
On fairness in distributed automated deduction
∗

Maria Paola Bonacina Jieh Hsiang

Department of Computer Science

SUNY at Stony Brook

Stony Brook, NY 11794-4400, USA

{bonacina,hsiang}@sbcs.sunysb.edu

Abstract

We present a new approach to distributed automated deduction and in this context we

propose solutions to the problem of distributed uniform fairness. Given a sequential theorem

proving strategy and an input problem, our methodology partitions the clauses and the expan-

sion inferences among the nodes of the distributed environment, establishing a derivation at

each node. A distributed derivation is defined as a family of concurrent, asynchronous deriva-

tions, communicating clauses through message-passing. As soon as one of the local derivations

finds a proof, the distributed derivation halts successfully.

Uniform fairness requires that all clauses which can be derived from persistent, non-

redundant parents are generated eventually. In the distributed case, it comprises fairness

of message-passing, which is necessary to make sure that any two persistent, non-redundant

clauses, residents at different nodes, meet eventually. We reduce the abstract definition of

uniform fairness for general derivations to a more concrete specification of uniform fairness

for distributed derivations, by proving that the latter implies the former. Then, we describe

mechanisms which can be embedded in a strategy to satisfy these conditions.

We conclude the paper with some discussion on the relevance of our results to other appli-

cations of distributed data bases.

1 Introduction

In this paper we present a new approach to distributed automated deduction called Clause-Diffu-

sion; in this context we describe the associated notion of distributed fairness of a derivation and

propose solutions to the problems involved.

A theorem proving strategy consists of an inference mechanism (a set of inference rules) and

a search plan. We further refine the inference mechanism into expansion inference rules, e.g.

resolution and paramodulation, and contraction inference rules, e.g. subsumption and simplifica-

tion via rewrite rules. The motivation for studying distributed theorem proving is to improve the

efficiency of theorem proving strategies by exploiting parallelism. The Clause-Diffusion approach

is concerned mainly with parallelism at the search level, by partitioning the search space among

∗Research supported in part by grant CCR-8901322, funded by the National Science Foundation. The first

author is also supported by a scholarship of Università degli Studi di Milano, Italy.

1



concurrent, asynchronous theorem proving processes. These processes traverse their portions of

the search space of the given problem, looking for a solution. As soon as one of them succeeds, the

entire process succeeds and terminates. Since each process is assigned only a segment of the data,

the processes need to communicate so that a proof involving data at different processes can be

found. The processes send their clauses to other processes in form of messages, termed inference

messages. Here we encounter the problem of fairness, as a requirement that the policies which

control the handling of inference messages need to satisfy.

Fairness is a property of the search plan of a theorem proving strategy [5]. Intuitively, a

fair search strategy ensures that no inference step which is necessary to find a proof will be

postponed forever. Fairness is guaranteed by a stronger condition, uniform fairness, which requires

that expansion steps between persistent clauses, those that are not deleted by contraction, are

considered. Since two persistent clauses may be stored at two different nodes in a distributed

environment, distributed uniform fairness requires that any two such clauses meet eventually at

some site. Thus, it poses an additional fairness requirement on the communication part of a

distributed theorem strategy, i.e. the part of the search plan which establishes when to send

messages and when and how to process received messages.

The first result concerning fairness in the paper is to turn these intuitions into formal re-

quirements, to be realizable by actual procedures. We start by giving a definition of distributed

derivations and extend the definition of uniform fairness of a sequential derivation to a distributed

derivation. If only one theorem proving process is active, then distributed derivation and dis-

tributed uniform fairness reduce to their sequential counterparts. We then present a set of more

concrete conditions and prove that they are sufficient for the uniform fairness of a distributed

derivation. To our knowledge, this is the first analysis of fairness in distributed deduction. Several

techniques for implementing these sufficient conditions for uniform fairness in different architec-

tures are described. These techniques introduce a certain amount of additional redundancy. We

present a new contraction inference rule to delete redundant messages. These techniques and

inference rule are implemented in our distributed theorem prover Aquarius [7].

Our Clause-Diffusion methodology for distributed theorem proving and study of distributed

uniform fairness apply to theorem proving in general. However, we shall emphasize on contrac-

tion-based strategies. The distinguishing features of these strategies are a well-founded ordering ≻

on terms, equations and clauses, powerful contraction rules, strong restrictions to the application

of expansion rules and a simplification-first search plan [12], i.e. a search plan which gives priority

to contraction steps. The motivation for emphasizing simplification-based strategies is two-fold.

First, there are both experimental evidence and theoretical understanding that they are more

effective than expansion-oriented methods. Second, the issues of parallelism and fairness are

more difficult and more interesting for contraction-based strategies than for other strategies, due

to the dynamic behaviour of the data base caused by contraction. In this sense, strategies without

contraction can be regarded as a special case of the study of strategies with contraction.

The rest of the paper is organized as follows. We first recall the basic definitions in theorem

proving, including the definition of uniform fairness of a sequential derivation. We then outline

the Clause-Diffusion methodology for distributed deduction. The treatment of fairness follows:

formal definition, reduction to concrete requirements and techniques to implement them. We

2



conclude the paper with some discussion on the relationships between our work and the general

issue of fairness in applications of distributed data bases.

2 Basic concepts in contraction-based deduction

A theorem proving problem consists in deciding, given a set of clauses S and a clause ϕ, whether

ϕ is a theorem of S. A theorem proving strategy C is specified by a set of inference rules I and

a search plan Σ. Expansion inference rules derive new clauses from existing ones, and add them

to the data base. Resolution, hyperresolution and paramodulation are examples of expansion

rules. Contraction inference rules delete existing clauses or replace them by logically equivalent

but smaller ones. Examples of contraction rules are (proper) subsumption [17], simplification [20],

tautology elimination, conditional simplification and normalization.

The search plan Σ chooses the inference rule and the premises for the next step. By iterating

the application of I and Σ, a derivation

S0 ⊢C S1 ⊢C . . . Si ⊢C . . .,

is constructed. A derivation is successful if it reaches a solution. A theorem proving strategy C is

complete, if, whenever the input target is indeed a theorem, the derivation constructed by C halts

successfully. Completeness involves both the inference rules I and the search plan Σ. First, it

requires that if the input target is a theorem, there exist successful derivations by I (completeness

of the inference mechanism). Second, it requires that whenever successful derivations exist, the

search plan Σ selects a successful derivation among the possible derivations by I from the given

input (fairness of the search plan 1).

Fairness for theorem proving is implied by a stronger fairness property, which we call uniform

fairness (e.g. [2, 3, 4, 13, 20]). We adopt here the definition given in [4]. This definition uses two

additional concepts: redundant clauses and persistent clauses. Intuitively, a clause is redundant

in a derivation if it is not necessary to prove the given target theorem [4, 6, 20]. Approaches to

capture the notion of redundancy usually assume the existence of a well-founded ordering on the

proof structure [2, 3, 4, 6, 12, 20, 22]. Given such an ordering, redundant data are identified as

those whose deletion does not increase the complexity of proofs. Contraction inference rules are

designed as concrete mechanisms to delete redundant data.

The notion of persistent clauses appeared first in [3, 13]: a clause is persistent in a derivation

if it is generated at some stage of the derivation and never deleted afterwards. Given a derivation

starting from a presentation S0, the possibly infinite set S∞ =
⋃

j≥0

⋂
i≥j Si of all the persistent

clauses is called the limit of the derivation. Given a strategy C =< I; Σ > and a set of clauses S,

we denote by Ie(S) the set of clauses which can be generated from S in one step by an expansion

rule of I. We denote by R the redundancy criterion associated to C [4]. For a set of clauses S,

R(S) is the set of all the clauses which are redundant in S based on R. The redundancy criterion

R is associated to C in the sense that whenever a contraction rule of I deletes or replaces a clause

ψ in S, ψ is in R(S). A redundancy criterion is required to be monotonic, i.e. if S1 ⊆ S2, then

1The use of the word “fairness” rather than “completeness” for the search plan has been inspired by its use for

Knuth-Bendix type completion procedures.

3



R(S1) ⊆ R(S2). Other requirements may be found in [4]. Finally, uniform fairness says that all

clauses that can be derived from persistent, non-redundant clauses should be generated eventually:

Definition 2.1 (Bachmair and Ganzinger 1992) [4] A derivation

S0 ⊢C S1 ⊢C . . . Si ⊢C . . .

by a strategy C is uniformly fair if Ie(S∞ −R(S∞)) ⊆
⋃

j≥0
Sj.

Studies of contraction and redundancy are motivated by the observation that contraction inference

rules are an indispensable part of many successful theorem provers, e.g. [1, 15, 19]. From the

theoretical side, however, their inclusion had posed a great challenge to the completeness proofs of

theorem proving strategies, because in the presence of contraction steps the data base of clauses is

not monotonically increasing during a derivation. It is only until recently that formal techniques

for dealing with the completeness issues of contraction rules have been discovered [2, 6, 20, 4].

3 Distributed deduction

Given a complete theorem proving strategy C =< I; Σ >, we address the problem of how to

execute C in a distributed environment. By a distributed environment we mean a network of

computers or a loosely coupled, asynchronous multiprocessor with distributed memory. The

latter may be endowed with a shared memory component. Our “Clause-Diffusion” methodology

does not depend on a specific architecture; it can be realized on different ones. Parameters such

as the amount of memory at each processor, the availability of shared memory and the topology

of the interconnection of the processors or nodes, are variable.

The basic idea in our approach is to partition the search space among the nodes. The search

space is determined by the input clauses and the inference rules. At the clauses level, the input

and the generated clauses are distributed among the nodes. For this purpose we need an allocation

algorithm, which decides where to allocate a clause. Once a clause ψ is assigned to processor pi, ψ

becomes a resident of pi. In this way each node pi is allotted a subset Si of the global data base.

The union of all the Si’s, which are not necessarily disjoint, forms the current global data base S.

Each processor is responsible for applying the inference rules in I to its residents, according to the

search plan Σ. Since the global data base is partitioned among the nodes, no node is guaranteed

to find a proof using only its own residents. To ensure that a solution will be found when one

exists, the nodes need to exchange information, by sending each other their residents in form of

messages, called inference messages. The inference messages issued by pi let the other processors

know which clauses belong to pi, so that they can use them to perform inferences with their

own residents. In a purely distributed system, the inference messages may be sent via routing

or broadcasting. If a mixed environment, i.e. with distributed memory and a shared memory

component, they may be communicated through the shared memory.

The separation of residents and inference messages can also be used to partition the search

space at the inference level. Using the paramodulation inference rule as an example, one may

establish that the inference messages are paramodulated into the residents, but not vice versa.

This restriction has two purposes. First, it distributes the expansion inference steps among the

4



nodes. Second, it prevents a systematic duplication of steps: if this restriction were not in place,

then paramodulation steps between two residents ψ1 of p1 and ψ2 of of p2 would be performed

twice, once when ψ1 visits p2 and once when ψ2 visits p1. Other expansion inference rules can

be treated in a similar way. While subdividing the expansion steps serves its purpose, it is not

productive to subdivide the contraction steps, since the motivation behind contraction is to keep

the data base always at the minimal. In a contraction-based strategy, an expansion step should

be performed only if all the premises are fully reduced, at least with respect to the local data

base. To ensure this, we require that each processor keep both its residents and received inference

messages fully contracted.

Let us call the clause newly generated from an expansion step a raw clause. In the presence of

contraction rules, a raw clause does not become a resident until it has been fully contracted. Thus,

our method also features a number of distributed contraction schemes [7] to reduce a raw clause

with respect to the global data base. After contraction, a raw clause becomes a new settler. New

settlers are given to the allocation algorithm to be assigned to some node. Remark that we do

not assume a central control process devoted to execute the allocation algorithm. Every process

executes the allocation algorithm for its new settlers: it may decide either to retain a new settler

or to send it to another node. The purpose of the allocation algorithm is to partition the search

space and keep the work-load balanced as much as possible.

This is the basic working of the “Clause-Diffusion” approach to distributed automated deduc-

tion: inter-contraction and local expansion inferences at the nodes among residents and inference

messages, distributed contraction of raw clauses, allocation of new settlers, and mechanisms for

passing inference messages. By specifying the inference mechanism I, the search plan Σ to schedu-

le inference steps and communication steps, the allocation algorithm, the distributed contraction

scheme and the algorithms for routing and broadcasting of messages, one obtains a specific stra-

tegy. We refer to [7] for full detail of the methodology and its implementation.

The above elements are summarized in the following notion of distributed derivation: every

processor pk, 1 ≤ k ≤ n, computes a derivation

(S;M ;CP ;NS)k
0
⊢C(S;M ;CP ;NS)k

1
⊢C . . . (S;M ;CP ;NS)ki ⊢C . . .

where Sk
i is the set of residents, Mk

i is the set of inference messages, CP k
i is the set of raw clauses

and NSk
i is the set of new settlers at pk at stage i.

A distributed derivation is the collection of the asynchronous derivations computed by the

nodes. The state of the derivations at processor pk and stage i is represented by the tuple

(S;M ;CP ;NS)ki . More components may be added if indicated by a specific strategy. A di-

stributed derivation succeeds as soon as the derivation at one node finds a proof. A step in a

distributed derivation can be either an expansion step or a contraction step or a communication

step. For instance, sending an inference message for ψ ∈ Sk from node pk to an adjacent node

pj can be written as (Sk ∪ {ψ},M j) ⊢ (Sk ∪ {ψ},M j ∪ {ψ}). Settling a new settler at node

pk can be written as (Sk, NSk ∪ {ψ}) ⊢ (Sk ∪ {ψ}, NSk). This representation assumes that

communication between any two adjacent nodes is instantaneous. It does not assume, however,

that communication between any two nodes is instantaneous. If an inference message sent by pi

reaches pj through px1
. . . pxm

, it appears first in Mx1, then in Mx2 and so on. The time elapsed

5



in going from the source to the destination is captured in our description, by showing the message

stored, at successive stages, in the appropriate component of all the nodes on the path.

4 Uniform fairness of distributed derivations

In order to extend Definition 2.1 to the distributed case, we need to define the limit of a di-

stributed derivation. First, we define the local data base at node pk at stage i as the union

Gk
i = Sk

i ∪Mk
i ∪ CP k

i ∪ NSk
i . Then, the local limit at processor pk is Gk

∞ =
⋃

i≥0

⋂
j≥iG

k
j . The

global data base at stage i is the union of the local data bases, i.e. Gi =
⋃n

k=1
Gk

i , and the global

limit is G∞ =
⋃n

k=1
Gk

∞. Local and global limits may be defined similarly for each component

of the states in a distributed derivation, e.g. Sk
∞ and S∞, Mk

∞ and M∞. Then, the definition of

uniform fairness is extended to a distributed derivation as follows:

Definition 4.1 A distributed derivation

(S;M ;CP ;NS)k
0
⊢C(S;M ;CP ;NS)k

1
⊢C . . . (S;M ;CP ;NS)ki ⊢C . . .,

for all k, 1 ≤ k ≤ n, is uniformly fair if Ie(G∞ −R(G∞)) ⊆
⋃n

k=1

⋃
j≥0

Gk
j .

The following three conditions form a more concrete specification of uniform fairness of distributed

derivations.

1. All messages should be processed eventually and thus there are no persistent messages:

∀k, 1 ≤ k ≤ n, Mk
∞ = CP k

∞ = NSk
∞ = ∅.

2. Given k and ψ ∈ Sk
∞, we define the abstract birth-time of ψ in k to be the smallest index i ≥ 0

such that ψ ∈
⋂

j≥i S
k
j .2 Then for every node pk and for every persistent, non-redundant

resident ϕ at pk, all persistent, non-redundant residents at the other nodes will eventually

appear as inference messages at pk, after the birth of ϕ:

∀k, 1 ≤ k ≤ n, ∀ϕ ∈ (Sk
∞ − R(Sk

∞)), if i is the abstract birth-time of ϕ, then ∀h, 1 ≤ h 6=

k ≤ n, ∀ψ ∈ (Sh
∞ −R(Sh

∞)), there exists an l > i such that ψ ∈Mk
l .

Notice that i and l are stages of the same derivation, i.e. the derivation at pk.

3. The derivation is uniformly fair with respect to the local inferences at each node. That

is, every clause that can be generated from persistent, non-redundant clauses at pk will be

generated: ∀k, 1 ≤ k ≤ n, Ie(S
k
∞ −R(Sk

∞)) ⊆
⋃

i≥0
CP k

i .

While Condition 3 paraphrases the requirement that the sequential strategy to begin with is fair,

Conditions 1 and 2 take care of the distributed part of the derivation. Intuitively, Conditions 1

and 2 guarantee that a clause which can be generated from two persistent non-redundant clauses

ϕ1 and ϕ2 residing at two different nodes, will be considered. Condition 2 ensures that ϕ1 and

ϕ2 will eventually meet each other through inference messages. Condition 1 makes sure that

2The adjective abstract indicates that i is an index in the abstract view of the derivation, and not a time of any

processor’s clock.

6



all inference messages be processed (M∞ = ∅), all raw clauses (those that, in the presence of

contraction rules, remain non-trivial after having been fully contracted) become new settlers

(CP∞ = ∅) and all new settlers become residents at some place (NS∞ = ∅). Because the

definition of uniform fairness, and consequently our three conditions, focus only on persistent,

non-redundant clauses, it is fairly simple to show that these three conditions imply Definition 4.1:

Theorem 4.1 If a distributed derivation satisfies Conditions 1, 2 and 3, then it is uniformly

fair, i.e. Ie(G∞ −R(G∞)) ⊆
⋃n

k=1

⋃
i≥0

Gk
i .

Proof: let ϕ be any clause in Ie(G∞ − R(G∞)) with parents ψ1 and ψ2. Since M∞ = CP∞ =

NS∞ = ∅, G∞ = S∞, i.e. ψ1, ψ2 ∈ S∞. It follows that ψ1 ∈ (Sk
∞−R(S∞)) and ψ2 ∈ (Sh

∞−R(S∞))

for some 1 ≤ k, h ≤ p.

If k = h, then ϕ ∈ Ie(S
k
∞ −R(S∞)). Since Sk

∞ ⊆ S∞, by the monotonicity of the redundancy

criterion, R(Sk
∞) ⊆ R(S∞) and thus Ie(S

k
∞ −R(S∞)) ⊆ Ie(S

k
∞ −R(Sk

∞)). By Condition 3, there

exists an i such that ϕ ∈ CP k
i ⊆ Gk

i ⊆
⋃n

k=1

⋃
i≥0

Gk
i .

If k 6= h, let i1 and i2 be the abstract birth-times of ψ1 and ψ2 respectively. By Condition 2,

we have ψ1 ∈Mh
l1

for some l1 > i2 and ψ2 ∈Mk
l2

for some l2 > i1. Since M∞ = ∅ by Condition 1,

we know that the inference message ψ1 does not persist at ph and the inference message ψ2 does

not persist at pk. An inference message may be deleted before performing expansion steps, by

a contraction step. Since ψ1 and ψ2 are in G∞ − R(G∞), i.e. they are globally persistent and

non-redundant, this is impossible. It follows that the inference messages ψ1 ∈ Mh
l1

and ψ2 ∈ Mk
l2

are deleted only after having been processed. Thus, paramodulation of ψ1 into ψ2 is tried at ph

and paramodulation of ψ2 into ψ1 is tried at pk. Either one of these two steps generates ϕ, i.e.

either ϕ ∈ CP h
i or ϕ ∈ CP k

i at some stage i, i.e. ϕ ∈
⋃n

k=1

⋃
i≥0

Gk
i . 2

By this theorem, the abstract definition of uniform fairness is reduced to three more concrete

requirements:

Corollary 4.1 Let C =< I; Σ > be a complete (sequential) theorem proving strategy and D be its

distributed version. If the algorithms and policies handling messages satisfy Conditions 1 and 2,

then D is a complete distributed theorem proving strategy.

5 Techniques to satisfy the conditions for uniform fairness

5.1 Inference messages and localized image sets

The second of the sufficient conditions for uniform fairness requires that for every persistent

resident ϕ at node pk, all persistent residents of other nodes appear eventually at pk as inference

messages after the abstract birth-time of ϕ. In the following we describe some techniques to ensure

this condition. In addition to giving a general method, we also provide techniques for fine-tuning

according to the parameters of different architectures.

The basic idea is that a new resident ψ, once settled, should emit a message of itself, so

that inferences between residents at other nodes and ψ can be performed. We assign, to each

7



resident, an identifier and a birth-time. When a new settler ψ becomes a resident at pi, it is given

an identifier a never used before at pi, and the current time at pi’s clock as its birth-time. We

remark that this birth-time has no relationship with the abstract birth-time of persistent residents

mentioned in previous sections; the latter is only for conceptual simplicity of the formalism. Thus,

the format of a resident is < ψ, a, x >, where a is the identifier and x is the birth-time, and the

pair < i, a > represents a unique global identifier for ψ.

An inference message may need to be emitted when a new settler becomes a resident and

when a resident is updated due to contraction. In addition to the clause, an inference message

also carries its global identifier and birth-time. Thus, an inference message for < ψ, a, x >∈ Si

has the form m =< ψ, i, a, x >. If a resident ψ is contracted to ψ′, its birth-time is updated:

< ψ, a, x > is replaced by < ψ′, a, y >, where y is the current time at the node’s clock. Intuitively,

this means that ψ′ is “new” and therefore should be re-scheduled to be sent as message. When

node pj receives m =< ψ, i, a, x >, pj stores it in a queue of messages. This queue may be sorted

according to different criteria, which are part of the search plan executed at the node. When

the message m is selected from the queue, it is used for contraction inferences and expansion

inferences (such as paramodulate into the residents of pj) according to the local search plan.

One question which needs to be addressed is what pj should do with m after pj has used m to

perform all possible inferences within its current local data base. A natural solution is to simply

delete m, since the content of m already exists at node pi and, thus, its presence (or absence)

at pj does not have any effect on the global data base. A complication arises, however, because

new residents may be created at pj after m has been deleted. Then, in order to ensure fairness,

the content of the identifier < i, a > should be known at pj again, so that inferences between the

new residents and the content of < i, a > can be performed. This can be done by using “control

messages” to stir the re-edition of inference messages. That is, node pj sends a wake-up call to

pi requesting the content of < i, a >. Upon receiving the wake-up call, pi will send the relevant

information to pj. The disadvantage of this approach is that it may generate a large amount of

communication. Although by carefully analyzing the routing algorithms one can eliminate some

messages [7], it may still worsen the computation/communication ratio quite significantly. On

the other hand, if the architecture under consideration has very limited amount of local memory

for each node and has low latency and high throughput in communication, then this scheme may

be considered.

Assuming that each node has sufficient local memory, one can then choose to have each

node saving the used messages in its memory. In this way, each node pk progressively builds a

localized image set SHk, i.e. a local, approximate image of the global data base. Each SHk can

be implemented as a hash table with the global identifier of the incoming messages as the key:

message m =< ψ, i, a, x > is inserted in the hash table under key < i, a >. If the architecture

supports an additional shared memory component, then a single global image set SH can be built

in the shared memory, so that it can be used by all nodes, thus saving the duplication of building

different hash tables. Under this scheme, there is no need for wake-up calls and replies. If a new

resident is produced, it can simply go through the hash table to find the needed data to perform

necessary expansion inferences. This cuts down the amount of communication significantly.

In summary, the diffusion of clauses as inference messages allows expansion steps between

8



clauses at remote sites. Each node pi is responsible for sending its residents. Birth-times are used

to ensure local fairness in the emission of messages. Because the data bases at the nodes are

dynamic, inference messages need to be saved by the receiver or re-issued by the sender upon the

receipt of wake-up calls.

5.2 Deletion of redundant inference messages

The above techniques, however, do introduce some redundancy. The reason is that during a

derivation it is not known which residents are persistent. Thus, inference messages may carry

residents for which the messages are not necessary, because these residents are contracted after

the generation of the message. For instance, assume that ψ is a resident at pi and that a message

m1 =< ψ, i, a, x > has been emitted for ψ. Suppose later pi has additional data enabling it to

contract ψ to ψ′. Then, another message m2 =< ψ′, i, a, y > for ψ′ is sent. A node pj, which

receives both m1 and m2, does not know that m1 is redundant and may use both messages for

inferences, thus producing redundancy. Furthermore, a contraction-based distributed strategy

may prescribe to forward inference messages only after having tried to contract their content.

If message m1 from pi reaches pj by going through intermediate nodes, node pj will receive in

general a message < ψ′′, i, a, x >, where ψ′′ is a contracted form of ψ. Clause ψ′′ may actually

render ψ′ redundant. One needs to design a way to take full advantage of the results of these

contractions.

A solution to these problems lies in the utilization of the global identifier and birth-time which

come with the messages. Suppose node pj has received two messages m1 =< ψ1, i, a, x > and

m2 =< ψ2, i, a, y >, with the same global identifier < i, a >. Then, we know that ψ1 and ψ2 are

logically equivalent since they are (contracted) forms of the same resident. We term such messages

generalized duplicates. If ψ1 = ψ2 and x = y, the two messages are just two plain duplicates. If

ψ1 6= ψ2, but x = y, then the two messages were originally plain duplicates, whose clauses have

been contracted to two different forms during their traversal through the network. If x < y, then

the original clause of the message m2 is a contracted form of the original clause of m1, since m2

is emitted later. The case for x > y is symmetric.

Let m1 =< ψ1, i, a, x > and m2 =< ψ2, i, a, y > be two generalized duplicates such that y ≥ x.

If they carry the same clause, i.e. ψ1 = ψ2, then we discard m1, the message carrying an earlier

time-stamp. Otherwise, we discard m1 if ψ1 ≻ ψ2 and discard m2 if ψ2 ≻ ψ1. If ψ1 and ψ2 are

not comparable, then we discard m1 since it was emitted earlier. The following inference rule

captures the above ideas:

Discard Message: Let i and k be two nodes, and y ≥ x.

•
Mk ∪ {< ψ1, i, a, x >,< ψ2, i, a, y >}

Mk ∪ {< ψ2, i, a, y >}
if ψ2 6≻ ψ1

•
Mk ∪ {< ψ1, i, a, x >,< ψ2, i, a, y >}

Mk ∪ {< ψ1, i, a, x >}
if ψ2 ≻ ψ1

These inference rules formalize a mechanism which discards redundant inference messages at

9



the receiver. By the nature of the theorem proving applications, it is not possible to discard

generalized duplicates at the sender. In fact, it is never the case that two generalized duplicates

< ψ1, i, a, x > and < ψ2, i, a, y > be present at the same time at the sender, i.e. node pi, because

the content of < i, a > is only one clause at any given time. The issue may be addressed at

the sender in terms of the delay between contraction and communication. On one hand, when

a resident is contracted, we would like to send it as inference message as soon as possible to

let the other processes see the reduced form. On the other hand, we may prefer to wait for a

longer interval, in case the resident will be reduced again shortly. A suitable trade-off may be

determined empirically. The infererence rule of Discard Message may be applied to other aspects

of the Clause diffusion methodology, such as for updating the contents of the image sets [7].

6 Discussion

In this paper we outlined a general approach to distribued automated deduction terms “clause-

diffusion”, and we described the related problem of fairness in a distributed derivation, and

how to ensure it in our methodology. Although our work applies to distributed theorem proving

methods in general, we have concentrated on contraction-based strategies, since they pose the most

challenging problems both in theory and in implementation. The Clause-Diffusion methodology

is a general method which can be implemented on a variety of architectures and yields a high

degree of parallelism by tolerating extra global redundancy, as the same clauses may be generated

in different ways by different processes. Our view is that it is better to let the processes proceed

eagerly in parallel, generating extra redundant clauses and deleting them afterwards, rather than

synchronize the processes, thus forcing them to wait, in order to prevent redundancies. Next,

we applied the notion of uniform fairness from [4] to the distributed framework. We pointed

out the new problem on fairness represented by the additional component of communication and

presented a set of sufficient conditions to ensure fairness. Our conditions are fairly general and

the correctness is proved.

We then discussed how these sufficient conditions can be realized on various architectures.

The problem of redundancy resulting from the inference messages is also discussed in detail and

technical solutions are described.

Not much work has been done in distributed theorem proving. The DARES system [9] and the

team-work method [10] apply to theorem proving artificial intelligence techniques for distributed

problem solving. Theoretical treatments were not given in the papers. DARES has been designed

for strategies without backward contraction. The team-work method relies on a central control

to synchronize periodically the processes and evaluate their work, whereas our approach is in-

trinsically distributed and asynchronous. Therefore, most of the results presented here appear to

be new. They include the Clause-Diffusion methodology for distributed deduction, the sufficient

conditions for ensuring fairness and the techniques to implement them.

We also feel that part of our study may be applicable to distributed data bases. One of

the important problems in distributed data bases is to maintain the global consistency of data

in the presence of updates. The same problem also appears in our study although in a weaker

10



form. Contraction inferences are in fact a form of update, since they replace data by others. Our

counterpart to the notion of consistency, on the other hand, is not as rigid. The main difference

is that once a datum is modified through contraction, it is not necessary to require that all of

its copies (in the form of inference messages) be updated immediately into identical form. This

is because a contracted datum is still logically equivalent to the original one, which is all that

is required in automated deduction. What is lost by not keeping copies of the same datum

identical is not consistency, but minimality: there is a possible temporary increase of redundancy

which, although undesirable, does not disturb the global integrity of the system. This is why it

is relatively easier to come up with a reasonable solution for our problem than for the similar

problem for distributed data bases. Some of our work may be useful to distributed data bases

applications with less stringent requirements of consistency.

References

[1] S.Anantharaman, J.Hsiang, Automated Proofs of the Moufang Identities in Alternative

Rings, JAR, Vol. 6, No. 1, 76–109, 1990.

[2] L.Bachmair, N.Dershowitz and J.Hsiang, Orderings for Equational Proofs, in Proc. of LICS-

86, 346–357, 1986.

[3] L.Bachmair, Proofs Methods for Equational Theories, Ph.D. Thesis, Dept. of Computer

Science, Univ. of Illinois at Urbana, 1987.

[4] L.Bachmair, H.Ganzinger, Non-Clausal Resolution and Superposition with Selection and

Redundancy Criteria, in Proc. of LPAR-92, LNAI 624, 273–284, 1992.

[5] M.P.Bonacina, J.Hsiang, On fairness of completion-based theorem proving strategies, in

R.V. Book (ed.), Proc. of RTA-91, LNCS 488, 348–360, 1991.

[6] M.P.Bonacina, J.Hsiang, Towards a Foundation of Completion Procedures as Semidecision

Procedures, submitted and Tech. Rep. Dept. of Computer Science, SUNY at Stony Brook,

Aug. 1991.

[7] M.P.Bonacina, Distributed Automated Deduction, Ph.D. Thesis, Dept. of Computer Sci-

ence, SUNY at Stony Brook, Dec. 1992.

[8] J.D.Christian, High-Performance Permutative Completion, Ph.D. Thesis, Univ. of Texas at

Austin, and MCC Tech. Rep. ACT-AI-303-89, Aug. 1989.

[9] S.E.Conry, D.J.MacIntosh and R.A.Meyer, DARES: A Distributed Automated REasoning

System, in Proc. of AAAI-90, 78–85, 1990.

[10] J.Denzinger, Distributed knowledge-based deduction using the team work method, Tech.

Rep., Univ. of Kaiserslautern, 1991.

[11] D.J.Hawley, A Buchberger Algorithm for Distributed Memory Multi-Processors, in Proc.

of the Int. Conf. of the Austrian Center for Parallel Computation, Linz, Oct. 1991.

11



[12] J.Hsiang, M.Rusinowitch, On word problems in equational theories, in Th.Ottman (ed.),

Proc. of ICALP-87, LNCS 267, 54–71, 1987.

[13] G.Huet, A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm,

JCSS, Vol. 23, 11–21, 1981.

[14] A.Jindal, R.Overbeek and W.Kabat, Exploitation of parallel processing for implementing

high-performance deduction systems, JAR, Vol. 8, 23–38, 1992.

[15] D.Kapur. H.Zhang, RRL: a Rewrite Rule Laboratory, in E.Lusk, R.Overbeek (eds.), Proc.

of CADE-9, LNCS 310, 768–770, 1988.

[16] C.Kirchner. P.Viry, Implementing Parallel Rewriting, in B.Fronhöfer and G.Wrightson

(eds.), Parallelization in Inference Systems, LNAI 590, 123–138, 1992.

[17] D.W.Loveland, Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam,

1978.

[18] E.L.Lusk, W.W.McCune, Experiments with ROO: a Parallel Automated Deduction System,

in B.Fronhöfer and G.Wrightson (eds.), Parallelization in Inference Systems, LNAI 590,

139–162, 1992.

[19] W.W.McCune, OTTER 2.0 Users Guide, Tech. Rep. ANL-90/9, Argonne National Lab.,

Mar. 1990.

[20] M.Rusinowitch, Theorem-proving with Resolution and Superposition, JSC, Vol. 11, No. 1

& 2, 21–50, Jan./Feb. 1991.

[21] K.Siegl, Gröbner Bases Computation in STRAND: A Case Study for Concurrent Symbolic

Computation in Logic Programming Languages, M.S. Thesis and Tech. Rep. 90-54.0, RISC-

LINZ, Nov. 1990.

[22] R.Socher-Ambrosius, How to Avoid the Derivation of Redundant Clauses in Reasoning

Systems, in JAR, Vol. 9, No. 1, Aug. 1992.

[23] M.E.Stickel, The Path-Indexing Method for Indexing Terms, Tech. Note 473, SRI Int., Oct.

1989.

[24] J.-P.Vidal, The Computation of Gröbner Bases on A Shared Memory Multiprocessor, in

A.Miola (ed.), Proc. of DISCO-90, LNCS 429, 81–90, 1990 and Tech. Rep. CMU-CS-90-163,

Aug. 1990.

[25] K.A.Yelick, S.J.Garland, A Parallel Completion Procedure for Term Rewriting Systems, in

D.Kapur (ed.), Proc. of CADE-11, LNAI 607, 109–123, 1992.

12


