal M of A is maximal if and only if, for every a ∈ A,

a ∈ M or (∃b ∈ M) (〈a, b〉 3 1) ; (2)

in other words, either a ∈ M or a is comaximal with some b ∈ M.1 Moreover, with the Axiom of Choice AC at hand
it is possible to describe in first-order terms the common part of all maximal ideals containing any given ideal I of A:
that is, the Jacobson radical [2] of I. This is Krull’s Maximal Ideal Theorem [3] seen as an intersection principle,
and has given rise to a first-order notion of the Jacobson radical which suits the needs of constructive algebra [4–6].

By analogy, we can give a first-order definition of the Jacobson radical Jac(C) of a chain C in a poset S , and
prove with AC that Jac(C) coincides with the intersection of all maximal chains containing C. So Hausdorff’s
principle too is recast as an intersection principle. All this, however, can even be done in a more general fashion, and
a simple direct and elementary interpretation is possible. Hence the purpose of this paper is twofold: to communicate
a potentially new form of AC which in a natural way encompasses both Krull’s theorem and Hausdorff’s principle;
and to describe the constructive or syntactical underpinning.

In Sections 2 and 3, alongside the analogy with ring theory, we define our general concepts of coalition and
Jacobson radical. In Section 4 we show that the latter is a closure operator (Proposition 1) and as such a covering

1Maximality criteria, though to a different end, have also been put under constructive scrutiny in the context of Boolean algebras and locales
by Mulvey [1]. One of the anonymous referees kindly brought this to our attention.
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or consequence relation which can be defined inductively (Theorem 1). In Section 5 we then study the semantics,
which is complete coalitions, and prove the appropriate intersection, logical completeness or semantic conservation
theorem (Theorem 2, with AC). In Section 6 we discuss several applications: maximal ideals of finitary closure
operations with concrete instances for commutative rings and propositional theories, as well as maximal chains and
maximal cliques. Section 7 sheds additional light. Here we approximate complete coalitions syntactically by paths
in finite binary trees of a suitable inductively generated class T , and thus can prove the syntactical counterpart of
our Theorem 2: to belong to Jac(C) for a given coalition C is tantamount to the existence of a tree in T of which all
root-to-leaf paths terminate in C (Theorem 3).

Disclaimer
This is a revised and extended journal version of our CiE 2020 conference paper [7]. The present note deviates from
its forerunner by replacing the symmetric irreflexive relation on the underlying set S , as was crucial for [7], with
a monotone family of finite subsets of S that is thought as an abstract form of inconsistency. This move not only
makes a more natural treatment possible, but widens scope considerably, as witnessed, e.g., by Krull’s Maximal
Ideal Theorem (cf. Section 6).

On method and foundations
The content of this paper is elementary and can be formalised in a suitable fragment of constructive set theory
CZF enriched, where necessary, with the regular extension axiom so as to account comprehensively for generalised
inductive definitions [8–10]. Due to the corresponding choice of intuitionistic logic, some assumptions have to be
made explicit which otherwise would be trivial with classical logic. For instance, a subset T of a set S is detachable
if, for every a ∈ S , either a ∈ T or a /∈ T .

By a finite set we understand a set that can be written as { a1, . . . , an } for some n > 0;2 we say that any such
number n enumerates the finite set. Every finite set is either empty or inhabited. We denote by Fin(S ) the class of all
finite subsets of a set S , which form a set in CZF, while the generic subsets of a set S form a proper class Pow(S ).
Rather than U ∈ Fin(S ) we often write U ⊆fin S , and typically use the letters U,V,W for finite subsets of S .

From formal topology [16] we borrow the overlap symbol: the notation U G V is to say that the sets U and V
have an element in common. Where no confusion may arise, we write U,V for set union U ∪ V , and similarly U, a
for U ∪ { a }.

Last but not least, to pin down Theorem 2, and to point out certain of its consequences later on, requires some
classical logic and the Axiom of Choice (AC), which will be used in the form of Open Induction (OI) [17], as recalled
below. For simplicity we switch in such a case to classical set theory ZFC, signalling this appropriately.

The following lemma is utterly trivial with classical logic but allows for a simple constructive proof, as well. We
state this here to be used in the following section.

Lemma 1. Let S and T be sets. If U ⊆fin S ∪ T , then either U ⊆ S or there is V ⊆fin T such that U ⊆ S ∪ V .

Proof. We argue by induction on the number n enumerating U. The case n = 0, i.e., U = ∅ is clear. Next consider
the case in which U = U′ ∪ { a } and the inductive hypothesis applies to U′. Accordingly, there are two cases to
consider: either (a) U′ ⊆ S or else (b) there is W ⊆fin T such that U′ ⊆ S ∪ W. Both cases lead to the desired
conclusion by another case distinction, respectively, on whether a ∈ S or a ∈ T . For (a) this is clear; in the case of
(b) we have

U = U′ ∪ { a } ⊆ S ∪W ∪ { a } ,

and so either V = W or V = W ∪ { a }—depending on whether a ∈ S or a ∈ T—will do. �

2As in [11, 12], for the sake of a slicker wording we thus deviate from the prevalent terminology of constructive mathematics and set theory
[4, 8, 9, 13–15]: (1) to call ‘subfinite’ or ‘finitely enumerable’ a finite set in the sense above, i.e. a set S for which there is a surjection from
{1, . . . , n} to S for some n > 0; and (2) to reserve the term ‘finite’ to sets which are in bijection with {1, . . . , n} for a necessarily unique n > 0.
Also, finite sets in this stricter sense do not play a role in this paper.
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2. Coalitions
Throughout, let S be a set, and let R ⊆ Fin(S ) be monotone, that is, for all U,V ∈ Fin(S ), if U ∈ R and

U ⊆ V , then V ∈ R. We say thatR is proper ifR 6= Fin(S ), which, however, we do not require from the outset.
Employing predicate notation we write R(U) for U ∈ R. This extends to arbitrary subsets T of S by writing

R(T ) for Fin(T ) G R, which is to say that there is U ⊆fin T such that R(U). Moreover, we carry further our
notational convention on set union, i.e., we writeR(U,V) forR(U ∪ V) etc.

Lemma 2. Let T ⊆ S and W ⊆fin S . ThenR(T,W) if and only if there is V ⊆fin T such thatR(V,W).

Proof. Suppose that there is U ⊆fin T ∪W such that R(U). By Lemma 1 either U ⊆ W or there is V ⊆fin T such
that U ⊆ V ∪W. Both cases yield the desired conclusion by monotonicity ofR. The converse is immediate. �

Definition 1. A subset C of S is a coalition (with respect toR) if ¬R(C), i.e. Fin(C) ∩R = ∅.

For instance, S is a coalition if and only if R = ∅. Perhaps more importantly, ∅ is a coalition if and only if ∅ /∈ R;
by monotonicity this amounts toR being proper. Notice further that coalitions are closed under directed union.

Our choice of terminology follows [7]—on the topic of which the present note sheds further light—simply to
have at hand a notion which to our knowledge is not yet of use in any of the concrete settings we consider later on.3

Definition 2. A subset C of S is complete (with respect toR) if, for every a ∈ S ,

a ∈ C or R(C, a). (3)

Note that S is always complete; and that ∅ is complete precisely when R has as elements all singleton subsets of S
or, equivalently, all inhabited subsets of S .

It is perhaps instructive to brandish any U ∈ R as “inconsistent”—quite literally in the case of logic, where
R(C) is to be read as C ` ⊥. In an algebraic setting,R(C) is to say that C generates a unit element (see Section 6).
A coalition is then a subset of S that is free of finite inconsistent subsets, on account of which it may be considered
“consistent”. A complete subset C is such that, given any a ∈ S , this a either belongs to C, or else C has a finite
subset which together with a turns out inconsistent. With this intuition, complete coalitions capture in more concrete
terms the notion of maximal consistency.

Remark 1. Every complete coalition is detachable and maximal (with respect to set inclusion) among coalitions.
Conversely, with classical logic every maximal coalition is complete.

Proof. Let C be a complete coalition. Since Fin(C)∩R = ∅, the second alternative of completeness (3) entails that
a /∈ C; whence C is detachable. As regards C being maximal, let D be a coalition such that C ⊆ D and let a ∈ D. By
completeness, either a ∈ C right away, or else by Lemma 2 there is U ⊆fin C such thatR(U, a), but the latter case is
impossible as D is a coalition. As regards the converse, if C is a maximal coalition and a /∈ C, then C ∪{ a } cannot,
due to maximality of C, in turn be a coalition. With classical logic, the latter statement is to say thatR(C, a). �

If C is a coalition, let us write

Comp/C

for the collection of all complete coalitions that contain C, with the special case Comp = Comp/∅. Since every com-
plete coalition is detachable (Remark 1), these collections are sets due to the presence in CZF of the exponentiation
axiom [8, 9, 19].

3The term “coalition”, which we use for sake of intuition, is standard terminology in game theory to denote a group of agents [18]. The present
one requires a rather conservative reading: our coalitions don’t allow for disagreement (in terms of R) amongst their ranks.
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3. Jacobson Radical
Recall from [4, 20] that the Jacobson radical [2, 21] of an ideal J of a commutative ring A with 1—and likewise

for distributive lattices [22, 23]—can be defined in first-order terms as

Jac(J) = { a ∈ A | (∀b ∈ A)(1 ∈ 〈a, b〉 → 1 ∈ 〈J, b〉) } . (4)

Here sharp brackets denote generated ideals, and one can equivalently let b range over finitely generated ideals [4].
Recently this has been adopted in propositional logic, including a variant of Lindenbaum’s Lemma as the se-

mantics of Glivenko’s Theorem [24, 25]. In this context ` stands for (deducibility in) an intermediate logic in a
propositional language S . Now (4) translates into a definition of the Jacobson radical of a theory T in S as

Jac(T ) = { a ∈ S | (∀b ∈ S )(a, b ` ⊥ → T, b ` ⊥) } (5)

by replacing comaximality in (4), i.e., to generate the unit, with inconsistency in (5), i.e., to prove absurdity.
The consequents in the defining properties of (4) and (5) are actually witnessed by single elements of J and T ,

respectively. With an eye towards a more abstract concept, rather than turning this observation into a requirement,
we will ignore it to achieve some leeway for applications; it is here thatR comes to play its decisive role.

By analogy with the settings of ring theory and logic, we put the following.

Definition 3. The Jacobson radical of a subset C of S is defined by

Jac(C) = { a ∈ S | (∀U ∈ Fin(S ))(R(a,U)→ R(C,U)) } .

This can be put more succinctly as

Jac(C) = { a ∈ S | (∀U ∈ Ra)R(C,U) } , (6)

where

Ra = { U ∈ Fin(S ) | R(a,U) }

is the set of “opponents” U of a, i.e., the U “pseudo-complementing” a with respect to R. Notice that Jac is
monotone, i.e., such that Jac(C) ⊆ Jac(D) whenever C ⊆ D; and expansive, i.e., such that C ⊆ Jac(C). Also,
if R(C), then Jac(C) = S ; conversely, R(C) whenever ∅ ∈ Ra for some a ∈ Jac(C), e.g., if R is inhabited and
Jac(C) = S . Moreover, for the particular case of C = ∅, note that

Jac(∅) = { a ∈ S | Ra ⊆ R } . (7)

In ZFC, the Jacobson radical of an ideal J as in (4) is the intersection of all maximal ideals that contain J [4],
whereas the Jacobson radical of a theory T as in (5) is the intersection of all complete theories that contain T [25].
Similarly, still with AC, the Jacobson radical of a coalition C will prove to be the intersection of all complete
coalitions that contain C (Theorem 2 below).

Definition 4. A coalition C such that Jac(C) = C is said to be radical.

Lemma 3. Let C ⊆ S and a ∈ Jac(C). IfR(C, a), thenR(C).

Proof. Suppose that R(C, a) for some a ∈ Jac(C). By Lemma 2 there is V ⊆fin C such that R(V, a). Now a ∈
Jac(C) impliesR(V,C) which is to say thatR(C). �
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Proposition 1. The Jacobson radical defines a closure operator on S and restricts to a mapping on coalitions, i.e.,
if C is a coalition, then so is Jac(C).

Proof. As for the first statement we only show idempotency, i.e., Jac(Jac(C)) ⊆ Jac(C), where C ⊆ S . To this
end, suppose that a ∈ Jac(Jac(C)) and let V ∈ Ra. Then R(Jac(C),V) and by Lemma 2 there is U ⊆fin Jac(C)
such that R(U,V). Lemma 3 now implies that R(C,V). As regards the add-on, we show that if R(Jac(C)), then
R(C). In fact, consider U ⊆fin Jac(C) and suppose that R(U). Either this U is empty and nothing need be done. If
there is a ∈ U, then a ∈ Jac(C) impliesR(C,U), and Lemma 3 yieldsR(C). �

In particular, if C is a coalition, then Jac(C) is a radical coalition.

4. Inductive Generation
As is well-known, every closure operator corresponds with a consequence relation on S (which is finitary pre-

cisely if the former is algebraic; see also Section 6 below), and which in turn can, synonymously, be read as a
covering relation [16, 26, 27], i.e., a relation C between elements and subsets of S that is reflexive and transitive:

a ∈ U
aC U

(R)
aC U (∀b ∈ U) bC V

aC V
(T )

We show now that membership to the Jacobson radical is an inductively generated predicate. The crucial clause
will help in the next Section 5 to prove (in ZFC) that Jac is determined by complete coalitions. To this end, we define
a relation C between elements and subsets of S inductively by the following rules of reflexivity (R), extension (E),
and completeness (C),

a ∈ U
aC U

(R)
R(U)

aC U
(E)

aC U, x (∀V ∈ Rx) aC U,V
aC U

(C)

Our choice of terminology anticipates the semantics of C, which is determined by complete coalitions (see the
following Section 5). Rule (C) corresponds to the completeness requirement (3): if U, x covers a, and so does U,V
for every V ∈ Rx, then U covers a. This is a form of conservativity, allowing us in Section 7 to do as if a given
coalition were complete to test membership in the Jacobson radical. In the context of logic, completeness (C) is
related to (the rule corresponding to) tertium non datur, while (E) is related to ex falso quodilbet (see also Example
2).

Theorem 1. Let a ∈ S and U ⊆ S . The following are equivalent.

(1) aC U.
(2) a ∈ Jac(U).

In particular, C is a covering relation, and Jac is inductively generated.

Proof. To show that the first item implies the second, we argue by induction on a C U. Both the cases for (R) and
(E) are easily handled, so we concentrate on (C). Accordingly, suppose that (i) a ∈ Jac(U, x) and (ii) a ∈ Jac(U,V)
for every V ∈ Rx. We need to check that a ∈ Jac(U), whence let U0 ∈ Ra. Then (i) yields R(U, x,U0), which
implies that there is U1 ⊆fin U such that U0 ∪ U1 ∈ Rx. Now (ii) yields a ∈ Jac(U,U0,U1) which is to say that
a ∈ Jac(U,U0). Since U0 ∈ Ra, this impliesR(U,U0), as required.

Conversely, suppose that a ∈ Jac(U). In order to show a C U, we use (C). To this end, notice that on the one
hand aCU, a holds by (R). Next we check that aCU,V for every V ∈ Ra. This holds by (E), for wheneverR(a,V),
we obtainR(U,V) from a ∈ Jac(U).

The first add-on is a consequence of the fact that Jac is a closure operator (Proposition 1). �
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5. Completeness
It will be seen in this section, working in ZFC, that membership in the Jacobson radical of a coalition C can

be tested on the complete coalitions in which C is contained. In view of Theorem 1, this amounts to a logical
completeness result (Theorem 2). To prove this, it is perhaps best to use Open Induction (OI) [17, 28, 29], which
Raoult [17] has deduced from the Kuratowski–Zorn Lemma, and to which OI is ZF-equivalent.

Recall that OI asserts that if (X,6) is a directed-complete poset (a dcpo)4 and if O is a predicate on X which
is both (i) open, i.e., such that whenever D ⊆ X is directed and O(

∨
D), then (∃x ∈ D) O(x); as well as (ii)

progressive, i.e., such that if O(y) for every y > x, then O(x); then (∀x ∈ X) O(x).
We further need that it be decidable whether or not a coalition C is complete, and if not that it be witnessed by a

certain element which gives rise to a proper extension of C. Thus, to state and prove Theorem 2, we have to switch
to ZFC, while stressing the fact that OI provides for a rather natural treatment, apt for constructivisation perhaps
even beyond Sections 4 and 7 below.5

Theorem 2 (ZFC). If C is a coalition, then

Jac(C) =
⋂

Comp/C.

Proof. Let a ∈ Jac(C) and suppose that D is a complete coalition which contains C. By completeness, either a ∈ D
right away, or else R(D, a). But since a ∈ Jac(C) ⊆ Jac(D), the latter case would imply R(D), by way of which
D would fail to be a coalition after all.

As regards the converse, let D denote the family of radical coalitions D that contain C, suppose that a ∈ D
for every complete D ∈ D, and consider the predicate O(D) ≡ a ∈ D. This O is certainly open; to see that O is
progressive, let D ∈ D and suppose that O(E) for every E ) D. We distinguish cases. If D is complete, then a ∈ D
by the overall assumption. If D is not complete, then there is some x /∈ D such that D ∪ { x } is a coalition; whence
Jac(D, x) is a radical coalition which properly exceeds D, and therefore a ∈ Jac(D, x) by the induction hypothesis.
In the latter case, moreover, if V ∈ Rx, then a ∈ Jac(D,V)! (In fact, since D ∪ { x } is a coalition, V * D. Then
two cases come into question: either D ∪ V is a coalition, so again a ∈ Jac(D,V) right away, by the induction
hypothesis; or else R(D,V), but then a ∈ Jac(D,V) is trivial.) By Theorem 1 and the clause for completeness (C)
it now follows that a ∈ Jac(D) = D. Hence O(D) for every D ∈ D by OI. In particular O(Jac(C)), which is to say
that a ∈ Jac(C). �

6. Applications
We will now treat several applications of Theorem 2 in detail: maximal ideals of consequence relations with

concrete instances in ring theory and propositional logic, maximal cliques in graphs, and maximal chains of partially
ordered sets. Most of the discussion to follow is set in ZFC. In all cases Theorem 1 constitutes the corresponding
constructive underpinning.

6.1. Ideals and Theories
By a consequence relation or single-conclusion entailment relation we understand a relation

` ⊆ Fin(S )× S

which is reflexive, monotone and transitive in the following sense:

U 3 a
U ` a

(R)
U ` a

U,V ` a
(M)

U ` b U, b ` a
U ` a

(T)

4Since for Theorem 2 we switch to ZFC anyway, we do not refer to forms of OI (say, for set-generated directed-complete poclasses [30]) more
pertinent to CZF. See, e.g., [31].

5For similar and related cases see [32–35].



P. Schuster and D. Wessel / The Jacobson radical for an inconsistency predicate 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

where as usual U,V ≡ U ∪ V and U, b ≡ U ∪ {b}. It is well-known that every consequence relation ` gives way to
an algebraic closure operator 〈−〉 : Pow(S )→ Pow(S ) defined by

a ∈ 〈T 〉 ≡ (∃U ∈ Fin(T )) U ` a.

Conversely, given 〈−〉, by stipulating

U ` a ≡ a ∈ 〈U〉

we gain back a consequence relation ` from an algebraic closure operator 〈−〉.
The ideals of a consequence relation ` are the subsets J of S which are closed with respect to the corresponding

closure operator 〈−〉, which is to say that J = 〈J〉. Hence the ideals of ` are precisely the subsets J of S such that
if J ⊇ U and U ` a, then a ∈ J. As for ideals of rings, we say that an ideal J of ` is proper whenever J 6= S .

A consequence relation ` gives rise to an inconsistency predicate in a natural way:

R = { U ∈ Fin(S ) | 〈U〉 = S } . (8)

For this choice ofR, the Jacobson radical of a subset T of S is

Jac(T ) = { a ∈ S | (∀U ∈ Fin(S ))(〈U, a〉 = S → 〈U,T 〉 = S ) } .

Note that Jac(〈T 〉) = Jac(T ); in particular, 〈T 〉 ⊆ Jac(T ).

Remark 2. Every proper ideal of ` is a coalition; and every complete coalition C is an ideal.

Proof. To show the second statement, let C be a complete coalition. If C ⊇ U ` a, then by completeness either
a ∈ C anyway, or else by Lemma 2 there is V ⊆fin C such that S = 〈V, a〉 ⊆ 〈V,U〉. In the latter case we haveR(C),
but C is supposed to be a coalition. �

In the present context, Theorem 2 reads as follows.

Proposition 2 (ZFC). If J is an ideal6 of a consequence relation `, then⋂
Comp/J = { a ∈ S | (∀U ∈ Fin(S ))(〈U, a〉 = S → 〈U, J〉 = S ) } .

In view of Remark 1, Proposition 2 is a universal maximal ideal theorem which subsumes—to mention only
two—Krull’s Maximal Ideal Theorem in commutative ring theory, and Lindenbaum’s Lemma for propositional
logic, to which we now turn our attention. In both cases there is a convincing element [11, 12, 35] for `, i.e., there is
e ∈ S for which 〈e〉 = S ; whence a subset C of S is a coalition if and only if the closure of C is a proper ideal.

6.1.1. Krull’s Maximal Ideal Theorem
Let S = A be a commutative ring with 1 and consider ` on A as given by ideal generation, i.e.,

a1, . . . , ak ` b ≡ (∃r1, . . . , rk ∈ A)

k∑
i=1

riai = b.

The ideals of ` are the ideals of the ring A, and the corresponding inconsistency predicate (8) consists of the finite
comaximal subsets of A. Hence the complete coalitions are in ZF precisely the maximal ideals of the ring A, i.e.,

6There is no need to suppose the ideal J to be proper: in ZFC one can tell whether J = S , in which case the claim holds trivially.
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the ideals which are maximal among the proper ideals; and the Jacobson radical Jac(J) of an ideal J is the expected
one (4).

In particular, the related instance of Proposition 2 says that Jac(J) equals the intersection of all maximal ideals
that contain J. Incidentally, this variant of Krull’s Maximal Ideal Theorem helps (and so does the instance in Section
6.2 below) to calibrate our intersection principle:

Proposition 3 (ZF). The universal validity of Theorem 2, for every set S and every monotone family R ⊆ Fin(S ),
is equivalent to AC.

Proof. Krull’s Maximal Ideal Theorem implies AC [3, 36–38], and follows from Theorem 2 via Proposition 2. �

On the other hand the structure of a ring is rich enough to allow for a concrete application, as follows.

Example 1. We consider McCabe’s short proof of Zariski’s Lemma [39].7 Here we focus on the second of only
three short paragraphs, in which by way of a generic maximal ideal a certain element is shown to be invertible.
Suppose that A is without zero-divisors [4], i.e., such that

(∀a, b ∈ A)(ab = 0→ a = 0 ∨ b = 0).

The respective argument of McCabe’s boils down to observing that if a ∈ A is not invertible, and such that the
localization A[a−1] is a field, then a ∈ Jac(∅). This can now be shown by an appeal to Theorem 1. To this end, by
the corresponding rule for completeness (C) with U = ∅ and a = x, it suffices to check that a ∈ Jac(V) for every
V ∈ Fin(A) with 1 ∈ 〈V, a〉. In fact, suppose that b ∈ 〈V〉 and r ∈ A are such that ra + b = 1. Since a is not
invertible, b 6= 0 in A. Next, because A[a−1] is a field, either b = 0 in A[a−1], which is to say that anb = 0 for some
n > 0, and thus a = 0 ∈ Jac(V) since b 6= 0 and A is without zero-divisors; or b is invertible in A[a−1], and then
there are c ∈ A and n > 0 such that bc = an. Now an ∈ Jac(〈V〉), by which in fact a ∈ Jac(V), again as required.
(Recall that by (4) the Jacobson radical is a radical ideal, i.e., if an ∈ Jac(J) for some n > 0, then a ∈ Jac(J).)

For related approaches to making the use of maximal ideals constructive, cf. [4–6, 42–46].

6.1.2. Lindenbaum’s Lemma
Let ` stand for (deducibility in) an intermediate logic in a propositional language S . The ideals of ` are the theories
of ` in S , i.e., the subsets of S which are deductively closed with respect to `; and the corresponding inconsistency
predicate (8) consists of the finite subsets of S which are inconsistent with respect to `. Hence the complete coali-
tions are in ZF precisely the complete consistent theories; and Jac(T ) is the Jacobson radical (5) of a theory T . This
is[25] nothing but the stable closure of T ,

Jac(T ) = { ϕ ∈ S | ¬¬ϕ ∈ T } ; (9)

whence Proposition 2 instantiates to a variant of Lindenbaum’s Lemma [25]: Jac(T ) equals the intersection of all
complete consistent theories extending T .

Moreover, (9) prompts a proof of Glivenko’s Theorem [47], as follows.

Example 2. Let `i and `c stand for intuitionistic and classical logic in a propositional language S .8 Recall from
[50, 51] that

Γ `c ϕ if and only if Γ,∆ `i ϕ

7An elementary, constructive proof of Zariski’s Lemma has recently been found by Wiesnet [40, 41].
8For the present example we leave unsettled whether entailment relations too fall under the reservations about sequent calculi [48, 49] against

the context-as-sets paradigm as opposed to the context-as-multisets pattern, and if so whether this affect the usability of entailment relations in
proof practice.
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for a suitable finite set ∆ of formulas ψ ∨ ¬ψ, where ψ is a propositional variable occurring in Γ or ϕ. This is at the
heart of Glivenko’s Theorem [47], for which we can now give a more conceptual proof, similar to [52]. With `i as
` and C as in Section 4 we show first that

(∀V ∈ Rψ)ϕC U,V if and only if ϕC U,¬ψ . (10)

While the right-hand side simply is the instance V = {¬ψ} of the left-hand side, to deduce the latter from the former
let V ∈ Rψ, that is, V ` ¬ψ. By (5) follows ¬ψ ∈ Jac(V), which by Theorem 1 means ¬ψC V . Now if ϕC U,¬ψ,
then ϕC U,V as required.

By (10) the corresponding rule for completeness (C) boils down to the analogue of the rule for excluded middle:

ϕC Γ, ψ ϕC Γ,¬ψ
ϕC Γ

With this at hand we swiftly see that Γ,∆ `i ϕ entails ϕCΓ, which according to Theorem 1 and (9) means Γ `i ¬¬ϕ.
In all, Γ `c ϕ implies Γ `i ¬¬ϕ, which is Glivenko’s Theorem [47].

Needless to say, proofs of Glivenko’s Theorem usually go along similar lines overall. Recent literature about
Glivenko’s result includes [53–61].9 The two foregoing applications are summed up in Table 6.1.2.

Krull’s Maximal Ideal Theorem (Section 6.1.1) Lindenbaum’s Lemma (Section 6.1.2)

given structure commutative ring propositional logic
consequence relation ` generation deduction
ideals of ` ideals theories
inconsistent comaximal inconsistent
complete coalition maximal ideal consistent complete theory
Jacobson radical Jacobson radical stable closure

Table 1
Correspondences for ideals and theories

6.2. Cliques and Chains
Let R ⊆ S × S be an irreflexive and symmetric relation as studied before [7]. Put

R = { U ∈ Fin(S ) | (∃a, b ∈ U) aRb } . (11)

This R is certainly monotone and proper. Moreover, R contains no singleton subset, and { a, b } ∈ R if and only
if aRb whenever a 6= b. In particular, Jac(∅) consists of the a ∈ S which are isolated points with respect to R,
by which we mean that aRb for all b ∈ S , where R denotes the complementary relation. The coalitions for R are
precisely the subsets C of S such that aRb for all a, b ∈ C. For example, {a, b} is a coalition if and only if aRb.

A coalition C is complete if and only if, for every a ∈ S ,

a ∈ C or (∃b ∈ C) aRb ;

whence we get back the complete coalitions of [7]. Combining in ZFC the corresponding instance of (7) with
Theorem 2, we see that the isolated points are exactly the ones which belong to all complete coalitions, that is,⋂

Comp =
{

a ∈ S | (∀b ∈ S ) aRb
}
, (12)

9This list of references is by no means meant exhaustive.
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which of course generalises to complete coalitions that contain a given one [7, Proposition 1]. By suitable instanti-
ation we obtain principles in ZFC for maximal cliques in graphs, and maximal chains of partially ordered sets, as
follows.10

6.2.1. Maximal Cliques

Let G = (V, E) be an undirected graph, with V as the set of vertices and E as the set of edges; in particular, E is a
set of unordered pairs of elements of V . On V we now consider the relation of nonadjacency, putting

aRb ≡ a 6= b ∧ { a, b } /∈ E.

With classical logic, a coalition for the correspondingR as in (11) is nothing but a clique [63], i.e., a set of mutually
adjacent vertices,11 and the complete coalitions are exactly the maximal cliques. We focus on the case of the empty
coalition, and notice that Jac(∅) consists of the universal vertices, i.e., those adjacent to every other vertex. In ZFC,
by the corresponding instance of (12), the universal vertices constitute the intersection of all maximal cliques:⋂

Comp = { a ∈ V | (∀b ∈ V)(a 6= b→ { a, b } ∈ E) } . (13)

This helps to find a maximal clique with AC.12 In fact, if V itself fails to be a clique, as witnessed by non-adjacent
distinct vertices a, b ∈ V , then by contraposition (13) yields a maximal clique that avoids a.

6.2.2. Maximal Chains

These are special cases of maximal cliques. In fact, to see how Hausdorff’s Maximal Chain Principle fits into the
above setting, suppose that (S ,6) is a partially ordered set. We consider the comparability graph G = (V, E), i.e.,
the elements of S serve as nodes, and we define adjacency as comparability with respect to 6,

V = S and E = { { a, b } | a 6 b ∨ b 6 a } .

Thus, the cliques of G are nothing but the 6-chains, among which the maximal ones are precisely the complete
coalitions. In ZFC the corresponding instance of (13) then says that a ∈ S belongs to all maximal chains if and only
if a is comparable with every b ∈ S :⋂

Comp = { a ∈ S | (∀b ∈ S )(a 6 b ∨ b 6 a) } . (14)

This is a ZF-equivalent of Hausdorff’s Maximal Chain Principle [64], and the argument is similar to the case of
cliques: If S is not totally ordered by 6, as witnessed by a certain element a of S incomparable to some b ∈ S , then
by contraposition (14) yields a maximal chain that avoids a. Notice how this does not crucially hinge on posets—
towards a more general form of Hausdorff’s principle for directed graphs, along with the corresponding radical and
intersection theorem, the partial order above may be replaced by an arbitrary binary relation.13

On the lines of Table 6.1.2, we recapitulate the latter two applications in Table 6.2.2. We now have captured,
with increasing generality, chains by cliques,14 cliques by coalitions for irreflexive symmetric relations [7], and the
latter by inconsistency predicates.

10In [7, Remark 2] we have discussed in terms of coalitions Bell’s related notion of cliques for binary relations [62].
11In other words, the induced subgraph is complete in the sense of graph theory.
12Clique problems, e.g., the problem of finding a maximum clique and that of listing all maximal cliques are prominent in finite graph theory

and computational complexity theory [63].
13For instance, Suppes hints at forms of maximal principles in terms of arbitrary relations [65, Chapter 8].
14Conversely, in order to obtain a maximal clique it suffices to have a maximal chain of cliques.
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Maximal Clique Principle (Section 6.2.1) Hausdorff’s Maximal Chain Principle (Section 6.2.2)

given structure undirected graph partially ordered set
irreflexive, symmetric relation R nonadjacency incomparability
coalition clique chain
complete coalition maximal clique maximal chain
elements of Jac(∅) universal vertices elements comparable to all other

Table 2
Correspondences for cliques and chains

7. Binary Trees
In this section we carry over to complete coalitions the avenue recently followed [52] for prime ideals of con-

sequence relations towards a constructive universal form of Krull’s Prime Ideal Theorem.15 Readers familiar with
dynamical algebra [4, 5, 42] will draw a connection between the tree methods of [42] and the one employed here.

Let again S be a set. For every a ∈ S we first introduce a corresponding letter Xa. Let

S = (S ∪ { Xa | a ∈ S })∗

be the set of finite sequences of elements of S and such letters, with the usual provisos on notation, concatenation,
etc.

Definition 5. We generate inductively a class T of finite rooted binary trees T ⊆ S by the following rules:

{ [] } ∈ T
(root)

T ∈ T u ∈ Leaf(T ) a ∈ S
T ∪ { ua, uXa } ∈ T

(branch)
(15)

As usual, by a leaf we understand a sequence u ∈ T without immediate successor in T . The second rule is to
say that, given T ∈ T , if u is a leaf of T , then each element a of S gives rise to a new member of T by way of
an additional branching at u. More precisely, u gives birth to two children ua and uXa. Here is a possible instance,
where a, b ∈ S :

[]

[a]

[a, b] [a, Xb]

[Xa]

As an auxiliary tool, we further need a sorting function sort : S → S which gathers all occurring letters Xa at
the tail of a finite sequence. As the resulting order of the entries won’t matter later on, this function may be defined
recursively in a simple manner, as follows:

sort([]) = [], sort(ua) = a sort(u), sort(uXa) = sort(u)Xa.

Last but not least, given a subset C of S , owe introduce a relation C between elements of S and sorted finite
sequences in S by defining

c C [a1, . . . , ak, Xb1 , . . . , Xb` ] ≡ (∀V1 ∈ Rb1) . . . (∀V` ∈ Rb`) cCC, a1, . . . , ak,V1, . . . ,V`.

15For a related but different approach see [44, 66].
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where we drop the quantifier in case of ` = 0. In particular,

c C [] ⇔ c ∈ Jac(C). (16)

Keeping in mind Theorem 2, with AC the semantics of this relation is that for u as above, c C u precisely when,
for every simultaneous instantiation of respective opponents V1, . . . ,V` of b1, . . . , b`, this c is a member of every
complete coalition over C that further contains a1, . . . , ak and V1, . . . ,V`. The case in which this holds with respect
to every leaf of a certain tree T ∈ T will later be of particular interest.

Lemma 4. Let a, c ∈ S and let u ∈ S be sorted. If c C au and c C uXa, then c C u.

Proof. Consider u = [a1, . . . , ak, Xb1 , . . . , Xb` ] and suppose that (i) c C au and (ii) c C uXa. To show that c C u,
let V1 ∈ Rb1 , . . . ,V` ∈ Rb` . We write C′ = C, a1, . . . , ak,V1, . . . ,V` and need to check that cCC′. Now, premise (i)
yields cCC′, a, while (ii) implies that cCC′,V for every V ∈ Ra, so (C) implies cCC′. �

Definition 6. Let C ⊆ S and c ∈ S . We say that a tree T ∈ T terminates for C in c if c C sort(u) for every leaf u
of T .

Intuitively, this is to say that, along every path of T , no matter how we instantiate indeterminates Xb that we might
encounter with an opponent V ∈ Rb, if C′ is a complete coalition over C and contains the elements we will have
collected at the leaf, then c is a member of C′. The idea is now to fold up branchings by inductive application of the
completeness clause (C), to capture termination by way of the Jacobson radical, and thus to resolve indeterminacy
in the spirit of [52].

The following is the constructive counterpart of Theorem 2 and does not require that C be a coalition to start
with.

Theorem 3. Let c ∈ S and C ⊆ S . The following are equivalent.

(1) c ∈ Jac(C).
(2) There is T ∈ T which terminates for C in c.

Proof. If c ∈ Jac(C), then c C [] by (16), which is to say that { [] } terminates for C in c. Conversely, suppose that
T ∈ T is such that c C sort(u) for every leaf u of T . We argue by induction on T to show that c ∈ Jac(C). The
case T = { [] } is trivial (16). Suppose that T is the result of a branching at a certain leaf u of an immediate subtree
T ′, and suppose further that c C sort(ua) = a sort(u) as well as c C sort(uXa) = sort(u)Xa for a certain a ∈ S .
Lemma 4 implies that c C sort(u), whence we reduce to T ′, to which the induction hypothesis applies. �

Membership in a radical coalition is thus tantamount to termination.

Remark 3. Very much in the spirit of dynamical algebra [4, 5, 42, 43, 67], every tree T ∈ T represents the course
of a dynamic argument as if a given coalition were complete. Note that every complete coalition Cm of S gives rise
to a path through a given tree T ∈ T . In fact, at each branching, corresponding to an element a of S , by way of
completeness this a either belongs to Cm or else the latter assigns a value to Xa in the sense of exhibiting a witness
for R(Cm). The entries in the terminal node of this path, with values assigned appropriately, then belong to Cm. In
particular, if T terminates in c for a certain subset C ⊆ Cm, then c ∈ Cm because c ∈ Jac(C) ⊆ Jac(Cm) = Cm by
Theorem 3 and the fact that every complete coalition is radical.
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8. Conclusion
Hausdorff’s Maximal Chain Principle, a forerunner of the Kuratowski–Zorn Lemma [68–70], is presumably one

of the best known order-theoretic forms of the Axiom of Choice. We have seen that the property of a chain to be
maximal can be put as a criterion for completeness, reminiscent of the case in commutative ring theory for maximal
ideals. By analogy with Krull’s Theorem for maximal ideals, and employing a suitable adaptation of the Jacobson
radical, we could phrase a versatile generalisation of Hausdorff’s principle as an intersection principle. This has
paved the way to a constructive, purely syntactical rereading, both by an inductively generated covering relation,
as well as by means of finite binary trees which encode computations along generic complete objects. Concrete
applications can be found in algebra (see, e.g., our recasting of a part of McCabe’s proof of Zariski’s Lemma in
Section 6.1.1 above); it remains to be seen, however, to what extent our method allows to bypass other maximality
principles.

Acknowledgements
The present study was carried out within the project “A New Dawn of Intuitionism: Mathematical and Philo-

sophical Advances” (ID 60842) funded by the John Templeton Foundation, the project “Reducing complexity in
algebra, logic, combinatorics - REDCOM” belonging to the programme “Ricerca Scientifica di Eccellenza 2018”
of the Fondazione Cariverona, and the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Ap-
plicazioni (GNSAGA) of the Italian Istituto Nazionale di Alta Matematica (INdAM).16 The anonymous referees’
helpful remarks on both the conference paper [7] as well as the present journal version are gratefully acknowledged,
and the authors wish to thank the organizers of CiE 2020 for the opportunity to present a forerunner of this work.
Giuseppe Mazzuoccolo was so kind as to help out with up-to-date graph-theoretic terminology. Last but not least,
this paper would not have been possible without Giulio Fellin’s path-paving work about the Jacobson radical in logic
[24, 25], and the related discussions at a distance.

References
[1] C.J. Mulvey, The maximality of filters, J. Pure Appl. Algebra (1990), 253–258.
[2] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67(2) (1945), 300–320.
[3] W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Ann. 101 (1929), 729–744.
[4] H. Lombardi and C. Quitté, Commutative Algebra: Constructive Methods. Finite Projective Modules, Algebra

and Applications, Vol. 20, Springer Netherlands, Dordrecht, 2015.
[5] I. Yengui, Constructive Commutative Algebra. Projective Modules over Polynomial Rings and Dynamical

Gröbner Bases, Lecture Notes in Mathematics, Vol. 2138, Springer, Cham, 2015.
[6] P. Schuster and D. Wessel, Syntax for Semantics: Krull’s Maximal Ideal Theorem, in: Paul Lorenzen: Math-

ematician and Logician, G. Heinzmann and G. Wolters, eds, Log. Epistemol. Unity Sci., Vol. 51, Springer,
Cham, 2021, pp. 77–102.

[7] P. Schuster and D. Wessel, The computational significance of Hausdorff’s Maximal Chain Principle, in: Be-
yond the Horizon of Computability. 16th Conference on Computability in Europe, M. Anselmo, G.D. Vedova,
F. Manea and A. Pauly, eds, Lect. Notes Comput. Sci., Vol. 12098, Springer, 2020, pp. 239–250, Proceedings,
CiE 2020, Fisciano, Italy, June 29–July 3, 2020.

[8] P. Aczel and M. Rathjen, Notes on Constructive Set Theory, Technical Report, Institut Mittag–Leffler, 2000,
Report No. 40.

[9] P. Aczel and M. Rathjen, Constructive set theory, 2010, Book draft. https://www1.maths.leeds.ac.
uk/~rathjen/book.pdf.

[10] M. Rathjen, Generalized inductive definitions in Constructive Set Theory, in: From Sets and Types to Topology
and Analysis: Towards Practicable Foundations for Constructive Mathematics, L. Crosilla and P. Schuster,
eds, Oxford Logic Guides, Vol. 48, Clarendon Press, Oxford, 2005, Chapter 16.

16The opinions expressed in this paper are solely those of the authors.

https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf


14 P. Schuster and D. Wessel / The Jacobson radical for an inconsistency predicate

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

[11] D. Rinaldi, P. Schuster and D. Wessel, Eliminating disjunctions by disjunction elimination, Bull. Symb. Logic
23(2) (2017), 181–200.

[12] D. Rinaldi, P. Schuster and D. Wessel, Eliminating disjunctions by disjunction elimination, Indag. Math. (N.S.)
29(1) (2018), 226–259.

[13] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
[14] E. Bishop and D. Bridges, Constructive Analysis, Springer, 1985.
[15] R. Mines, F. Richman and W. Ruitenburg, A Course in Constructive Algebra, Springer, New York, 1988,

Universitext.
[16] G. Sambin, Some points in formal topology, Theoret. Comput. Sci. 305(1–3) (2003), 347–408.
[17] J.-C. Raoult, Proving open properties by induction, Inform. Process. Lett. 29(1) (1988), 19–23.
[18] H.P. Young and S. Zamir (eds), Handbook of Game Theory, Volume 4, 1st edn, Handbooks in Economics,

North-Holland, Amsterdam, 2015.
[19] P. Aczel, L. Crosilla, H. Ishihara, E. Palmgren and P. Schuster, Binary refinement implies discrete exponentia-

tion, Studia Logica 84(3) (2006), 361–368.
[20] T. Coquand, H. Lombardi and C. Quitté, Dimension de Heitmann des treillis distributifs et des anneaux com-

mutatifs, Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres (2006), 57–100.
[21] A. Kertész, Einführung in die transfinite Algebra, Birkhäuser Verlag, Basel, 1975, Elemente der Mathematik

vom höheren Standpunkt aus, Band VII.
[22] H. Simmons, A curious nucleus, J. Pure Appl. Algebra 214 (2010), 2063–2073.
[23] L. Haykazyan, More on a curious nucleus, J. Pure Appl. Algebra 224 (2020), 860–868.
[24] G. Fellin, The Jacobson Radical: from Algebra to Logic, 2018, Master’s thesis. Università di Verona, Diparti-

mento di Informatica.
[25] G. Fellin, P. Schuster and D. Wessel, The Jacobson radical of a propositional theory, Bull. Symbolic Logic

(2021), forthcoming.
[26] T. Coquand, G. Sambin, J. Smith and S. Valentini, Inductively generated formal topologies, Ann. Pure

Appl. Logic 124 (2003), 71–106.
[27] F. Ciraulo, M.E. Maietti and G. Sambin, Convergence in formal topology: a unifying notion, J. Log. Anal. 5(2)

(2013), 1–45.
[28] U. Berger, A computational interpretation of open induction, in: Proceedings of the Ninetenth Annual IEEE

Symposium on Logic in Computer Science, F. Titsworth, ed., IEEE Computer Society, 2004, pp. 326–334.
[29] T. Coquand, A Note on the Open Induction Principle, Technical Report, Göteborg University, 1997. www.

cse.chalmers.se/~coquand/open.ps.
[30] P. Aczel, Aspects of general topology in constructive set theory, Ann. Pure Appl. Logic 137(1–3) (2006), 3–29.
[31] P. Schuster and D. Wessel, A general extension theorem for directed-complete partial orders, Rep. Math. Logic

53 (2018), 79–96.
[32] P. Schuster, Induction in algebra: a first case study, in: 2012 27th Annual ACM/IEEE Symposium on Logic

in Computer Science, IEEE Computer Society Publications, 2012, pp. 581–585, Proceedings, LICS 2012,
Dubrovnik, Croatia.

[33] P. Schuster, Induction in algebra: a first case study, Log. Methods Comput. Sci. 9(3) (2013), 20.
[34] F. Ciraulo, D. Rinaldi and P. Schuster, Lindenbaum’s Lemma via Open Induction, in: Advances in Proof The-

ory, R. Kahle, T. Strahm and T. Studer, eds, Progress in Computer Science and Applied Logic, Vol. 28, Springer
International Publishing Switzerland, Cham, 2016, pp. 65–77.

[35] D. Rinaldi and P. Schuster, A universal Krull–Lindenbaum theorem, J. Pure Appl. Algebra 220 (2016), 3207–
3232.

[36] W. Hodges, Krull implies Zorn, J. Lond. Math. Soc. 19 (1979), 285–287.
[37] B. Banaschewski, A new proof that “Krull implies Zorn”, Math. Log. Quart. 40 (1994), 478–480.
[38] P. Howard and J. Rubin, Consequences of the Axiom of Choice, American Mathematical Society, Providence,

RI, 1998.
[39] J. McCabe, A note on Zariski’s lemma, Amer. Math. Monthly 83(7) (1976), 560–561.

www.cse.chalmers.se/~coquand/open.ps
www.cse.chalmers.se/~coquand/open.ps


P. Schuster and D. Wessel / The Jacobson radical for an inconsistency predicate 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

[40] F. Wiesnet, An algorithmic version of Zariski’s lemma, in: Connecting with Computability. 17th Conference on
Computability in Europe, CiE 2021 Virtual Event, Ghent, July 5–9, 2021, Proceedings, L. De Mol, A. Weier-
mann, F. Manea and D. Fernández-Duque, eds, Lecture Notes in Computer Science, Vol. 12813, Springer,
2021, pp. 469–482.

[41] F. Wiesnet, The Computational Content of Abstract Algebra and Analysis, PhD thesis, Ludwig-Maximilians
Universtät München, Università degli Studi di Trento, Università degli Studi di Verona, 2021.

[42] M. Coste, H. Lombardi and M.-F. Roy, Dynamical method in algebra: Effective Nullstellensätze., Ann. Pure
Appl. Logic 111(3) (2001), 203–256.

[43] I. Yengui, Making the use of maximal ideals constructive., Theoret. Comput. Sci. 392 (2008), 174–178.
[44] T. Powell, P. Schuster and F. Wiesnet, An algorithmic approach to the existence of ideal objects in com-

mutative algebra, in: 26th Workshop on Logic, Language, Information and Computation (WoLLIC 2019),
Utrecht, Netherlands, 2–5 July 2019, Proceedings, R. Iemhoff and M. Moortgat, eds, Lect. Notes Comput. Sci.,
Vol. 11541, Springer, Berlin, 2019, pp. 533–549.

[45] T. Powell, On the Computational Content of Zorn’s Lemma, in: Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 768–781.

[46] I. Blechschmidt and P. Schuster, Maximal ideals in countable rings, constructively, in: Revolutions and Rev-
elations in Computability. 18th Conference on Computability in Europe, U. Berger and J. Franklin, eds,
Lect. Notes Comput. Sci., Springer, Proceedings, CiE 2022, Swansea, Wales, July 11–15, 2022.

[47] V. Glivenko, Sur quelques points de la Logique de M. Brouwer, Acad. Roy. Belg. Bull. Cl. Sci. (5) 15 (1929),
183–188.

[48] S. Negri and J. von Plato, Proof Analysis. A Contribution to Hilbert’s Last Problem, Cambridge University
Press, Cambridge, 2011.

[49] S. Negri and J. von Plato, Cut Elimination in Sequent Calculi with Implicit Contraction, with a Conjecture
on the Origin of Gentzen’s Altitude Line Construction, in: Concepts of Proof in Mathematics, Philosophy,
and Computer Science, D. Probst and P. Schuster, eds, Ontos Mathematical Logic, Vol. 6, Walter de Gruyter,
Berlin, 2016, pp. 269–290.

[50] H. Ishihara, Classical propositional logic and decidability of variables in intuitionistic propositional logic, Log.
Methods Comput. Sci. 10(3) (2014), 3:1, 7–. doi:10.2168/LMCS-10(3:1)2014.

[51] S. Negri and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge, 2001.
[52] P. Schuster and D. Wessel, Resolving finite indeterminacy: a definitive constructive universal prime ideal the-

orem, in: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 820–830.

[53] G. Guerrieri and A. Naibo, Postponement of raa and Glivenko’s theorem, revisited, Studia Logica 107(1)
(2019), 109–144.

[54] C. Espíndola, A short proof of Glivenko theorems for intermediate predicate logics, Archive for Mathematical
Logic 52(7–8) (2013), 823–826.

[55] L.C. Pereira and E.H. Haeusler, On constructive fragments of classical logic, in: Dag Prawitz on proofs and
meaning, Outst. Contrib. Log., Vol. 7, Springer, Cham, 2015, pp. 281–292.

[56] T. Litak, M. Polzer and U. Rabenstein, Negative translations and normal modality, in: 2nd International Con-
ference on Formal Structures for Computation and Deduction, LIPIcs. Leibniz Int. Proc. Inform., Vol. 84,
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pp. Art. No. 27, 18–.

[57] H. Ono, Glivenko theorems revisited, Ann. Pure Appl. Logic 161(2) (2009), 246–250.
[58] H. Ishihara and H. Schwichtenberg, Embedding classical in minimal implicational logic, MLQ Math. Log. Q.

62(1–2) (2016), 94–101.
[59] S. Negri, Glivenko sequent classes in the light of structural proof theory, Archive for Mathematical Logic

55(3–4) (2016), 461–473. doi:10.1007/s00153-016-0474-y.
[60] N. Galatos and H. Ono, Glivenko Theorems for Substructural Logics over FL, J. Symbolic Logic 71(4) (2006),

1353–1384.



16 P. Schuster and D. Wessel / The Jacobson radical for an inconsistency predicate

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

[61] G. Fellin and P. Schuster, A general Glivenko-Gödel theorem for nuclei, in: Proceedings of the 37th Conference
on the Mathematical Foundations of Programming Semantics, MFPS 2021, Salzburg, Austria, August 29–
September 3, 2021, A. Sokolova, ed., Electronic Notes in Theoretical Computer Science, Elsevier, 2021.

[62] J.L. Bell, Some new intuitionistic equivalents of Zorn’s lemma, Arch. Math. Logic 42(8) (2003), 811–814.
[63] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, Vol. 244, Springer-Verlag,

London, 2008.
[64] F. Hausdorff, Grundzüge der Mengenlehre, Verlag von Veit & Comp., Leipzig, 1914.
[65] P. Suppes, Axiomatic Set Theory, Dover Publications, New York, 1972.
[66] T. Powell, P. Schuster and F. Wiesnet, A universal algorithm for Krull’s theorem, Inform. and Comput. (2021),

In press. Paper 104761, available online 5 May 2021.
[67] P. Schuster, D. Wessel and I. Yengui, Dynamic evaluation of integrity and the computational content of Krull’s

lemma, J. Pure Appl. Algebra 226(1) (2022), paper 106794, available online 17 May 2021.
[68] C. Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques, Funda-

menta Math. 3 (1922), 76–108.
[69] M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc. 41 (1935), 667–670.
[70] P.J. Campbell, The origin of “Zorn’s lemma”, Historia Math. 5 (1978), 77–89.


	Introduction
	Disclaimer
	On method and foundations

	Coalitions
	Jacobson Radical
	Inductive Generation
	Completeness
	Applications
	Ideals and Theories
	Krull's Maximal Ideal Theorem
	Lindenbaum's Lemma

	Cliques and Chains
	Maximal Cliques
	Maximal Chains


	Binary Trees
	Conclusion
	Acknowledgements
	References

