
International Journal of Computer Assisted Radiology and Surgery (2023) 18:1665–1672
https://doi.org/10.1007/s11548-023-02864-8

ORIG INAL ART ICLE

TRandAugment: temporal random augmentation strategy for surgical
activity recognition from videos

Sanat Ramesh1,2 · Diego Dall’Alba1 · Cristians Gonzalez3,5 · Tong Yu2 · Pietro Mascagni5,6 · Didier Mutter3,4,5 ·
Jacques Marescaux4 · Paolo Fiorini1 · Nicolas Padoy2,5

Received: 5 January 2023 / Accepted: 1 March 2023 / Published online: 22 March 2023
© The Author(s) 2023

Abstract
Purpose Automatic recognition of surgical activities from intraoperative surgical videos is crucial for developing intelligent
support systems for computer-assisted interventions. Current state-of-the-art recognition methods are based on deep learning
where data augmentation has shown the potential to improve the generalization of these methods. This has spurred work on
automated and simplified augmentation strategies for image classification and object detection on datasets of still images.
Extending such augmentation methods to videos is not straightforward, as the temporal dimension needs to be considered.
Furthermore, surgical videos pose additional challenges as they are composed of multiple, interconnected, and long-duration
activities.
Methods This work proposes a new simplified augmentation method, called TRandAugment, specifically designed for long
surgical videos, that treats each video as an assemble of temporal segments and applies consistent but random transformations
to each segment. The proposed augmentation method is used to train an end-to-end spatiotemporal model consisting of a
CNN (ResNet50) followed by a TCN.
Results The effectiveness of the proposed method is demonstrated on two surgical video datasets, namely Bypass40 and
CATARACTS, and two tasks, surgical phase and step recognition. TRandAugment adds a performance boost of 1–6% over
previous state-of-the-art methods, that uses manually designed augmentations.
Conclusion This work presents a simplified and automated augmentation method for long surgical videos. The proposed
method has been validated on different datasets and tasks indicating the importance of devising temporal augmentation
methods for long surgical videos.
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Introduction

In the context of computer-assisted interventions, reliable
recognition of surgical activities is a fundamental component
that could allow automatic analysis of the surgical work-
flowby providing the valuable semantic information required
to support clinical decisions, generate reports, and anno-
tate data [1,2]. These support systems could reduce surgical
errors, increase patient safety, and help establish effective
and efficient communication protocols [1–3]. Following the
classification proposed in [4,5], surgical procedures can be
divided into surgical activities at different levels of granular-
ity: phases, steps, actions, and motions. Surgical phases are
described as a set of surgical aims to be executed for suc-
cessfully completing the surgical procedure, while steps are
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defined as a set of surgical actions that need to be carried out
to complete a surgical phase. These different activities are
annotated as temporal segments of the procedure. Moreover,
when performing minimally invasive surgeries, a change in
the viewpoint on the anatomy may be required for executing
each individual activity.

Previous research studies have tackled the problem of sur-
gical activity recognition by capitalizing on videos recorded
during surgery [6–12]. Many of these works have proposed
deep learningmodels to extract spatial and temporal informa-
tion from videos. All these methods employ a convolutional
neural network (CNN) for visual feature learning followed
by hiddenMarkov models (HMMs) [6], recurrent neural net-
works (RNNs) [7], long short-term memory (LSTMs) [8],
temporal convolutional networks (TCNs) [9,10], or trans-
formers [11,12] for temporal feature learning. Although
deep learning models have been successfully used for tack-
ling activity recognition in surgeries, training these models
requires large volumes of data and an arduous effort for
selecting hyperparameters.

One of the most essential components to be consid-
ered while training these models is data augmentation. Data
augmentation is a commonly used method to generate addi-
tional data for improving the training of data-intensive deep
learning models for image classification [13–15], object
detection [16,17], instance segmentation [16,18], etc. Addi-
tionally, augmentation has been shown to have an impact on
model robustness [19] and performance on semi-supervised
and self-supervised learningmethods [20–23].However, spe-
cific augmentation policies need to be designed to capture
prior knowledge for each domain, which requires expertise
and manual work, making data augmentation methods diffi-
cult to extend to other domains and applications [14,15,24].
To tackle the challenge of manually designing augmentation
policies, the latest research papers have proposed reinforce-
ment learning to learn optimal policies [14,15]. Recently,
a simplified and more practical method (called RandAug-
ment [24]) was proposed for addressing new difficulties, e.g.,
defining a proxy task and training on it, searching over 30
parameters, that arise with these automated data augmen-
tation methods. Although the advances in automated data
augmentation methods have been significant, these methods
have been specifically developed for still images. Recently,
a few augmentation methods specifically designed for video
have been proposed [17,25–27]. These methods have pro-
posed inserting temporal perturbations successionally to the
video frames [25] or objects (obtained through instance
segmentation) from one video onto another [17]. A learning-
based method has been proposed in [26] that finds a pair of
similar videos and then places objects from one video onto
another video’s background. In [27], augmentation is applied
to video frames ensuring smooth changes in its magnitude

based on Fourier sampling. However, automated augmenta-
tion methods for videos have been unexplored.

In training video-based surgical activity recognitionmeth-
ods, previous works have used manually selected aug-
mentations: horizontal flip [8,10], rotations [9,10], random
cropping [8], translation [9], scale [9], and color jitter [10,12].
These specific augmentation policies have been applied at the
image level to train backbone CNNs. On the other hand, no
effort has beenmade to propose augmentation approaches for
surgical videos. The temporal dimension in videos assumes
particular importance in activity recognition as intraoper-
ative surgical videos are of longer duration compared to
videos examined in the computer vision community, and
they capture the complete surgical procedure composed of
multiple complex activities. This temporality present in both
surgical videos and activities needs to be considered and
exploited, while designing augmentation policies for training
spatiotemporal models.

To this end, the paper introduces a new simplified and
automated data augmentation method, called TRandAug-
ment, that aims to incorporate the essential temporal dimen-
sion. Inspired by work [24], the TRandAugment method
proposes a compact and simple parameterization consisting
of only 3 parameters, where one parameter is dedicated to the
temporal dimension.TRandAugment is extensively evaluated
on the task of surgical activity recognition at two levels of
granularity, i.e., phase and step [4], using two large surgical
video datasets: Bypass40 [10] and CATARACTS [28].

Methodology

Automated activity recognition methods aim to segment
endoscopic videos into surgical activities, i.e., phase or step.
To improve the generalizability of activity recognition meth-
ods based on deep learning, this section introduces the
proposed augmentation method, called TRandAugment, and
the spatiotemporal model used to evaluate the method.

TRandAugment

The goal of TRandAugment is to incorporate the tem-
poral dimension present in surgical videos into the data
augmentation methods for improving the generalization of
activity recognition models. In pursuing this goal, we also
want to propose a simplified and automated data augmen-
tation method. Given that a recent method [24] operates
only on a two-parameter space (M, N ) compared to learned
augmentation methods with over 30 parameters [14,15],
TRandAugment is designed to require only 3 parameters,
where the first two adopt the same parameterization used
in [24], while the third additional parameter T is used to
characterize the temporal dimension. Similar to previous

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:1665–1672 1667

Fig. 1 Pictographical
representation of
TRandAugment. A video is
segmented into T clips, and a
random augmentation ti ,
sampled from a list of
transforms τ , is applied to clip i.
The augmented clips are merged
back to form a new video which
is passed as input while training
an end-to-end CNN+TCN
network that predicts phases or
steps

TCN

t1 ~ TT

ti ~ T

tT ~ T

Ti
m
e

works [14,24], a set τ of 10 transformations is utilized and
applied with uniform probability 1

|τ | :

• identity
• color
• brightness
• autoContrast

• rotate
• sharpness
• shear-x
• shear-y

• translate-x
• translate-y

The choice of |τ | = 10 transformations is selected based
on the domain knowledge of possible transformations that
occur in endoscopic videos. Thus, we have excluded all the
augmentations that, when applied, result in drastically differ-
ent looking images that are highly unlikely to arise in surgical
videos, such as posterize, solarize and equalize used in [24]
and other novel augmentations proposed in the literature:
YOCO [29], MixUp [30], CutMix [31] or AugMix [32].

As schematically represented in Fig. 1, the idea of TRan-
dAugment is to apply different transformations to different
temporal video segments. Thus, parameter T is introduced
to control the number of temporal segments. Each video
is split into a random T ′ ∈ [1, T ] segments, and for each
segment i (i ∈ [1, T ′]), a random set of N transformation{
ti,1, ..., ti,N | ti, j ∼ τ

}
is applied uniformly on all the frames

of that segment. The strength of each transformation is rep-
resented by magnitude M and linearly scaled between its
minimumandmaximumvaluesmapped to an arbitrarily cho-
sen integer scale from 0 to 30.

To maintain a notation consistent with previous methods,
in particular [24], the proposed method is parameterized as
(M, N , T ), where M and N are defined as the magnitude
and number of transformations to apply per segment, and T
is the maximum number of temporal segments.

Spatiotemporal model

The spatiotemporal model is comprised of ResNet-50 back-
bone, for visual feature learning, followed by a single-stage
TCN (SS-TCN), for temporal modeling. The presented
model is a powerful architecture comparable to other recent

state-of-the-art methods [9–12]. Furthermore, it is modu-
lar and can easily accommodate new spatial and temporal
models that could be proposed for activity recognition. This
model is used in all the experiments and is trained end to end
for the task of surgical activity recognition considering both
phases and steps.

ResNet-50 [33] has been a popular model of choice in
many recent works on phase/step recognition [8–10,34]. The
model is also employed in this work for visual feature learn-
ing. For long temporal modeling, TCNs have been shown to
outperform RNNs [9,10]. A single-stage model is employed
over a multi-stage. This is motivated by the work of [10]
where the multi-stage did not show improvements over the
single-stage for both phase and step recognition. SS-TCN
consists of only temporal convolutional layers that perform
causal convolutions, which depend only on the current and
n previous frames designed for online recognition.

The spatiotemporal model takes as input a video contain-
ingϒ frames x1:ϒ . ResNet-50 extracts visual features of size
f = 2048 from 224×224×3 RGB images. The frame-wise
features are stacked over time for the TCN model, which
outputs predictions ŷ1:ϒ , where ŷi is the class label for the
current timestamp i , i ∈ [1, ϒ]. Since both the tasks at hand
(phase and step) are multi-class classification problems with
imbalance in class distribution, following [9,10], a class-
weighted cross-entropy loss is used.

Experimental setup

Datasets

Bypass40 (BY40)

TheBypass40 dataset [10], courteously shared by the authors
of [10], comprises 40 Laparoscopic Roux-en-Y gastric
bypass (LRYGB) procedures with average video duration of
1h and 45min. The complex workflow of LRYGB surgeries
is represented with 11 phases and 44 steps, and the dataset is
fully annotated with both these types of activities defined at
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different levels of granularity. A full list of all the phases and
steps is presented in [10]. All the videos have a resolution of
854× 480 or 1920× 1080 pixels and are recorded at 25 fps.
Following the same data split as [10], the dataset has been
segregated into 24, 6, and 10 videos for training, validation,
and test sets, respectively. The frames have been extracted at
1 fps and resized to ResNet-50’s input size of 224 × 224.

CATARACTS (CA50)

The CATARACTS dataset1 [28,35] consists of 50 videos of
cataract surgical procedures. The dataset is annotated per
frame with only steps as part of the CATARACTS2020 chal-
lenge. A complete list of all 19 steps is tabulated on the
challenge website.2 The 50 videos are split into 25, 5, and
20 subsets for training, validation, and test sets, respectively.
Frames are extracted at 1 fps and resized from 1920 × 1080
to 224 × 224.

Training and evaluation

Baselines

TRandAugment, or TRA, is compared against different base-
lines. RandAugment [24], referred to as RA, is the first
comparison where the augmentations are applied indepen-
dently for each image in a video. Next, RandAugment is
extended toUniformRandAugment, calledURA,where aug-
mentation is applied uniformly on all the frames in a video.
TRA is a more generalized method encapsulating both RA
and URA, where setting T = 1 reduces TRA to URA, while
T = ϒ (ϒ : number of frames in a video) transforms TRA to
RA. Finally, all the methods are compared against the state-
of-the-art MTMS-TCN [10] that used a manually designed
‘Custom’ set of augmentations (flip, saturation, rotation) for
surgical activity recognition.

Training

In all the experiments, the ResNet-50 backbone model is
initializedwith ImageNet pretrainedweights. Then, the com-
plete ResNet-50 + SS-TCNmodel is trained in an end-to-end
fashion for the task of phase/step recognition. To train the
TCN, which requires temporal information, features from all
the past frames in the video are cached by utilizing a feature
buffer. This feature buffer is reset at the end of the video. The
spatiotemporal model is trained for 50 epochs with a learning
rate of 1e-5 and a batch size of 64. The proposed method and
model have been implemented in PyTorch, and the experi-

1 https://ieee-dataport.org/open-access/cataracts.
2 https://www.synapse.org/#!Synapse:syn21680292/wiki/601563.

Table 1 The use of temporally consistent augmentations does matter:
RA vs URA. All results are reported on the validation set on the CA50
dataset for step recognition

M |τ ′| RA URA

ACC F1 ACC F1

15 3 74.63 58.75 76.81 63.73

15 5 70.10 54.35 75.75 64.43

15 9 73.31 61.21 76.20 62.80

15 Avg 72.68 58.10 76.25 63.65

30 3 77.31 64.62 78.05 66.88

30 5 69.66 54.48 78.45 66.99

30 9 70.70 53.87 79.74 68.07

30 Avg 72.55 57.66 78.75 67.31

Bold values indicate the best performance

ments (∼ 3500 GPU hours) were trained on NVIDIA RTX
6000 and V100 GPUs.

Evaluation

The effectiveness of the method is measured using accuracy
(ACC), precision (PR), recall (RE), and F1-score (F1) met-
rics. The metrics are computed per video (averaged across
classes) and are averaged across all the videos in the given
set, following the same evaluation protocol as [9–11,23].

Results and discussion

In this section, we analyze the different components that
influence the design of TRandAugment. Initially, we study
the importance of temporally consistent augmentations in
Sect. “Do temporally consistent augmentations matter?”,
thenwe analyze the impact of parameterM in Sect. “Effect of
magnitude (M)”, the number of transformations in Sect. “Do
all augmentations help?” and impact of the parameter T in
Sect. “Impact of parameter T on TRA”. Finally, we present
the performanceof the proposedmethod considering theopti-
mal parameters on both datasets (Sect. “TRandAugment”).

Do temporally consistent augmentations matter?

One of the key differences between videos and images is
the additional temporal dimension. An obvious question is
to study the importance of temporally consistent augmenta-
tions when training models on videos. To study the effect
of temporal consistency, Table 1 compares the image-based
augmentation method, RA, against the temporally consistent
URA method on the CATARACTS dataset. The comparison
is carried out at different settings (M = {15, 30}, N = 1,
τ ′ ⊂ τ : |τ ′| = {3, 5, 9}). URA consistently performs better
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Table 2 Effect of magnitudeM. All results are reported on the F1-score
metric

M CA50 - step BY40 - phase BY40 - step

URA TRA URA TRA URA TRA

5 64.23 60.59 85.06 85.02 54.55 53.78

10 63.75 63.40 82.72 84.59 54.39 54.62

15 64.43 63.67 84.83 85.64 56.64 56.38

20 61.61 62.22 84.54 82.70 57.39 56.06

30 66.99 64.56 87.71 86.18 58.70 59.34

Bold values indicate the best performance

than RA in all the settings. Furthermore, the mean of RA,
when averaged across |τ ′| at both settings of M = {15, 30},
is ∼3–7% below the best-performing model compared to
URA (∼1%). This indicates the instability of RA due to
its policy of independent frame-wise augmentation, which
breaks temporal visual consistency. Interestingly, the bestRA
model is obtained by utilizing a smaller set of augmentations
|τ | = 3,which indicates that themodel can learn significantly
betterwhen there is less variance in image appearance tempo-
rally. All the observations confirm that temporally consistent
augmentations are important when training spatiotemporal
models.

Effect of magnitude (M)

To study the effect of augmentation magnitude, Table 2 com-
pares model performance over various settings of M =
{5, 10, 15, 20, 30} for URA and TRAwhile keeping all other
parameters fixed (|τ ′| = 5, N = 1, T = 5). Both URA and
TRA showhigher performance at highermagnitudeswith the
best results obtained at M = 30 on both tasks and datasets.
Irrespective of the augmentation method used, higher mag-
nitudes seem to have a direct effect on the performance of the
model for different tasks and datasets. However, we notice
that TRA performance is below URA at M = 30. This is not
a valid comparison as the other parameters |τ ′|, N , and T
are fixed and sub-optimal. Hence, we perform these experi-
ments to solely study the effect of magnitude on URA and
TRA independently. The full comparison of TRA against
other methods is discussed in Sect. “TRandAugment”.

Do all augmentations help?

To study the importance of using all the augmentations, Table
3 lists different experiments in terms of F1-score on the
validation set, with N = 1 and T = 5, where subsets of
transforms (τ ′ ⊂ τ : |τ ′| = {3, 5, 9}) are randomly sampled
from τ . For the task of step recognition on both datasets, the
best model performances are obtained when all transforms
are utilized. On the other hand, the model performs best at an

Table 3 Influence of the set of augmentations. All results report the
F1-score metric

|τ ′| M TRA

CA50 - step BY40 - phase BY40 - step

3 15 65.92 83.21 56.36

5 15 63.67 85.64 56.38

9 15 66.81 82.99 57.65

3 30 62.93 83.27 59.85

5 30 64.56 86.18 59.34

9 30 68.66 86.10 60.92

Bold values indicate the best performance

Table 4 Impact of the number of temporal segments T with different
augmentations on TRA. All results are reported on the F1-score metric
on the validation set

T M F1

CA50 - step BY40 - phase BY40 - step

3 15 66.11 85.53 56.94

5 15 66.81 84.98 55.69

8 15 67.10 85.49 55.66

3 30 65.21 86.16 59.05

5 30 68.66 86.22 60.47

8 30 66.74 85.92 59.13

Bold values indicate the best performance

intermediate |τ ′| = 5 for recognizing phases for both settings
ofM = {15, 30}. However, at a higher magnitude (M = 30),
the model performs equally well at |τ ′| = 10 compared to
|τ ′| = 5 for phase recognition. In short, TRA benefits by
utilizing all the transforms τ .

Impact of parameter T on TRA

The key component of the proposed TRA method is the
parameter T that captures the variance in the appearance of
the frames across a video. TRA is inspected with different
settings of parameter T = {1, 3, 5, 8} at two different mag-
nitudes M = {15, 30} while fixing N = 1 and |τ ′| = 10.
The results in Table 4 show that at T = 5, M = 30 the model
achieves the best performance on all the different tasks and
across the two datasets. This indicates that augmenting at the
clip level benefits the training of activity recognition models
and the proposed TRA parameterization (M, N , T ) allows
us to easily find optimal parameters.

TRandAugment

Table 5 compares different augmentations methods on the
test set with optimal parameters. As noticed earlier, tem-
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Table 5 Comparison of
different methods on BY40 and
CA50 test sets. * denotes
models trained in a multi-task
setup requiring additional
phase/step labels

Dataset Method |τ ′| M, N, T ACC PR RE F1
Task

Custom [10] – –, –, – 81.79 ± 12.30 77.82 ± 13.61 82.25 ± 14.69 78.21 ± 14.90

CA50 RA [24] 3 30, 1, – 80.45 ± 10.33 76.48 ± 13.00 81.34 ± 13.56 76.87 ± 14.01

Step URA (ours) 10 30, 1, – 83.24 ± 10.64 77.04 ± 14.20 82.33 ± 14.68 78.02 ± 14.98

TRA (ours) 10 30, 1, 5 83.64 ± 10.67 78.38 ± 14.11 84.06 ± 14.18 79.43 ± 15.09

Custom* [10] – –, –, – 90.26 ± 6.44 84.74 ± 7.71 81.75 ± 9.12 81.31 ± 9.07

BY40 URA (ours) 10 30, 3, – 93.55 ± 3.24 83.25 ± 7.80 86.07 ± 7.61 83.51 ± 7.93

Phase TRA (ours) 10 30, 2, 5 93.17 ± 4.27 86.42 ± 8.50 86.70 ± 6.72 85.20 ± 8.40

Custom* [10] – –, –, – 75.46 ± 9.34 55.58 ± 9.88 52.78 ± 9.22 50.35 ± 9.75

BY40 URA (ours) 10 30, 2, – 80.55 ± 6.61 61.32 ± 8.11 62.13 ± 7.74 58.52 ± 8.46

Step TRA (ours) 10 30, 2, 5 80.80 ± 7.90 63.66 ± 9.08 63.94 ± 8.31 60.06 ± 9.22

Bold values indicate the best performance per dataset/task per metric

porally consistent augmentations are beneficial, and hence,
both URA and TRA, which enforce this consistency, out-
perform image-level augmentation method RA by 1–2% in
F1 and ∼3% in accuracy for the task of step recognition
on CATARACTS. Additionally, URA and TRA both show
improvement over the state-of-the-art MTMS-TCN model,
which utilized a ‘Custom’ set of augmentations by 1–5%
across all the metrics for phase recognition on Bypass40.
We can further notice a significant improvement of 5–11%
across all the metrics for recognizing steps on Bypass40.
This improvement could be attributed to the larger set of
transforms |τ | = 10.

TRA, on the other hand, outperforms URA on both the
phase and step recognition tasks and both datasets. TRA
achieves a 1–3% improvement in phase and step recogni-
tion onBypass40 andCATARACTS, respectively.Moreover,
for step recognition on Bypass40, TRA achieves a +2% and
+1.5% improvement in precision and F1-score over URA.
The performance improvement of the proposed TRAmethod
over URA could be attributed to the temporally consistent
augmentations applied at the clip level. TRA enables the
extension of video datasets with videos composed of dif-
ferent segments augmented differently, which when used in
training improves the generalization of deep learning mod-
els. Besides, the parameterization of TRA is independent of
the underlying recognition task or dataset, which enables the
proposed method to be applicable to other surgical proce-
dures and tasks.

Limitations

The (M, N , T ) parameterization of TRandAugment simpli-
fies the process of selecting a good augmentation policy, for
training, that induces both spatial and temporal variations in
the input videos. Yet, it does not completely eliminate the
search for optimal parameters, which adds computational
expense. Further studies are required to better understand

if or when datasets or tasks may require a separate search to
achieve optimal performance. Another drawback of TRan-
dAugment is that it works only in the input space. Few
works in the literature have proposed adding variations in
themodel’s feature space to improve generalizability [36,37].
Unlike input space augmentations, designing feature space
augmentations is extremely challenging because the domain
or the noise characteristics of the feature space is not well-
studied. Nevertheless, this could be an interesting extension
to our proposed method, especially for training the temporal
component of spatiotemporal models.

Conclusion

This paper introduced a new augmentation method called
TRandAugment that simplifies data augmentation pipelines.
Given a video, creates pseudo-videos with different clips
augmented differently. The method is parameterized with
magnitude (M), the number of augments (N), and the number
of temporal augments (T). This parameterization provides a
simple framework to search for optimal configuration and
operates at a level with significantly reduced search space,
in line with current research in data augmentation. The pro-
posed method has been validated on two large surgical video
datasets, considering both the phase and step recognition
tasks, obtaining a boost in the performances thus demonstrat-
ing the impact of TRandAugment. New open questions arise
on how thismethodmay improvemodel robustness [19], fed-
erated learning or semi-/self-supervised learning [20–23,34].
Furthermore, the proposed method could be applicable to
other tasks, such as tool localization and tracking [38], action
triplets [39], and video semantic segmentation [40]. Future
work will study the value of TRandAugment in these differ-
ent settings and tasks.
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