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A B S T R A C T

This study contributes to advancing the field of automatic fish event recognition in natural underwater videos,
addressing the current gap in studying fish interaction and competition, including predator-prey relationships
and mating behaviors. We used the corkwing wrasse (Symphodus melops) as a model, a marine species of com-
mercial importance that reproduces in sea-weed nests built and cared for by a single male. These nests attract a
wide range of visitors and are the focal point for behavior such as spawning, chasing, and maintenance. We
propose a deep learning methodology to analyze the movement trajectories of the nesting male and classify the
associated events observed in their natural habitat. Our approach leverages unsupervised pre-training based on
diffusion models, leading to improved feature learning. Additionally, we introduce a dataset comprising 16,937
trajectories across 12 event classes, making it the largest in terms of event class diversity. Our results demonstrate
the superior performance of our method compared to several deep architectures. The code for the proposed
method and the trajectories can be found at https://github.com/NoeCanovi/Fish_Behaviors_Generative_Models.

1. Introduction

Animal behavior drives change and dynamics in populations and
ecosystems through shaping predator-prey relationships, social net-
works, and the outcome of competition over mates and resources
(Gurevitch et al., 2000; Shuster and Wade, 2003; Wey et al., 2008). An
understanding of the key behavior and their cues and consequences is,
therefore, a necessity for implementing effective conservation and
management measures. Direct observations of behaviors are challenging
for many species, but the recent decades' advances in camera and battery
technology now offer the opportunity for collecting behavior data in
remote locations that are difficult to access for human observers, or
when human presence can disturb the animals (Caravaggi et al., 2017;
Claridge et al., 2004; Ramsey et al., 2019).

Some behaviors matter more than others such that they can have a
strong, often direct influence on the survival and reproduction of an

individual. Survival-related behaviors, such as predation, can be a rare
event and difficult to quantify using cameras. Reproduction often occurs
in specific places and times across many species, which facilitates tar-
geted observational studies. On the other hand, the nesting behavior in
birds and fish, where the nest is the focal point for both mating and
parental care can be relatively easily observed using cameras.

In this study, we focus on the nesting behavior of the corkwing
wrasse (Symphodus melops), where only the males build nests and care
for the eggs (Halvorsen et al., 2017a). In this species, the nesting males
are larger and more colorful as compared to females (Halvorsen et al.,
2016). However, a smaller proportion of males develop as sneaker males
- a fixed alternative reproductive strategy. The sneaker males do not
build nests and closely resemble females in appearance. Their strategy is
rather to deceive the nesting male to get access to the nest and fertilize
the eggs, and in that way avoiding the burden of parental care (Potts,
1974; Uglem et al., 2000). The nests also attract egg predators, which
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can be corkwing or other wrasse species. The corkwing wrasse plays a
vital role in marine ecosystems by regulating populations of benthic
invertebrates and helping to maintain ecological balance. Wrasse are
also recognized as cleaner fish, as they consume ectoparasites from other
fish, effectively cleaning them. Due to this behavior, they are utilized in
salmon farming to manage lice infestations (Karaszkiewicz, 2020; Skif-
tesvik et al., 2014). Corkwing wrasse is also a commercially important
marine fish in fisheries, and indeed concerns have been raised about
intensive fishing practices that disproportionately target nesting males
over females and sneaker males (Halvorsen et al., n.d.; Halvorsen et al.,
2016; Halvorsen et al., 2017a). Such fishing practices, which alter sex
ratios and size distributions, can indirectly affect reproductive behavior
and population productivity (Kindsvater et al., 2020).

For corkwing wrasse and other nesting fish species, the reproductive
behaviors can be identified by distinctive movement patterns of the
individuals (e.g., spawning), enabling animal behavior scientists to
accurately detect and quantify them in video using manual behavior
annotation software. However, this procedure is very time-consuming
and requires expert knowledge of the behavior of the species in ques-
tion, limiting the potential for upscaling and expanding studies. Auto-
mation through machine/deep learning holds promise in addressing the
challenge of analyzing these data-intensive videos. Advancements in
computer vision for automated processing of data from animal studies
now offer hope to many ecologists who struggle with this laborious task
(Beyan and Browman, 2020; Dell et al., 2014; Goodwin et al., 2022).
Furthermore, such advancements can provide new tools for marine bi-
ologists to observe behavioral changes in response to environmental
changes. For example, they can use video monitoring to detect the onset
and duration of the spawning period, as many fisheries are managed
with temporal fishing closures during the reproductive period (Hal-
vorsen et al., n.d.; Halvorsen et al., 2017b).

In this paper, we present a deep learning approach to analyze the
movement trajectories of male corkwing wrasse to automatically detect
their behavior in their natural habitat across various event categories.
We introduce a novel unsupervised pre-training based approach (also
called unsupervised feature learning) that harnesses the reconstruction
capability of a type of generative model for enhanced feature learning.
Traditionally, ecological problems have been addressed using computer
vision and machine/deep learning approaches predominantly through
fully supervised learning methods (Ditria et al., 2021; Frainer et al.,
2023; Fundel et al., 2023; Marjani et al., 2023; Sujatha et al., 2023;
Truong et al., 2023). However, unsupervised pre-training presents an
effective alternative to this approach. Its advantages lie in data effi-
ciency, transferability capability, the capacity to learn robust and
generalizable feature representations, and its role as a regularization
technique to mitigate overfitting to the labeled data as shown in several
studies such as (D'incà et al., 2023; Erhan et al., 2010; Franceschini
et al., 2022; Ge et al., 2023; Paoletti et al., 2022a; Suryawati et al., 2021;
Zhang et al., 2022). Such attributes make unsupervised pre-training
particularly appealing compared to solely relying on fully supervised
methods.

While earlier works on various computer vision tasks employed
Restricted Boltzmann Machines and their variants for unsupervised pre-
training (Beyan et al., 2017; Katsageorgiou et al., 2017; Phan et al.,
2016), as well as several types of autoencoders that have been gaining
popularity (Erhan et al., 2010; Ge et al., 2023; Suryawati et al., 2021),
recent advancements have highlighted the superior performance of
diffusion models over autoencoders (Cao et al., 2024; Paoletti et al.,
2021a; Paoletti et al., 2022b; Xiang et al., 2023). Therefore, it is now
imperative to investigate the efficacy of diffusion models also for un-
supervised feature learning, particularly for addressing ecological
problems. In line with this, our study utilizes diffusion models, where
the acquired features after unsupervised pre-training are subsequently
employed to enhance the training of a classifier, facilitating effective fish
event classification.

To conduct the experimental analysis, we introduce a dataset

comprising 16,937 trajectories corresponding to 12 different event
classes. This dataset is the largest of its kind in terms of the diversity of
event classes. The current literature lacks studies on automatic recog-
nition of fish events based on trajectories in natural underwater videos
such that the earlier research primarily focused on detecting unusual
trajectories (Beyan and Fisher, 2012;Beyan and Fisher, 2013a; Beyan
and Fisher, 2013b). For those considering RGB video frames instead of
trajectories and apply deep learning, their scope is limited as they often
focus on a single behavior class and analyze fish in restricted environ-
ments such as cages (Måløy et al., 2019; McIntosh et al., 2020). We argue
that the absence of research like ours (i.e., conducted in fully natural
settings and covering multiple classes) can primarily be attributed to the
significant time and effort required for collecting and annotating event
data in a detailed manner, typically done manually by fish behavior
experts. Therefore, not only does the proposed method presented in this
study stand as a pioneering contribution, but also the collected dataset
represents an important initiative.

We further benchmarked our dataset (a) by incorporating state-of-
the-art fish trajectory features (Beyan and Fisher, 2013a; Beyan and
Fisher, 2013b), (b) by applying fully supervised methods (i.e., based on
one-dimensional Convolutional Neural Networks (1D-CNN)), and (c) by
employing autoencoders (Tur et al., 2023a; Tur et al., 2023b). While
such methods are established models for trajectory analysis, they have
also been applied to imbalanced datasets, similar to the one we have on
hand, for action/event classification and as solutions to ecological
informatics problems. These additional analyses allow us to evaluate the
efficacy of our proposed method in comparison to alternative method-
ologies, thereby confirming its superior performance.

The remainder of this paper is structured as follows: Section 2 delves
into event/action recognition methods within computer vision, with a
particular emphasis on trajectory-based methods, fish behavior, diffu-
sion models, and the species under study in this paper. The dataset
utilized in this paper is introduced in Section 3. Section 4 provides a
detailed explanation of the proposed method along with its imple-
mentation details. The experimental results are presented in Section 5.2,
followed by an in-depth discussion of the findings in Section 6. Finally,
we conclude the paper with a summary, limitations, and potential future
research directions in Section 7.

2. Related work

In this section, we provide a comprehensive discussion on event/
action recognition studies in computer vision, along with diffusion
models. Additionally, we compare our method, highlighting its dis-
tinctions in several key aspects compared to prior related studies. We
also summarize the characteristics of the species under study in this
paper.

2.1. Event recognition in computer vision

Event recognition, predominantly focused on human actions in the
literature of computer vision, endeavors to detect and recognize a pre-
determined set of activity categories performed by one or more persons
by analyzing images or videos. Key applications of action/event recog-
nition include video surveillance, video content annotation and
retrieval, healthcare, robotics, and scene modeling, among others.

Approaches of action/event recognition can be divided into two
categories such that those employing hand-crafted features and those
utilizing deep models. On the other hand, the problem is typically
addressed by using fully supervised learning methods, although lately
there are also approaches utilizing unsupervised feature learning (i.e.,
unsupervised pre-training) (Paoletti et al., 2021b; Paoletti et al., 2022c).
When considering the data type, research on action/event recognition
can be categorized into methods utilizing RGB data and those inte-
grating color with depth data (i.e., RGBD) (Kong and Fu, 2022; Pareek
and Thakkar, 2021). RGB and RGBD-based methods analyze the
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appearance of individuals in the scene, whereas an alternative approach
is to utilize trajectories, which offer a more compact representation.
Trajectories have been defined in terms of the tracking path of human
skeleton data (Lin et al., 2020; Paoletti et al., 2021a; Paoletti et al.,
2021c; Paoletti et al., 2022b; Su et al., 2020; Zheng et al., 2018) or the
center coordinates of detection bounding boxes encapsulating objects of
interest, such as animals, over time (Beyan and Fisher, 2013c; Beyan and
Fisher, 2013d; Palazzo et al., 2012; Schindler and Steinhage, 2021).

Given that our approach also relies on a) trajectories, b) unsuper-
vised pre-training and specifically c) focusing on fish events, in this
section, we delve into prior works on these topics. Other papers can be
visited from the latest survey papers (Estevam et al., 2021; Kong and Fu,
2022; Pareek and Thakkar, 2021) on action recognition in computer
vision.

2.1.1. Trajectory-based recognition
The methods based on hand-crafted features, as presented by Wang

et al. introduce the dense trajectory (DT) and improved trajectory (IDT)
techniques (Wang et al., 2011; Wang and Schmid, 2013). Initially,
spatial feature points are identified on each frame of the image, and
these points are then individually tracked to form trajectories of fixed
length. These trajectories are subsequently described through de-
scriptors. Notably, the IDT method offers an advantage in its ability to
estimate camera motion by matching SURF descriptors (Bay et al., 2006)
and dense optical flow feature points (Walker et al., 2015) between the
previous and following frames, thereby mitigating the impact of camera
movement. Following feature extraction, classification is performed
using a Support Vector Machine (SVM). While in certain scenarios, these
methods outperform deep learning-based approaches, they are limited
by their slow processing speed and the necessity for accurate feature
point tracking.

As a data-driven counterpart, a Convolutional Neural Network
(CNN) based model was introduced in (Wang et al., 2015) which pre-
sents the Trajectory pooled Deep convolutional Descriptors (TDD) by
integrating IDT features with two-stream depth features. That approach
focuses on learning discriminative convolutional feature maps and uti-
lizes trajectory-constrained pooling to aggregate the deep convolutional
features into video descriptors. Differently, Shi et al. (Shi et al., 2017)
propose a three-stream framework. These three streams, namely spatial,
temporal, and sDTD streams are tailored to capture spatial, short-term,
and long-term features, respectively. Specifically, the sDTD stream in-
volves the extraction of simplified dense trajectories from each video,
which are then transformed into a sequence of two-dimensional Tra-
jectory Texture Images. These images are subsequently processed by a
CNN + RNN (RNN stands for Recurrent Neural Network), enabling the
learning of an efficient representation of long-term motion characteris-
tics. In (Wang et al., 2018), Joint Trajectory Maps (JTM) were intro-
duced as a technique to encode spatio-temporal information from 3D
skeleton sequences into 2D images using color coding. These images are
subsequently fed into CNNs to extract discriminative features for Human
Action Recognition (HAR). In such a method, only adjacent joints within
the convolution kernel are considered to learn co-occurrence features
while potential correlations associated with all joints are not covered.
Zhao et al. (Zhao et al., 2018a) propose a CNN architecture that
explicitly predicts trajectories and integrates information along them
using a convolution operation. Their design takes into account the
changes in contents caused by motion or deformation. Specifically, they
incorporate trajectory convolution into a Separable-3D ResNet18 ar-
chitecture and employ either a variational method or an unsupervised
method (MotionNet) to generate trajectory data from video. In contrast,
the transformer architecture in (Patrick et al., 2021) does not explicitly
predict trajectories, but provides an inductive bias that encourages the
network to consider motion trajectories where useful. In detail, the
study demonstrates that the joint attention mechanism for video trans-
formers computes correlations between space and time. Furthermore, it
elucidates how to guide the network in pooling information along

motion paths.
In contrast to the methods discussed above, our approach relies on

trajectories defined by the center points of detection bounding boxes
over a fixed time segment, and we learn the feature representations by
an unsupervised generative model. Similar to (Wang et al., 2011; Wang
et al., 2018; Wang and Schmid, 2013; Zhao et al., 2018a), the detection
bounding boxes are obtained as outputs of a standalone object tracker.

2.1.2. Unsupervised pre-training for action recognition
The literature reviewed above employs a fully supervised learning

paradigm, wherein each sequence is manually annotated with the
associated event for feature learning. As a recent alternative, unsuper-
vised feature learning approaches (Ben Tanfous et al., 2018; Gui et al.,
2018; Holden et al., 2015; Kundu et al., 2019; Li et al., 2018; Lin et al.,
2020; Martinez et al., 2017; Nie et al., 2020; Paoletti et al., 2021d; Rao
et al., 2021; Su et al., 2020; Xu et al., 2023; Zanfir et al., 2013; Zheng
et al., 2018), particularly based on trajectories of human body pose, are
progressively narrowing the performance gap with their fully supervised
counterparts. These approaches could yield more compact, less noisy,
and more transferable feature representations across various datasets for
HAR (Paoletti et al., 2021a; Paoletti et al., 2021c; Paoletti et al., 2022b).
These methods refrain from utilizing action/event labels during feature
learning and typically rely on the encoder-decoder recurrent architec-
tures (Kundu et al., 2019; Lin et al., 2020; Rao et al., 2021; Su et al.,
2020; Zheng et al., 2018).

For instance, Zheng et al. (Zheng et al., 2018) introduce the method
utilizing Generative Adversarial Networks (GANs) with Gated Recurrent
Units (GRUs) to learn temporal representations of skeletal body poses.
Additionally, an adversarial loss supports an auxiliary inpainting task,
enhancing the learning process. Similarly, Lin et al. (Lin et al., 2020)
employ GRUs to integrate contrastive learning, motion prediction, and
jigsaw puzzle recognition techniques. Furthermore, Kundu et al. (Kundu
et al., 2019) integrate a GAN-based encoder into their recurrent archi-
tecture. Xu et al. (Xu et al., 2023) enhance a vanilla autoencoder, trained
to reconstruct skeletal data using mean-squared error (MSE) loss, by
incorporating an ad-hoc training mechanism based on expectation
maximization with learnable class prototypes. Su et al. (Su et al., 2020)
utilize an encoder-decoder RNN to learn representations for HAR in an
unsupervised manner from skeletal joints while addressing classification
with a 1-nearest neighbor predictor. On the other hand, Rao et al. (Rao
et al., 2021) merge contrastive learning with momentum Long Short-
Term Memory (LSTM), contrasting the similarity between augmented
instances and the input skeleton sequence before encoding long-term
actions with a momentum-based LSTM. Similarly, Guo et al. (Guo
et al., 2022) extend contrastive methods, demonstrating robust repre-
sentations derived from extreme augmentations and novel movement
patterns. Recently, Paoletti et al. (Paoletti et al., 2021a; Paoletti et al.,
2022b) demonstrated the utilization of raw trajectories as input for a
convolutional autoencoder during unsupervised pre-training. Subse-
quently, the latent features extracted from the autoencoder's encoder are
utilized to train a Multilayer Perceptron (MLP) for action recognition.
This simpler approach (Paoletti et al., 2021a; Paoletti et al., 2022b)
demonstrated a better classification concerning the above methods
while illustrating that features learned through unsupervised pre-
training are transferable across different datasets and even tasks.

The most recent and top-performing studies in this domain often
capitalize on the reconstruction capability of various generative models
like GANs and autoencoders. Also, contrastive learning has been used to
improve the similarity between the augmented and original instances.
Differently, our proposed method employs diffusion models when pro-
cessing 2D trajectories over a specific time frame. The aim is to utilize
the inherent noise sampling, corruption, and reconstruction character-
istics of diffusion models to acquire more effective feature representa-
tions. Subsequently, the latent features extracted from the encoder
structure of the proposed diffusion model serve as input for a dense
neural network, specifically an MLP, to facilitate the training of this
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classifier and execute the inference process. Furthermore, motivated by
the improved results in (Paoletti et al., 2021a; Paoletti et al., 2022b)
concerning other studies discussed in this section, we adapted the
autoencoder structure in these studies to compare its performance
against the proposed method.

2.1.3. Fish behavior analysis in underwater videos
While the majority of studies focus on HAR, there is a growing in-

terest in comprehending and analyzing animal behaviors. However,
research on fish behavior using computer vision is relatively less
explored compared to other vertebrates. A recent survey paper on fish
detection and behavior analysis mentions that fish detection, species
identification, and counting are topics that have received significantly
more attention compared to fish behavior analysis (Yang et al., 2021).
This disparity is largely attributed to the challenges inherent in col-
lecting and analyzing data in underwater environments (Ditria et al.,
2021), as well as the difficulty in annotating event classes in natural
settings where the occurrence and conditions of events are unpredict-
able. Indeed, most research on fish behavior analysis has been con-
ducted in controlled settings such as water tanks (Wang et al., 2021;
Zhao et al., 2018b).

Appearance-based (e.g., color-based, oriented gradients) and
motion-based (e.g., frame differencing, background subtraction) detec-
tion methods have been frequently employed in fish detection, followed
by tracking methods to establish motion trajectories. Various features
have been extracted from these trajectories, such as velocity, accelera-
tion, turns, centroid distance function, local features, loop features, and
displacement, and utilized for the analysis of individual fish behavior in
underwater videos (Beyan and Fisher, 2013a; Beyan and Fisher, 2013b).
Within the Fish4Knowledge project (Boom et al., 2014; Fisher et al.,
2016), three methods were developed for the damselfish Dascyllus
reticulatus's behavior recognition in unconstrained underwater videos,
all emphasizing the distinction between abnormal (defined as rarely
seen behavior classes) and normal behaviors. The first model (Beyan and
Fisher, 2012) employs a filtering method that eliminates normal tra-
jectories through a cascade of 21 rule-based filters, focusing solely on
consecutive detections belonging to the same fish. The second method
(Beyan and Fisher, 2013a) utilizes labeled and clustered data, applying
outlier detection to clusters. The third method (Beyan and Fisher,
2013b) constructs a hierarchy using clustered and labeled data based on
data similarity, employing different feature sets at various hierarchy
levels.

The accuracy of detection and tracking techniques, particularly those
based on appearance and motion analysis (i.e., without deep learning),
plays a critical role in effective fish behavior analysis in underwater
environments (Beyan et al., 2018; Beyan and Fisher, 2012; Beyan and
Fisher, 2013a; Beyan and Fisher, 2013b; Palazzo et al., 2012). As noted
in (Beyan et al., 2018), approximately 25% of the data may suffer from
detection and tracking errors, rendering it impossible to ensure com-
plete cleanliness of the entire dataset due to outliers from false detection
and incorrect trajectory assignments. Beyan et al. (Beyan et al., 2018)
employed an effective deep learning-based clustering algorithm based
on mean-covariance restricted Boltzmann machines to clean noisy
tracking data, encompassing a dataset of 4 million fish trajectories.
Nevertheless, abnormal tracking trajectories are rare even in outlier
detection, presenting an ongoing challenge in dealing with small sample
sizes.

When it comes to deep learning-based methods, those utilizing tra-
jectories still rely on hand-crafted features similar to those mentioned
earlier. However, fish detection and tracking have been enhanced by
adopting models like YOLOv3 and Mask RCNN (Hu et al., 2021; Lopez-
Marcano et al., 2021). In contrast to trajectory-based methods, there
have been a few attempts to analyze RGB video frames using deep neural
network backbones (Ditria et al., 2021) combined with RNNs and var-
iations (Måløy et al., 2019; McIntosh et al., 2020; Zhao et al., 2018c), or
by applying 3D CNNs (Long et al., 2020; Måløy et al., 2019).

Nonetheless, such studies are significantly limited in several aspects. For
example, (Ditria et al., 2021) focuses solely on grazing behavior,
(McIntosh et al., 2020) specializes in startle behavior, (Long et al., 2020)
is tested only in laboratory environments, (Måløy et al., 2019) analyzes
fish in sea cages with a focus only on feeding behavior, and (Zhao et al.,
2018c) detects unusual behavior of fish school in aquaculture tanks.

To sum up, there is no study that focuses on multiple behavioral
events by modeling raw trajectories and/or video frames, and being
validated on natural underwater videos where it is not possible to
stimulate the fish to capture specific behaviors. Therefore, our study,
which addresses all these aspects, is unique and fills an important
research gap. Furthermore, our study is the first to employ unsupervised
pre-training of fish trajectories to obtain effective feature representa-
tions for fish event recognition. We also test the effectiveness of several
deep models as well as mainstream trajectory features (Beyan and
Fisher, 2013a; Beyan and Fisher, 2013b).

2.2. Diffusion models

Diffusion models, a type of generative deep learning model, have
demonstrated potential across a range of computer vision tasks,
encompassing image generation (Liu et al., 2023), denoising (Saharia
et al., 2022), and segmentation (Gu et al., 2024). Later on, these models
have been extended to tackle discriminative tasks such as image clas-
sification (Yang and Wang, 2023), object detection (Chen et al., 2023),
and anomaly detection in videos (Tur et al., 2023a; Tur et al., 2023b),
showing very promising results.

Diffusion models operate by iteratively refining an input signal until
it aligns with a target distribution. When applied to discriminative tasks,
the input distribution represents noisy probabilities across class labels,
while the conditioning signal usually comprises an image (Chen et al.,
2023; Yang and Wang, 2023). This iterative process entails applying a
sequence of transformations to the input signal, progressively bringing
the output closer to the target distribution.

We are pioneering the application of diffusion models to the domain
of fish event recognition, particularly in scenarios characterized by
significant class imbalance in the data. Instead of utilizing images, our
focus lies in extracting spatio-temporal features from the trajectories of
individual fish. It is crucial to note that during the feature learning
phase, we avoid incorporating any class labels associated with fish
events. Consequently, the pre-training with diffusion models is carried
out entirely in an unsupervised manner. Through unsupervised feature
learning, we demonstrate the extraction of effective features at a certain
stage, which are then utilized to recognize even relatively scarce event
classes. Our approach demonstrates superior classification performance
compared to using autoencoders replaced by diffusion models, as well as
fully supervised methods: based on hand-crafted fish trajectory features
(Beyan and Fisher, 2013a; Beyan and Fisher, 2013b), and 1D-CNN.

2.3. Study species

The corkwing wrasse is an ecological and commercially important
coastal fish, common in shallow waters of the North-east Atlantic
(Halvorsen et al., 2016). This species has a complex life history and
mating system, with most males developing into colorful nesting males
that are strongly territorial and build seaweed nests during the spawning
period in May–July (Potts, 1985). Several females visit and spawn in the
nest, but only the male defends the nest and provides care for the eggs,
where he performs a vigorous continuous movement of his fins and body
close to the nest entrance. In addition, some males develop as sneaker
males which closely resemble the females in morphology to sneak-
fertilize eggs and, in that way, they avoid the struggle for territory
acquisition and parental care. When the nesting male identifies a
sneaker male, he will chase him off or block the entrance to his nest with
his body. The nesting males may also chase off other species, such as the
smaller goldsinny wrasse (Ctenolabrus rupestris) and conspecific females
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and immature nesting males that may predate on eggs whenever he is
away from the nest (Ellis, 2023). In this study, we analyze the trajec-
tories of male corkwing wrasse associated with several event classes.

3. Dataset

The dataset utilized in this paper features observational recordings of
20 corkwing wrasse nests in Austevoll, Norway, during the summer
months of June and July 2022. This is a large video dataset spanning
several weeks of the spawning season of the focal species, and several
different individual nesting males. Because of this, there is a natural
variability in both the social and physical environment that could in-
fluence behavior variation between video samples, and we judge the
videos to be representative of the behaviors in question for this species.
The overarching purpose of the dataset is to assess the impact of
consistent individual differences in agonistic and risk-taking behaviors
on the parental care behaviors of nest-tending males. To assess the
agonistic responses of these males (e.g., attack latency and frequency), a
fish model depicting another male is briefly deployed within the nest.
Thus, a model fish appears in some of the videos used in this paper. The
videos were manually annotated by marine scientists to indicate the
start and end times of events using the Behavioral Observation Research
Interactive Software (BORIS) (Friard and Gamba, 2016).

3.1. Motion trajectories

The trajectories used in this study were acquired from the data
collection mentioned above. We used the multi-object tracking method
known as Tracktor (Bergmann et al., 2019) to obtain the trajectories of
individuals. Tracktor (Bergmann et al., 2019) stands out because it
transforms an object detector such as Faster-RCNN (Ren et al., 2015),
equipped with a bounding box regressor, into a tracker. This enables the
estimation of positions across frames through linear interpolation be-
tween consecutive boxes while ensuring identity consistency via asso-
ciation heuristics (see (Bergmann et al., 2019) for details). We favor this
multi-object tracker due to our previous experience with the Faster R-
CNN (Ren et al., 2015), which demonstrated effective performance in
our earlier studies for fish detection in underwater videos (Allken et al.,
2021; Knausgård et al., 2022). The Faster R-CNN was fine-tuned using
manually annotated bounding boxes of male corkwing wrasse provided
by marine experts, which are also used in the study (Knausgård et al.,
2022). In each trajectory, the male corkwing wrasse is detected every 5
frames. The videos have a frame rate of 30 fps, resulting in 6 detections
per second.

In this study, we define a trajectory as Tra = (Tra1,Tra2,…TraN)
consisting of detections Trai composed by three coordinates: xi and yi,
coordinates of the center of the bounding box of the tracked fish, and zi,
which is the ratio between the width and the height of the bounding box.
This ratio serves to capture the orientation of the fish (i.e., a value of zi
closer to one can indicate that the fish's shape is more elongated hori-
zontally, suggesting a horizontal orientation. Conversely, a value
significantly different from one indicates a non-horizontal orientation.)
and, in some cases, allows for an approximation of the depth informa-
tion in the scene (e.g., if a fish swims closer to the camera, it will appear
larger in the frame, leading to a decrease in the zi ratio. Conversely, if the
fish moves farther away, it will appear smaller, resulting in an increase
in the zi ratio.).In mathematical terms, we have a curve in a 3-dimen-
sional space, parameterized by the time information.

We conducted data cleaning to eliminate events with incorrect de-
tections (e.g., the cases in which severe occlusions happen and the
tracker fails), trajectories with duplicated frames (wherein objects other
than the targeted fish are mistakenly detected), or trajectories with
insufficient number of detections (i.e., the ones having up to six de-
tections only). We also applied trajectory interpolation to address in-
stances of missing detections, which occur due to artifacts, rapid
movement of the tracked fish, or occlusion by other objects in the scene.

Interpolation aids in filling these gaps, resulting in more cohesive tra-
jectories. We have experimented with different polynomial degrees of
spline interpolation, such as linear, quadratic, and cubic, ultimately
determining that linear spline interpolation was visually the most
effective.

3.2. Description of events

Each trajectory consists of instances where a single male corkwing
wrasse is detected in every five consecutive frames. Additionally, each
trajectory is associated with a single label that represents a specific fish
event. The description of each event is summarized as follows, with
example images belonging to each category provided in Fig. 1. From an
ecological standpoint, it is noteworthy that events such as spawning,
egg-caring, antagonistic interactions, and nest maintenance represent
common behavioral classes observed in the corkwing male nest during
the breeding season. These behaviors are of particular interest to wrasse
experts (Karaszkiewicz, 2020; Uglem and Rosenqvist, 2002) and also
exist in our trajectory dataset.

Spawning and egg-caring events:

• Spawning (S) is characterized by the female and the nesting male
corkwing wrasses following each other (with the female leading) and
performing a distinct and rapid cycling movement at the nest
entrance. Initially, the female deposits eggs, followed by the male
fertilizing them. Often, several of these spawning cycles occur
consecutively within a short timeframe (i.e., seconds).

• Solo Spawning (SSP) is the behavior where the nesting male corkwing
wrasse spawns alone in the nest, likely to deposit more sperm to
ensure a higher fertilization success of eggs laid.

• Nest Blocking (NB) occurs when the nesting male corkwing shuts
down spawning (and sneaking) by blocking the nest entrance with its
body for several seconds. It can be an adaption to reduce sneak
fertilization (extra-pair paternity), at the cost of reduced spawning
opportunities with females.

• Fanning (FD) involves the nesting male corkwing wrasse facing the
nest and continuously moving its tail to aerate the eggs laid within.
This behavior is crucial for the survival of the eggs.

Antagonistic events:

• Egg Predation (EP) refers to instances when the nesting male
corkwing wrasse reacts to egg predators. Fish can prey on eggs in the
nest when the male is away (common predators are female corkwing
wrasse, goldsinny wrasse, and rock cook (i.e., Centrolabrus exoletus)),
and when he returns, he chases off the intruders by swimming fast
towards them and follows them out of the nest.

• Chase (C) events occur when the nesting male rapidly accelerates to
chase other fish away from the nest. The difference from EP is that
the male is present at the nest before the chase.

• Goldsinny Chase (GC) occurs when a goldsinny chases off other fish,
typically corkwing sneaker males. There have been multiple obser-
vations of a goldsinny male persisting close to the nest, seemingly
aiding the corkwing nesting male in defending the nest. In exchange,
the goldsinny male is permitted to court goldsinny females near the
nest. The data in this category pertains to the response of the male
wrasse during GC events.

Nest maintenance events:

• Foraging Maintenance (FM) refers to instances where the nesting male
corkwing wrasse performs maintenance on the nest by bringing in
new nest material, i.e., algae, and incorporating it into the nest.

• Non-Foraging Maintenance (NFM) involves nest maintenance through
the recycling or repositioning of nest material. Unlike foraging
maintenance, in NFM, the male does not collect new algae.
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Miscellaneous events:

• Just Swimming (JS) is considered as the default non-specific behavior,
where the male corkwing simply swims around without engaging in
any particular other behavior described above.

Experimental object response:

• Model Attack (MA) refers to the events occurring when the nesting
male corkwing wrasse attacks a wooden model placed close by the
nest. The wooden model imitates another nesting male corkwing
wrasse to provoke an aggressive response. The model was introduced
at the nest to quantify the consistent individual differences in
agonistic behaviors between individual parental males, as part of a
separate study. Using experimental objects such as models to quan-
tify behavioral responses is a technique often used in the field of
ecology as can be seen in (Rowland, 1999). Successful annotation of

Fig. 1. Example frames from the dataset associated with each event. Red bounding boxes represent a male corkwing wrasse, while blue bounding boxes indicate a
goldsinny. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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experimentally provoked behaviors as well as those that passively
occur would increase the versatility of the proposed model and
therefore were included as a part of the training and testing splits.

• Model Rotation (MR) occurs when the nesting male corkwing wrasse
rotates around the wooden model.

The final set comprises 16,937 trajectories, each with a length of 13
(refer to Section 4 for the rationale behind choosing a length of 13). The
number of trajectories for each event category is presented in ascending
order in Table 1. As one can observe, this distribution of event trajec-
tories heavily favors certain classes, resulting in an imbalanced dataset.
Specifically, the majority of the trajectories belong to the Fanning (FD)
class, followed by other breeding season-related events such as Non-
Foraging Maintenance (NFM). As expected, Just Swimming (JS) also oc-
curs frequently. Some classes have only a few samples, such as Model
Rotation (MR), Goldsinny Chase (GC), and Egg Predation (EP). The tra-
jectories are available for download from https://github.

com/NoeCanovi/Fish_Behaviors_Generative_Models.

4. Methodology & Implementation Details

The proposed approach consists of two stages. In the initial stage,
unsupervised pre-training occurs in which features are acquired without
reliance on the ground-truth labels associated with the task. Subse-
quently, in the second stage, recognition takes place, entailing the
training of a classifier using the acquired features, followed by inference.

By utilizing trajectories represented as Tra = (Tra1,Tra2,…,TraN),
where each detection Trai comprises three coordinates: xi and yi,
denoting the center of the bounding box of the tracked fish, and zi,
indicating the ratio between the width and height of the bounding box,
as inputs, we harness the reconstruction capability of diffusion models
for unsupervised pre-training. By doing so, we aim to attain effective
feature representations that are potentially less noisy. The learned fea-
tures are subsequently utilized as input to an MLP for fish event recog-
nition. It is essential to highlight that after the unsupervised training of
the diffusion model, it remains frozen and detached from the event
recognition component. An overview of the proposed method is depic-
ted in Fig. 2. Below, we describe each component in detail, along with
the implementation details, such as the encoder-decoder architectures
and values of the hyperparameters used.

4.1. Fundamentals on diffusion models

Diffusion Models acquire complex data representations through a
process of sequentially introducing noise and subsequently denoising
the data. During the forward phase, Gaussian noise with standard de-
viation σ is iteratively added to a data point xT, sampled from a distri-
bution pdata(x) with standard deviation σdata, for each iteration t ∈ [0,T]
(T was taken as nine, in this study). The values of σ dictate the speed at
which the noise is introduced such that higher values result in a faster
conversion of the data into random noise. The distribution of the noised
data is denoted as p(x, σ), when the noise levels are σ0 = σmax > σ1 > …
> σT− 1 > σT = 0. Consequently, we can sample a point x0 ∼ N(0, σmaxI).
Since the sum of Gaussian distributions remains Gaussian, we can
directly compute the noisy version of a data point at a specific iteration t,
without needing to calculate all previous versions. Thus, during training,
a data point from a random step t can be sampled without iterating over
all potential noisy versions of the same data point.

In the backward process, a denoising function Dθ(x; σ), implemented
as a neural network, learns to predict the noise added to each data point.
The diffusion model is then trained with Denoising Score Matching
(Hyvarinen and Dayan, 2005), minimizing the expected L2 denoising
error (also called Mean Square Error (MSE)) for samples drawn from
pdata for every σ:

Ex∼pdata Eϵ∼N (0,σI)‖Dθ(x+ ϵ; σ) − x ‖22. (1)

The score function used in the reverse process is:

∇logp(x; σ) = (Dθ(x; σ) − x )
/

σ2. (2)

4.2. Our diffusion model

The diffusion model utilized in this study is largely based on the
design outlined in (Tur et al., 2023a), which is a variant of k-diffusion
presented in (Karras et al., 2022). The design of our model is given in
Table 2.

As seen in Table 2, the model includes a σ-dependent skip connec-
tion, which allows the network to perform differently based on the noise
magnitude. The denoising network Dθ mentioned in Section 4.1 is in
terms of Fθ, which is the effective network to train, cskip modulating the
skip connection, cin and cout scaling input and output magnitude, and
cnoise scales, which is formulated as:

Dθ(x; σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x ; cnoise(σ) ) (3)

Our Fθ is an MLP with an encoder-decoder structure such that the
input is a set of noised data, composed of three channels x, y, and z, the
layers of the encoder are progressively reduced ({1024, 512, 256}),
while the number of channels is increased. Conversely, in the decoder
layers, the length ({256, 512, 1024}) and the channels gradually return
to their original sizes.

The learning rate scheduler and Exponential Moving Average (EMA)
of our model are taken as the default values of k-diffusion (Karras et al.,
2022). In both the encoder and decoder parts of the model, the time step
σ is integrated through transformation via Fourier embedding and FiLM
layers (Perez et al., 2018). Hence, the overall diffusion process for an
input of the network X and its reconstructed counterpart Xr consists of a)
noise sampling: ϵ ∼ N (0, I), b) diffusion input corruption: Xt = X+ ϵ*σ,
and c) reconstruction of the data with k-diffusion: Xr =

sampling(D(Xt , σ) ).

4.3. Unsupervised pre-training with our diffusion model

During training, the diffusion model is provided with a dataset
comprising trajectories of fixed length. Determining the appropriate
length of these trajectories is a non-trivial task, as it can significantly
impact the performance of the final model. To address this, we initially
plotted the histogram of the original trajectory lengths and extracted
statistics including the minimum, maximum, average, and median
lengths. The analysis revealed that the majority of trajectories have a
length of 13. Consequently, we established a standard trajectory length
of 13 for our model. After segmenting the trajectories into fixed lengths
of 13, we discard segments shorter than 6 detections. For segments with
6 to 12 detections, we replicate their data points until they reach the
required length of 13. Finally, we scale each coordinate of the fish
detection within the range of [− 1,1].

Given that our model aims to learn to reconstruct these trajectories
without relying on labels, the entire dataset is utilized following the
representation learning literature such as (D'incà et al., 2023; Paoletti
et al., 2021a; Paoletti et al., 2022b). The optimization of the network's
parameters is achieved using the Adam optimizer (Kingma and Ba,
2015), coupled with an inverse decay learning rate scheduler. This
scheduler initializes the learning rate at a default minimum value, which
is zero. Then, it progressively increases the learning rate until it reaches

Table 1
The number of trajectories in the dataset for each event category.

Event MR GC EP SSP S FM

# of trajectory 4 8 13 23 31 48
Event MA C NB NFM JS FD
# of trajectory 67 174 198 895 1019 14,457

N. Canovi et al.

https://github.com/NoeCanovi/Fish_Behaviors_Generative_Models
https://github.com/NoeCanovi/Fish_Behaviors_Generative_Models


Ecological Informatics 82 (2024) 102733

8

its maximum value at the last epoch of the training.
Noise plays an important role in the diffusion process, thus its dis-

tribution and parameters are to be set depending on the task and the
dataset. Here, the noise is sampled from a log-normal distribution with
parameters Pmean and Pstd, representing the distribution's mean and
standard deviation. These parameters are connected with the maximum
and minimum σ values (σmax and σmin), through the following formula:

σmax, σmin = ePmean±5Pstd . (4)

This relationship, as elucidated in (Karras et al., 2022; Tur et al.,
2023a), is particularly valuable as it reduces the parameter search to two
values instead of four.

Various combinations of Pmean and Pstd values, along with typical
hyperparameters of neural networks such as learning rate, batch size,
and weight decay, were tested and explored. These values were assigned
using random generators to ensure a more comprehensive evaluation of
the model's performance. The parameter ranges considered are as fol-
lows: learning rate = [0.00001, 0.001], batch size = [64, 8192], weight
decay = [0, 0.59], Pmean = [ − 4, 1.8], and Pstd = [0.5, 1.68].

4.4. Recognition with a multilayer perceptron

After training the proposed diffusion model in an unsupervised pre-

training fashion, where the data labels are not utilized, the generative
model is frozen and detached and exclusively employed to extract fea-
tures for both training and testing data, following the representation
learning literature (D'incà et al., 2023; Franceschini et al., 2022; Kor-
omilas and Giannakopoulos, 2021; Paoletti et al., 2021d; Paoletti et al.,
2022a). These features are then used to train an MLP.

The MLP employed consists of four fully connected layers with the
size of 256, 128, 64, and 12, each comprising a linear layer followed by
PRelu as non-linearity. Only the third layer differs, as it is provided with
Batch Normalization (Ioffe and Szegedy, 2015). During optimization,
Batch Normalization was also applied to other layers as well, but the
network performance was not as good. The network gets the input of size
512 consisting of learned features extracted from the diffusion model
and the last layer has 12 neurons. The maximum neuron value from this
layer is then used for predicting the event class, as each neuron corre-
sponds to one of the events. The values of the 12 neurons are then
compared to the real event ground truth through a loss, which serves to
update the model parameters and perform the training.

During the training of the MLP, Adam optimizer (Kingma and Ba,
2015) is used, as well as the scheduler which adjusts the learning rate
when the network reaches a plateau. For the training, various parameter
values and different regularization techniques were explored, with the
option of using either Cross-Entropy or Focal Loss (Lin et al., 2017). In
detail, the learning rate was set to 0.00001 and 0.0001, batch sizes of 8,
16, 32, and 64 were tested, and weight decay was varied between
0.0001 and 0.001 with a dropout of 0.1. Additionally, Focal Loss (Lin
et al., 2017) introduce additional parameters to investigate: α and γ. The
former serves as a balancing factor, either as a fixed value for all classes
or as the inverse of each class frequency. The latter regulates the impact
of the scaling factor; specifically, when set to zero, Focal Loss is equiv-
alent to Cross-Entropy Loss. We experimented with α set as the inverse of
class frequency when γ took values of 0.5, 1, 2, 3, and 5. As demon-
strated in several studies and ecological informatics (Xie et al., 2021),
focal loss effectively handles imbalanced data compared to cross-
entropy. This motivates our adaptation.

5. Experimental Analysis & Results

The methodologies used for comparing our proposed method are
given in Section 5.1, and we present the corresponding results in Section
5.2. As the evaluation metrics we follow (Beyan and Fisher, 2015;
Haixiang et al., 2017; Luque et al., 2019), showing that F1-score and the
geometric mean of true positives and true negatives (denoted as G-
mean) are suitable evaluation metrics for imbalanced data classification.
We report the F1-score and G-mean results for Macro (i.e., calculating

Fig. 2. The proposed method is divided into two stages. The first stage, known as unsupervised pre-training (feature learning phase), utilizes fish trajectories con-
taining three dimensions over a fixed time frame: the center of the bounding box of the tracked fish, and the ratio between the width and height of the bounding box.
Leveraging the diffusion model, we aim to generate a robust feature space. Once the feature learning process is completed, the learned features are extracted from the
encoder of the diffusion model for use in the second stage, referred to as fish event recognition. During the training and inference of the second stage, the diffusion
model remains frozen and detached. In this stage, the learned features act as input to a classifier (i.e., Multilayer Perceptron), enhancing its ability to distinguish
between fish events.

Table 2
Design choices of our k-diffusion.

Sampling

ODE solver LMS
Time steps

σ
1
ρ
max +

i
T − 1

(

σ
1
ρ
min − σ

1
ρ
max

))
ρ

Network and preconditioning
Architecture of Fθ MLP (see text)
Skip scaling cskip(σ) σ2data

σ2 + σ2data
Output scaling cout(σ) σ⋅σdata

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2 + σ2data
√

Input scaling cin(σ) 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2 + σ2data
√

Noise scaling cnoise(σ) 1
4
ln(σ)

Training
Noise distribution ln(σ) ∼ N

(
Pmean,P2std

)

Loss weighting
(
σ2 + σ2data

)

(σ⋅σdata)2
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metrics for each class, and finding their unweighted mean, meaning that
the class label imbalance is not considered) and Weighted averages (i.e.,
calculating metrics for each class, and finding their average, weighted
by the number of true instances for each label, thus considering the class
label imbalance) in Eqs. 5–10. We also present the individual class ac-
curacies to demonstrate the detection performance of the proposed
method for each event class.

F1 = 2⋅
Precision⋅Recall
Precision+ Recall

(5)

MacroF1 =
1
n
∑n

i=1
F1i (6)

WeightedF1 =

∑n
i=1TrueInstancesi⋅F1i∑n
i=1 TrueInstancesi

(7)

G-mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity× Specificity

√
(8)

MacroG-mean =
1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivityi × Specificityi

√
(9)

WeightedG-mean =

∑n
i=1TrueInstancesi⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivityi × Specificityi

√

∑n
i=1TrueInstancesi

(10)

where Precision = TP/(TP+ FP), Recall = TP/(TP+ FN), Sensitivity =

TP/(TP+ FN), Specificity = TN/(TN+ FP), F1i is the F1-score for class
i, TrueInstancesi is the total number of true instances (TP+ FN) for class
i, Sensitivityi = TPi/(TPi + FNi) is the sensitivity for class i, Specificityi =
TNi/(TNi + FPi) is the specificity for class i, TP is the number of true
positives, TN is the number of true negatives, FP is the number of false
positives, FN is the number of false negatives, and n is the number of
classes.

During the training and validation of the models, a stratified train-
test split was employed. This procedure is particularly beneficial for
imbalanced datasets as it maintains the proportion, in our case 80%–
20%, for each class of the original dataset. This means that every class
have approximately 80% of its samples in the train set and approxi-
mately 20% in the validation set. This ensures that all classes participate
in both the training and validation phases of the model. However, this
stratified train-test split was not applied to the dataset composed of
trajectories of length 13, but rather to the original trajectories of vari-
able length. This was done to ensure that each trajectory belongs
exclusively to either the train or validation splits, but not both. As a
consequence, in terms of fixed-length trajectories, each with a length of
13, we obtained 13,489 samples in training and 3448 samples in
validation.

5.1. Methods employed for comparisons

We adopted the following methods to compare against the proposed
method. Their implementation details are given as follows.

5.1.1. Trajectory Features of [40, 41]
As discussed in Section 2, it is notable that there is a scarcity of

studies delving into the understanding of fish trajectories through the
analysis of underwater videos. We adhere to the methodologies outlined
in the existing works (Beyan and Fisher, 2013a; Beyan and Fisher,
2013b), which define several hand-crafted features extracted from fish
trajectories. Building upon the findings reported in (Beyan and Fisher,
2015), we incorporate these features without feature selection into
Support Vector Machines (SVM), showing the best performance for
imbalanced data classification. It is important to note that the hierar-
chical framework introduced in (Beyan and Fisher, 2013b) for detecting
unusual trajectories is not directly adaptable to our study, as it assumes

binary classes. The features that we adopted include Curvature Scale
Space (CSS), Moment Descriptors, velocity and acceleration, turn,
Centroid Distance Function (CDF), and vicinity. However, features such
as loop, fish pass-by, and displacement on the location are deemed un-
suitable for the dataset under examination. SVM was applied with the
radial basis kernel function (RBF) with the kernel parameters set as C =

2i, where i = − 1, 1,3,…,31, and the RBF was used with γ = 2j, where
j = − 11, − 9, − 7,…,11. If it is worth mentioning, we also attempted to
use linear SVM and our MLP; however, the results obtained were poorer,
indicating that such classifiers are insufficient for these hand-crafted
features in the dataset under consideration.

5.1.2. 1D-CNN
One-dimensional convolutional neural networks are particularly

well-suited for processing sequential data (Kiranyaz et al., 2019; Kir-
anyaz et al., 2021; Sujatha et al., 2023; Troullinou et al., 2020),
including trajectories (Hsieh et al., 2021; Zamboni et al., 2022), as well
as being applied for action / event recognition (Cho and Yoon, 2018;
Escottá et al., 2022; Hosseini et al., 2020; Javidani and Mahmoudi-
Aznaveh, 2022; Trelinski and Kwolek, 2021) and imbalanced data
classification (Alex et al., 2024; Eren, 2017; Mattioli et al., 2022; Qazi
et al., 2022; Sujatha et al., 2023). Their advantages compared to LSTM
and GRUs occur especially in scenarios where efficiency, scalability, and
processing of fixed-length relatively lower-size data is considered (Kir-
anyaz et al., 2019; Kiranyaz et al., 2021). Our implementation aligns
with the architectural design of a trajectory-based approach (Hsieh
et al., 2021), as well as a recent paper in ecological informatics (Sujatha
et al., 2023), which has input data sizes similar to ours while handling an
imbalanced dataset.

The input consists of the concatenation of three channels: x, y, and z.
Before concatanation zero-padding is applied to isolate the x, y, and z
coordinates, preventing interference during the convolution operation
as applied in (Hsieh et al., 2021). Each convolutional block includes
convolution, max pooling, and batch normalization, applied sequen-
tially. ReLu serves as the activation function. Additionally, multiple
dense layers are present, with dropout utilized between them. The
output dense layer employs softmax activation. The network is trained
with Cross-Entropy and Focal Loss, with Adam optimizer (Kingma and
Ba, 2015) in line with the proposed method. Different architectural
configurations were evaluated, varying the number of filters from four,
eight, 16, and 32, adjusting the filter size from three to seven, and
experimenting with the number of convolutional and dense layers each
ranging from two to four. The learning rate, batch size, weight decay,
and dropout were set on par with the MLP of the proposed method.

5.1.3. Autoencoder
Numerous studies (D'incà et al., 2023; Koromilas and Giannako-

poulos, 2021; Paoletti et al., 2021a; Paoletti et al., 2021d; Paoletti et al.,
2022a) have showcased the effectiveness of autoencoders in unsuper-
vised pre-training, where the acquired features are subsequently lever-
aged for training and testing classifiers. In this study, a convolutional
autoencoder inspired by (Paoletti et al., 2021a; Paoletti et al., 2021d)
was utilized, tailored to our dataset. The network's input comprises
trajectories of length 13, encompassing three channels. With each
encoder layer, the input length decreases by half while the number of
channels increases. Conversely, in the decoder layers, the reverse occurs.
Both encoder and decoder blocks consist of two layers, with the latent
representation naturally positioned between them. The best-performing
autoencoder processes inputs of size 13× 3, with the encoder layer
comprising layers of sizes 6 × 64 and 3 × 128, respectively. Conversely,
the decoder is composed of layers sized 3 × 128 and 6 × 64. During the
training of this model, the network weights are iteratively updated using
the Adam optimizer (Kingma and Ba, 2015). Additionally, a scheduler
adjusts the learning rate: when the loss plateaus, meaning it does not
decrease over a certain number of epochs, the learning rate is reduced.
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Various parameter values, including learning rate (i.e., 0.0001, 0.001,
0.01, and 0.1), batch size (i.e., 32, 64, 128, 256, and 512), and latent
dimension (i.e., 128, 256, 512, 2048), have been explored and
evaluated.

Once the latent representations were extracted from the Autoencoder
model, an MLP was trained for the classification of fish events.
Throughout the training of MLP, Adam optimizer (Kingma and Ba,
2015) with the learning rate modified by a scheduler when the network
reaches a plateau was used. TheMLPwas trained for several epochs with
various parameter configurations and regularization techniques,
including both Cross-Entropy and Focal Loss, in line with the proposed
method. As regularization techniques, weight decay, batch normaliza-
tion (Ioffe and Szegedy, 2015), and dropout (Srivastava et al., 2014)
were explored. In particular, batch normalization (Ioffe and Szegedy,
2015) was tested on each layer of the network separately and on all
layers simultaneously, with the best results achieved when applied to
the third layer. Dropout has been applied to the input layer, the hidden
layers, and all layers, yielding various results in combination with other
parameters. The parameter values explored alongside the aforemen-
tioned autoencoder include the following: learning rates of 0.00005,
0.0005, 0.0001, 0.005, 0.001, and 0.01; batch sizes of 8, 16, 32, 64, and
128; weight decay values of 0, 0.00001, 0.0001, and 0.001, with
dropout set to 0.05, 0.1, 0.2, and 0.25. For the focal loss parameters, α
was defined as the inverse of class frequency, 0.25, or 0.5, while γ was
set to 0.25, 0.5, 0.75, 1, 1.5, and 2.

5.1.4. SMOTE [131]
Imbalanced datasets pose challenges as the dominant classes heavily

influence training, while minority classes have minimal impact.
Addressing the issue of imbalanced class distribution can involve
undersampling the majority classes and/or oversampling the minority
classes. Undersampling entails randomly removing samples from the
majority classes while oversampling involves duplicating samples from
the minority classes (Beyan and Fisher, 2015; Galar et al., 2011; Kubat
and Matwin, 1997). A more sophisticated and widely used approach is
the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla
et al., 2002). SMOTE augments the dataset by generating synthetic
samples based on the feature space and combining features from
neighboring samples. SMOTE has been frequently applied in ecological
informatics studies, where imbalanced data is common, demonstrating
its effectiveness such as in (Bourel et al., 2021; Shin et al., 2021). In this
paper, we used SMOTE both for the proposed method and also for the
methods used in comparisons. When SMOTE was integrated with 1D-
CNN, it was applied to flattened data, which includes zero-padding.
For other methods used in conjunction with SMOTE, it should be
noted that the features are already one-dimensional.

5.2. Results: Comparisons with other methods

Table 3 presents the results in terms of Macro F1-score, Weighted F1-
score, Macro G-mean, and Weighted G-mean. The key distinction be-
tween macro and weighted lies in their treatment of class imbalances.
Macro treats all classes equally, while weighted assigns more weight to
larger classes. As a result, the numerical values for weighted metrics are
notably higher than those for macro. Nevertheless, the proposed method
outperforms others across all metrics. Its combination with SMOTE
yields the best results overall, while its combination with Focal Loss
comes in as the runner-up.

The results of the 1D-CNN, autoencoder, and the proposed method
reveal that the models trained with plain Cross-Entropy Loss consistently
achieve a lower or comparable performance in every metric. This aligns
with expectations, as both Focal Loss and SMOTE are specifically
designed to address imbalanced datasets. The models exploiting SMOTE
obtain the best performance across all metrics. On the other hand, the
features from (Beyan and Fisher, 2013a; Beyan and Fisher, 2013b)
combined with SVM yield the lowest results across all combinations.

This suggests that features learned from raw trajectories (especially
through unsupervised pre-training) can be preferable to hand-crafted
features.

For the diffusion model, the starting point of the reverse process t has
a remarkable effect on the training and the performance of the classifier
(Karras et al., 2022; Tur et al., 2023a) (see also the corresponding results
in Section 5.2.1). The ideal choice for t is the one that retains the most
relevant information for the classifier. Herein, we found out that this
value corresponds to 4 or 5. The results indicate that utilizing SMOTE
leads to improved performance, with the best results achieved on the
test set created with t equal to 4 when other parameters are set as fol-
lows: batch size equal to 16, learning rate equal to 0.00005, and weight
decay set to 0.0001.

In all models, there is a noticeable discrepancy in performance
among behavioral classes. Specifically, the two best-performing
methods, the autoencoder-based model and the proposed method
yield the following results. The autoencoder-based model classifies well
Fanning (FD) andModel Attack (MA), with class accuracies reaching 97%
and 86% (or 71%) respectively. On the other hand, there are consider-
able challenges in recognizing certain classes, particularly Goldsinny
Chase (GC) and Model Rotation (MR), which have a class accuracy of
zero. The Focal Loss-trained autoencoder-based model stands out as the
only one with sufficiently good class accuracy on Egg Predation (EP), and
it also exhibits a slightly better class accuracy on Chase (C). Conversely,
the Cross-Entropy Loss and SMOTE-enhanced autoencoder-based model
performs well on Solo Spawning (SSP), and slightly outperforms in
Foraging Maintenance (FM), Foraging Maintenance (NFM), and Spawning
(S).

For the proposed method, the majority class Fanning (FD) has a
remarkably good class accuracy with the lowest value being 96%. In
contrast, Goldsinny Chase (GC) andModel Rotation (MR) are consistently
unrecognized by the model, resulting in a constant class accuracy of
zero. These are also the classes with the lowest amount of samples, four
and eight respectively. Additionally, Chase (C) and Model Attack (MA)
achieve the best class accuracy with Focal Loss. However, this model
struggles to classify Egg Predation (EP) and Foraging Maintenance (FM)
with scores of zero and 10.0%, respectively. On the other hand, Egg
Predation (EP) and Foraging Maintenance (FM) reach a class accuracy of
50.0% and 30.0% with the model trained with SMOTE. In general,
Spawning (S) and Solo Spawning (SSP)’s class accuracy remains consis-
tent across all three models with scores of 83% and 50%, Fanning (FD)
and Just Swimming (JS)’s class accuracies are only subject to small var-
iations. The reader can refer to Table 4 and Fig. 3 for the individual class

Table 3
The best results of each method. CE, FL, F1, and G-mean denote cross-entropy
loss, focal loss (Lin et al., 2017), F1-score, and the geometric mean of true
positives and negatives, respectively. Proposed can also refer to “Diffusion +

MLP”. The best of all results for each metric are given in bold while the second
best is presented underlined.

Method Macro
F1

Weighted
F1

Macro
G-mean

Weigthed
G-mean

Features (Beyan and Fisher,
2013a; Beyan and Fisher,
2013b) w/ SVM

27.7 79.8 51.2 73.8

Features (Beyan and Fisher,
2013a; Beyan and Fisher,
2013b) w/ SVM + SMOTE

28.0 80.1 51.8 74.6

1D-CNN w/ CE 35.1 81.5 54.7 75.3
1D-CNN w/ FL 36.4 83.7 56.6 75.7
1D-CNN w/ CE + SMOTE 36.8 83.8 57.7 78.9
Autoencoder + MLP w/ CE 38.3 87.3 61.0 79.4
Autoencoder + MLP w/ FL 44.5 87.3 64.6 81.4
Autoencoder + MLP w/ CE +

SMOTE
45.8 87.3 66.4 83.2

Proposed w/ CE 45.5 89.2 64.5 80.4
Proposed w/ FL 47.8 89.9 66.6 83.0
Proposed w/ CE + SMOTE 50.6 90.7 68.1 83.6
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accuracies as well as the confusion matrices of the proposed method.
The confusion matrices of the proposed method in the best-

performing setting, i.e., Cross-Entropy Loss with SMOTE, reveal that
several event classes were misclassified as Just Swimming (JS), Fanning
(FD), or Non Foraging Maintenance (NFM), which are among the three
most dominant classes. In detail, Chase (C), Model Attack (MA), and
Spawning (S) were mainly misclassified as Just Swimming (JS). Goldsinny
Chase (GC), Model Rotation (MR), and Foraging Maintenance (FM) were
primarily misclassified as Non Foraging Maintenance (NFM). Egg Preda-
tion (EP), Nest Blocking (NB), Non Foraging Maintenance (NFM), and Just
Swimming (JS) were mainly misclassified as Fanning (FD).

5.2.1. Results: Trajectory reconstruction
While it is true that our diffusion and autoencoder models do not

know which sample belongs to which class, there may be some classes
that are implicitly simpler to reconstruct. Additionally, a model could be
learning those samples belonging to the most popular classes more
effectively. Consequently, we also conduct an analysis of the trajectory
reconstruction error for the proposed diffusion model and the proposed
autoencoder. This involves assessing the networks' loss (in terms of MSE)
and comparing the reconstructed data with the original data to measure
their similarity.

The reverse process of a diffusion model is not required to start from
the maximum level of noise variance σ2max. It can start from any level of
noise, with any arbitrary step t ∈ [0,T], where a t close to zero indicates a
noised xt closer to isotropic Gaussian, i.e., σ2max = σ20, while t closer to T
means a noised xt closer to the original data distribution. Depending on
the value of t, the network can yield various loss values and recon-

structed trajectories. Furthermore, as the noise is initialized through ϵ ∼

N (0, I) and different values are sampled each time, the same network
can produce distinct loss values and trajectories upon multiple runs of
the evaluation process. Thus, for a fair comparison between diffusion
models and across time steps t, the noise is initialized once and then
maintained fixed. The loss values achieved by the best-performing
model for each time step t from zero to nine are 0.002152, 0.000603,
0.000306, 0.000176, 0.000099, 0.000058, 0.000033, 0.000014,
0.000004, and 0.000001, respectively. This progression demonstrates
that as t increases and the noise decreases, the error tends to assume
lower values, and the reconstructed trajectories more closely resemble
the original ones.

Fig. 4 illustrates the reconstruction of the same trajectory with
different time steps, showing the effect of t on the reconstruction ca-
pabilities of our diffusion model. In addition, Fig. 5 demonstrates tra-
jectories belonging to 12 event classes and their reconstructed
counterparts, extracted when t = 9. Notably, the reconstructed trajec-
tories exhibit a high fidelity to the original ones at this specific time step.

Additionally, Table 5 provides the MSE for each event class at
various time steps t. Notably, the differences between the classes are
minimal and affected by the time step t. At lower values of t, classes such
as Fanning (FD), Nest Blocking (NB), and Egg Predation (EP) appear to
have comparatively lower MSE. However, as t increases, this distinction
diminishes.

On the other hand, we observed that when using the proposed
autoencoder, the Fanning (FD) and Nest Blocking (NB) events had the
lowest overall MSE value, equal to 0.00008. The event Model Attack
(MA) yielded the highest MSE value, equal to 0.00044.

6. Discussions

Cameras are increasingly being used to monitor marine fauna, but in
most cases, only a fraction of the data is utilized due to the limitations of
the manual processing of videos. In practice, this means that video data
containing diverse and complex ecological information tend to be
distilled to counts and size of a few species of interest, while behavior
information is rarely collected unless it is the primary objective of the
study (Goodwin et al., 2022; Weinstein, 2017). In addition to auto-
mating the detection and counting of fish (Catalán et al., 2023; Knaus-
gård et al., 2022), developing effective and precise machine learning
methods for classifying the behavior of key species can produce data that
opens new avenues to deeper understanding of marine ecosystems and
the behaviors that link the different components together (Aguzzi et al.,
2015; Ditria et al., 2020). In the light of accelerating environmental

Table 4
Class accuracies obtained for the proposedmethod and corresponding number of
samples per class. The best results out of the three settings are given in bold.

Event Cross-Entropy Loss Focal Loss Cross-Entropy + SMOTE

C 19.0 58.0 42.0
EP 50.0 00.0 50.0
FD 97.0 96.0 98.0
FM 10.0 10.0 30.0
GC 00.0 00.0 00.0
JS 59.0 62.0 60.0
MA 50.0 79.0 71.0
MR 00.0 00.0 00.0
NB 64.0 65.0 45.0
NFM 33.0 43.0 43.0
S 83.0 83.0 83.0
SSP 50.0 50.0 50.0

Fig. 3. Confusion Matrices of the Proposed Method with the two best performing configurations: Focal Loss and Cross-Entropy Loss with SMOTE.
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change, understanding species' behavior responses becomes even more
important, as many species cannot adapt to rapid changes through
evolution, but must rather rely on adapting their behavior (Hoffmann
and Sgrò, 2011; Wong and Candolin, 2015) For example, North Atlantic
right whales have been observed adjusting their calling behavior in
response to increased background noise (Parks et al., 2011), birds have
modified their flight distances in response to speed limits to reduce
collision risks with vehicles (Legagneux and Ducatez, 2013), and certain
marine organisms have migrated poleward, leading to new species in-
teractions (Poloczanska et al., 2013). However, not all organisms are
capable of adapting their biology to changing environments. With cur-
rent threats disrupting ecosystems, it is crucial to detect and monitor
changes early to understand which variables trigger specific behaviors
and anticipate their effects. Given the complexity and often enormous
spatiotemporal variation in such natural phenomena, the only way to

monitor this behavior on large scales is through increased use of cameras
and other passive sensors (e.g. hydrophones) combined with machine
learning tools for automated data processing.

6.1. Broad impact of the proposed method

The method presented in this paper represents an important step
towards automating the collection of behavioral data from video surveys
and observatories. The traditional procedure, which lacks automation, is
highly time-consuming and requires expert knowledge of species
behavior, thus limiting opportunities for scaling up and expanding
studies. The proposed method holds promise in addressing the challenge
of analyzing data-intensive video surveys, as evidenced by its effective
results, particularly for certain event classes. The data under examina-
tion is particularly challenging due to its highly imbalanced nature,

Fig. 4. Original and respective reconstructed trajectories at various time steps (t) for the event class Model Rotation (MR).

Fig. 5. Original and corresponding reconstructed trajectories, randomly selected from each class.

Table 5
MSE for each event class during the training of the proposed diffusion model.

t = 0 1 2 3 4 5 6 7 8 9

C 0.004 0.001 0.0009 0.0004 0.0001 9e-5 4e-5 1e-5 4e-6 1e-6
EP 0.001 0.0008 0.0005 0.0002 0.0001 8e-5 4e-5 1e-5 4e-6 1e-6
FD 0.001 0.0004 0.0002 0.0001 8e-5 5e-5 3e-5 1e-5 4e-6 1e-6
FM 0.002 0.001 0.0005 0.0001 0.0003 8e-5 4e-5 1e-5 4e-6 1e-6
GC 0.003 0.001 0.0006 0.0003 0.0001 8e-5 3e-5 1e-5 4e-6 1e-6
JS 0.003 0.001 0.0007 0.0003 0.0001 7e-5 3e-5 1e-5 4e-6 1e-6
MA 0.006 0.002 0.001 0.0005 0.002 0.0001 4e-5 1e-5 3e-6 9e-7
MR 0.007 0.003 0.001 0.006 0.003 0.001 5e-5 1e-5 4e-6 1e-6
NB 0.001 0.0005 0.0003 0.0001 9e-5 5e-5 3e-5 1e-5 4e-6 1e-6
NFM 0.002 0.0009 0.0004 0.0002 0.0001 7e-5 3e-5 1e-5 4e-6 1e-6
S 0.002 0.001 0.001 0.0007 0.0002 0.0001 4e-5 1e-5 4e-6 1e-6
SSP 0.002 0.001 0.001 0.0002 0.0006 0.0001 4e-5 1e-5 4e-6 1e-6
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where some event classes occur very infrequently. This characteristic
resembles scenarios encountered in few-shot learning, which is a
prominent research topic in the machine/deep learning field. Moreover,
the proposed method offers a new tool for marine biologists to monitor
behavioral changes in response to environmental shifts. For instance,
video monitoring can help detect the onset and duration of spawning
periods, crucial for managing fisheries with temporal closures during
reproductive phases (Halvorsen et al., n.d.; Halvorsen et al., 2017b).

Focusing on trajectory-based generative model pre-training, it seems
the use of diffusion models shows superior results compared to the use of
autoencoders. In particular, diffusion models achieve better results in
F1-score macro and Geometric Mean macro, meaning they can correctly
classify samples from a greater range of classes. Regardless of the
method, both SMOTE and Focal Loss prove their effectiveness in
addressing imbalanced scenarios, outperforming the plain Cross-Entropy
Loss model. Notably, SMOTE emerges as the more efficient technique
here. Overall, our method is a simple yet effective approach that can be
applied to behavior analysis of other marine species or broader
ecological studies. Since the feature learning part is unsupervised, it has
the potential to generalize well to other event classes, including those
outside the scope of the breeding season or other fish species. Addi-
tionally, the same architecture, with minor modifications to the encoder
of the diffusion model and/or by using a pre-trained model to extract
initial features, can be adapted to inputs in the form of video frames.
This flexibility allows for future studies to discard the use of trajectories
if desired.

6.2. Analysis of class performance and dataset imbalance

At the class level, disparities in performance are influenced in part by
the imbalance within the dataset. Indeed, imbalanced datasets present
challenges, as models tend to be biased towards the majority class,
resulting in difficulties in accurately recognizing and classifying in-
stances from the minority classes. As such, classes with consistently poor
performance, such as Goldsinny Chase (GC) and Model Rotation (MR),
have low sample sizes: eight and four, respectively. The limited number
of samples may hinder the network's ability to discern patterns unique to
these classes, assimilating them with more prevalent classes. While
SMOTE was employed to augment these classes, it may still be insuffi-
cient. Conversely, Fanning (FD) consistently achieves higher class ac-
curacy, being the class with the highest number of samples in the whole
dataset. The abundance of Fanning (FD) trajectories gives the model
plenty of chances to learn and discover patterns to recognize the class.
The class with the second-largest sample size Just Swimming (JS) (with
10% of that of the samples in Fanning (FD)), was often incorrectly pre-
dicted to be Fanning (FD). This may be possibly due to the fact Just
Swimming (JS) is the class derived from the information of the male
present in the scene when it is not performing any behavior. Trajectories
extracted for certain classes of events may overlap to some extent, as
some segments of an event might inherently share characteristics with
Just Swimming.

6.3. Challenges in trajectory-based behavior classification

The semantic similarities between certain behaviors, such as
Spawning (S) and Solo Spawning (SSP), as well as Foraging Maintenance
(FM) and Non-Foraging Maintenance (NFM), poses challenges for
trajectory-based classification. These behaviors, while functionally
distinct, have subtle differences in trajectory level that may be difficult
to discern. Spawning (S) and Solo Spawning (SSP) both represent
spawning behavior. In the former, the male and the female corkwing
wrasse take turns in spawning, while in the latter the male fish conduct
the behavior by himself. The trajectories extracted from the male fish
motion may not be sufficient to determine which of the two behaviors is
performed. Indeed, this is reflected in the confusionmatrices, where Solo
Spawning (SSP) trajectories are occasionally misclassified as Spawning

(S). If the presence of another individual could be taken into account,
the two classes would probably be separated more clearly. Similarly, the
distinction between Foraging Maintenance (FM) and Non-Foraging Main-
tenance (NFM), both maintenance behaviors, involves subtle differences
in the male fish's interactions with the nest. The trajectories alone may
not provide clear indications of whether material is added to the nest
(Foraging Maintenance (FM)) or if the fish is simply poking the nest (Non-
Foraging Maintenance (NFM)). Between the two, Foraging Maintenance
(FM) suffers the most as it has a lower sample size, being misclassified as
Non-Foraging Maintenance (NFM) around half of the time. In addition,
Egg Predation (EP) and Goldsinny Chase (GC) prove to be particularly
challenging to classify. For instance, in the case of Egg Predation (EP),
males often attempt to protect the nest, resulting in trajectories over-
lapping with the events Nest Blocking (NB) or Chasing (C) the intruders.
As the trajectory of the nesting male is the only information exploited by
the model, it is inherently difficult to perform well on such classes.
Addressing these cases may involve incorporating in the pipeline addi-
tional context, for example, the appearance features that exist in video
clips. Such should be especially beneficial for those behaviors that are
semantically similar or that involve more fish.

6.4. Practical implementation

While real-time operational capability is beneficial for scenarios like
monitoring fish in aquaculture pens (Rosten et al., 2023) or tracking fish
migration upstream (Magaju et al., 2023), it is not essential for our
ecological study. Conducting behavior analysis on the video data
collected during the field season suffices. In essence, performing offline
behavior analysis provides adequate behavior classifications for marine
biologists to address their research questions. Nevertheless, the pro-
posed method is very efficient such that its inference time for one epoch
is 3.5 s on a machine equipped with an Intel(R) Core(TM) i7-9700K CPU
@ 3.60GHz, 64GB of RAM, and a single NVIDIA RTX2080 GPU.

6.5. Dataset bias

As previously mentioned, the collected dataset focuses on the
corkwing wrasse breeding season, capturing and carefully annotating
the relevant event classes on the corkwing male nest. In addition to
breeding season activities, we included the default non-specific behavior
where the male corkwing simply swims. There is no artificial bias
introduced in the event classes, such as by discarding certain events or
decreasing their occurrences. Any potential bias could arise only if the
object tracker we used fails to detect certain event classes. Although this
can be addressed by fine-tuning the tracker with more underwater video
data, our visual inspections performed on a subset of the trajectory data,
confirm that this is not the case. Instead, the data is naturally imbal-
anced, with some events occurring infrequently during the timeline of
video capturing.

7. Conclusions

The main research question addressed in this study was whether it is
feasible to classify fish behaviors, particularly the behavior of the
nesting male corkwing wrasse (Symphodus melops), through trajectory-
based generative model pre-training. In essence, the aim was to
examine individual trajectories, applying unsupervised pre-training
with diffusion models as the feature learning step, and then applying a
relatively shallow MLP for fish event classification. We have shown that
diffusion models serve as effective pre-training models, yielding supe-
rior results concerning autoencoders, state-of-the-art fish trajectory
features, and fully supervised methods. We have also assessed the effi-
cacy of specific techniques to address imbalanced learning, such as Focal
Loss and SMOTE, showing that their involvement improves the classifi-
cation results.

To this point, few studies have applied deep models to analyze and
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classify fish trajectories, and even fewer studies were performed in
natural environments and with an elevated number of classes. This study
represents the pioneering use of generative models for pre-training
trajectories in a fish behavior classifier, highlighting the potential of
such an approach for fish event classification. Nonetheless, further
research efforts can be made to leverage the performance and generalize
the pipeline to other fields.

7.1. Limitations and future work

One notable limitation is the use of a single dataset in both the
proposed method and other methods employed in this study. While this
dataset has its unique qualities, it is crucial to validate these models on
alternative datasets when they become publicly available. Moreover,
expanding the dataset is a critical next step for us, but it is important to
acknowledge the significant challenges associated with collecting rele-
vant data in a natural setting. This includes the considerable time
required to observe specific events and the need for meticulous anno-
tation. Waiting for these events to occur naturally further complicates
the data collection process, highlighting the value of the collected data.
Additionally, integrating appearance-based information from RGB video
clips has the potential to enhance effectiveness, which we plan to
address in future work.
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Bourel, M., Segura, A.M., Crisci, C., López, G., Sampognaro, L., Vidal, V., Kruk, C.,
Piccini, C., Perera, G., 2021. Machine learning methods for imbalanced data set for
prediction of faecal contamination in beach waters. Water Res. 202, 117450.

Cao, H., Tan, C., Gao, Z., Xu, Y., Chen, G., Heng, P.-A., Li, S.Z., 2024. A survey on
generative diffusion models. IEEE Trans. Knowl. Data Eng. 36 (7), 2814–2830.
https://doi.org/10.1109/TKDE.2024.3361474.

Caravaggi, A., Banks, P.B., Burton, A.C., Finlay, C.M., Haswell, P.M., Hayward, M.W.,
Rowcliffe, M.J., Wood, M.D., 2017. A review of camera trapping for conservation
behaviour research. Remote Sens. Ecol. Conserv. 3 (3), 109–122.
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