University of Verona

Department of Computer Science
Ph.D. in Computer Science

Automatic extraction of robotic surgery
actions from text and kinematic data

Marco Bombieri

Advisor: Prof. Paolo Fiorini
Co-advisor: Prof. Marco Rospocher

INF/01, XXXV cycle, 2023



Ph.D. Candidate:
Marco Bombieri, Universita di Verona

Advisor:

Prof. Paolo Fiorini, Universita di Verona
Co-advisor:

Prof. Marco Rospocher, Universita di Verona

Thesis reviewers:
Dr. Chiara Ghidini, Fondazione Bruno Kessler
Prof. Myra Spiliopoulou, Otto-von-Guericke-Universitdt Magdeburg

Thesis committee:

Prof. Paolo Fiorini, Universita di Verona

Dr. Chiara Ghidini, Fondazione Bruno Kessler

Prof. Simone Paolo Ponzetto, Universitit Mannheim
Prof. Marco Rospocher, Universita di Verona

University of Verona
Department of Computer Science
Strada le Grazie 15, Verona, Italy

Ph.D. in Computer Science
Cycle XXXV



To those who supported me






Abstract

The latest generation of robotic systems is becoming increasingly autonomous due to
technological advancements and artificial intelligence. The medical field, particularly
surgery, is also interested in these technologies because automation would benefit sur-
geons and patients. While the research community is active in this direction, commer-
cial surgical robots do not currently operate autonomously due to the risks involved in
dealing with human patients: it is still considered safer to rely on human surgeons’ in-
telligence for decision-making issues. This means that robots must possess human-like
intelligence, including various reasoning capabilities and extensive knowledge, to be-
come more autonomous and credible. As demonstrated by current research in the field,
indeed, one of the most critical aspects in developing autonomous systems is the ac-
guisition and management of knowledge. In particular, a surgical robot must base its
actions on solid procedural surgical knowledge to operate autonomously, safely, and
expertly. This thesis investigates different possibilities for automatically extracting and
managing knowledge from text and kinematic data. In the first part, we investigated the
possibility of extracting procedural surgical knowledge from real intervention descrip-
tions available in textbooks and academic papers on the robotic-surgical domains, by
exploiting Transformer-based pre-trained language models. In particular, we released
SURGICBERTA, a RoBERTa-based pre-trained language model for surgical literature un-
derstanding. It has been used to detect procedural sentences in books and extract pro-
cedural elements from them. Then, with some use cases, we explored the possibilities of
translating written instructions into logical rules usable for robotic planning. Since not
all the knowledge required for automatizing a procedure is written in texts, we introduce
the concept of surgical commonsense, showing how it relates to different autonomy levels.
In the second part of the thesis, we analyzed surgical procedures from a lower granular-
ity level, showing how each surgical gesture is associated with a given combination of
kinematic data.

Sommario

Lultima generazione di sistemi robotici sta diventando sempre pit autonoma grazie ai
progressi tecnologici e all'intelligenza artificiale. Anche il settore medico, in particola-
re quello chirurgico, € interessato a queste tecnologie perché I'automazione si ¢ rivelata
vantaggiosa sia per chirurghi che per i pazienti. Sebbene la comunita scientifica sia attiva
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in questa direzione, i robot chirurgici commerciali non operano ancora autonomamente
a causa dei rischi legati al trattamento di pazienti umani. Si ritiene ancora piu sicuro
lasciare ai chirurghi umani le varie scelte e decisioni operative. Per diventare piu auto-
nomi e credibili, i robot devono dunqgue possedere un’'intelligenza simile a quella umana,
ed avere cioé spiccata capacita di ragionamento e di acquisizione di huova conoscenza.
Ricerche recenti dimostrano infatti che uno degli aspetti piu critici nello sviluppo di si-
stemi autonomi ¢ I'acquisizione e la gestione della conoscenza. In particolare, un robot
chirurgico deve basare le sue azioni su una solida conoscenza chirurgica procedurale per
operare in modo autonomo, sicuro ed esperto. Questa tesi esplora diverse possibilita per
estrarre e gestire automaticamente la conoscenza: da dati testuali e da dati cinematici
raccolti durante I'intervento. Nella prima parte di questa tesi, abbiamo studiato la possi-
bilita di estrarre la conoscenza chirurgica procedurale dalle descrizioni di interventi gia
disponibili in libri di testo e articoli accademici nel dominio robotico-chirurgico, sfrut-
tando modelli linguistici pre-addestrati basati sull’architettura neurale Transformer. Ab-
biamo sviluppato in particolare SURGICBERTA, un modello linguistico pre-addestrato
basato su RoBERTa per la comprensione della terminologia e del linguaggio chirurgico.
In particolare, abbiamo usato SURGICBERTA per individuare frasi procedurali nei libri
ed estrarre elementi procedurali da essi. Poi, con alcuni casi d’'uso, abbiamo esplorato le
possibilita di tradurre le informazioni estratte in regole logiche utilizzabili per la pia-
nificazione robotica. Poiché non tutte le conoscenze necessarie per automatizzare una
procedura sono descritte nei testi, abbiamo introdotto il concetto di commonsense chi-
rurgico, mostrando come esso sia correlato a diversi livelli di autonomia. Nella seconda
parte della tesi, abbiamo infine analizzato le procedure chirurgiche a un livello di granu-
larita inferiore, mostrando come ogni gesto chirurgico sia associato a una determinata
combinazione di dati cinematici.
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Part |

Introduction and background

This part presents the objectives and background knowledge required for a complete
understanding of the other parts of this thesis. Chapter 1 presents the importance
of procedural knowledge acquisition and management for developing autonomous
surgical robots. After de ning the concept of procedural knowledge and its granu-
larity levels, two ways for its acquisition are presented: top-down approaches ex-
tract knowledge from textbooks, while bottom-up ones from kinematic and video
data. The advantages and disadvantages of both approaches are discussed, and an
overview of the state-of-the-art, which will be deepened in the next parts, is provided.
Chapter 2 presents all the background technologies used in the next parts of this the-
sis.






1

Introduction

"All we have to decide is what to do with the time that is
given us."

J.R.R Tolkien, The Lord of the Ring

Robotic systems are currently being used in a wide range of practical applications
across multiple elds. Traditionally used in manufactury and assembly lines to per-
form repetitive actions without suffering from fatigue or in jobs that are too hazardous
for humans, robots are now increasingly present in our daily life and in several do-
mains. Among others, the use of robots has revolutionized the medical eld, and in
particular, the surgical domain as well: rstly adopted in orthopedics for knee [1, 2] and
spine surgery [3], in the last few decades, robots have been increasingly adopted in la-
paroscopic surgery, in particular urology, gynecology, and general surgery [4]. Further-
more, thanks to the advancements in technology and arti cial intelligence, the latest
generation of robotic systems will become increasingly autonomous, thanks to higher
decision-making skills. In accordance to these trends, also the robotic surgery commu-
nity is dealing with automation aspects [5, 6].

Unlikely other elds where autonomous robots may be seen as a threat to work-
ers, the majority of the surgical community recognizes the bene t of bringing auton-
omy in robotic surgery [7] for several reasons. First, surgeons often are overworked to
high levels of fatigue that can cause hand tremors and attention reduction. In these sit-
uations, they may be less capable of performing precision tasks and, therefore, more
prone to make errors. Autonomous robots are unaffected by these issues. Furthermore,
especially in the hospitals of the more isolated cities, it is not always possible to recruit
expert surgeons; having an autonomous robot (maybe remotely controlled by an ex-
pert) capable of operating with quality comparable to that of an experienced surgeon
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can help to reduce the discrepancies and inequalities between operations performed in
different geographical places. Moreover, an autonomous surgical robot may react faster
than the surgeon to unexpected events, and autonomy may compensate for the time
delay in remote telesurgery. This, combined with the greater dexterity of robotic sys-
tems facilitated by their wristed instruments, will further improve minimally-invasive
procedures [8, 9, 10]. Finally, another compelling bene t is that surgeons will no longer
need to be in the same room of the patient thus avoiding stray radiation from X-ray
uoroscopy devices [11, 12].

Because of the growing interest and bene ts of bringing autonomy to robotic surgery,
the scienti c literature is discussing how the levels of autonomy can be de ned. Follow-
ing the taxonomy rst presented for self-driving cars [13], an autonomous robotic sur-
gical system can be classi ed into ve levels of autonomy [14]: at autonomy level O, the
human performs all tasks and takes all decisions; at autonomy level 1 the robot pro-
vides dexterity and cognitive assistance during the task, sharing controls and actions
with the human; at level 2, the robot is autonomous during speci ¢ tasks, i.e., trading
control of the system with human at discrete times; at level 3 the robot generates task
strategies, but the human has the nal decisions over the proposed tasks; at level 4 the
robot can make decisions on the complete surgical strategy, but under the supervision
of a quali ed doctor; nally, level 5 introduces the full autonomy, i.e., a robotic surgeon
that can perform an entire procedure without supervision.

Nevertheless, at the moment, commercial robots only provide an autonomy level
of 0 and do not perform any action in full autonomy, because of technological and le-
gal reasons. This Ph.D. research is developed within the Autonomous Robotic Surgery
(ARS) project?, which aims at developing methodologies to enable the execution of sur-
gical intervention by a robotic system in complete autonomy. ARS' research proved that
to reach some level of autonomy, a robotic surgical system has to face different techno-
logical challenges. First, the anatomical environment in surgical procedures is com-
posed of soft tissues that can deform due to the use of surgical instruments or physio-
logical effects such as breathing or heartbeats. Additionally, tissue behavior is complex
to model and can vary greatly among different patients, making it dif cult to measure.
Furthermore, the de nition of a patient-speci ¢ intervention plan is challenging be-
cause it requires integrating notional knowledge (e.g. that contained in textbooks or
pre-operative images) with the surgeons' way of reasoning and experience. The latter

1 The ARS project has received funding from the European Research Council (ERC) under the European Union's
Horizon 2020 research and innovation program under grant agreement No. 742671.
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can only be partially extracted from surgery video and kinematic data recorded during
real interventions. Moreover, to address the uncertainties of the anatomical environ-
ment that can arise during surgery, it is important for a surgical robot to be able to
adapt the patient-speci c intervention plan during execution based on the current sit-
uation. This is because the anatomical environment may behave differently than what
is expected from pre-operative knowledge. To accomplish this, incorporating strategies
for real-time situation awareness, reasoning, and control into the robot is needed. Fi-
nally, since the operational environment is the human body, errors can be deadly. Con-
sequently, to reach all the above requirements, such a robot has to be endowed with
human-like intelligence that combines different reasoning capabilities with strong no-
tional knowledge. The state of the art is indeed demonstrating that the real core of
the research on autonomous systems is in knowledge and information acquisition and
management [15]: to operate autonomously, safely, and expertly, a surgical robot must
base its actions on solid surgical knowledge. Nowadays, in surgical robotics, the knowl-
edge is manually encoded by domain experts in ontologies [16] or a pre-de ned set of
logical instructions [17]. The manual encoding of the prior domain knowledge in a logic
formulation understandable by machines is a limitation and bottleneck in developing
autonomous systems because it requires experts in surgery and computer science, who
may not have the right competencies and are not used to work together. Furthermore,
the manually encoded knowledge is static and it may not cover all complications and
cases during surgery; thus, a way to automatically acquire knowledge from external re-
sources is preferable. Since one of the main challenges an autonomous robotic surgi-
cal system has to face is the automatic acquisition and management of surgical knowl-
edge this thesis investigates different possibilities for automatically extracting surgical
knowledge from existing resources — primarily free-text books, academic papers, and
written tutorials, but also from kinematic data—to lay the foundations for tomorrow's
knowledge-based surgical robot.

1.1 Surgical knowledge and its learning

There are two different types of surgical knowledge, both required for the autonomous
execution of surgical intervention [18]: procedural and non-procedural knowledge. The
procedural knowledge encodes instructions needed to perform the speci ¢ surgical in-
tervention, being interventions on the body or the positioning of the robot. In general,
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Table 1.1: Examples of procedural and non-procedural sentences in books. In the table,
"P" means Procedural, while "!P" is for Non-procedural . These examples are taken from
the dataset presented in 4.

Type | Sentence Explanation

P | The peritoneum is then incised. Incision of the peritoneum.

P | Using a combination of blunt dissection and electrocautery, the poste- | Elevation of the retroperitoneum.
rior aspect of the pylorus and the proximal duodenum are gently ele-
vated off of the retroperitoneum.

P | Allis clamps are used to tension the ileal segment against the catheter | Tension of the ileal segment.
along its antimesenteric edge.
IP | As a distinguishing feature, Gerota's fascia appears pale yellow, com- | Descriptions of an anatomical fea-
pared with the brighter yellow color of the mesentery. ture.

IP | Numerous descriptions of nerve sparing during RARP have been re- | Additional in-depth information.
ported in the literature.
IP | Longer operative times were seen with robotic procedures. Information not directly useful to
perform the procedure.

a procedure is an ordered sequence of actions linked together temporally and causally.
An action may be activated when a certain pre-condition is satis ed and reaches its end
state when a certain post-condition occurs. Usually, an action can be executed if ac-
companied by a set of semantic information, such as the "agent", i.e., the one who acts;
the "patient" , i.e., the one who undergoes the action; the "instrument” , which refers to
the tool used for acting and the "purpose" describing the reason why the action is per-
formed. In addition, other semantic information comprises temporal and spatial pa-
rameters. The non-procedural knowledge encodes instead anatomical knowledge and
other ontological information. It does not include any indication of a speci ¢ surgeon's
action. However, it describes anatomical aspects, exceptional events that can occur
during surgery, and general indications that are not speci c to a single intervention
step. To clarify, Table 1.1 shows examples of procedural and non-procedural sentences
taken from the dataset presented in Chapter 4 with the corresponding explanation of
their content.

Fig. 1.1: Granularity axis. Low-level information is relative to video, image, and kine-
matic data.

This thesis only deals with procedural knowledge acquisition and management.
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Procedural knowledge can be expressed according to different granularity levels pre-
sented in [19] and summarized in Figure 1.1. Each level represents the details provided
during the description. In this classi cation, a procedure (e.g. partial nephrectomy) is
composed of a sequence of main events, called phases, occurring in the procedure (e.g.
tumor excision or nal suture). Each phase is then composed of a set of steps, i.e. se-
guences of activities to achieve a surgical objective (e.g. the main steps of the nal su-
ture phase are the removal of the trocar, the extraction of the specimen, and the clo-
sure of the skin). Each activity is then composed of a sequence of motions, i.e. surgical
movements involving only one hand trajectory (e.g. pulling the needle to close the su-
ture using the right arm). Finally, low-level information is the raw data, i.e. kinematic
and video captured during the surgery at a given frequency.

Depending on the granularity level at which information is to be extracted, two dif-
ferent approaches can be followed:

» Top-down approach : construct the execution ow of a surgical procedure by exploit-
ing the notional knowledge available in ontologies or books. Starting from these re-
sources, the goal is to develop a plan that a robot can execute.

» Bottom-up approach : starting from the data captured during the execution of a
surgery (kinematics and video), develop methods to infer the surgical process. In
this research domain, an important task is to de ne features useful for surgical ges-
ture recognition: machine-learning algorithms use them to segment the interven-
tion into phases and steps, deriving the surgical procedure.

The development of an autonomous robotic surgical system will require the integration
of both the notional knowledge extracted from textbooks for understanding high-level
instructions and the low-granularity actions, which can only be learned from data of
actual interventions.

This thesis mainly deals with top-down approaches, particularly with the still un-
explored possibility of extracting procedural surgical knowledge directly from written
resources, such as textbooks, academic papers, and surgical guidelines. The bottom-up
approaches are instead widely discussed in the literature, as shown later in this thesis.
Anyway, the nal part of the thesis is dedicated to it, where it is shown that suitable
features from kinematic data captured during the execution of a task can help gesture
understanding by machine learning techniques. In future work, we will explore the pos-
sibility of combining models extracted with top-down approaches with those obtained
with bottom-up ones in a unique knowledge-based model because this is what a hu-
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man surgeon does: the course of study for becoming a surgeon consists of the rst part
of theoretical study, in which the surgeon acquires the fundamental theoretical notions
of the profession, and a nal part of practice, in which the student, through a cycle of
internships, integrates the theoretical knowledge learned with experience and observa-
tion of seniors.

1.2 Procedural knowledge extraction from text

Theoretical study occupies a predominant and substantial part of the study cycle of
an apprentice surgeon. This is the reason why the literature is teeming with manu-
als, online resources, and academic papers of the highest quality used by universities
around the world. Each book is written by expert surgeons and contains sections de-
scribing the pre- and post-procedure diagnoses, the procedure's name, a detailed de-
scription of the procedure, and other information. These texts are meant and written
for the understanding of human readers and present the information in unstructured
natural language. Having algorithms capable of understanding the surgical procedures
written in natural language and capable of organizing the procedure contentin a more
structured and processable form would pave the way for developing intelligent sur-
gical and clinical systems. If automatically processed by Natural Language Processing
(NLP) techniques, this high-quality procedural information becomes valuable content
that could be exploited in many clinical applications. For example, robots could auto-
matically build or extend a proper surgical knowledge base, reasoning with it in realis-
tic intervention scenarios. Humans could bene t from more structured knowledge in
guestion-answering sessions, for example, in an early learning phase by medical stu-
dents. However, so far, the extraction of procedural surgical knowledge directly from
written resources such as textbooks, academic papers, or case reports has received little
attention from the scienti c community, as current trends mainly focus on the deriva-
tion of knowledge from kinematic and video data captured by endoscopic sensors and
cameras during interventions [17, 20], or on the manual modeling of ontologies, e.g.
[21].

Although not in the surgical domain nor with the purpose of automatizing surgi-
cal interventions, some works, e.g. [22, 23, 24, 25, 26, 27, 28] have explored the task of
procedural knowledge extraction from text. These papers, which will be detailed in the
other chapters of this thesis, propose approaches for extracting procedural knowledge
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Fig. 1.2: Summary of the Part 1 of this thesis (Chapters 3-7). Part 2 is instead composed
by the single Chapter 9.
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in several domains, such as technical documentation, cooking recipes, maintenance
manuals, repair guidelines, and instructions for the synthesis of nanomaterials. While
all these works address the extraction of procedural knowledge from written text and
are thus similar to our foreseen application, they deal with typologies of textual con-
tent substantially different from the description of a surgical procedure. They are dif-
ferent both from the terminological point of view as well as the structural one since
these texts are structurally organized, frequently using numbered/bulleted lists. No es-
tablished standard way to describe a surgical procedure instead exists. In addition, sur-
gical interventions are mainly presented in a prose-like style. Furthermore, recently, re-
searchers are starting to use natural language to generate or control a set of actionable
instructions; some examples are [29, 30, 31]. The proposed tasks use, however, strong
simpli cation of natural language adopted, and the main purpose is that of translating
concepts in an actionable form rather than the understanding of complex procedural
descriptions. Furthermore, they are not thought for the surgical domain.

While understanding very specialized literature written in free-text, i.e., without re-
curring to a controlled language [32], would be challenging for the traditional NLP
methods, the advent of the transformer neural network architecture with the atten-
tion mechanism [33], and the pre-trained language models [34] have made this task
feasible. Pre-trained language models have demonstrated remarkable performance in
various downstream tasks, including machine translation, sentiment analysis, and text
classi cation, outperforming traditional machine learning algorithms and rule-based
methods thanks to their ability to learn complex linguistic patterns and contextual re-
lationships from vast amounts of unlabeled text. However, these models are trained on
general English data and may not perform as well in highly specialized domains such
as scienti c literature, law, or medicine. In such cases, domain adaptation techniques,
such as ne-tuning or transfer learning, can be used to retrain the pre-trained models
on domain-speci ¢ data, allowing them to capture the unique language patterns and
terminologies of the specialized domain. Although domain adaptation techniques are
available, they require a lot of time-consuming activities to nd relevant information
in surgery (i.e., de ning a proper surgical framebank 2) and to annotate the domain-
speci ¢ texts that will be used as training material. Both the de nition of a framebank
and the annotation of surgical text are complex tasks as they demand the expertise of
both surgical and linguistic professionals.

2The concept of framebank is de ned in Section 2.6
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This thesis llIs these literature gaps by proposing different scienti ¢ contributions
summarized in Figure 1.2. First, deep learning methods have been exploited to extract
from books sentences containing procedural knowledge discarding those containing
non-procedural ones. Then, to develop a model capable of understanding surgical lan-
guage, this thesis de nes a proper surgical framebank, adapting an existing general-
English one to the robotic-surgery domain. The obtained surgical framebank is then
used to annotate a corpus of as-is surgical sentences taken from surgical books and
academic papers. The annotation step has been carried out by exploiting the Semantic
Role Labeling (SRL) style using a semi-automatic technique based on post-editing and
manual corrections. The annotated corpus obtained is then used to train, validate and
test a deep learning, Transformer-based SRL model proving signi cantimprovement in
the surgical natural language understanding task compared with its vanilla model, i.e.
the general English model not specialized for the surgical domain. In addition to the
aforementioned supervised training, unsupervised learning was utilized on a substan-
tial amount of raw text, resulting in the development of a new SRL model that exhibits
enhanced comprehension of surgical literature. The language model obtained from the
non-supervised learning step was then used to solve other NLP tasks, such as surgical
terminology learning and ontological information inference. Finally, a pipeline based
on SRL and some syntactic rules has been adopted to demonstrate how, within simple
language constraints, it is possible to extract a logical template from sentences written
in natural text. This logical template can then be easily translated to a logic planning
formalism, such as Answer Set Programming (ASP)[35] without the need for signi cant
manual revisions. As a result, the task of logicians is simpli ed because they no longer
need to be surgical experts.

1.3 Procedural knowledge extraction from kinematics

In the bottom-up direction, the goal is to use low-level input information (mostly kine-
matics, video data or both together) acquired by sensors to recognize higher-level se-
mantic knowledge, such as a list of surgical motions executed by the surgeon [19]. These
motions implicitly contain expert human surgical knowledge because kinematic and
video data is captured during the execution of interventions performed by experts and,
consequently, can be used as the gold standard for teaching low-level robot movements.
They allow an understanding of a surgical procedure with a lower level of granularity
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than that described in textbooks, such as motions or actions. To extract this low-level
knowledge, multi-modal deep-learning techniques have been exploited and applied to
kinematic, video, or other data, such as system events [20, 36, 37, 38]. The most used
methods are based on convolutional neural networks, LSTM, and other classic machine
learning algorithms such as support vector machine and random forest, whose theory

is discussed in 2.5.2. The most common dataset used to train and validate algorithms
are JIGSAWS [39] or others ad-hoc developed [20, 36, 38, 40]. A crucial aspect of these
algorithms is to nd accurate features capable of describing each surgical motion, step,

or phase [41, 42, 43]: this aspect will be analyzed in Chapter 9.

The bottom-up approaches have to face some challenges and practical issues. First,
the literature is lacking freely available and realistic datasets, which are dif cult to ob-
tain due to patient privacy or commercial issues. Then, itis importantto nd signi cant
features to use as input to the learning algorithms; in order for the features to be cal-
culable, the datasets have to contain the relative information, and therefore the right
choice of sensors must be made at the recording stage; however, some of this infor-
mation (e.g. force data) is not always immediate to estimate from the available robotic
tools or may be noisy. Finally, different approaches can lead to different models, and it
is still unclear how to evaluate the differences.

This thesis proposes literature's improvements in features engineering, showing that
adopting features based on joint robot orientations improves the understanding of the
motions. Since no datasets containing information about robot joints were available in
the literature, one ad-hoc was released.

1.4 Outline of the thesis

Chapter 2 presents all the background technologies used in the next parts of this thesis.
Then, the thesis is splitinto two parts. The rst one (Chapters 3-8) deals with procedural
knowledge detection and extraction from robotic-surgery textbooks. The second one
(Chapter 9) deals instead with procedural knowledge extraction from kinematic data.
Finally, Chapter 10 summarizes the contributions of this thesis and proposes several
possible future research directions. The content of each chapter is summarized in the
introduction paragraph at the beginning of each part.



1.6 Publications 13

1.5 Contributions

The main contributions of this thesis are:

[C.01] Therelease of SPKS annotated textual resource for procedural surgical sentences
detection (Chapter 4);

[C.02] The development of machine learning methods for procedural surgical sen-
tences detection (Chapter 4);

[C.03] The development of S URGICBERTA, a pre-trained language model speci ¢ for
surgical language (Chapter 3);

[C.04] Therelease of RSPF, aframebank speci c for the robotic-surgery procedural lan-
guage (Chapter 5);

[C.05] The annotation of a dataset of as-is textbooks sentences with the RSPF labels
(Chapter 5);

[C.06] The development of deep learning methods to extract procedural surgical knowl-
edge from the text (Chapter 6);

[C.07] The proposal of a pipeline for mapping natural language surgical procedures to
a logic formalism and simulation (Chapter 7);

[C.08] The proposal of a taxonomy of different levels of surgical commonsense knowl-
edge and links with the levels of autonomy (Chapter 8);

[C.09] Development of an annotated dataset for surgical gestures recognition contain-
ing joints-space orientation information (Chapter 9);

[C.10] Proposal of joints-space metrics for surgical gestures recognition (Chapter 9).

1.6 Publications

The main publications resulting from the thesis, with reference to the presented contri-
butions, are:

» Marco Bombieri , Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. The
robotic-surgery propositional bank . Language Resource and Evaluation. June 2023.
[C.05] [44]

» Eleonora Tagliabue, Marco Bombieri , Paolo Fiorini and Diego Dall'Alba: Robotic
surgical systems need commonsense to achieve higher levels of autonomy Robotics
and Automation Magazine (IEEE). May 2023. [C.08] [45]
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Marco Bombieri , Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. Ma-
chine understanding surgical actions from intervention procedure textbooks . Com-
puters in Biology and Medicine. January 2023. [C.06] [46]

Daniele Meli, Marco Bombieri , Diego Dall'Alba and Paolo Fiorini. Inductive learn-
ing of surgical task knowledge from intra-operative expert feedback . 9th Italian Work-
shop on Arti cial Intelligence and Robotics (AIRO). December 2022. [C.07] [47]
Marco Bombieri , Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. The
robotic surgery procedural framebank . Proceedings of the Thirteenth Language Re-
sources and Evaluation Conference (LREC). June 2022. [C.04] [48]

Marco Bombieri , Marco Rospocher, Diego Dall'Alba and Paolo Fiorini. Automatic
detection of procedural knowledge in robotic-assisted surgical texts . International
Journal of Computer Assisted Radiology and Surgery. April 2021. [C.01,C.02] [18]
Marco Bombieri , Diego Dall'Alba, Sanat Ramesh, Giovanni Menegozzo and Paolo
Fiorini. Joint-space metrics for automatic robotic surgical gestures classi cation .2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Octo-
ber 2020.[C.09,C.10] [40]

Marco Bombieri , Marco Rospocher, Simone Paolo Ponzetto, and Paolo Fiorini. Sur-
gicBERTa: A pre-trained language model for procedural surgical language . Under re-
vision in a journal. Submitted in March 2023. [C.03] [49]

Marco Bombieri , Daniele Meli, Diego Dall'Alba, Marco Rospocher and Paolo Fior-
ini. Mapping natural language procedures descriptions to linear temporal logic tem-
plates - An application in the robotic-surgery domain . Under revision in a journal.
Submitted in November 2022. [C.07] [50]

Publication contributed during the Ph.D. but not strictly related to the main topic of
the thesis:

» Chia-Chien Hung, Tommaso Green, Robert Litschko, Tornike Tsereteli, Sotaro
Takeshita, Marco Bombieri , Goran Glavas and Simone Paolo Ponzetto: Data Aug-
mentation with Specialized Models for Cross-lingual Open-retrieval Question An-
swering System Proceedings of the Workshop on Multilingual Information Access
(MIA). July 2022. [51]
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1.7 Released resources and models

» SPKS — annotated dataset for detecting procedural robotic-surgery sentences:
https://gitlab.com/altairLab/spks-dataset

* RSPB - annotated dataset for procedural surgical SRL:
https://gitlab.com/altairLab/robotic-surgery-propositional-bank

» SURGICBERTA- the language model for surgical language understanding:
https://gitlab.com/altairLab/surgicberta

* SURGICBERTA sgL.— SURGICBERTA ne-tuned for SRL:
https://gitlab.com/altairLab/surgical_srl

» Dataset for surgical gestures recognition:
https://gitlab.com/altairLab/yeast-dataset






2

Background

"If I have seen further, it is by standing on the shoulders of
giants."

Isaac Newton

This thesis investigates the application of machine and deep learning techniques to
text or kinematic data for surgical procedural knowledge extraction. This chapter aims
at giving the thesis background by introducing all the technologies used in the research.
In the rst part, we brie y introduce the concept of machine and deep learning, focus-
ing on the two main paradigms exploited in this thesis, i.e., supervised and unsuper-
vised learning. The rst requires the presence of annotated data to train the models,
while the second requires the availability of a great amount of unlabeled data. Since no
datasets were already available for the procedural robotic-surgery domain, we devel-
oped ad-hoc datasets by using semi-automatic techniques: therefore, this chapter also
describes the techniques for data annotation and the quality metrics used to evaluate
the results. Machine and deep learning techniques described in this chapter can, in our
case, be applied both to textual and kinematic data. Then, the main part of the thesis
deals with NLP techniques applied to texts of the surgical domain: the NLP state-of-the-
art methods are nowadays mostly based on pre-trained large language models, and also
the contributions of this thesis follow this trend. This chapter then introduces the lan-
guage modeling technigues by comparing the recent pre-trained Transformer-based
language models with the most traditional ones. This part will be propaedeutic for the
chapter aimed at de ning S URGICBERTA, the Transformer-based pre-trained language
model speci c for the procedural surgical language we developed. It is also needed for
the understanding of the other chapters aimed at using S URGICBERTA and the other
state-of-the-art models for procedural sentence detection and procedural knowledge
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extraction. Then, since procedural sentence detection is tackled as a text classi cation
task, this chapter de nes this task by presenting some background knowledge used in
the corresponding chapter. Finally, since the procedural knowledge extraction method
is mostly based on Semantic Role Labeling (SRL), this chapter de nes this task, the re-
lated language resources, and the methodological solutions.

2.1 An overview of machine learning

Machine learning is a sub eld of Arti cial Intelligence (Al) that focuses on developing
algorithms and models that can automatically improve their performance on a spe-
ci ¢ task through experience. The main goal of machine learning is to enable com-
puters to learn patterns and make predictions based on data without being explicitly
programmed to do it [52]. As a sub eld of machine learning, deep learning is based on
arti cial neural networks [53]. Deep learning algorithms use multiple layers of arti cial
neurons to process and transform information, allowing them to automatically extract
high-level features from raw data and make predictions. Deep learning algorithms are
particularly well-suited for tasks that involve large amounts of complex data, such as
medical images or free text.

Applications in which the training data comprises examples of the input vectors and
their corresponding target vectors are known as supervised learning problems. This is
the most commonly used type of machine learning, where the algorithm is trained on
a labeled dataset, and the goal is to learn a mapping from inputs to outputs based on
this data. A typical example is that of sentiment analysis, where free-text reviews of a
product are manually annotated with the  positive, neutral , and negative labels. These
labels correspond to the target vector and are used as training material for the model.
After training, the obtained model can be used to recognize the customer's sentiment
in reviews never seen before (i.e., on the test material).

Onthe other hand, unsupervised learning is used when the dataset is unlabeled, and
the goal is to nd patterns or relationships within the data. In more detail, the training
data consists of a set of input vectors without any corresponding target values. The goal
of such unsupervised learning problems may be to discover groups of similar exam-
ples within the data, which is called clustering, or to determine the distribution of data
within the input space, known as density estimation, or to project the data from a high-
dimensional space down to two or three dimensions for visualization. In the context of
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NLP, the techniques used to develop word embeddings (described later in this chap-
ter) are examples of unsupervised learning. In these applications, the goal is to learn
numerical representations of words by training a model on a large corpus of unlabeled
text data by trying to predict the context of a word based on the surrounding words in a
sentence; no manual annotated text is needed.

Alongside supervised and unsupervised learning, reinforcementlearning is the third
basic machine learning paradigm. Reinforcement learning is not used in this thesis but
is mentioned just for completeness. This paradigm is concerned with how intelligent
agents ought to take actions in an environment to maximize a "reward" through trial
and error: no labeled data is required. A classic example is that of Tesauro et al. [54],
where a neural network was used to learn to play backgammon to a high standard.
In such an example, the network must learn to take a board position as input, along
with the result of a dice throw, and produce a strong move as output. It is necessary
to properly attribute the reward to all the moves that contributed to achieving victory,
regardless of whether some of them were good and others were not as good.

The next subsections will present the main supervised and unsupervised learning
issues of interest for this thesis.

2.2 Manual data annotation for supervised learning

Manual annotation is the labeling of data by human effort, then used for training su-
pervised machine learning models. Gathering and annotating data are critical steps in
developing supervised machine learning models. A list of best practices must be fol-
lowed during these steps to obtain from training a robust and representative model that
will provide high performance and generalization capabilities during testing to unseen
data. These best practices are described below and can be applied to all types of data,
such as video [55], or text [56].

2.2.1 Quality of the source data.

Collecting relevant and high-quality data is needed to ensure the highest performance
of the supervised learning model. The data should be relevant to the problem to be
solved and should accurately represent the real-world scenario. For some applications,
this includes diversity in terms of demographic and cultural factors, as well as in terms
of the distribution of the target variable. In particular, the data must be accurately
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chosen from realistic sources, avoiding excessive simpli cations that could make the
trained model then ineffective in the real world. In the sentiment analysis scenario, for
example, the data should be taken from realistic reviews and not generated in a con-
trived way.

Furthermore, data gathering should be done following ethical considerations, in-
cluding, in some domains, data privacy and security and ensuring that the data was
collected with the informed consent of the individuals involved: these considerations
are particularly important when dealing with sensitive data, such as personal informa-
tion or medical records. In other cases, the data should be subjected to copyright and
then not freely usable and shareable, thus requiring agreements with the data owner. Fi-
nally, to avoid biased models that perform poorly on underrepresented classes, it would
be preferable if the data were balanced, meaning that it equally represents all the differ-
ent classes of the target variable. For example, if the model is trained on the sentiment
analysis classi cation task, the data should include roughly equal numbers of positive,
neutral, and negative examples. However, in some domains or applications is not al-
ways possible to have balanced data due to the scarcity of available resources: in this
case, balancing techniques can be used [57].

2.2.2 Size of the source data.

Understanding how much data is needed to train a supervised learning model is an-
other paramount aspect. Generally, more high-quality annotated data can help the
model learn more complex patterns and generalize better to unseen data, but not al-
ways enough data is available, and usually, the annotation process is costly and, in some
cases, such as in the medical domain, requires high-specialized personnel dif cult to
nd. Furthermore, especially for domains, types of data, or tasks still unexplored, it is
impossible to know in advance the amount of data required. A possible way is that of
training the model on an increasing amount of data and observing the performance
trend on the same test dataset. If the performance increases by adding more training
material, it makes sense to annotate other data. Nonetheless, often a trade-off between
costs and bene ts has to be found.

2.2.3 Quality of the annotations.

When annotating data, it is important to ensure that the annotations are accurate, con-
sistent, and of high quality. The annotators should be knowledgeable about the prob-
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lem and trained to ensure consistent and accurate annotations. The annotations should
also be checked for quality and consistency before being used for training.

The choice of annotators.

Having annotators who are knowledgeable about the domain and task is crucial for
ensuring high-quality annotations. In particular, annotators who have a deep under-
standing of the domain are more likely to make accurate annotations. While general
tasks such as sentiment analysis applied to commonly used product reviews by cus-
tomers who have bought and tried them do not require speci ¢ background knowledge
and can be ef ciently and effectively carried out by crowdsourcing, other domains (e.g.
medicine, engineering, or linguistics) and tasks (e.g. labeling of tumors in MRI images
[58], annotation of data for natural disasters detection [59] or semantic role labeling
[56]) require expert knowledge both for understanding the domain and the application
task. In these cases, it is important to recruit a team of domain expert annotators.

Furthermore, having more annotators is generally considered better because it im-
proves accuracy by mitigating the potential for bias or errors that a single annotator
may introduce. This makes possible the quanti cation of the intra-annotator agree-
ment, i.e., the agreement between the annotations made by a single annotator, as com-
pared to the annotations made by other annotators for the same instances. Anyway, in
some NLP applications, such as those related to abusive and offensive language, the
utility of resorting to a single agreement between the annotators is debated: the same
data can be labeled in one way by one annotator and oppositely by another annotator,
depending on their opinions and cultural and demographic background. In some cases,
both opinions may be considered correct. Consequently, both annotations should be
considered true in the gold standard to avoid destroying any personal opinion, nuance,
and rich linguistic knowledge by the agreement and harmonization processes: this con-
cept is known as data perspectivism [60].

Annotation guidelines.

Once a team of annotators is recruited, it is important to de ne the annotation guide-
lines. Annotation guidelines are instructions or rules that de ne how data instances
should be annotated for a speci c task. The purpose is to reduce possible errors related
to misinterpretation of the task. In particular, annotation guidelines should:

* clearly de ne the task, including the objectives and the scope of the annotation;
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« provide clear and detailed instructions on how to annotate each data instance, in-
cluding the de nition of the labels and the labeling process;

* provide examples of annotated data instances for each label, helping the annotators
to understand the annotation process;

« provide the criteria for quality control, such as inter-annotator agreement, and the
procedures for ensuring the quality of the annotations;

* specify how annotators will receive feedback on their annotations and how they can
ask for any doubts that may emerge during the annotation phase.

Annotation tools.

Using an annotation tool can be useful in data annotation for improving the quality
of the annotations. The set of labels usable for the annotations can be encoded in the
tool, thus helping to reduce noise in the annotations and improving the ef ciency of
the annotation process. Furthermore, annotation tools often provide built-in quality
control features, such as the possibility to calculate intra-annotator agreement metrics
described in the next paragraph. Commonly used tools for textual data annotation are,
for example, Inception [61], and BRAT [62], while for video data are CVAT * and Vott?2.

Evaluating manual annotations.

To measure the quality of manual annotations and the agreement between annotators,
the Inter-Annotator Agreement (IAA) has to be calculated. IAA provides an idea about
how clear the annotation guidelines are, how uniformly the annotators interpret them,
and how reproducible the annotation task is. It is thus a crucial step for both the vali-
dation and reproducibility of classi cation results. The most used metric for IAA when
two annotators are involved is Cohen's Kappa [63], then generalized by Fleiss' kappa in
a multi-annotators scenario [64].
Cohen’s kappa (Cy) is a measure of the degree of agreement between two annotators

beyond chance, considering the agreement that would be expected by chance alone. It

is de ned as follows:
Poi Pc

1i pc

Ck £ (2.1)

1 Available at:
https://lwww.intel.com/content/www/us/en/developer/articles/technical/
computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html

2 pvailable at: https://github.com/microsoft/\VoTT
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In the formula, p, is the proportion of units in which the annotators agreed, calcu-
lated as the number of agreed annotations divided by the total number of annotations.

It represents the actual agreement rate between the annotators and re ects the extent
to which they are consistent in their annotations;  pc is instead the proportion of units
for which agreement is expected by chance. It is calculated by multiplying the marginal
frequencies of each annotator, i.e., the proportions of annotations made by each anno-
tator, and taking the sum over all categories.

The poj pc represents the proportion of the cases in which beyond-chance agree-
ment occurred and is the numerator of the coef cient. The coef cient Cy is simply the
proportion of chance-expected disagreements which do not occur, or it is the propor-
tion of agreement after the chance agreement is removed from consideration. The  Cy
upper limitis A1.00, and its lower limit falls between zero and j 1.00, depending on the
distribution of judgments by the two annotators.

Fleiss' Kappa is a measure of IAA in data annotation tasks where multiple annota-
tors label the same instances. Unlike Cohen's Kappa, which is calculated between two
annotators, Fleiss' Kappa is used to measure I1AA between more than two annotators.
The formula for Fleiss' Kappa is as follows:

Poi Pc

F £
1i pc

(2.2)
where p,, is the average agreement rate between the annotators, calculated as the
sum of the agreement rates for each instance, divided by the total number of instances,
and p. is the expected agreement rate between the annotators, calculated as the sum of
the products of the marginal frequencies of each annotator for each category, divided
by the total number of annotations.
Both the Cy and Fy values (kappa) can be interpreted as follows [65]:

» kappa C 0: Less than change agreement

0.01 C kappa C 0.20: Slight agreement

0.21 C kappa C 0.40 : Fair agreement

0.41 C kappa C 0.60 : Moderate agreement
0.61 C kappa C 0.80 : Substantial agreement
0.81 C kappa C 0.99 : Almost perfect agreement
kappa A1.00 : Perfect agreement
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While these metrics are widely adopted in state-of-the-art studies, their limits are
also debated. The interested reader can nd more information, for example, in [66].

2.3 Converting text to a numerical representation

For NLP machine learning approaches, text must be converted into a numerical repre-
sentation. Different approaches have been proposed for this purpose and are summa-
rized in the next sections.

2.3.1 Sparse vectors representation: the binary model and TF-IDF

The Bag Of Words (BoW) representation creates a vocabulary of all the unique words
in the corpus and then represents each document as a vector of the frequency of each
word in the vocabulary. In this approach, the histogram of the words within the text is
checked, and each word count is considered a feature. Formally, given a collection of
jDj documents D A{d;,d>,...,djp;}, each document dj is represented as a vector X; ina
vocabulary V of size jVj, where jVj is the number of unique words. The vocabulary can
be obtained by taking the union of all words in the documents, and a word frequency
matrix X is constructed, where X;; is the frequency of word i indocument j. Formally,
the BoW representation of the j i th document can be written as:

Xj AE[X1j,X2j - Xjvijl (2.3)

There are two main variants of the Bow model: the binary model and the TF-IDF.
The rst one represents each document as a binary vector, where each element of the
vector indicates whether a word from the vocabulary is present or not in the document.
The binary BoW representation is created by setting the value of each element in the
vector to 1 if the corresponding word is present in the document and 0 otherwise. Con-
sequently, in 2.3, x;; A1l ifword i is presentin document j, O otherwise.

The Term Frequency-Inverse Document Frequency (TF-IDF) is instead a weighting
scheme that is often used in information retrieval and text mining to re ect the im-
portance of a word in a document concerning an entire corpus of documents. TF-IDF
extends the binary model by assigning a weight to each word in a document based on
its term frequency (TF) and inverse document frequency (IDF). The term frequency
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measures the number of times a word occurs in a document, while the inverse docu-
ment frequency down-weights the importance of commonly occurring words and up-
weights the importance of rare words. The TF ofaword i inthe document j is de ned
as:

fi ’j

TR A——

nj
Where f; j is the number of occurrences of the word i in the document j and nj is the
number of words in document  j.

The IDF of aword i is instead de ned as:
K

D .
| g .

nj
where jDj is the total number of documents in the corpus and  n; is the number of doc-
uments containing the word i. Finally, the TF-IDF weight of aword i in document j is
given by:

TFi |DFij A:—rFij £|DFi

At this point, the same equation 2.3 can be used to de ne the TF-IDF representation
of document | that can be obtained by computing the TF-IDF weights for all words in
the vocabulary, resulting in a vector x; of length jVj, where jVj is the size of the vocab-
ulary. In 2.3, x;j is now the TF-IDF weight of word i in document j.

Despite not being used in this thesis, there are also alternative weighting functions
to TF-IDF like the Positive Pointwise Mutual Information  (PPMI). PPMI draws on the
intuition that the best way to weigh the association between two words is to ask how
much more the two words co-occur in our corpus than we would have a priori expected
them to appear by chance. The interested reader can nd more details in [67, 68].

While widely used in some applications, the BowW models still have disadvantages.
First, BoW only considers the frequency of words in a document, ignoring the order
in which they appear and the context in which they are used, and does not capture
the semantic relationships between words, such as synonymy, antonymy, or polysemy.
This can badly affect the performance of NLP tasks. Finally, it has dif culty handling
rare words speci c to a particular domain or text, as they may not appear in the train-
ing data and will be excluded from the vocabulary. Furthermore, with a large vocabu-
lary size, the BoW representation can become high-dimensional and sparse, making it
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computationally expensive to process and store. A more sophisticated approach is to
create a vocabulary of grouped words. This changes the scope of the vocabulary and
allows the BoW to capture more meaning from the document. In this approach, each
token is called a N-gram . For example, a 2-gram (more commonly called a bi-gram) is
a two-word sequence of words, and a 3-gram (more commonly called a tri-gram) is a
three-word sequence of words.

2.3.2 Dense vectors representation: Word2Vec, GloVe and FastText

As stated above, in the BoW representations, text documents are represented as sparse
vectors, where each element in the vector corresponds to a word in the vocabulary,
and the value of each element re ects the importance or frequency of the word in the
document. However, since most words in a document are not used, these representa-
tions are very sparse, with most elements having a value of zero. This can lead to high-
dimensional computationally demanding representations where algorithms perform
poorly.

Dense vectors, instead provide a more compact representation of the data by repre-
senting each word as a dense vector in a lower-dimensional space, where the similarity
between the vectors re ects the semantic similarity between the words. Dense vector
representations are obtained using techniques such as Word2Vec [69, 70], GloVe [71], or
FastText [72].

Word2vec embeddings are static embeddings, meaning the method learns one xed
embedding for each word in the vocabulary. The word2vec's intuition is that instead of
counting how often each word w1 occurs near wy, a logistic regression classi er (refer
to Section 2.5 for details on classi ers and the classi cation task) is trained on a binary
prediction task asking if w is likely to show up near w,. The learned classi er weights
are taken as the word embeddings. The running text is implicitly treated as training data
for such a classi er, and thus this method is also called self-supervision.

Another very widely used static embedding model is GloVe [71], short for Global Vec-
tors. GloVe is essentially a log-bilinear model with a weighted least-squares objective.
The main intuition underlying the model is the simple observation that ratios of word-
word co-occurrence probabilities have the potential for encoding some form of mean-
ing. The training objective of GloVe is to learn word vectors such that their dot product
equals the logarithm of the words' probability of co-occurrence. Owing to the fact that
the logarithm of a ratio equals the difference of logarithms, this objective associates the
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logarithm of ratios of co-occurrence probabilities with vector differences in the word
vector space [71]. Because these ratios can encode some form of meaning, this infor-
mation gets encoded as vector differences as well.

The word2vec and Glove embeddings can not directly deal with out-of-vocabulary
(O0V), i.e., words that appear in a text corpus but were unseen in the training corpus.

To deal with these problems, FastText [72] uses subword models, i.e., it represents
each word as itself plus a bag of constituent n-grams, with special boundary symbols  C
and E added to each word. For example, with n 43 the word surgery would be repre-
sented by the sequence C surgeryE plus the character n-grams: C su; urg; rge; ery; ry E.
Then an embedding is learned for each constituent n-gram, and the word  surgery is
represented by the sum of all of the embeddings of its constituent n-grams. Unknown
words can be presented only by the sum of the constituent n-grams. Furthermore,
thanks to subword information for representing the meaning of a word, FastText can
handle short texts more effectively than word2vec.

2.4 Language models

A problem related to the representational learning discussed in the previous section is
language modeling since the process of representation learning and feature engineer-
ing often depends on the underlying language models. Language models are a type of
statistical model that uses machine learning algorithms to learn patterns and relation-
ships within text data. There are various types of language models, summarized in the
next sections.

2.4.1 Classical Language Models

In its base formulation, the goal of a statistical language model is that of estimating the
probability of a given sequence of words, W A[wi,W2,...,Wn], in the language. This
can be represented as:

P(W) AEP(W1,W2,...,Wm) AP (W1) qw2jw1) Awajwq,W2) ¢...¢0RP(WmjW1,W2,...,Wm; 1)
Y
£ PWijwi,wa,...,Wj; 1)
i AL
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where m is the length of the sequence of words, w; is the i j th word in the se-
quence, and P(wjjw1q,Wo,...,Wj; 1) is the conditional probability of the i j th word
given the previous words in the sequence. This represents the probability of observ-
ingword wj in the sequence given the context of the previous words. Each of the terms
P(wijw,wWp,...,wj; 1) needs to be estimated directly from the dataset:

P(wq,...,wj) Count(w4,...,wj)

P(wijwq,wWo,...,Wj; 1) ZE
(Wijwa, w2 1) P(wg,...,wj; 1) Count(wgy,...,Wj; 1)

Issues may arise for large values of the group size i. In such cases, the numerator and
the denominator can be close to 0. To address this problem, the  short-memory assump-
tion can be used. According to it, only the last n | 1 tokens are used to estimate the
conditional probability of a token, which resultsinan  n-gram model.

Mathematically, the short-memory assumption for the n-gram model can be written
as follows:

Count(Wi, nA1,---,Wi)
Count(Wi; nA1,---,Wi; 1)

P(Wijwl,...,Wii 1) 1/4P(WijWii nALs .., Wi; 1) B

If n ££2, we are referring to a bi-gram model, whereas if n A3, we are referring to a
tri-gram model.

Language models are strictly related to word embeddings because can be used to
develop them in several ways: the training process of a language model provides a way
to learn word embeddings, by estimating the probabilities of words given the context
information provided by the surrounding words in the sentence.

2.4.2 Transformer-based pre-trained language models

While classical language models have been state-of-the-artin NLP for several years, this
thesis widely uses Transformer based pre-trained language models [34] that have revo-
lutionized the NLP state of the art. BERT (Bidirectional Encoder Representations from
Transformers) was the rst paper using this neural architecture. BERT's key technical
innovation is applying the self-attention model [33] to language modeling. Thanks to it,
the obtained language models learn contextual relations between words (or sub-words)
in a text: since one word can have different meanings in different contexts, attention al-
lows the model to look at other positions in the input sequence for clues that can help
lead to a better encoding for the current word. Unlike directional models, which read
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the text input sequentially (left-to-right or right-to-left), the Transformer encoder reads
the entire sequence of words at once. This characteristic allows the model to learn the
context of aword based on all of its surroundings (left and right of the word). A language
model which is trained with the self-attention mechanism can have a deeper sense of
language context and ow than single-direction language models [34].

From the architectural point of view, in its base form, a transformer includes two
separate mechanisms — an encoder that reads the text input and a decoder that pro-
duces a prediction for the task. Since BERT's goal is to generate a language model, only
the encoder mechanism is necessary (in contrast, e.g. to denoising autoencoders such
as BART [73]). Figure 2.1 illustrates at a high-level the Transformer encoder.

Fig. 2.1: The Transformer encoder: the input is a sequence of tokens, rst embedded
into vectors and then processed in the neural network. The output is a sequence of
vectors of size H, in which each vector corresponds to an input token with the same
index.

BERT also adopts a novel training technique named Masked Language Model (MLM),
which allows bidirectional training. In the MLM task, a token w; is replaced with
hmaski and predicted using all past and future tokens:
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Wyt (AEW1, ..., Wej 1, WAL - Wjwj)

During training with MLM, before feeding word sequences into the model, 15% of the
words in each sequence is replaced with a hmaski token. The model then attempts
to predict the original value of the masked words based on the context provided by
the other non-masked words in the sequence. In technical terms, the prediction of the
output words requires:

» Adding a classi cation layer on top of the encoder output.

* Multiplying the output vectors by the embedding matrix, transforming them into
the vocabulary dimension.

« Calculating the probability of each word in the vocabulary with softmax.

In addition to MLM, the BERT training process adopts the Next Sentence Prediction
(NSP) strategy. The model receives pairs of sentences as input and learns to predict if
the second sentence in the pair is the subsequent sentence in the original document.
During training, 50% of the inputs are a pair in which the second sentence is the sub-
sequent sentence in the original document, while in the other 50%, a random sentence
from the corpus is chosen as the second sentence. When training the BERT model, MLM
and NSP are trained together to minimize the combined loss function of the two strate-
gies. BERT was trained on 800M words from BooksCorpus and 2,500M words from En-
glish Wikipedia.

From BERT, different variants have been proposed. One of the most famous and
also used in this thesis is RoBERTa (short for “Robustly Optimized BERT Approach”)
[74]. It adopts the same BERT architecture while being trained on a larger dataset that
goes over 160GB of uncompressed text, with sources ranging from the English lan-
guage encyclopedic and news articles to literary works and web content. Representa-
tions learned by such models generally achieve strong performance across many tasks
with datasets of varying sizes drawn from a variety of sources.

One key difference between RoBERTa and BERT is that ROBERTa was trained on a
much larger dataset using a more effective training procedure. In particular, RoOBERTa
has improved BERT by:

* removing the NSP objective: the authors experimented with removing NSP loss,
concluding that this removal slightly improves downstream task performance.
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« training with bigger batch sizes and longer sequences: the large batches improve
perplexity and accuracy on the masked language modeling objective; furthermore,
large batches are also easier to parallelize via distributed parallel training.

* training via MLM with dynamic masking, i.e., a masking pattern is generated every
time a sequence is fed to the model.

An interesting aspect of pre-trained language models (both BERT and RoBERTa) is
that they can be ne-tuned for a large number of NLP tasks with a modest amount of
training data and computational resources, achieving state-of-the-art results on many
of them, such as sentiment analysis, textual entailment, and natural language inference,
crucially also across languages [75]. This means that when the pre-training is complete,
the obtained language model is saved as a set of parameters, which can then be loaded
and ne-tuned on a smaller, task-speci ¢ dataset, simply adding standard layers on top
of the architecture. The ne-tuning step involves updating the parameters of the pre-
trained model to minimize a task-speci c loss function.

2.4.3 Evaluating Language Models with Perplexity

As stated before, in its base formulation, the goal of a statistical language model is to
estimate the probability that a particular word ~ w appears after a sequence of observed
words. The evaluation of language models is therefore based on statistically character-
izing the likelihood of the presence of w after the observed sequence, and Perplexity (P)
is one of the most common metrics adopted for this purpose.

Perplexity is de ned as the exponentiated average negative log-likelihood of a se-
quence. For example, if we have a sequence W A(w1,...,Wjwj), the perplexity of W is:

1 Wi )
PW)ZA&exp i — logpu(wijwci) (2.4)
Wiim

Perplexity is not well de ned for language models trained on MLM, such as BERT
and RoBERTa. For these models, we can compute the perplexity from their pseudo-log
likelihood scores (PPL) [76] instead, which corresponds to the sum of conditional log
probabilities of each sentence token [77]. Formally, the pseudo-log likelihood scores
(PPL) of a sentence W A(wy,...,wjw;j) under a language model with parameters £ is

de ned as: o
Wi _
PPL(W):A& log Puim (WijWA(;E)
t/a
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where Pyim (WijW\t;£) is the conditional probability of token  w; given all past and
future tokens Wiy (AE(W1,...,W; 1, WAL, ..., Wjwj)-

The (pseudo) perplexity PP of a masked language model [78] on a corpus of sen-
tences W, is then computed as:

3

1 X
PP(W):/Eexp i —  PPLW) (2.5)
N w2W

where N is the number of tokens in the corpus.

A lower perplexity value indicates that a model is making more con dent and ac-
curate predictions, thus indicating that the model has learned from the training data,
and can well generalize to unseen data. A higher perplexity value indicates that a model
makes less con dent and less accurate predictions. This may be due to several factors,
such as over tting the training data, or a lack of data to learn from. For example, a model
with a perplexity of 2 means that the model is on average twice as uncertain about the
next word in the sequence compared to a model with a perplexity of 1.

2.5 Machine Learning for data classi cation

2.5.1 De nition

The rst part of this thesis mainly deals with procedural sentence detection from sur-
gical textbooks, academic papers, or online textual resources. As later explained in its
dedicated chapter, we treated this task as a text classi cation problem. The nal part
of this thesis instead deals with surgical gesture classi cation, i.e., the task of recogniz-
ing the surgical gesture given its corresponding associated kinematic data. The goal of
this section is thus to de ne the classi cation problem as a special kind of supervised
learning task by explaining the main background technologies later used.

The goal of classi cation is to take a single observation, extract some useful fea-
tures, and thereby classify the observation into one of a set of discrete classes. The
task of supervised classi cation is to take an input x and a xed set of output classes
Y A{y1,Y2,...,Ym}and return a predicted class y2Y.

When the observation is a text, we face a text classi cation task. In this case, the task
is that of assigning a label to an entire document or sentence. One of the most com-
mon examples is that of the already mentioned sentiment analysis, whose goal is the
extraction of sentiment, i.e., the positive, neutral, or negative orientation that a writer
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expresses toward some object that, according to the speci c task, can be a movie, a
book, a product or a person. In this case, the task is a ternary classi cation task because
there are three classes to choose from. Another classic example is spam detection, the
binary classi cation task of assigning an email the label  spam or not-spam . Finally, one
of the oldest tasks in text classi cation is assigning a library subject category or topic
label to a text, an important sub-task of information retrieval. In this case, various sets
of subject categories exist and therefore is a multi-class text classi cation task.

While rule-based approaches have been proposed in the past, nowadays, classi ca-
tion is mostly solved via supervised machine learning.

2.5.2 Main algorithms of data classi cation

Data classi cation is an instance of machine learning where speci ¢ algorithms and
pre-trained models are used to cluster raw data into prede ned categories. The most
popular data classi cation algorithms are summarized below.

Logistic Regression

The Logistic Regression algorithm implements a linear equation with independent or
explanatory variables to predict a response value.

If we have one explanatory variable x; and one response variable z, then the linear
eqguation would take the form of:

V4 /E_oA_;LXl

where the coef cients ~0and 1 are the parameters of the model. If there are multi-
ple explanatory variables, then the above equation can be extended to:

Z/E_oA_]_XlA_2X2A...A_an

The predicted response value z is then converted into a probability value that lies
between 0 and 1 thanks to the sigmoid function:

A@) ElA ei Z

To map this probability value to a discrete class, a threshold value (also called deci-
sion boundary) has to be chosen. Generally, the decision boundary is set to 0.5.
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Support Vector Machines

Support Vector Machine (SVM) is an approach for supervised machine learning classi-
cation.

Given a set of input data, it tries to determine which of two possible classes each
data point belongs to. It does this by nding the optimal decision boundary. In SVM,
the decision boundary is de ned by a line (or hyperplane) that separates the two classes
with the maximum margin. The margin is the distance between the hyperplane and the
closest data points from each class, known as support vectors.

In linear SVM classi ers, the decision boundary is a straight line that separates the
two classes. It is created by nding the line that maximizes the margin between the two
classes, meaning that it tries to maximize the distance between the line and the closest
data points from each class. The SVM algorithm optimizes this line by using a mathe-
matical objective function, which considers the distances between the data points and
the hyperplane.

Mathematically, the linear SVM classi er solves the following optimization problem:

1
min Ejjwjjzs.t. vi(w'xi Ab), 1,i &1,2,...n (2.6)
w,

where w and b are the parameters of the hyperplane, x; is the i-th feature vector,
vi 2{i 1,1} is the corresponding label of the i-th instance, and n is the total number
of instances in the training set. The constraint y;(w'x; Ab), 1 ensures that all the in-
stances are correctly classi ed, and the margin between the hyperplane and the closest
points is at least 1. The objective function %jjwjj2 encourages a simple and compact
solution.

Once the decision boundary has been determined, new data points can be classi ed
by measuring their distance from the boundary.

Random Forest Classi er

The random forest [79] consists of many individual decision trees that operate as an
ensemble. Each tree in the random forest outputs a class prediction, and the class with
the most votes becomes our model's prediction.

More formally, a random forest is an ensemble of different axis-parallel decision
trees trained independently. In the random forest classi er, each non-leaf node is as-
sociated with a split function f(x;p):
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1 if x(H1) C p2
0 otherwise

f(x;u) &£

where Y1 2{1,2,...,d} is the selected feature and L, 2 Ris a threshold. The outcome
determines the child node to which  x is routed. For instance, 0 may represent the left
child node while 1 may represent the right child node. The leaf nodes of the tree either
store class probability distributions or class labels based on the training samples they
receive. During testing, for a test sample x, each tree returns a probability distribution
p: (Yjx) stored on the leaf node it falls into, and the class label is obtained via averaging.

Naive Bayes Classi er

Naive Bayes is a simple algorithm that classi es text based on the probability of the
occurrence of events. This algorithm is based on the Bayes theorem, which helps in
nding the conditional probabilities of events that occurred based on the probabilities

of occurrence of each event. This model also requires a training dataset that contains a
collection of sentences labeled with their respective classes. Using the Bayesian equa-
tion, the probability is calculated for each class with their respective sentences. Based
on the probability value, the algorithm decides whether the sentence belongs to a ques-
tion or statement class.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning architecture widely used in
images, texts, and audio classi cation. Itis composed of three main layers, named  con-
volutional layer , pooling layer , and fully-connected layer .

The convolutional layer is the fundamental building block of a CNN, carrying out
the majority of computations. The actors involved are the input data, a feature de-
tector (also called a lter or kernel), and a feature map. The feature detector is an N -
dimensional (N-D) array of weights that represents the N parts of the input. N is typi-
cally one for text or two for images. The lter is then applied to a portion of the input
data, i.e., a dot product is computed between that portion and the Iter. This dot prod-
uct is then stored in an output array. The lter then shifts by a stride and the process
is repeated until the entire input data has been traversed. The output resulting from
this series of dot products is referred to as a feature map, activation map, or convolved
feature. Multiple convolutional layers can be stacked after the initial one, each focusing
on a different aspect of the input. The combination of these individual parts forms a
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hierarchical structure of features, where each sub-layer addresses a distinct portion of
the input and their collective representation captures higher-level patterns.

Pooling layers are responsible for reducing the number of parameters in the in-
put. Similar to the convolutional layer, the pooling operation involves sweeping a lter
across the entire input and applying an aggregation function to the values within the
receptive eld, thereby populating the output array. Although some information may
be lost during the pooling process, it aids in reducing complexity, enhancing ef ciency,
and mitigating over tting.

Finally, the fully-connected layer carries out the classi cation task based on the fea-
tures extracted by the preceding layers and their various lters. It combines these ex-
tracted features to make predictions and assign class probabilities. To do it, a softmax
activation function is generally applied. It takes a vector of real numbers as input and
transforms them into a probability distribution over multiple classes, i.e., ensuring that
the output values range between 0 and 1 and that they sum up to 1, making them inter-
pretable as probabilities. The class with the highest probability is typically selected as
the predicted class label.

Bi-LSTM

A Long Short-Term Memory (LSTM) is a deep learning architecture (recurrent neural
network) capable of processing sequential data in a single direction, from the begin-
ning to the end. Differently, a Bi-LSTM consists of two separate LSTMs that process
the input sequence in opposite directions: one LSTM processes the sequence from the
beginning to the end (the forward LSTM), and another LSTM processes the sequence
from the end to the beginning (the backward LSTM). The outputs of these two LSTMs
are concatenated or summed to provide a nal output. Each LSTM network in a Bi-
LSTM architecture comprises a series of repeating LSTM units or cells, each containing
a cell state, an input gate, an output gate, and a forget gate. The cell state is responsible
for storing and updating the memory of the network, while the gates control the ow of
information into and out of the cell.

The network can access past and future information about each element by process-
ing the sequence in both directions. This can be especially useful in speech recognition
or natural language processing, where the context of a given element in the sequence is
essential for determining its meaning.
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2.5.3 Evaluation metrics

Standard metrics for evaluating data classi cation tasks include precision, recall, F1,
and accuracy. Let TP, TN, FP, and FN denote the number of true positive, true nega-
tive, false positive, and false negative predictions, respectively, made by a classi cation
model. Let P denote the number of actual positive cases in the data, and let N denote
the number of actual negative cases in the data. Then, the following metrics can be
de ned:

Accuracy:
TPATN 2.7)
PAN '
It measures the proportion of correct predictions made by the model.
Precision:
TP 2.8)
TPAFP '

It measures the proportion of true positive predictions out of all positive predictions
made by the model.

Recall:
TP

P
It measures the proportion of true positive predictions from all actual positive cases in
the data.
F1-score:

(2.9)

precision * recall
precision Arecall

20 (2.10)

It is the harmonic mean of precision and recall, providing a balanced measure of both
metrics.

Micro, macro, and weighted metrics are used to compute evaluation metrics in the
context of multi-class classi cation, which involves predicting multiple classes.

Micro metrics calculate the overall metric across all classes by summing up the cor-
responding values of true positive, false positive, and false negative across all classes.
This results in a single evaluation score that re ects the overall performance of the
model. Macro metrics calculate the average metric across all classes by averaging the
corresponding values of precision, recall, or F1 score across all classes. This provides
insight into how well the model performs for each class separately. Weighted metrics
are similar to macro metrics, but they take into account the class imbalance by weight-
ing the metrics by the number of samples in each class.
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2.6 Semantic Role Labeling

A big part of this thesis deals with information extraction from procedural surgical texts.
We treated this problem as a Semantic Role Labeling (SRL) task.

2.6.1 De nition

SRL is the task of labeling semantic arguments of predicates in sentences to identify
“Who" does “What" to “Whom", “How" , “When" and “Where". Although there is not a
universally adopted notation, in this thesis we refer to the following terminology:

» framebank : it is the lexical resource encoding different predicate's frames and roles.

* predicate: it is the action to which the various semantic arguments are connected,;

» frame: itis the speci ¢ meaning that a predicate assumes in a given context; gener-
ally, each frame is accompanied by a list of expected semantic roles.

« role:itis the tag that is used to label the different arguments of a sentence; this tag is
frame-speci ¢ but basically answers the question who? or what? or whom? or how?
or when? or where?

e argument : it is the span of text that is labeled with a role.

The typical SRL task is composed of two sub-tasks:

1. Predicate identi cation and disambiguation: to identify each predicate in a sen-
tence, assigning it the appropriate frame, i.e., the meaning it assumes in the given
context, among the available ones for that lemma codi ed in the target lexical re-
source;

2. Argument identi cation and classi cation: to detect the argument spans or argu-
ment syntactic heads of a predicate, and to assign them the appropriate semantic
role labels according to the target lexical resource.

To better clarify, one example follows. Given the sentence “Yesterday Mary bought the
book from John.", in the predicate identi cation and disambiguation phase, SRL iden-
tiesthat “bought” isthe predicate and it has a meaning related to commerce. Then, in
the argument identi cation and classi cation, the SRL has to identify that:

* Yesterdayis the time reference of when the action is performed;

» Mary is the one who performs the action;

» bought is the action, i.e., the predicate identi ed and disambiguated in the previous
step;
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« the book is the object undergoing the action, in this case, the object bought;
 John, in this context, is the seller.

The way a sentence is labeled depends on the lexical resource used.

2.6.2 Lexical resources

The two most used lexical resources for SRL are PropBank [56] and FrameNet [80], and
they use different typologies of semantic roles.

PropBank lexical resource

The Proposition Bank, generally referred to as PropBank, is a resource of sentences an-
notated with semantic roles. The English PropBank labels all the sentences in the Penn
TreeBank; the Chinese PropBank labels sentences in the Penn Chinese TreeBank. Be-
cause of the dif culty of de ning a universal set of thematic roles, the semantic roles

in PropBank are de ned concerning an individual verb sense. Each sense of each verb
thus has a speci ¢ set of roles, which are given only numbers rather than names: Arg0,
Argl, Arg2, and so on. In general, Arg0 represents the one who performs the action,
and Argl represents the one who is subjected to the action. The semantics of the other
roles are less consistent, often being de ned speci cally for each verb. Nonetheless,
there are some generalizations; the Arg2 is often the benefactive, instrument, attribute,
or end state, the Arg3 the start point, the benefactive, instrument, or attribute, and the
Arg4 the endpoint. Here are simpli ed PropBank entries for two of the senses of the
verb buy:

* buy.01 - purchase
— ArgO: buyer
— Arg1: thing bought
— Arg2: seller
— Arg3: price paid
— Arg4: benefactive

* buy.05 - accept as truth
— Arg0: believer
— Arg1: thing believed
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Such PropBank entries are called frame les; the de nitions in the frame le for each
role (“buyer”, “thing bought”) are informal glosses intended to be read by humans
rather than formal de nitions.

PropBank also has many non-numbered arguments called ArgMs, (ArgM-TMP, ArgM-
LOC, etc.) representing modi cation or adjunct meanings. These are relatively stable
across predicates, so they are not listed with each frame le. Data labeled with these
modi ers can be helpful in training systems to detect temporal, location, or directional
modi cation across predicates. Some of the ArgMs include:

* TMP: when?

* LOC: where?

* DIR: where to/from?
« MNR: how?

* PRP: why?

» ADV: miscellaneous

The above example is instantiated in the PropBank scenario as follows. In the pred-
icate identi cation and disambiguation phase, PropBank's SRL identi es that “bought”
is the predicate, and in this sentence, it has, among the different alternative senses for
“buy” codi ed in PropBank, the meaning buy.01 - purchase. This means that semantic
roles have to be chosen within the frame buy.01 - purchase. In the argument identi ca-
tion and classi cation phase, PropBank's SRL produces the following output:

“[ArgM-TMP : Yesterday] [Arg0: Mary] [ buy.01: bought] [ Argl: the book] [ Arg2:
from John]."

The meaning of the labels is speci ed in the corresponding framebank.
Framenet lexical resource

The FrameNet project [80, 81] is another SRL project. Whereas roles in the PropBank
project are speci ¢ to an individual verb, roles in the FrameNet project are specicto a
coherent chunk of commonsense background information concerning a speci ¢ con-
cept. For example, the concept buyer, goods money, and seller are all linked to the same
concept, in this case, the commercial scenario. The idea is then that of grouping words
around a speci ¢ concept to which they are related and not around a speci ¢ verb. The
same example as before:

“[ Time : Yesterday] [Buyer : Mary] [ bought ][ Goods: the book] [ Seller: from John]."
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Also in FrameBank, there exists the concept of core and non-core roles: the rsts are
concept-speci ¢, while the latter express more general properties of time and location
and are more similar to PropBank's ArgM arguments.

Other lexical resources

Other lexical resources for SRL not used in this thesis are AMR (Abstract Meaning Rep-
resentation) and VerbNet: the interested reader can nd more details in [82, 83].

2.6.3 Main semantic role labeling models

SRL is traditionally performed with data-driven methods [84]. Traditional approaches
were based on classi ers trained on manually-engineered textual features: e.g. [85]
proposes a statistical classi er trained using various morpho-syntactic features (e.g.
governing predicate, phrase type). Recent works on SRL leverage deep neural net-
works, shifting from feature engineering to architecture engineering. Several notable
approaches suggest performing SRL in an end-to-end fashion, relying only on raw low-
level input signals (characters/tokens) fed to advanced models, such as multi-layer re-
current networks [86]. More recently, approaches leveraging self-attention techniques
[87] and Transformer-based architectures with pre-trained language models [88] have
been proposed.

2.6.4 Evaluation metrics

The evaluation of SRL methods typically involves comparing the predicted roles for
predicates and arguments to a set of manually annotated gold standard annotations.
The used metrics are precision, recall, and F1-score. These are standard evaluation met-
rics for binary or multiclass classi cation tasks already discussed in Section 2.5. They
evaluate the ability of the model to correctly identify and classify the semantic roles of
predicates and their arguments.

Two common datasets used for evaluation are CoNLL-2005 [89] and CoNLL-2012
[90], both exploiting PropBank as frameBank.

2.7 Conclusions

This chapter has summarized all concepts and technologies that are used in the other
parts of this thesis. It has introduced the concept of machine and deep learning, and
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best practices to follow during the annotation process, which is a paramount step in
supervised learning. Then, since the majority of the thesis deals with NLP techniques
applied to texts, this chapter has compared traditional language modeling techniques
with the recent pre-trained Transformer-based ones. This chapter has nally de ned
some tasks used in the other chapters of this thesis, namely the (textual or kinematic)
data classi cation and semantic role labeling.



Part |l

Procedural knowledge from surgical textbooks

This part presents our contributions to procedural robotic-surgery knowledge ex-
traction from textbooks and academic papers. First, SURGICBERTA, a novel pre-
trained language model for surgical language, is presented in Chapter 3. SURGIC-
BERTA is then used in Chapter 4, together with other state-of-the-art deep learning
methods, to detect in a text the sentences containing procedural knowledge discard-
ing the others. Then, the task of robotic-surgery procedural knowledge understand-
ing is covered by Chapters 5-8. In particular, Chapter 5 de nes a proper surgical
framebank, adapting an existing general-English framebank to the robotic-surgery
domain. The obtained resource is used to annotate a corpus for SRL of as-is surgical
sentences taken from surgical books and academic papers in Chapter 6. The resulting
annotated corpus is then used to train, validate and test SURGICBERTA on the SRL
task. Finally, Chapter 7 proposes a pipeline based on SRL and some syntactic rules
to empirically demonstrate how, within simple language constraints, it is possible to
extract a logical template from sentences written in natural language. Finally, since
not all information needed to automate a task is expressed in textbooks, a mapping
between commonsense knowledge and autonomy levels is proposed in Chapter 8 to
guide future research directions.
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Developing a pre-trained language model for
surgical language

"Larvatus prodeo [Masked, | go forward]"

René Descartes

3.1 Introduction

While a large number of domain-speci ¢ language models have been developed with
an improved understanding of the semantic information in their eld of expertise, to
the best of our knowledge, a specialized model speci c to the surgical language does
not exist yet, even if the scienti c community has shown a growing interest in the ap-
plication of NLP in surgery, especially for the image captioning task [91, 92, 93, 94, 95].
As stated in the introduction, surgical literature is teeming with books, online resources,
and academic papers of the highest quality used by universities worldwide.

This chapter introduces a new pre-trained language model, named S URGICBERTA,
trained on a large quantity of surgical textual material. In more detail, this chapter de-
scribes:

1. the development of S URGICBERTA, a pre-trained language model speci ¢ for the
understanding of procedural surgical language;

2. theintrinsic evaluation of S URGICBERTA with respect to the general-purpose model
ROBERTA;

3. apreliminary extrinsic evaluation of S URGICBERTA with respect to R OBERTA, that
is, comparing their performances when employed on different downstream tasks.
SURGICBERTA will also be used in Chapter 4 and 6 for the procedural sentence de-
tection and procedural knowledge extraction tasks, respectively.
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The quantitative assessments are complemented with qualitative analysison S URGIC-
BERTA, showing that it contains a lot of surgical domain knowledge that could be useful

to enrich existing state-of-the-art surgical knowledge bases. The evaluation indicates
that SURGICBERTA better deals with surgical language than a state-of-the-art yet open-
domain and general-purpose model suchas R 0BERTA, and therefore can be effectively
exploited in many computer-assisted applications, speci cally in the surgical domain.

The chapter is organized as follows: Section 3.2 revises relevant works in this area.
Then, SURGICBERTA is presented in Section 3.3. The required textual data is collected,
extracted, pre-processed, and used for the continuous training of R OBERTA on the
MLM task with domain-speci c text. Section 3.4 presents the intrinsic metrics and tasks
used to evaluate SURGICBERTA. Section 3.4.4 reports and qualitatively discusses some
examples of surgical domain knowledge contained in S URGICBERTA. Finally, 3.5 sum-
marizes obtained results and proposes future works.

3.2 State of the art

Pre-trained language models in biomedicine. As stated in 2.4.2, transformer-based
pre-trained language models can be easily ne-tuned for several downstream tasks,
including those relevant to the biomedical domain. The rst language models were
built for general English, and thus, as stated in the papers cited in this section, they
may not be particularly adequate to cover speci ¢ domains due to frequently missing
domain words or expressions. To overcome this limit, there is the possibility to train
from scratch a model speci ¢ to a given domain of interest, such as in [96, 97] where
large models speci ¢ to the clinical domain are proposed. Developing such a model
from scratch is very expensive for the computational resources and the training time
required. For this reason, domain-adaptation technigues, such as the MLM described
in Section 2.4.2, have been proposed and widely used in biomedicine, together with
ne-tuning for various downstream tasks. In [98], domain-adaptation is used to obtain

a cancer domain-speci c language model for effectively extracting breast cancer phe-
notypes from electronic health records. The authors of [99] developed a pipeline for
pre-trained neural models to classify patients as seizure-free and extract text contain-
ing their seizure frequency and date of last seizure from clinical notes. The rst step
of this pipeline is the unsupervised domain adaptation, using progress notes that were
not selected for annotation. The obtained model has been ne-tuned for the classi-
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cation and extraction tasks. Also [100] adopted a domain adaptation technique on
clinical notes from the Medical Information Mart for Intensive Care Il database [101]
to extract clinically relevant information. In [102], causal precedence relations are rec-
ognized among the chemical interactions in the biomedical literature to understand
the underlying biological mechanisms. However, detecting such causal relations can be
challenging because annotating such causal relation detection datasets requires con-
siderable expert knowledge and effort. To overcome this limitation, in-domain pretrain-
ing of neural models with knowledge distillation techniques have been adopted, show-
ing that the neural models outperform previous baselines even with a small number
of annotated data. In [103], a domain-adaptation strategy is adopted to encourage the
model to learn features from the context to curate all validated antibiotic resistance
genres, i.e. the ability of bacteria to survive and propagate in the presence of antibi-
otics, from scienti ¢ papers. In [104], a domain adaptation technique has been used
to align large language models to new medical domains, showing that, after a proper
adaptation step, they encode some clinical knowledge usable in question-answering
applications. Finally, a domain adaptation technique has been adopted for biomedical
domain adaptation in languages different than English, such as Spanish [105] and Chi-
nese [106], showing the same improvement trend when compared to the corresponding
base models.

However, due to terminological differences between biomedical domains, it is of-
ten dif cult to use these models to gain bene ts outside the goal they were trained on.
Differences are also in the structure of the sentence: for example, EHRs and clinical
notes are often structured and concise and may use not explained abbreviations. Aca-
demic articles or textbooks use instead a language that, although still highly technical,
is more accessible and accompanied by background information. Therefore, it is gen-
erally accepted that model performance may degrade when evaluated on data with a
different distribution [107]. Consequently, domain adaptation on relevant domain data
is essential to improve performance in very specialized domains [108], and despite the
availability of several biomedical language models, to the best of our knowledge, a pre-
trained surgical language model is still missing. Such a model is essential for mining
surgical procedural knowledge from text and developing intelligent surgical systems.
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Fig. 3.1: MLM task used for adapting R 0BERTA to the surgical domain. s and \s are
special tokens denoting the sentence’s beginning and end, respectively.

3.3 SurgicBERTa

This section describes the development of S URGICBERTA, the pre-trained language
model for the surgical domain we released. S URGICBERTA has been developed on top
of ROBERTA, the already available English pre-trained language model for the general
domain described in Section 2.4.2.

Starting from R oBERTA, we develop a novel model speci ¢ to the surgical domain by
continuously training R 0BERTA for the MLM task on a large amount of surgical domain
text. We recall that, in the MLM task, atoken w; is replaced with hmaski and predicted
using all past and future tokens  W\{ :AE(W1,...,W¢; 1,WtA1,-..,.Wjwj). Figure 3.1 illustrates
the MLM task used to obtain S URGICBERTA.

In more detail, 300K sentences from surgery books (7 million words) are selected.
To obtain a surgical model as general as possible, the training sentences are selected
from various books covering several heterogeneous surgical domains, from abdominal
surgery to orthopedics, to eye surgery. We searched for surgery books written in En-
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glish on the web pages of several publishing houses. As keywords, we used the name of
the surgical macro-areas (e.g. general surgery, abdominal surgery, gynecology surgery,
eye surgery). From the results, we downloaded the digital version only of the texts to
which our universities have proper legal access. A very minimal pre-processing of the
sentences is performed to remove URLs and bibliographic references.

In more detail, 15% of tokens are selected for possible replacement. Among those se-
lected tokens, 80% are replaced with the special hmaski token, 10% are left unchanged,
and 10% are replaced by a random token. The model is then trained to predict the initial
masked tokens using cross-entropy loss. Following the R 0BERTA approach, tokens are
dynamically masked instead of xing them statically for the whole dataset during pre-
processing. This improves variability and makes the model more robust when training
for multiple epochs.

3.4 Evaluation

We evaluate SURGICBERTA along several dimensions, comparing it with R OBERTA,
the starting language model used for adaptation to the surgical domain. Section 3.4.1
presents the intrinsic evaluation, and Section 3.4.3 presents the two downstream tasks
we use to evaluate SURGICBERTA, namely surgery and main anatomy link and surgical
terminology acquisition. Chapter 4 willthenuse S URGICBERTA for the procedural/non-
procedural surgical sentence classi cation, while Chapter 6 for the surgical information
extraction.

3.4.1 Intrinsic evaluation

Evaluation metrics. In Section 2.4.3, equation 2.5 de ned the pseudo-perplexity PP,

the metric used to evaluate BERT-based language models. By computing PP on a test

corpus for both R o0BERTA and SURGICBERTA, we evaluate the model's ability to predict

the unseen text from the corpus we used for evaluation and take this as an intrinsic eval-

uation metric of the quality of the two models in the surgical domain. The comparison

is fair because ROBERTA and SURGICBERTA share the same tokenizer and vocabulary.
Other intrinsic metrics used in this chapterto evaluate R OBERTA and SURGICBERTA

on the surgical domain are the accuracy of MLM computed on the masked words dur-

ing the evaluation step and the evaluation loss. Accuracy measures how well our model

predicts the masked words by comparing the model predictions with the proper values
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Table 3.1: Perplexity, accuracy and evaluation loss. Bold values mark the better scores
for each metric.

Pre-trained model Perplexity Accuracy Evaluation Loss
ROBERTA 15.410 0.546 2.735
SURGICBERTA 4.30 0.699 1.458

in terms of percentage. Instead, the loss is a value that represents the summation of er-
rors in a model. It measures how well or poorly the model is performing. If the errors
are high, the loss will be high, and the model will not perform well.

Generally, the higher the accuracy in the evaluation dataset and the lower the evalu-
ation loss, the better the model will perform.

Results and discussion. Table 3.1 reports perplexity, accuracy, and loss values of R o-
BERTA and SURGICBERTA obtained during the evaluation of the MLM task. S URGIC-
BERTA has lower perplexity ( j 11.11), greater accuracy (A15.30%), and lower evaluation
loss (j 1.277) than ROBERTA. All obtained results intrinsically conrm that S URGIC-
BERTA better deals with surgical language than R 0BERTA.

3.4.2 Extrinsic Evaluation - Task 1

Task de nition. The purpose of this task is to associate the name of the surgical pro-
cedure with the corresponding anatomical target or relevant feature to verify if the lan-
guage models have learned this type of knowledge during training. For example, the
prostatectomy has to be associated with prostate, nephrectomy with kidney, and mas-
tectomy with breast. To evaluate our models on this task, we built a dataset consisting
of the de nition of 20 different surgical procedures. In particular, surgical procedures
that can be performed with the aid of a robot have been chosen, together with other
very frequent laparoscopic ones. The de nitions are retrieved from the web or surgical
manuals not used during the training of the language models. From them, the name of
the corresponding anatomical target has been removed, and the models are asked to
guess it. As evaluation metrics, we consider the ranking of the correct target word with
respect to the others returned by the model, the probability that the model will select

it, the Reciprocal Rank (RR), and the Mean Reciprocal Rank (MRR) [109]. MRR is a mea-
sure to evaluate systems that return a ranked list of answers to queries. In the case of
this task, answers are words returned to Il the hmaski , i.e. the anatomical part cor-
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responding to the procedure description, and queries are the sentences describing the
procedure. In more detail, for a single query, the RR is de ned as 1/ rank, where rank
is the position of the correct answer among the ones (sorted by probability, from the
highest to the lowest) predicted by the model. For multiple queries  jQj, the MRR is the
mean of the jQj RRs, i.e.:

1R 1 R
Qiimranki jQjim

RR (3.1)

The vocabulary has not been restricted, i.e. a list of possible candidates to choose from
has not been used so that models can return any word belonging to the vocabulary.
To better clarify with an example, consider the following sentence (i.e. query):

a sacrocolpopexy is a surgical procedure used to treat maski organ prolapse.

Models are asked to Il in the missing word with the correct one, which in the above
example is pelvic. They will propose a list of possible candidates sorted by probability.
For example, for the above sentence, R OBERTA and SURGICBERTA return the correct
word pelvic in the third and rst positions, respectively, thus obtaining both an RR of
0.33 and 1.0, respectively. The probability that R 0BERTA will select the correct word is
0.043, while the one for S URGICBERTA is 0.33, which is signi cantly higher.

Results and discussion. This section summarizes the results of the above-described
task, i.e. predicting the anatomical target given the name and a brief de nition of the
surgical intervention related to that target. On average, the correct target is returned by
ROBERTA in position 2.35, while S URGICBERTA outperforms R 0BERTA proposing the
correct target in position 1.35. The MRR of R oBERTA is 0.731, while that of S URGIC-
BERTA is 0.902. In more detail, 30% of the times S URGICBERTA performs substantially
better than R OBERTA, while the contrary only holds in one case. The violin plots of
Figure 3.2 summarize the obtained RRs on each query sentence: the one for S URGIC-
BERTA is very wide at the top and skinny in the middle and the bottom, while the one

of ROBERTA, albeit having a similar distribution, is much less wide at the top and has

a median weight lower than that of S URGICBERTA. The shape of the distribution indi-
cates that the RRs of SURGICBERTA are highly concentrated around the rst quartile,
meaning that the model predicts the proper anatomical target very well. In contrast,
the RRs of ROBERTA are more evenly distributed across the entire range, highlighting
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Fig. 3.2: Reciprocal rank of the predicted word in the task of predicting the anatomical
target given the information of a surgical procedure (Extrinsic Evaluation - Task 1).

lower scores. Also this task con rms the bene t of having specialized R 0BERTA for the
surgical language.

3.4.3 Extrinsic Evaluation - Task 2

Task de nition. This task is similar to the previous one but applied to a different dataset
and therefore proposed for a different purpose: to verify whether S URGICBERTA mas-
ters the surgical language and can use it more appropriately than R  0OBERTA. In partic-
ular, a dataset of 50 surgical sentences was collected from different sources, i.e. surgical
books, academic papers, and web pages not used during the MLM training. The sen-
tences were randomly chosen from those that met the following requirements:

* the sentence has not been used to train S URGICBERTA;
* one of the following holds:

— the sentence contains an expression commonly used in surgery. To de ne fre-
guently used expressions, we have selected those typically abbreviated with an
acronym in papers. In the sentences included in the dataset, the abbreviations
have been substituted with the original expression, and the language models are
asked to complete them correctly in the corresponding context;

— the sentence contains a description of a surgical procedure. In the sentences in-
serted in the dataset, the verb describing the action is masked, and the language
model is asked to guess it based on the context.
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Table 3.2: Mean position, MRR, and mean probability on the task of surgical terminol-
ogy acquisition (Extrinsic Evaluation - Task 2).

Pre-trained model Mean position MRR
ROBERTA 152.720 0.262
SURGICBERTA 7.960 0.658

Fig. 3.3: Reciprocal rank of the predicted word in the task of surgical terminology ac-
quisition (Extrinsic Evaluation - Task 2).

Since the con guration of the task is the same as the previous one, we used the same
metrics adopted for it, i.e. the position in which the correct solution is proposed, the
corresponding probability, the RR, and the MRR.

Results and discussion. Table 3.2 summarizes the obtained results for thistask. S URGIC-
BERTA substantially improves all proposed metrics: the S URGICBERTA mean position
is 19.19 times better than the R oBERTA one; the MRR is improved by 0.396. 66% of the
times SURGICBERTA improves the RRs when compared to R oBERTA. Only in two cases
(out of 50) ROBERTA performs better than S URGICBERTA. The violin plots of Figure 3.3
illustrate the RRs of the two language models for each query: while the one forS URGIC-
BERTA is wide at the top, the one for R oBERTA is wide at the bottom. Furthermore,
SURGICBERTA has a median weight much higher than that of R 0BERTA. This high-
lights the best accuracy of S URGICBERTA in learning surgical terminology. Also, this
task con rmsthat S URGICBERTA better captures the surgical language.
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Table 3.3: ROBERTA and SURGICBERTA most probable words for the most used surgi-
cal robots.

ROBERTA SURGICBERTA
Rank Word Probability Word Probability
1 Braun 0.031 Zeus 0.261
2 Juno 0.027 Xi 0.111
3 Hawk 0.017 Si 0.055
4 Orion 0.016 robotic 0.035
5 MRI 0.016 S 0.030

3.4.4 Qualitative analysis

There is a lot of domain information implicit in pre-trained language models [110].
Adapting the domain through continual learning with MLM helps in capturing this
knowledge. However, it is complicated to quantify this domain knowledge objectively
and exhaustively due to the lack of any gold standard for the surgical domain. For this
reason, this section proposes a qualitative analysis, providing examples of domain in-
formation stored in pre-trained language models.

To start with, R oBERTA and SURGICBERTA are asked to return the name of the most
used surgical robot in the operating room. In particular, R OBERTA and SURGICBERTA
are asked to substitute the hmaski in the following sentence with the most appropriate
ve words, ranking them in order of probability:

The most commonly used surgical robot is hmaski .

Results are reported in Table 3.3. While to the best of our knowledge, none of the top
ve words returned by R 0BERTA is the name of a surgical robot, Zeus!, Xi?, and Si®
returned by S URGICBERTA are instead examples of surgical robots that have been used
in operating theatres. This means that the continual MLM learning with domain text
has captured this kind of information that is now available in the model.

Asreported in Table 3.1, SURGICBERTA has a perplexity substantially lowerthan R o-
BERTA in the MLM task when applied to surgical literature. This intrinsically means
that SURGICBERTA has learned the surgical language and thus also the composition

L https://en.wikipedia.org/wiki/ZEUS_robotic_surgical_system
2 https://www.nchi.nlm.nih.gov/pmc/articles/PMC6193435/
3 https:/iwww.davincisurgerycommunity.com/Systems_|_A/da_Vinci_Si_Si_e
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Fig. 3.4: lllustration of the critical view of safety method during a cholecystectomy.

Fig. 3.5: Pfannenstiel incision to access the abdomen.

of well-known surgical expressions. Consider the following example highlights how
SURGICBERTA has learned specialized domain terminology. In surgery, the expression
critical view of safety refers to a method of secure identi cation in open cholecystec-
tomy in which the cystic duct and artery are putatively identi ed, after which the gall-
bladder is taken off the cystic plate so that the gallbladder is attached only by the two
cystic structures [111] as shown by Figure 3.4.

To verify if R OBERTA and SURGICBERTA know this information, they are asked to
complete the following sentence:

During cholecystectomy, it is important to achieve the critical view of hmaski .
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SURGICBERTA returns the word safety as 1st result with a probability of 0.3428, while
RoBERTA returnsitonly at 47 th position with the probability of 0.0032.

This section ends with another example of domain knowledge available in S URGIC-
BERTA. In surgery, a Pfannenstiel incision is a type of surgical incision that allows ac-
cess to the abdomen (See Figure 3.5, adapted from [112].). The following test wants to
investigate if pre-trained language models know this information:

The Pfannenstiel is a type of surgical incision that allows access to the hmaski .

The correct word is abdomen and is retrieved by S URGICBERTA at the 1 st position with
probability 0.1267 and by R oBERTA at the 5th position with probability 0.0478, after
the words brain (0.1969), heart (0.1488), skin (0.0713), and vagina (0.0542).

These qualitative examples show that in S URGICBERTA there is much surgical infor-
mation that could be used, for instance, to enrich and complement the one codi ed in
domain ontologies and knowledge bases.

3.5 Conclusions

This chapter proposed S URGICBERTA, a pre-trained language model ne-tuned for
capturing surgical language and knowledge, i.e. the vocabulary and expertise provided
in surgical books and academic papers.

The building process has been described, and the model has been evaluated both
intrinsically by considering perplexity, accuracy, and evaluation loss during the MLM
task and extrinsically by considering two downstream tasks. All the results con rm that
SURGICBERTA deals with surgical language and knowledge more adequately than R o-
BERTA, a language model targeting general-domain English. Moreover, the potential of
SURGICBERTA has been investigated qualitatively by showing some examples of surgi-
cal domain knowledge available in the model, which could complement other knowl-
edge sources, e.g. state-of-the-art surgical knowledge bases. SURGICBERTA will also be
used in the following chapters for procedural sentence detection and procedural knowl-
edge extraction tasks.



4

Detecting sentences containing procedural
knowledge in surgical textbooks

"The ability to simplify means to eliminate the
unnecessary so that the necessary may speak."

Hans Hofmann

4.1 Introduction

This thesis's main objective is to develop a model able to automatically understand  pro-
cedural written text of the robotic-surgical domain. In particular, we mainly target as-is
textbooks and academic papers. Although the main goal of this kind of textual resource
is to describe how to perform a given surgery by listing actions and the way they should
be performed, the instruments to use, and spatial and temporal constraints to follow,
they also contain non-procedural information, such as sentences introducing the his-
tory of the surgery, the number of surgeries of that type performed per year, the different
typologies of patients, the related anatomy, positions and medium size of the organs,
and other ontological information. This means that real-world documents usually de-
scribe surgical processes also including descriptive information, which is not directly
useful to derive a work ow. This chapter tackles the problem of separating procedu-
ral from non-procedural sentences, a preliminary task towards the automatical under-
standing and extraction of procedural surgical sentences. Indeed, the overall research
objective can be splitinto two main steps: rst,  procedural sentencesi.e. sentences con-
taining procedural knowledge, are recognized in a text; then, the recognized sentences
are used to extract procedural surgical knowledge (objective of the Chapters 5-7).

This chapter presents our novel contribution to address the rst of these steps,
which, to our knowledge, has never been investigated before in surgery. We tackle this
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problem as a sentence classi cation task by applying different machine learning (ML)

and deep learning (DL) algorithms. In addition to consolidated ML approaches avail-

able in the literature and tested in other domains, we experiment with the FastText clas-
sier (c.f., 2.3.2) since it demonstrated state-of-the-art performance in numerous text

classi cation tasks. Moreover, we investigate the use of the subword-enriched word em-
beddings returned by FastText as features for a one-Dimensional Convolutional Neural-
Network (1D-CNN) and a Bidirectional Long Short-Term Memory (Bi-LSTM) Neural-

Network, described in 2.5. Finally, we test Transformers-based classi cation methods
(c.f. 2.4.2), ne-tuning some pre-trained language models for the task.

To train and benchmark all these approaches, we introduce a novel surgical textual
dataset, SPKS (Surgical Procedural Knowledge Sentences), consisting of sentences from
surgical texts that we manually annotated as procedural or non-procedural. We pre-
sented this work in 2021 in [18]. At the end of 2022, we released S URGICBERTA, and, as
part of its evaluation, we compared S URGICBERTA performance with that of its vanilla
version, ROBERTA, on the same task to verify if MLM has led to bene ts. Meanwhile,
we have developed an extended version of the dataset, SPKSv1.1, containing more sen-
tences and more procedures, and so we used it for S URGICBERTA and ROBERTA com-
parison. The results of the two experiments are so not directly comparable, but though
out of the research question of the second evaluation, we also report the performance
of the model that obtained the best results during the rst evaluation.

In more detail, the following research questions are investigated during the rst re-
lease of the dataset:

RQ1 Are the TF-IDF features fed to classic classi cation algorithms suf cient to de-
tect procedural knowledge in surgical written texts? Is it necessary to resort to more
sophisticated techniques of word embeddings and neural networks? Do more com-
plex methods based on ne-tuning pre-trained language models outperform the
other considered approaches?

RQ2 Do some dataset balancing techniques positively impact the performances of pro-
cedural sentence classi cation?

In the second evaluation, the following research question is instead investigated:

RQ3 As a continuation of the validation of Chapter 3, does S URGICBERTA better per-
form than R oBERTA also on the procedural robotic-surgery sentence detection
task?

The contribution of this chapter is threefold:
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« the proposal to address the detection of procedural knowledge in surgical texts as a
sentence classi cation task;

 a novel, publicly-available, manually-annotated surgical textual dataset for bench-
marking classi cation methods;

 a preliminary assessment on this dataset of various state-of-the-art classi cation
methods.

4.2 State of the art

As stated before, to the best of our knowledge, works had yet to tackle the problem of de-
tecting procedural sentences in surgical documents. However, approaches for detecting
procedural sentences have been proposed in other domains and applied to typologies
of textual content substantially different than the description of a surgical procedure,
such as repair instructions [23, 25, 27], technical support documentation [22, 23, 26],
instructions for nanomaterials' synthesis [24], cooking recipes [23, 27], and medical ab-
stracts [113].

In [22], the authors tackle the problem of procedural knowledge detection in tech-
nical documentation as a classi cation task. They use a linear Support Vector Machine
(SVM) exploiting both linguistic (usage of the imperative, declarative, conditional, or
passive form) and structural (e.g. section/subsection organization, bulleted-list usage)
features, showing that both of them contribute to improving performance.

The authors of [23] address the problem of identifying sentences mentioning ac-
tions in cooking recipes and maintenance manuals, exploiting a CNN fed with word
embeddings. Classi cation (“relevant”, “irrelevant”) of recipe (for nanomaterials' syn-
thesis) sentences is also investigated in [24], where the authors use a Naive Bayes classi-
er fed with features such as word counts, TF-IDF (Term Frequency—Inverse Document
Frequency) and N-grams.

In [25], the authors pursue the detection of repair instructions in user-generated text
from automotive web communities. Various linguistic (bag-of-words, bag-of-bigrams,
post length, readability index) and structural features (repair instructions are often pro-
vided as bulleted or numbered lists) are fed to several ML methods, from classical ones
(e.g. Random Forest) to Neural-Networks (single and multilayer perceptrons).

In [26], an SVM is applied for detecting procedural sentences in technical support
documentation, where procedures are typically described using lists. Besides tradi-
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tional features, such as TF-IDF, the authors show the effectiveness of exploiting infor-
mation on the list type, contextual features (e.g. sentences introducing a list), and the
usage of imperatives.

The authors of [113] address the detection of procedural knowledge in MEDLINE
abstracts. In their work, procedural knowledge is de ned as a set of  unit procedures
(each consisting of a Target, Action, and Method) organized for solving a speci ¢ pur-
pose. The proposed solution works in two steps. First, SVMs and Conditional Random
Fields (CRFs) are combined for detecting sentences (purpose/solution) that may con-
tain unit procedures, feeding them with content (unigrams and bigrams), position (sen-
tence number in the abstract), neighbor (content features of nearby sentences) and on-
tological features (usage of terms from reference vocabularies). Then, sequence label-
ing with CRFs is performed to identify the components of unit procedures.

Finally, the authors of [27] address the extraction of procedural knowledge from
structured instructional texts. First, they partition sentences into related segments,
from which nite-state grammars are applied to extract procedural elements. Next,
rule-based reasoning is applied to resolve certain types of omissions and ambiguities
in instructions.

While all these works address the detection of procedural knowledge from written
text, the proposed methods have been applied to typologies of textual content substan-
tially different from the description of a surgical procedure. Troubleshooting and prod-
uct documentation, cocking recipes, maintenance manuals, and repair instructions
differ from descriptions of surgical procedures both on the terminological/language
level and the structural one: typically, these kinds of texts are structurally organized,
frequently using numbered/bulleted lists — a characteristic effectively exploited as a
feature in many of the discussed approaches — while no established standard way to
describe a surgical procedure exists. In addition, surgical interventions are mainly pre-
sented in a prose-like style. Indeed, the scenario where structural features cannot be
exploited is considered more challenging to tackle (c.f. [26]).

Furthermore, all the approaches mentioned above have been applied to domains
substantially different from the surgical one. In this regard, the closest work is [113]:
however, MEDLINE abstracts are substantially different from intervention descriptions
(e.g. MEDLINE abstracts are typically semantically divided into blocks such as Objec-
tive, Background, Methods), and the goal of the authors is to identify (a few) method-
ological sentences among an abstract text, while the goal of this task is to identify all
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the sentences in an intervention procedure description that detail some surgical action
performed.

4.3 Proposed procedural surgical sentences detection
methods

In this section, we describe the collected dataset and the proposed methods. Our goal
iS not to propose a new state-of-the-art method for text classi cation but to assess
whether the automatic classi cation of procedural knowledge in surgical written texts
can be effectively solved with ML or DL text classi cation techniques.

4.3.1 Dataset

In order to train and test a supervised classi cation approach to automatically iden-
tify procedural sentences, a dataset of sentences labeled as procedural/non-procedural
is needed. Given the lack of such a dataset in the literature, we manually constructed
and annotated a new dataset, called SPK$Surgical Procedural Knowledge Sentences) *
composed by 1,958 sentences (37,022 words - 3999 unique words) from a recent surgical
robotics book [114] and from some papers [115, 116, 117]. Different authors produced
these documents and they vary signi cantly in the writing style: the procedure descrip-
tions are essential and schematic in some cases, while longer sentences enriched with
background information are used in others. The dataset consists of 20 descriptions
of real-world procedures (taken as-is from the sources) from different surgical elds
(urological, gynecological, gastrointestinal, and thoracic). Regarding the book [114], we
have arbitrarily selected without lack of generality a few (among many) of the sections
describing surgical procedures. The complete list of sections used is reported on the
corresponding web page. More precisely, we have only annotated those chapters and
sections that, given their name (e.g. “Operational steps”), are expected to describe the
surgical intervention procedure, leaving out unrelated ones (e.g. “History of Robots and
Robotic Surgery”). This is because our goal is to identify the sentences in a procedure
description that detail some of the surgical actions performed, automatically cleaning
out all those that are not relevant to build a procedural work ow. As we will show later

in the dataset statistics, irrelevant sentences account for a substantial amount.

1 Dataset web-page: https://gitlab.com/altairLab/spks-dataset
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Each sentence in the selected procedure texts was manually annotated as procedu-
ral or non-procedural . As stated in 2.2.3, it is crucial to reduce labeling ambiguities by
providing precise annotation guidelines. Since the same sentence may contain both
procedural and non-procedural information, we provide the following de nitions:

» procedural : a sentence describing at least one action by the robot or the human
surgeon, being it an intervention on the body or the positioning of the robot;

* non-procedural : a sentence that does not indicate a speci ¢ surgeon action but de-
scribes anatomical aspects, exceptional events that can occur during surgery, and
general indications that are not speci ¢ to a single step of the intervention.

To guide the annotation work, we also provided some examples, similar to those re-
ported in Table 1.1. The actual annotation of the 1,958 sentences was performed by a
single human annotator (M.Sc. with “C1” English language pro ciency) with a 2-year
experience in the robotic-surgical domain. The annotation of the whole dataset re-
quired approximately 65 working hours for the annotator. As frequently occurs with
text classi cation tasks, the resulting annotated dataset is slightly unbalanced:  »64%
of all the sentences are classi ed as procedural, while the remaining  » 36% as non-
procedural. Approximately one-third of the sentences in the collected text describing
surgical intervention procedures do not describe concrete surgeon actions. Therefore,
these sentences are not relevant for deriving the intervention work ow.

As manual annotation is a rather subjective process, performed in our case by a sin-
gle annotator, in order to assess the general adherence of the annotations produced
with respect to the presented guidelines, we performed an inter-annotation agreement
analysis: 98 sentences, approximately 5% of the overall dataset, were randomly sam-
pled, respecting the procedural/non-procedural balancing of the dataset, and a second
expert (Ph.D. with “C1" English language pro ciency, computer science background)
was asked to annotate them following the same guidelines. We obtained a Kappa coef-
cient of 0.93 which, as stated in 2.2.3, indicates an almost perfect level of agreement
between the two annotators.

At the end of 2022, we released an enlarged version of SPKS (SPKSv1.1), consisting
of 2250 sentences annotated with the same strategies. Of them, » 68% are procedural,
while » 32% are non-procedural. It contains descriptions of 28 robotic-surgery proce-
dures.
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4.3.2 Preprocessing the dataset

First, we tested different combinations of text normalization techniques in order to re-
duce the number of word forms in the original dataset and thus limit noisy features.
In particular, we lowercased each word, we replaced each number with a xed place-
holder, we removed punctuation, leading/ending white spaces, and stopwords. We also
experimented with combining these techniques with either lemmatization or stem-
ming, but they turned out to be ineffective in our evaluation scenario.

4.3.3 Classiers

We frame the problem of automatically detecting procedural sentences in surgical
intervention texts as a sentence classi cation task. To better assess the feasibility of
our approach, we experimented with and compared the performance of different text
classi ers, ranging from classical machine learning to neural network methods and
Transformer-based approaches.

Given the reduced size of the dataset, for each model, we applied the nested k*I-fold
cross-validation protocol with k=10 and I=k-1=9. That s, the dataset is split into 10 sets.
One by one, a setis selected astest set to assess the model performance, while the other
9 areused to tthe model (8 sets - a.k.a. train set) and determine the best hyperparam-
eters? (1 set - a.k.a.validation set), until all possible combinations have been evaluated.
The model performance is thus the average performance on the 10 test sets of the cor-
responding model trained and tuned (according to the best hyperparameters) on the
remaining 9 sets. This technique ensures no data leakage can occur [119].

We rst analyzed some widely used classical ML methods successfully applied for
text classi cation and described in 2.5.2: namely, Random Forest (c.f. [120]); Linear
Support Vector Machine (c.f. [121]); Multinomial Naive Bayes (c.f. [79]) and Logistic Re-
gression(c.f. [122]). These classi ers expect numerical feature vectors with a xed size
rather than the raw text of variable length (c.f. 2.3 ), and therefore sentences have to be
appropriately pre-processed. Speci cally, for each term of a sentence in our dataset, we
calculate the TF-IDF measure described in 2.3.1: each sentence is then represented as
a vector, where the components correspond to the most frequent terms of the dataset,
and the value in the components is the TF-IDF measure for that term of the sentence.
The classi ers are then trained using these vectors as features.

2 For tuning hyperparameters, we either relied on built-in auto-tune functionalities (c.f., FastText) or the
HyperBandalgorithm [118].
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We then decided to test the effectiveness of FastText (described in 2.3.2) for detect-
ing procedural knowledge in written surgical text. In particular, we used the classi er
presented in [123], i.e. a multinomial logistic regression method where each input sen-
tence is encoded as a sentence vector, obtained by averaging the FastText word repre-
sentations of all the words in the sentence. We used it because it has been widely used
for numerous text classi cation tasks, such as mail classi cation [124] or toxic speech
detection [125], and explicit content detection [126].

We also tested some neural-network classi ers, in particular, a 1-Dimension Convo-
lutional Neural-Network (1D-CNN) and the Bi-LSTM that proved to be very effective in
many different classi cation tasks and domains (e.g. [127, 128]). Given the possibility
of building the FastText word embeddings separately from the FastText classi er, both
neural approaches considered were fed with the same sentence vectors used to train
and evaluate the FastText classi er. This also allows us to directly compare the ef cient
linear classi er implemented in FastText and the more advanced neural approaches.

Finally, we also tested BERT performance, ne-tuning it on the sentence classi ca-
tion task. As explained in 2.4.2, differently from the other word representations, word
vectors in BERT are contextualized , meaning that the embedding of a word will be dif-
ferent according to the sentence in which it is used. Since BERT has been trained on
general domain texts, which are substantially different from the robotic-surgery docu-
ments we are working with, we also decided to use ClinicalBERT [97], a language model
pre-trained on clinical notes and Electronic Health Records (EHR). While still differ-
ent from surgical procedure descriptions, these texts are certainly closer to the robotic-
assisted surgery domain than those used for training BERT. Finally, in addition to the
evaluation reported in [18], we also tested S URGICBERTA and ROBERTA on SPKSv1.1
to measure the bene t of MLM on this downstream task. To ne-tune BERT, Clinical-
BERT, ROBERTA, and SURGICBERTA for procedural sentence classi cation in robotic-
assisted surgical texts, we modi ed the base model to produce a classi cation output
(procedural/non-procedural). This is achieved by adding a classi cation layer on top of
the pre-trained models and then by training the entire model on our annotated dataset
until the resulting end-to-end model is well-suited for our task. In detail, we use a sin-
gle linear layer for the sentence classi cation part, similar to what is done in [97]. Note
that some pre-processing of the dataset has to be performed to use its texts to ne-tune
BERT, ClinicalBERT, ROBERTA, and SURGICBERTA, such as word tokenization and in-
dex mapping to the tokenizer vocabulary and xed-length normalization (by truncation
or padding) of all texts.
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4.4 Results and Discussion

4.4.1 Evaluation on SPKS dataset (v1.0)

Table 4.1: Aggregated classi cation performance of the tested methods. “[bal]” indi-
cates training on a 50-50 balanced dataset (upsampling).

Method A Macro Weighted

P R F1 wP wWR wF1
RandomForest 0.740 0.743 0.678 0.686 0.741 0.740 0.721
MultinomialNaiveBayes 0.737 0.785 0.655 0.657 0.767 0.737 0.701
LinearSVM 0.723 0.770 0.636 0.633 0.753 0.723 0.681
LogisticRegression 0.694 0.770 0.590 0.562 0.745 0.694 0.626
FastText 0.786 0.771 0.765 0.767 0.784 0.786 0.785
FastText[bal] 0.788 0.773 0.767 0.770 0.786 0.788 0.787
1D-CNN 0.829 0.816 0.828 0.820 0.835 0.829 0.831
1D-CNN[bal] 0.833 0.819 0.827 0.823 0.836 0.833 0.834
BILSTM 0.867 0.857 0.856 0.857 0.867 0.867 0.867
BiLSTM[bal] 0.870 0.862 0.855 0.859 0.869 0.870 0.869
BERT 0.864 0.859 0.845 0.851 0.863 0.864 0.863
BERT]/bal] 0.862 0.859 0.840 0.847 0.861 0.862 0.860
ClinicalBERT 0.872 0.866 0.856 0.860 0.871 0.871 0.871
ClinicalBERT[bal] 0.866 0.862 0.846 0.853 0.865 0.866 0.865

To address the research questions RQ1 and RQ2 presented in 4.1, we compare the
prediction of the various classi ers against some gold annotations (i.e. a set of sen-
tences annotated with a procedural/non-procedural label), using the metrics presented
in 2.5.3, in particular the Macro-Averaged Metrics, i.e. Precision ( P), Recall (R, F-Score
(F1), the Weight-Averaged Metrics, i.e. w-Precision ( WB, w-Recall (WR, w-F-Score (WFJ;
and, Accuracy (A).

In the rst four rows of Table 4.1, we report the classi cation performance of the
classical ML algorithms that exploit TF-IDF as features. The considered ML approaches
based on TF-IDF have mediocre performance when used to solve this task. This could
be due to the unbalanced dataset, which is dif cult to handle with standard ML algo-
rithms. Classical ML approaches are often biased towards the majority class (F1 scores



66 4 Detecting sentences containing procedural knowledge in surgical textbooks

Table 4.2: Classi cation performance of the tested methods per class. “[bal]” indicates
training on a 50-50 balanced dataset (upsampling).

Method Procedural Non-Procedural
P R F1 P R F1

RandomForest 0.738 0.913 0.816 0.747 0.443 0.556
MultinomialNaiveBayes 0.717 0965 0.823 0.852 0.344 0.491
LinearSVM 0.706 0.964 0.815 0.835 0.308 0.450
LogisticRegression 0.678 0.981 0.802 0.861 0.199 0.323
FastText 0.821 0.846 0.833 0.720 0.683 0.701
FastText[bal] 0.824 0846 0.835 0.722 0.689 0.705
1D-CNN 0.889 0.834 0.861 0.742 0.821 0.780
1D-CNN[bal] 0.881 0851 0.866 0.758 0.803 0.780
BILSTM 0.894 0896 0.895 0.820 0.817 0.818
BiLSTM[bal] 0.887 0910 0.898 0.837 0.801 0.819
BERT 0.875 0916 0.895 0.843 0.775 0.808
BERT]/bal] 0.867 0922 0.894 0.850 0.757 0.801
ClinicalBERT 0.886 0.915 0.900 0.845 0.797 0.821
ClinicalBERT[bal] 0.874 0.922 0.897 0.851 0.871 0.809

on the procedural class are substantially higher than on the non-procedural one), not
considering the data distribution. In the worst case, minority classes are treated as
outliers and ignored. Moreover, TF-IDF cannot account for the similarity between the
words in a document since each word is independently presented as an index. Among
the considered ML algorithms, Random-Forest obtains the highest F1 scores.

The fth row of Table 4.1 summarizes the performance of the FastText classi er. All
scores demonstrate that FastText obtains much higher classi cation performance than
the best-considered ML method ( Ra-F0. In particular, it improves 10.56% over Macro-
F1 and 8.15% over Weighted-F1.

We then fed the FastText word embeddings learned on the dataset to a 1D-CNN and
a Bi-LSTM. In our task, the adoption of more complex classi cation models allows us to
substantially improve performance, as con rmed by the seventh and ninth rows of the
Table. The 1D-CNN improves the Macro-F1 of 6.46% and the Weighted-F1 of 5.54%, and
the Bi-LSTM contributes to improving the Macro-F1 of 10.50% and on the Weighted-
F1 of 9.45% with respect to FastText performance. The downside is the computational
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time: with the con gurations used in the experiments, FastText is 8 times faster than
the 1D-CNN and 40 times faster than the Bi-LSTM.

Finally, the eleventh and thirteenth rows of the Table show that it is possible to
achieve high classi cation performance using transformer-based pre-trained language
models. In particular, ClinicalBERT performs slightly better than Bi-LSTM (+ 0.12% of
Macro-F1 and + 0.22% of Weighted-F1), while BERT performs slightly worse than Bi-
LSTM. Computational-wise, ne-tuning transformers-based models on our dataset is 4
times slower than training Bi-LSTM.

We also investigated whether it is possible to boost classi cation performance by
balancing the dataset. More precisely, we have applied standard random over-sampling
techniques (i.e. the addition of a random set of copies of the minority class samples to
the data) [57] to obtain a perfectly balanced (50% procedural / 50% non-procedural)
training material, reassessing classi cation performance. Given the inadequate perfor-
mance of classical ML algorithms, we have limited this analysis only to the three ap-
proaches that use subword word embeddings as features and to transformers-based
methods. As shown in the rows of Table 4.1 tagged with [bal] , adopting upsampling
technigues does not substantially improve classi cation results. Indeed, in the case of
transformer-based models, balancing the dataset actually has some (limited) detrimen-
tal effects. While summarized by the results of Table 4.1, we reported the per-class clas-
si cation performance for completeness in Table 4.2.

Answer to research questions RQ1 and RQ2

Based on the reported results, we can answer RQ1 by stating that the considered
ML methods fed with TF-IDF features do not solve the problem satisfactorily. Using
subword-enriched word embeddings fed to neural networks allows for substantially
improved results, achieving overall good performance for the considered classi cation
task (Bi-LSTM wF1= 0.869 with balancing). Concerning pre-trained language models, a
further (marginal) improvement is observed exploiting ClinicalBERT, while ne-tuning
the general-domain BERT leads to lower classi cation performance than Bi-LSTM,
showing that, for the considered task, more advanced (yet computationally demand-
ing) techniques do not necessarily produce better results. Overall, the results are sat-
isfactory, con rming the feasibility of automatically detecting procedural sentences in
surgical intervention descriptions. We believe there is room forimprovement, for exam-
ple, by enlarging the dataset. Moreover, we cannot positively answer RQ2, as we exper-
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imentally observed that the adoption of upsampling techniques on the minority class
does not substantially improve the performance for detecting procedural knowledge.

Considerations on the size of the dataset

We nally wondered if a dataset of 1,958 sentences is large enough for the optimal train-
ing of learning approaches for this task and if there is room to further improve the re-
sults by increasing the number of sentences in the dataset. To answer this question, we
studied the evolution of the Macro-F1 when varying the size of the training dataset. Fig-
ure 4.1 (left) shows this analysis considering the FastText classi er. The curve tends to
atten out when reaching approximately 800 sentences in the Train dataset, thus possi-
bly suggesting that adding more samples will unlikely yield substantially better perfor-
mances. Figure 4.1 (center) shows the same analysis considering the Bi-LSTM classi er.
The slope of the curve, especially approaching the total size of the training dataset, is
constantly increasing and does not atten out. Despite a less prominent increase rate, a
similar trend is obtained for the same analysis on the classi er based on ClinicalBERT,
shown in Figure 4.1 (right). These trends somehow suggest that by increasing the num-
ber of samples of the dataset, classi cation performances might be further improved
for these two methods.

Interestingly, the Figure also shows that ClinicalBERT's ne-tuning on our dataset
works very well, even for very limited-size datasets ( F1E0.8 with just 400 samples).

Fig. 4.1: The trend of Macro-F1 of the FastText, Bi-LSTM, and ClinicalBERT classi ers,
obtained by varying the number of training samples.
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Table 4.3: Aggregated classi cation performance of the tested methods in the second
setting.

Method A Macro Weighted

P R F1 wP WR wF1
ClinicalBERT 0.856 0.840 0.823 0.831 0.854 0.856 0.855
RoBERTa 0.872 0.860 0.841 0.849 0.871 0.872 0.871
SurgicBERTa 0.886 0.880 0.853 0.864 0.885 0.886 0.884

Table 4.4: Classi cation performance of the tested methods per class in the second
setting.

Method Procedural Non-Procedural

P R F1 P R F1
ClinicalBERT 0.879 0915 0.897 0.801 0.731 0.764
RoBERTa 0.889 0.928 0.908 0.831 0.753 0.790
SurgicBERTa 0.894 0945 0919 0.865 0.762 0.810

4.4.2 Evaluation related to the assessment of SurgicBERTa

To address the research question RQ3 presented in 4.1 and to continue the S URGIC-
BERTA evaluation of Chapter 3, we compare the prediction obtained by S URGICBERTA
with that obtained by its vanilla R 0BERTA. Since for this evaluation the enlarged ver-
sion of SPKS was used (SPKSv1.1), the results are not directly comparable to the ones
reported in the previous section. To put the scores in perspective with the outcomes

of the previous evaluation, we report also the performance of ClinicalBERT (the best
performing model in the previous evaluation) on this extended dataset.

The second setting's procedural sentence detection task results have been reported
in Tables 4.3 and 4.4, where higher results are in bold. S URGICBERTA improves all
the performance metrics compared to R oBERTA and ClinicalBERT on both procedu-
ral and non-procedural classes. Overall, averaging the performances on both classes,
SURGICBERTA improves the accuracy of 0.014, Macro-F1 of 0.033 and Weighted-F1 of
0.029 when compared with its base version R oBERTA, con rming the bene t of having
a domain-speci ¢ language for surgical-related text classi cation. We can thus posi-
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tively answer RQ3 because SURGICBERTA, obtained by R oBERTA with the MLM do-
main adaptation technique, achieves higher performance.

4.5 Conclusions

This chapter aimed to introduce and investigate the problem, never tackled before, of
detecting procedural knowledge in written surgical intervention descriptions. In partic-
ular, we tested the effectiveness of various ML algorithms operating on TF-IDF features,
observing their poor performance. Better scores are achieved using the linear classi -
cation algorithm implemented by FastText, which works on subword enriched words-
embeddings and nally, using the embeddings returned by  FastText as the input fea-
tures of some neural networks (1D-CNN, Bi-LSTM). Finally, using ClinicalBERT to de-
tect procedural sentences in robotic-surgical texts proved to be a good choice. From the
experiments, it also emerged that balancing the number of class samples in the train-
ing dataset does not lead to a substantial performance boost. The second evaluation
continues the extrinsic evaluation of S URGICBERTA presented in Chapter 3, con rm-
ing that S URGICBERTA better deals with surgical language-related tasks than its vanilla
version ROBERTA.

The goal of this chapter was not to identify the best possible algorithm to tackle this
problem nor to identify the highest classi cation scores achievable. The goal was, in-
deed, to provide a rst assessment of the feasibility of the task using competitive meth-
ods. Indeed, we conjecture that the obtained results can still be improved. Concern-
ing the dataset, enlarging it may be bene cial, also in light of the consideration re-
ported toward the end of Section 4.4: to potentially speed up the annotation process,
active learning could be worth investigating (i.e. collecting gold annotations by ask-
ing human evaluators to accept or correct the sentence classi cation predicted by the
trained model). Furthermore, in this chapter, we tackled the procedural sentence de-
tection task using information solely from the sentence to be classi ed. The integration
of additional context-related (e.g. when a sentence is preceded by another “signaling”
sentence or it appears in a bullet/numbered list) is worth investigating, in line with the
recent work presented in [22].

This work is a preparatory activity toward extracting structured surgical interven-
tion work ows from written procedural documents, a challenging and, to the best of
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our knowledge, never investigated task in the surgical domain, which we address in the
following chapters.






5

An annotated resource for procedural
knowledge extraction in surgery

The beginning of wisdom is the de nition of terms.

Sentence attributed to Socrates

5.1 Introduction

In the previous chapter, we proposed different methods to detect procedural sen-
tences in as-is textbooks and academic papers. Recalling Figure 1.2, the extracted sen-
tences are then sent to the second stage of the pipeline, dealing with the proper ex-
traction of procedural elements, such as the actions to be performed, the agent exe-
cuting them, the surgical instruments to use, spatial and temporal constraints to re-
spect while performing a given action, the goal, and so on. The purpose of the second
stage of the pipeline is to extract relational information based on actions and actors
involved in them. To extract this kind of information, as described in 2.6, Semantic
Role Labeling (SRL) techniques [85] have shown to be a promising and viable solu-
tion [129, 130]. These methods are based on shallow semantic parsing and produce
predicate-argument structures of sentences. In most semantic theories, predicates are
verbs, verbal nouns, and other verb forms. They are mainly based on PropBank [56] and
FrameNet [131] lexical resources already described in 2.6.2. PropBank-based SRL meth-
ods are successfully used in numerous NLP applications, such as conversation analy-
sis [132], video understanding [130], information extraction and ontology population
[133], mining of event logs written in natural language [129] or automatic image cap-
tioning [134]. However, the performance of the current SRL systems on out-of-domain
testing examples is often very poor [135]. This is because PropBank annotations focus
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on general-purpose, newswire texts and do not fully cover speci ¢ domains, such as, in
our case, the surgical one. Furthermore, a critical element in very specialized domains
and in particular in the bio-medical one, is the lack of available dataset to train and
validate models. Published papers often used private datasets, which are rarely shared,
primarily due to patient privacy concerns [136], hindering the replication of the results.
The most popular datasets and databases in the bio-medical NLP are MIMIC [101], the
ones from i2b2 challenges (e.g. [137] for concept extraction), and the one from SemEval
challenges (e.g. [138] for temporal relations extraction from clinical narratives). Unfor-
tunately, none contains annotations of procedural surgical descriptions for semantic
information extraction.

With this chapter, we aim to |l this gap and extend PropBank so that its frames are
suitable for representing the semantic roles typically required in the procedural surgical
domain.

This chapter's main contribution is the public release of a new linguistic resource
that extends PropBank with frames describing actions and participants in the robotic-
assisted surgical domain and releasing an annotated dataset to train and test auto-
matic models. We named this resource Robotic Surgery Propositional Bank (RSPB). This
material is essential for adapting SRL methods from other domains to the procedural
robotic-surgical one.

5.2 State of the art

Researchers traditionally have built NLP lexical resources targeting general-domain
English, which is syntactically and semantically different from domain-speci ¢ usage
[139] as well as other languages [140, 141, 142]. Therefore, these resources cannot be di-
rectly exploited in very speci ¢ domains or with other languages, and different methods
have been proposed to adapt them to speci ¢ needs. This section summarises some
works that have adapted the general linguistic resources to a speci ¢ domain or lan-
guages other than English.

Many works on updating English frame banks have been carried outin various elds,
such as the clinical [139, 143], the biomedical [144, 145], and other non-biomedical do-
mains such as software analysis and cooking recipes [146, 147].

[139] has considered texts written in different laparoscopic cholecystectomy opera-
tional notes stating that the language is signi cantly different from general English and
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existing semantic resources have limited coverage of the action verbs frequently occur-
ring in operative notes. Based on these observations, the authors have surveyed the us-
age of each verb in the sample dataset to determine each verb's meanings and semantic
arguments. In this way, they have extracted a set of differently used verbs, and, follow-
ing the PropBank guidelines, they have de ned speci ¢ frames for them. This work,
however, has considered only surgical, non-robotic procedures taken only from gas-
trointestinal surgery notes that use more schematic language than descriptions taken
from textbooks used in our work. Finally, no annotated dataset with these newly de ned
frames was provided, hindering the possibility of benchmarking available SRL tools on
the considered domain.

[143] has annotated clinical narratives with layers of syntactic and semantic labels
to facilitate advances in clinical NLP. Following PropBank guidelines, new frames have
been de ned. Although the dataset deal with a clinical language, this chapter con-
siders a more specialized level, i.e. descriptions of robotic-surgical procedures, a re-
stricted subset of the clinical domain considered by the paper (which includes disor-
ders, physiology, chemicals and groups, and anatomical notions). Unfortunately, the
related dataset is no longer freely accessible due to copyright issues [148].

[144] has presented a corpus of PropBank-style annotations for biomedical journal
abstracts. The work has analyzed 30 biomedical verbs adding or modifying their mean-
ing starting from general English resources. Then, a semi-automatic method was ap-
plied to annotate a collection of MEDLINE abstracts selected from the search results
with the following keywords: human, blood cells, and transcription factors. First, pred-
icate candidates were identi ed; then, an automatic tool was used to produce biomed-
ical semantic roles; nally, the resulting annotations were manually corrected. In [145],

a new resource that provides VerbNet-style [83] frames for biomedical verbs is released,
together with the presentation of key differences between the general and biomedical
domain, and the design choices made to accurately capture the meaning and properties
of verbs used in biomedical texts. The conclusion is that leveraging a specialized Verb-
Net helps systems to improve verb classi cation and thus to tackle better challenging
NLP tasks in biomedicine. The two previous works have dealt with a biomedical lan-
guage that is still far from the procedural surgical one; moreover, the second one has
dealt with VerbNet classes that are quite different from the PropBank frames adopted
in this chapter.

Outside the medical domain, [147] has proposed a method for automatically ex-
tracting semantic information from software requirements speci cations. First, fre-
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guent verbs were selected from software requirement speci cation documents in the
e-commerce domain to build the semantic frames for them. Then, selected sentences
were annotated for using them as training material to benchmark different machine-
learning methods.

[146] has proposed a new annotated dataset for extracting recipe information. The
authors have de ned ad-hoc entity types (action, food, tool, duration, temperature,
condition clause, purpose clause, and others) and relation types following the method-
ology of PropBank. Then a corpus was annotated and used to benchmark a neural span-
based model extracting entities and relationships.

Finally, [149] has applied a transformer-based SRL approach to map legislation from
semi-free text to structured manually de ned frames composed of xed semantic roles.
The domain is completely different from the one in our paper, but the approach bears
some similarities.

Several works also propose PropBank language-speci ¢ lexicons for languages other
than English, both for specialized or general domains. For example, [150] has per-
formed an SRL task in Tamil Biomedicine texts, extracting domain-speci ¢ verbs and
related semantic roles. [140, 141, 142] instead have built a general-domain PropBank
speci ¢ for Turkish, Persian, and Russian, respectively. [151] has stated that despite the
availability of SRL resources in different languages, building a single multilingual SRL
labeler is almost impractical because of the differences in semantic labels and frame
banks. To provide a possible solution to these issues, it has provided a family of auto-
generated PropBanks for 23 languages from 8 language families, together with a small
set of manually annotated sentences for Polish (100), Portuguese (3779), and English
(16622), to enable the construction of SRL models for resource-poor languages by an-
notating the text in different languages with a layer of universal semantic role labeling
annotation.

5.3 Building the Robotic-Surgery Procedural Propositional

Bank
The Robotic Surgery Propositional Bank (RSPB) is an extension of PropBank [56] for the
robotic-surgical domain. The standard PropBank is described in 2.6.2 and consists of:

» aframebank, i.e. a collection of frames (a.k.a.,meaning or sense}for lemmas denot-
ing predicates (verbs or nominalized verbs ). Frames are speci c to a given lemma,



5.3 Building the Robotic-Surgery Procedural Propositional Bank 77

Fig. 5.1: High level diagram of the method described in Section 5.3.1 for the framing of
surgical domain verbs and annotation.

and each lemma has one ( mono-senselemma) or more ( polysemous lemma) asso-
ciated frames. Moreover, each frame speci es its semantic  roles, i.e. the different la-
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bels that can be used to semantically characterize the arguments of the correspond-
ing predicate;

 a corpus of text annotated (according to the framebank) with information about
basic semantic propositions.

Following the steps described in [56], also the development of RSPB is divided into two
parts, namely the creation of a lexicon of frames les (RSPF, i.e. Robotic Surgery Proce-
dural Framebank) summarised in Section 5.3.1), and the annotated dataset with RSPF's
labels, presented in 5.3.2.

Figure 5.1 shows a general overview of both steps: in the domain-verb framing pro-
cess, some automatic methods extract lemmas describing actions from robotic-assisted
surgical texts. How often they appear in the target domain ( freq_i) is compared to how
often they appear in OntoNotes [152] ( freq_i'). If freq_i A freg_i', i.e. the ratio between
the two is higher than a given threshold, then the respective lemma is sent to a team
of human linguistic experts that verify to which of the categories described in Section
5.3.1 the lemma belongs, modifying the corresponding frameset if necessary. The nal
frameset is validated by a clinician and publicly released. During the annotation step,

a team of annotators is hired and trained. Annotation guidelines are written, and sen-
tences to annotate are provided. Then, the annotation process is performed. Quality
checks are periodically carried out and, if necessary, the training step is resumed.

5.3.1 The Robotic Surgery Procedural Framebank

Two strategies are applied for identifying procedural verbs and nouns used in the
robotic-surgical domain, leveraging the available SPKS corpus. The rst one deals with
the detection of actions expressed by nominalized verbs, and it is based on keyword ex-
traction. The second method is based on Part-Of-Speech (POS) tagging, and it is used
to detect actions expressed by verbs. Their combination, together with additional low-
frequency or missing candidates suggested by the clinician during the validation phase,
offers broad coverage of the robotic-surgery actions for considered domains.

Adapting PropBank to the robotic-surgical domain

RSPF is an adaptation of PropBank's 3.1 version [56] to the robotic-surgical domain. By
analyzing the semantic use of each lemma describing an action identi ed in the SPKS

corpus with respect to the PropBank framebank, each candidate is assigned to one of
the four categories described in Table 5.1.
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Table 5.1: Categories to which each candidate lemmas is assigned.

Category Description
The lemma is already present in PropBank, and there is a frame le that adequately describes the
PRESENT use of the predicate. For this lemma, PropBank already describes appropriate semantic roles as core
entities.

The lemma is already present in PropBank, and there is aframe le that adequately describes the use
missING_ROLE  Of the predicate. This frame, however, does not include domain-speci ¢ semantic roles often used
in the robotic-surgical domain.

The lemma is already present in PropBank, but a proper frame needs to

MISSING_FRAME . e . . .
- be included, as the existing ones describe different meanings.

MISSING_LEMMA  The lemma is not present in PropBank.

If alemma is assigned to the PRESENTclass, no changes are needed since PropBank
already covers the robotic-surgical usage (i.e. there is a frame for the lemma that per-
fectly describes that usage of the predicate).

If alemma is assigned to the MISSING_ROLEclass, some semantic roles important for
the robotic-surgery domain are missing, and therefore they must be added. The lemma
to retract is an example of an action belonging to this category. For it, PropBank offers
the “retract.01: to take back" frame, which covers the speci ¢ meaning of the surgical
domain. However, only two roles are proposed for it:

» ArgO: taker back, agent
» Argl: thing retracted

The verb to retract is, however, used very often in the robotic-surgery domain, together
with additional information that allows describing the action better: the instrument
used for the retraction, the technique and/or manner, and the ending point or the indi-
cation of how much to retract.

A candidate lemma may be assigned to the MISSING_FRAME class for two different rea-
sons: i) the usage of the lemma is semantically and entirely different from all the frames
covered in PropBank, and there is no overlap between the existing and new semantic
roles; ii) the meaning is not entirely new, but the existing frames are too broad to be
helpful for the robotic-surgery domain, i.e. the new frame deals with a subset of the
meaning captured by (some of) the old ones. An example of the rst caseistheverb to
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grasp. For it, PropBank offers a single meaning “grasp.01: to take hold of, comprehend"
with two semantic roles:

* Arg0: grasper
» Argl: thing grasped

The robotic-surgical domain uses this lemma with a signi cantly different meaning, i.e.

“to clasp or embrace especially with the ngers or arms" . For it, important information

is also the grasper, the thing grasped, the instrument used for grasping, and important
spatial indications for correct grasping. An example of the second case isthe verb  to ap-
proximate . For it, PropBank has the frame *“approximate.01: to be close or similar, cause
to come near to or approach again" with only two roles:

* ArgO: entity coming close
» Argl: entity coming close to

It offers a broader meaning than the specialized one used in the robotic-surgery domain
(“to come near in position, to bring near" ), which is typically enriched with the following
information: agent, entity coming close, entity coming close to, instrument and spatial
indications.

Finally, an example of a lemma of class MISSING_LEMMA is the noun “kocherization” .
In surgery, itrefersto “an operative maneuver to mobilize the duodenum before perform-
ing other procedures locally or before incising the duodenum” . For it, important informa-
tion is the agent, and the anatomical entity to be kocherized.

Collecting domain-speci ¢ lemmas

To extend PropBank to the procedural robotic-surgical domain, those verbs (or nom-
inalized verbs) that are typical of the surgical domain must be identi ed. The SPKS
dataset, presented in Chapter 4, is used to extract the domain actions of the procedu-
ral robotic-surgical domain. For the comparison with general English, we have instead
considered the OntoNotes dataset. It is an extensively annotated dataset comprising
various text genres such as news, conversational telephone speech, weblogs, usenet
newsgroups, broadcast, and talk shows.

The two methods presented below extract domain-speci ¢ actions from SPKS. For
each domain-speci ¢ predicate, it is necessary to check which of the categories de-
scribed in Table 5.1 the lemma belongs and proceed with framing. Table 5.2 shows 10
examples of actions expressed by nouns identi ed by the rst method and 10 examples
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Table 5.2: (Left) Example of nominalized actions extracted using the rst method with
the indication of the verb they refer to (“—" means missing the corresponding verb)
and the modi cation required. (Right) Example of domain lemmas extracted using the
second method with the indication of the type of modi cation required.

Nominalized actions

Verbs

GPlacement, Place , PRESENT E;

GRe ection, Re ect, MISSING_FRAME E;
GRetraction , Retract, MISSING_ROLE E;
CGExposure , Expose ,PRESENTE;

CResection , Resect ,MISSING_ROLE E;

CMobilization ,Mobilize, MISSING_FRAME E;

GTraction, —, MISSING_LEMMA E;

GAdministration , Administer, PRESENT E;

Cldenti cation , Identify, MISSING_FRAME E;

GExcision , Excise , MISSING_ROLE E

GExtraperitonealize, MISSING_LEMMA E
CResect , MISSING_ROLE E

GSpatulate , MISSING_LEMMA E
CSkeletonize , MISSING_LEMMA E
CKocherize , MISSING_LEMMA E

Clnsuf ate, MISSING_LEMMA E
GRedock , MISSING_LEMMA E
CDetubularize, MISSING_LEMMA E
CGrasp , MISSING_FRAME E

Gincise , MISSING_ROLE E

of verbs identi ed by the second method. For each of them, the indication of the type of
modi cation requested on PropBank is reported. Finally, as frequency-based methods
for extracting domain terminology may miss some particular terms rarely used in the
text (thus ensuring high precision but low recall), the nal list of extracted candidate
verbs and nominalized verbs were also double-checked by the clinician in the valida-
tion phase, for a suggestion of possible missing domain-relevant verbs (and some ex-
amples of usage), thus improving the overall coverage of the domain. These additional
verbs were then formalized in RSPF following the same framing process described.

Finding frame-evoking nouns

In medical English, actions can be frequently expressed using nouns rather than verbs.
Below are two semantically equivalent sentences, where in the rst, the concept is ex-
pressed using a verb, and in the second using a nominalized verb:

« At this point, the surgeon suturesthe vein.
 Atthis point, a suturation of the veinis carried out.

For nouns, we addressed the task of domain action detection as a keyword extraction
problem, i.e. identifying the lexical entities that best represent the domain according to
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a reference corpus. In particular, we have adopted the unsupervised method proposed
in [153].

From the output of the algorithm, only nominalized verbs are selected. Since the
most common morphological process involved in nominalization is the derivation,
which can be de ned as the creation of a new lexeme by the addition of an af x (i.e. a
bound grammatical morpheme) [154], obtained results are ltered keeping only those
words ending with one of the following suf xes: “-sion", “-son", “-tion", “ness", “-

ment", “-ery", “-ence", “-ance", “-ure", “-ize", “-ify". False positives are nally removed
from the list by manual revision.

Finding frame-evoking verbs

For verbs, a simple approach that compares the frequency of terms used to describe
actions between the SPKS and OntoNotes corpora is used. For each token of the do-
main text, its POS tag [155] and the number of its occurrences are calculated. Only the
tokens whose POS tag denotes a verb (i.e. VB, VBP, VBZ, VBD, VBN or VBG) are re-
tained. Lemmatization is then applied, and each token (e.g. “cauterized", “cauterizes"”,
“cauterizing” ) is associated with the corresponding lemma (resp., “cauterize"), aggre-
gating number of occurrences appropriately. For each obtained lemma, the frequency
with which it appears in domain sentences is then compared with the one the same
lemma appears in OntoNotes. Finally, only those lemmas that are very frequent in the
domain sentences and only rarely used in OntoNotes (i.e. in which the ratio between
the two frequencies is higher than a given threshold empirically set) are considered as
“in domain".

To clarify, this method identi es as “in domain" verbs like “cauterize", “detubolarize"
and “extraperitonealize" , because they are frequent in surgery and rarely used in gen-
eral English, and therefore the ratio between the frequencies of these verbs in the two
domains is very high. On the other hand, the method recognizes verbs such as “need",
“aid" and “see"as general English because they appear in the two corpora with similar
frequencies.

Framing of domain-actions

The processes described allow to obtain a list of domain verbs and nominalized verbs
associated with a list of SPKS sentences where they are used. Domain experts then an-
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Fig. 5.2. XML le for the “approximate" lemma. It contains the number of the frame
(02), with its informal de nition (  to come near in position, to bring near ). It then enu-
merates a list of semantic core roles (numbered from 0 to 4) and provides an annotation
example.

alyze each lemma and the respective sentences to understand which of the categories
described in Table 5.1 the lemma belongs.
The framing was performed by three linguistic experts with a 3-year of experience in
the robotic-surgical domain and validated by a clinician. All frames are collected in XML
les. Figure 5.2 is an example of the corresponding XML leforthelemma  approximate .
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In the case MISSING_LEMMA, the lemma is not present in PropBank, and thus it is an
unknown word for the resource. Domain experts, therefore, perform the following ac-
tions:

() they add the new lemma to the resource;
(i) they add a new frame to the inserted lemma,;
(iii) they provide a textual de nition of the meaning of that lemma in the surgical do-
main taken from online medical dictionaries, in particular, Webster Dictionary
The Free Medical Dictionary ?;
(iv) they add appropriate semantic core roles;
(v) they add at least one example of SRL-style annotation for the new frame

Land

In the case MISSING_FRAME, the lemma is already in the resource but with inappro-
priate frames. In this case, domain experts perform only steps (ii)-(v).

In the case MISSING_ROLE, the lemma is already in the resource with an appropriate
frame but with an inappropriate set of core roles. In this case, steps (iv-v) are performed.

Finally, in the case PRESENT, the lemma is already in the resource, with an appropri-
ate frame and core roles. None of the previous steps are performed.

During step (iv), a role is considered as core if arguments playing that role occur
with high frequency in the corpus' sentences that use that lemma (i.e. it is present in
more than 50% of sentences where the lemma is used) ° or, independently of its usage
in the corpus, if it is considered fundamental by domain experts for interpreting and
representing the action.

Framing effort

The framing step is quite expensive because itis carried out manually by personnel who
must have expertise both in linguistics (SRL annotations in PropBank style) and in the
robotic-surgical domain. The framing step took about 80 hours to be completed.

5.3.2 The Robotic Surgery Procedural Propositional Bank

This section presents the annotation process of sentences from the robotic-surgical do-
main according to the frames and roles de ned in RSPF. SRL is traditionally framed as

1 https://www.merriam-webster.com/medical

2 https://medical-dictionary.thefreedictionary.com

31 for a lemma the associated sentences are less than 5, experts are instructed to retrieve additional examples
through a web search.
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either a dependency-based [156] or a span-based [89] labeling task. Given a predicate
in a sentence, the difference between the two settings is in the formalism used to repre-
sent its arguments. Span-based SRL requires the identi cation and classi cation of the
entire textual span of an argument, whereas dependency-based SRL is concerned with
labeling only the head of the argument. In the dataset developed in this work, sentences
are annotated in span-based fashion.

The team

A team of four people with different roles carried out the annotation process. In more
detail, the team is composed by:

» Two annotators. They are bachelor's students of linguistics. During their studies,
they have already encountered issues related to the semantic annotation of cor-
pora and successfully passed the relevant exams. However, they never delved into
PropBank-style annotation. They have excellent knowledge of the English language
(C1 language level) but do not know the medical domain. They were involved in the
project with a student collaboration contract of 150 hours each. They were exclu-
sively concerned with the annotation work.

» The project leader. He is a Ph.D. candidate in computer science. He deals with NLP
issues applied to medicine. He has the same English language level as the annota-
tors. He was in charge of training, coordinating, and revising the annotation team
by answering doubts, re ning the guidelines based on annotation errors, and set-
ting up the annotation tool.

» The surgeon. He responded to the doubts collected and presented by the project
leader.

The two annotators annotated the total number of the sentences with the following
proportions respecting the needs and timing of each: the rst one annotated approxi-
mately 65% of the sentences while the second the remaining 35%. During the annota-
tion, the project leader revised approximately 1/5 of their annotations to nd recurring
errors and improve the guidelines accordingly. The annotators processed and labeled
a different number of sentences at the same time: this shows that the task, due to the
high concentration and the fatigue load, lends itself to being carried out differently ac-
cording to human characteristics and skills. Due to cost reduction strategy and nancial
possibilities, the surgeon was just involved in answering doubts instead of having him
participate directly in the annotation process.
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Text to annotate

The team annotated sentences of different surgical procedures taken from an extended
version of the procedural part of the SPKS dataset. The sentences vary signi cantly in
the writing style: the procedure descriptions are essential and schematic in some cases,
while longer sentences enriched with background information are used in others. In
total, we relied on 1,559 annotated sentences describing 28 surgical procedures of four
different robotic-surgery sub-domains. All the sentences are, therefore, procedural in
the sense described in [18]. Approximately 80% of the sentences are taken from robotic-
surgery textbooks describing how-tos of surgical procedures, while 20% from academic
papers or case reports dealing with academic research on surgical procedures or de-
scriptions of real interventions on speci c patients.

Training process

Despite having basic knowledge of linguistics and semantic roles annotation, the anno-
tators did not know the PropBank style of annotating text spans. In the rst step, during
two workshops of one hour each, the project leader introduced the annotators to the
project, the ultimate purpose of these annotations, PropBank and PropBank style SRL
annotation, and the annotation tool.

At the end of these workshops, the annotators were asked to annotate 15 general
English sentences of increasing complexity following the PropBank annotation guide-
lines. In the end, the annotation was evaluated by the project leader. The process was
repeated with new sentences until a 90% inter-annotator agreement with the project
leader was reached, following a similar approach to the one presented in [157].

Then, the project leader introduced RSPF to the annotators, focusing on the differ-
ences compared to PropBank. The same annotation experiments were conducted, but
this time on surgical domain sentences instead of general English ones. Although the
annotation guidelines are similar, this experiment was intended to measure the anno-
tators' understanding of the surgical text. The project leader analyzed and discussed
the errors of the annotators and re ned the guidelines providing them with more ex-
planations to Il the doubts until an 85% inter-annotator agreement with the project
leader was reached.* Both arguments labeling and the choice of predicate’s meaning
were evaluated.

4 We targeted a lower threshold for the agreement to balance the high speci city of the surgical domain and the
annotation costs.
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Then, during the actual annotation of the whole dataset, the project leader analyzed
20% of the sentences of the two annotators and organized weekly meetings with them
to discuss possible mistakes and answer their doubts. The annotators were then asked
to revise the labeling if needed be and to double-check the previous annotations in light
of the new indications.

At the end of the dataset annotation process, 60 SPKS sentences were assigned to
both annotators, which were asked to annotate them in parallel without confronting
each other. The inter-annotator agreement on these annotations was nally calculated
on predicates and argument labels (score reported and discussed later in this section).

The annotation tool and post-editing technique

To reduce the annotation effort, a semi-automatic annotation approach was adopted.
Ina rststep, the dataset was processed with a general English span-based SRL tool [158]
for automatically obtaining PropBank annotations of the sentences in CoNLL-2012 for-
mat.

The annotations thus automatically obtained were uploaded on a server running
Inception [61], a tool supporting SRL-style text labeling. Inception has been set up to
allow user-friendly SRL annotation of the sentences. The annotators were asked to post-
edit and revise the PropBank annotations according to RSPF and the guidelines. That
is, instead of having to annotate the sentences from scratch manually, the annotators
were asked to revise (i.e. adding missing annotations, deleting incorrect annotations,
changing wrong PropBank frames and roles to appropriate RSPF ones) the automati-
cally provided candidate annotations, so to reduce the annotation workload substan-
tially.

Figure 5.3 shows an excerpt of the tool's graphical user interface with an example
of annotation and the corresponding content in CoNLL-2012 format, which is directly
readable by state-of-the-art SRL methods.

Annotation process and guidelines

The RSPB dataset follows the PropBank style of annotating predicates and semantic
arguments (c.f. 2.6.2). Accordingly, similarly to PropBank, our corpus is a collection of
sentences with verbs and nominalized verbs annotated with the corresponding frame-
set in RSPF, together with their related arguments labeled with semantic roles.
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Fig. 5.3: On top, annotation example of one sentence through Inception tool graphi-
cal interface. In red are predicate annotations, while in yellow are arguments related to
the corresponding predicate. The annotation is nally exported in CoNLL-2012 format,
and it is directly processable by state-of-the-art SRL tools. Of the CoNLL-2012 elds,
only the following columns have been annotated: the 3rd (identi cation number of the
token), the 4th (list of tokens in the sentence), the 7th and 8th (predicate and corre-
sponding frame number), and from the 12th to the second-last containing CoNLL-2012
annotations. In this sentence, three predicates are present: the rst (minimize.01) is
linked with only one argument (Argl), the second (place.01) with two (ArgM-PRP, Arg1,

and Arg2), and the third (place.01) with two (Argl and Arg2) whose meanings are con-
tained in RSPF.
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These semantic arguments are labeled according to some prede ned categories (e.g.
Arg0, Argl, Arg2) whose speci c meaning typically varies according to the predicate
considered. The set of roles of each predicate is outlined in the corresponding RSPF
frame that gives both semantic and syntactic information about each sense, together
with correspondences between the number and semantics. Numbered arguments (e.g.
Arg0, Argl, Arg2) re ect either the arguments that are required for the valency of a pred-
icate (e.g. agent, patient, benefactive) or those that occur with high frequency in actual
usage (e.g. instrument, surgical technique, important spatial constraints) as explained
in Section 5.3.1. In addition to numbered roles, RSPF also adopts the same modi ers
of PropBank (e.g. ArgM-TMP, ArgM-PRP). The annotation of sentences with this infor-
mation creates a dataset, which is then used as training and testing data in Chapter
6. However, for the annotations to be reliable, following a rigorous annotation process
and precise guidelines is necessary (c.f., 2.2.3). Since our corpus is a specialization of
PropBank to the surgical domain, it inherits a good part of the annotation guidelines
from it.

The main tasks of the Robotic-Surgery Propositional Bank annotation are:

(i) to identify the predicates of the sentence if not already labeled by the automatic

tool.

(ii) to choose a sense in RSPF for each predicate or verify if the one automatically as-
signed is correct;

(iii) to label core arguments for each predicate or verify if the labels automatically as-
signed are correct.

(iv) to label modi ers arguments if present or verify if the labels automatically assigned
to them are correct.

For each sentence, step (i) is related to the predicate-level annotation. The annota-
tors have to check the correctness of the automatically identi ed predicates and iden-
tify missing annotations (i.e. predicates not tagged as such by the automatic tool). If
the algorithm has marked as a predicate a token that does not cover this role, it must
be removed with all the annotations of the related arguments. This case is relatively
rare since state-of-the-art algorithms tend to have a rather high ability to identify pred-
icates. Examples that can sometimes mislead algorithms are those that contain highly-
specialized domain expressions such as running suture , which in surgery indicates a
particular technique for closing the deep portion of surgical defects under moderate
tension, while an algorithm not trained in medical language could interpret it as to run
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verb. Furthermore, the tool we used for automatically generating the candidate anno-
tations also annotated modals and copulas. The annotators were asked to remove them
(as verb) since for procedural knowledge extraction, i.e. the extraction of surgical ac-
tions and semantic arguments linked to them, we deemed them not relevant. Annota-
tions of the modals have been kept however at the modi er argument level (with argu-
ments ArgM-MOD) because they can be helpful to specify the obligatory nature of the
corresponding action. Finally, in this step, some nominalized verbs, i.e. nouns that re-

fer to actions, have been annotated as predicates. At this point, step (i) is nished, and
annotators continue with step (ii).

Step (ii) is still related to the predicate level. At this point, the annotators have a list of
predicates to disambiguate using the corresponding RSPF le. For most of the general
English predicates, the automatic tool will have already proposed an appropriate sense
which must only be veri ed by the annotators. If for it RSPF distinguishes two or more
verb senses, annotators are asked to choose the one that best suits the context. Some-
times, the process is straightforward because RSPF has only one available sense. This
is the case of mono-sense predicates, either speci c to the surgical domain (e.g.  skele-
tonize, detubularize or kocherize) or general English ones (e.g. accomplish or avoid). In
other cases, the disambiguation is more complex because there are multiple senses in
RSPF Cases of this type can be further divided into two sub-categories:

» one of the lemma’s senses is speci cally used just in the surgical domain, while the
other general English senses are rarely used in surgical procedural texts. An example
is the lemma grasp, for which RSPF has two senses: grasp.01: “to take hold of, com-
prehend" clearly related to a general English usage; grasp.02: “to clasp or embrace
especially with the ngers or arms" speci c to the surgical use. In this case, the dis-
ambiguation is typically straightforward, as the general English sense is not or only
rarely used in surgical text;

 the lemma has both general English and surgical-speci ¢ senses that may both oc-
cur in surgical procedural texts. An example isthe lemma  follow , for which RSPF has
9 senses. Although sense 09“maove behind in the same direction" has been added for
surgical purposes, other general English senses are also used in surgical texts, for ex-
ample, the 01. “be subsequent, temporally or spatially” . The disambiguation in these
cases is more complex, and the annotators are asked to re ect well on the meaning
of the sentence, comparing it with available examples in RSPF, and to discuss with
the project leader if necessary.
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During step (i), occasionally, annotators may come across predicates that do not yet
have an existing entry in RSPFE.° In these cases, annotators are instructed to contact
the project leader to describe the situation and report the corresponding dataset's sen-
tence. The project leader analyzes the corresponding sentence and lemma, and then he
decides whether to add this lemma to RSPF (because it is alemma with a surgical sense
that was not covered in the initial construction of RSPF) or to ignore the case (when
the lemma is only a rarely used surgical slang). The project leader may also consult the
surgeon to make an informed decision.

Once the correct meaning of a predicate has been identi ed, annotators proceed
with step (iii), the argument-level annotation. While Arg0 is typically relative to the one
who performs the action and Argl is typically relative to the one who undergoes it, for
the other numbered arguments RSPF has to be checked more carefully. The annotators
have to analyze all the arguments (both core and modi er) automatically identi ed by
the tool, as well as possible arguments in the text not annotated by the automatic pre-
processing, which are then added from scratch by the annotators. For core arguments,
if the annotation label is incorrect, the most appropriate numbering must be inserted.
For the arguments automatically labeled as a modi er, the annotators have to check if
a more appropriate core role is available in the roleset of the frame and if so, to replace
the modi er with it.

Since the tool used for obtaining the rst draft of the annotations is trained on gen-
eral English text, i.e. it does not know the RSPF-speci ¢ frames and roles added in the
extension of PropBank, the case of spans annotated automatically with a modi er (for
PropBank) instead of core role (for RPSF) is quite frequent. Two examples follow:

 In the sentence “The proximal rectum is grasped using laparoscopic forceps." , a
PropBank-based SRL tool will likely recognize *“using a laparoscopic forceps" as a
generic ArgM-MNR entity while in RSPF, the instrument that should be used to grasp
something is labeled as Arg2 of the sense 02 of the lemma grasp.

* In the sentence “The gastric pouch is created using a perigastric technique." , a Prop-
Bank based SRL tool will likely recognize “using a perigrastric technique” as a generic

5 In some cases, this situation may occur due to some lemmatization error of the automatic SRL tool providing the
candidate annotations, something that the annotators can easily x by choosing the correct lemma and sense in
RSPE
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ArgM-MNR entity, similarly to the previous example, while in RSPF, the surgical
technique is identi ed with the core role Arg5 of the sense 01 of the lemma  create.®

RSPF contains annotation examples to help annotators. In most cases, choosing a
role is straightforward, given the verb-speci c de nition of the label in the frame les.
However, it may be dif cult to understand how to annotate a span of very specialized
text in some cases. The annotators must decide between the available labels basing
either on the explanations/examples provided in RSPF or by searching online for the
meaning of unknown domain words. If the doubt persists, the project leader is con-
sulted.

During step (iv), for modi er arguments not to be translated into an RSPF core role
according to step (iii), annotators are asked to verify whether the annotations proposed
by the automatic tool are consistent with the guidelines of the original PropBank and if
not to correct them. RSPF does not add new modi er tags to PropBank, so no changes
to its guidelines were necessary for these aspects.

Regarding which token to include in the span of the annotation (c.f., span bound-
aries) and corresponding exceptions, the same indications as in PropBank's guidelines
are given to the annotators.

Inter-annotator Agreement

Agreement between the two annotators has been measured at the end of the process
on a sample of 60 sentences annotated by both, using the kappa statistic (c.f., 2.2.3).
The kappa statistic has been computed for predicates and arguments, obtaining the
values 0.89 and 0.88, respectively. These values denote an almost perfect level of agree-
ment between the annotators, reassuring of the adequacy of the annotation process
and guidelines.

Annotation effort

The training and annotation process required a total of 450 hours. Each annotator was
employed for 150 hours. In particular, the annotators were asked to annotate for a max-
imum of 1 hour per session to reduce errors due to fatigue or boredom from the repet-
itive task. The project leader coordinated the annotation work for another 150 hours.
6 These two examples show one of the bene ts of RSPF over PropBank, for the surgical domain: it allows to bet-

ter discriminate, with speci c core roles, instruments, and techniques, two substantially different entities in the
surgical domain, which otherwise will be indistinguishably merged in the ArgM-MNR modi er role in PropBank.
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In total, the whole process required 6 months to be carried out. Additional effort was
required to set up the annotation tool and write down the guidelines' rst version.

5.4 The Robotic-Surgery PropBank

Both the framebank and the dataset resulting from the annotation process described

in Sections 5.3.1 and 5.3.2 are publicly available. ” This section presents and discusses
some statistics about them. In more detail, Section 5.4.1 presents RSPF, while 5.4.2 the
annotated dataset.

5.4.1 The framebank (RSPF)

Table 5.3: Semantic type of the core roles added to modi ed lemmas.

Type Description Subtype Number
Core-role roles indicating who (or what) performs the action and who (or what) instead un- Agent 44
Who and What dergoes it. Often they respectively coincide with the robotic or the human operator and the
anatomical part that is object of the action. Patient 46
Core-role arguments indicating how the action is performed by specifying the surgical tech- Manner or technique 36
How nique or the manner to follow to carry out the action, or the instrument to use.
Instrument used 30
Where 22
Core-role arguments specifying different kind of spatial information to know during the ex- Through 9
o . ecution the corresponding action. These core-roles reply to questions “where?" or “through i .
Spatial information which passage or port?" or “starting from where?" or “ending where?" or nal other frame- Starting point 2
speci ¢ information such as orientation or spatial constraint to follow for safety reasons.
Ending point 4
Other 32
Core-role argument explicitly describing the purpose of the main action. It is inserted as
Purpose core-role only if very frequently present in our sample sentences. - 6
Other Core-roles very speci ¢ to a particular lemma and thus not tting in any of the above classes. _ 13

Using the method described in Section 5.3.1, 252 lemmas have been analyzed. At
least one modi cation among those described in Table 5.1 has been requested in 109
cases. In particular, of the 252 analyzed lemmas, 24 belong to MISSING_LEMMA case, i.e.

7 https://gitlab.com/altairLab/robotic-surgery-propositional-bank
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new lemmas (verbs or nouns) that describe very speci ¢ actions of the surgical domain

not yet present in the original PropBank have been added. 22 lemmas belongto  Miss-
ING_FRAME case, i.e. new senses have been added to existing lemmas describing mean-
ings not already covered by PropBank. Finally, 63 lemmas suffer from  MISSING_ROLE
problem, and thus corresponding existing predicate’'s sense has been enriched with new
semantic roles frequently used in robotic surgery. Considering the new lemmas added,
new frames added to existing lemmas, and the new core roles added to existing frames,

a total of 244 core roles have been inserted. Table 5.3 shows the semantic type of core
roles added for the robotic-surgical domain lemmas. The table considers all core roles
added, both in existing frames and in new frames: while the number of core roles added

in the rst row of the table is quite high, most of them are due to MISSING_LEMMA and
MISSING_FRAME, i.e. from frames not yet present in the original PropBank.

The nature of the semantic roles inserted highlights that, in the surgical procedural
language, it is of utmost importance to indicate for each action that describes an op-
eration, who or what performs the action (Arg0), the anatomical part that undergoes
the action (often Argl), the instrument with which to perform the action, the surgical
technigue to adopt, the purpose, and a series of spatial information that helps locate
the target anatomy within the human body. Overall, the number of newly introduced
and modi ed lemmas and frames indicates that the extension of PropBank to cover
the robotic-surgical domain is substantial and that procedural surgical language differs
from general English in terms of both predicates used and the roles required.

5.4.2 The Annotated Dataset
Dataset-level statistics

Following the annotation process and guidelines described in Section 5.3.2, the rstan-
notated dataset speci ¢ for SRL of robotic-surgery textbooks was obtained. 28 surgical
operative descriptions have been annotated for 1,559 sentences and 32,448 tokens. The
obtained dataset is composed of 12,202 annotations. Of them, 3,601 are predicate-level
annotations, and 8,601 are argument-level annotations, both core, and modi er. Figure
5.4 shows more detail about this dataset's distribution of core and modi er arguments.

A high percentage of the modi er arguments (left side of the gure) in the annotated
dataset is covered by TMP. It provides temporal relationships between predicates, and
thus, it is helpful to give a chronological order to the actions that must be performed
for the correct execution of the robotic-surgical procedure. There are also many tokens



5.4 The Robotic-Surgery PropBank 95

annotated with the MOD label: mostly tokens likes “can”, “must”, “might", “may", and
“would" are annotated in this way. Specifying these arguments is helpful for extract-
ing information on the mandatoriness of surgical actions or events that may occur in
certain circumstances. Finally, other frequent modi er arguments are MNR, which en-
rich the corresponding predicate with generic information about how action should
occur, and ADV, which in our dataset primarily identi es the span of texts containing
conditional operators (if, then, else, or otherwise). Identifying spans of text tagged with
this label is crucial for automatically reconstructing a work ow from text, i.e. to repre-
sent the surgical process in a more structured and schematic way, as con rmed in the
use-case of Chapter 7. The remaining arguments describe spatial, purposeful, or other
information not labeled with any core role.

The most frequent core arguments in the dataset (right side of the gure) is Argl.
Unlike the other core arguments, it has well-de ned semantics. It plays the role of pa-
tient, i.e. the object that undergoes the action described by the predicate to which it
belongs. Also, Arg0 has a well-de ned semantic in most verbs (i.e. the agent who per-
forms the action described in the corresponding predicate), but it is not so frequent in
this dataset. This observation was also made in [139]: in most cases, the agent did not
occur in sample sentences as most actions in procedural language are described in a
passive voice, and the agent in operative notes or procedural textbooks that is typically
the surgeon, the assistant, or the robot is omitted from the text. There is no well-de ned
semantics for the core arguments of higher numbers since it varies according to the
frame considered. However, Arg2, Arg3, and Arg4 are also frequent and often associated
with a surgical instrument, technique, or spatial information.

Procedure-level statistics

As stated before, 28 different robotic-surgery descriptions have been annotated. The
average number of sentences per procedure is approximately 56. The shorter descrip-
tion is 10 sentences long, while the longer one comprises 123 sentences. These val-
ues are very different from that of other procedural descriptions. For example, in [159],
a dataset of nano-material synthesis procedural descriptions is presented, and they
reported 9 sentences per procedure on average. In [160], procedural corpora about
kitchen and automotive domains were presented, and an average of 12 sentences per
description was reported. This means that the robotic-surgical procedures described in
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Fig. 5.4: Arguments-level annotations. The pie-chart in the center shows the distribu-
tion of semantic arguments between modi er, core and referent (i.e. core argument in
cases of co-reference) in our annotated dataset. In total, annotated 5,777 core argu-
ments, 2,759 modi er arguments and 65 referent of other core arguments.

textbooks can be much longer and more detailed than the procedural descriptions of
other domains and sources, at least the ones considered so far in the literature.

Finally, our procedures have a mean of approximately 129 predicates (with a mini-
mum of 21 and a maximum of 257) and are composed of a mean of 1,161 tokens (with
a minimum of 201 and a maximum of 2,457).

Sentence-level statistics

A sentence of the robotic-surgery procedural domain has 2.31 predicates on average
(minimum is 1, and the maximum is 9) and is composed of 5.52 arguments on average
(minimum is 1 and the maximum is 20). Finally, it has 20.81 tokens on average (mini-

mum is 5, and the maximum is 81). This last value can be compared with [159], where
the authors observed that a sentence for nano-material synthesis has 26 tokens on av-
erage, and with [160], where the authors reported that a procedural sentence of the
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kitchen or automotive domain is composed of 12 tokens on average. Also, this compar-

ison suggests that depending on the domain, author, source, and purpose, more or less
complex procedural sentences exist, and those from robotic-surgery textbooks tend to
be among the most complex ones.

Predicate-level statistics

In total, this dataset uses 452 different predicate labels. Of them, 410 are used with only
one sense, while 42 can have different meanings. In more detail, 100% of MISSING_LEMMA
lemmas are mono-sense, meaning that there are not multiple surgical senses for very
specialized domain lemmas; furthermore, approximately 70% of  MISSING_FRAME lem-
mas and 85% of MISSING_ROLE lemmas are used with only one sense in our dataset.
These statistics show that the procedural surgical language extensively uses mono-
sense predicates. Furthermore, even for lemmas with multiple senses available in RSPF,
one is typically used much more frequently in the robotic-surgery domain than all the
other senses. More in detail, for each predicate p presentin the dataset with at least two
different meanings, denoting with  ®, the frequency of the most common sense for the
analyzed predicate with respect to the total number of occurrences in the dataset, we
observe that ®j is on average 0.77: that is, the most frequent sense is used in almost 8
times out of 10 of the occurrences of that predicate in the dataset, con rming that also

for polysemous RSPF lemmas, only one sense is mainly used in the dataset.

Table 5.4 shows examples of predicates, with the speci cation of the number of
senses with which they appear in the dataset, together with the information on the most
frequently used sense and the corresponding percentage of occurrence.

Finally, from a tenses point of view, approximately 56% of annotated predicates are
in the passive or past tense, 25% are in a present or imperative tense, 14% in present
participle or gerund form, and 5% in a nominalized form.

5.5 Conclusions

This chapter presented the rst annotated resource for improving robotic-surgical NLP.
The dataset consists of a corpus collecting sentences from textbooks and academic pa-
pers describing different robotic-surgical procedures that have been manually anno-
tated in the PropBank-style exploiting an extension of its framebank. In detail, the con-
struction of the dataset followed two steps: in the rst one, a framebank speci c to the
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Table 5.4: Examples of 10 different predicates with the indication of the number of
senses with which they appear in the dataset (S-text), the number of senses in the RSPF
(S-RSPF), and the reference to the most frequently used sense with the corresponding
percentage of occurrence.

Lemma |S-text|S-RSPHKMost frequent sense (% of occurrence)

Follow 4 9 [01] be subsequent, temporally or spatially (60.98)
Come 3 9 [01] motion (60.00)

Pass 3 11 |[08] push through a passage (91.18)

Keep 3 6 [04] maintain some prepositional relationship (54.55)
Use 2 3 [01] to take advantage of, utilise (99.67)

Locate 2 2 [01] (cause to) be located in (66.67)

Introduce 2 3 [03] To put or place into something, to insert into (99.92)
Start 2 5 [01] Start (99.94)

Stop 1 3 [01] Stop, putting a stop to (100.00)

Enter 1 2 [01] Enter, go in (100.00)

surgical domain (RSPF) has been de ned. In the second step, RSPF was applied to man-
ually annotate sentences, taken without modi cation, from robotic-surgical texts. The
annotation was performed at two levels: predicate level, where predicates are identi ed
and disambiguated with respect to RSPF, and arguments level, where the same tasks
are performed for the semantic arguments of each predicate. To perform the annota-
tion, a team of collaborators with different roles has been engaged: two annotators, one
project leader, and one clinician for nal validation. The annotators were duly trained

on PropBank, SRL, and RSPF, with theoretical workshops and an iterative training pro-
cess. The resulting resource is used in the next Chapter to develop a SRL model speci ¢
for the procedural robotic-surgery domain.
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Extracting procedural knowledge in surgical
textbooks

"Who, What, Where, When, With what, Why, How."

The seven circumstances, associated with Hermagoras
and Aristotle

6.1 Introduction

As stated in Chapter 1, extracting procedural robotic-surgical knowledge directly from
textbooks is an opportunity towards the development of autonomous surgical robots
that could automatically build or extend a proper surgical knowledge-base, reasoning
with it in realistic intervention scenarios. Also humans could bene t from it for ques-
tion answering applications, usable for example in an early learning phase by medical
students.

In the previous chapter we presented a framebank and the corresponding dataset
containing procedural robotic-surgery sentences annotated with semantic roles, named
RSPB. In this chapter, we use RSPB to train an SRL model thus proposing a rst bench-
mark on extracting detailed surgical actions from available robotic-surgery procedu-
ral textbooks and papers. Exploiting R oBERTA, BIoM EDROBERTA and SURGICBERTA
(c.f. Chapter 3) pre-trained language models, we rst investigate a zero-shot scenario
(i.e. the scenario where no additional SRL-annotated domain-speci ¢ data is used) and
compare the obtained results with a full ne-tuning setting (i.e. the scenario where
SRL-annotated domain-speci ¢ data is used). In the assessment, we explore different
dataset splits (one in-domain and two out-of-domain) and we investigate also the ef-
fectiveness of the approach in a few-shot learning scenario (i.e. the scenario where only
a portion of the SRL-annotated domain-speci ¢ sentences is used for training).
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In more detail, we compare all the considered and contributed models in an exten-
sive quantitative evaluation, concretely investigating the following research questions:

* RQ1: How well can general-English and bio-medical pre-trained language models
perform SRL on surgical annotated texts without resorting to supervised learning
(i.e. zero-shot learning)?

* RQ2: Does ne-tuning on surgical annotated texts substantially improve the perfor-
mance with respect to the zero-shot setting using off-the-shelf models available in
the literature?

* RQ3: How many annotated data are needed to attain substantial improvements via
supervised learning for this task (i.e. few-shot learning)?

* RQ4: Does further unsupervised learning of pre-trained language models (as in
SURGICBERTA) help to better understand surgical language?

* RQ5: Are the SRL models able to generalize over different surgical sub-domains?

Besides exploiting the standard evaluation measures for the SRL task, we also propose
a new way for evaluating SRL systems, based on the joint disambiguation of argu-
ments and predicates, i.e. on the correct disambiguation of semantic arguments with
respect to the correct framing of the actual predicate. Results show that the ne-tuning

of SURGICBERTA on the SRL task allows to achieve the highest performance on all splits
and on all sub-tasks.

6.2 State of the art

While the eld of biomedical NLP has a long history — see, among others, [161] for an
overview and the proceedings of the long-standing ACL Workshop on Biomedical Lan-
guage Processing [162] for up-to-date contributions — to the best of our knowledge, no
works have tackled so far the problem of extracting procedural knowledge from surgical
books or academic papers.

Nevertheless, the literature includes various approaches for extracting relevant in-
formation from medical or surgical operative notes using NLP or extracting procedu-
ral information from other non-surgical domains. Consequently, this section overviews
relevant previous works in two different related areas: the rst part discusses recent
relevant applications of NLP techniques to the bio-medical and surgical domains; the
second part presents papers dealing with the extraction of procedural knowledge from
texts, considering also domains other than the bio-medical one.
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Application of NLP techniques to bio-medical domains.

This paragraph summarises some recent and relevant applications of NLP techniques
to bio-medical and surgical domains. In [163], the authors use logistic regression with
unigrams and unique concept identi ers from the uni ed medical language system to
automatically predict the severity of chest injury after trauma from clinical notes. [164]
proposes rule-based NLP algorithms to automatically extract surgery-speci ¢ data ele-
ments (category of knee arthroplasty, laterality, constraint type, whether patella resur-
facing was performed or not, and implant model numbers) from knee arthroplasty
operative notes: the main objective was to decrease the need for costly manual chart
review and to improve data quality using NLP techniques. In [165], they use informa-
tion extraction techniques applied to operative notes to detect the presence of variables
associated with periprosthetic joint infection, including the growth of cultured organ-
isms, documentation of in ammation, presence of sinus tract, and purulence. In [166],
the authors use an extreme gradient boosting NLP machine learning algorithm [167]
for automated detection of incidental durotomies in free-text operative notes of pa-
tients undergoing lumbar spine surgery. The clinical goal is to automatically survey the
incidental durotomy that could be potential implications for postoperative recovery,
patient-reported outcomes, length of stay, and costs. In [113], the authors address the
detection of procedural knowledge in MEDLINE abstracts. In their work, procedural
knowledge is de ned as a set of unit procedures (each consisting of a Target, Action,
and Method) organized for solving a speci ¢ purpose. The proposed solution works
in two steps. First, support vector machines and conditional random elds are com-
bined for detecting sentences (purpose/solution) that may contain unit procedures,
feeding them with content (unigrams and bigrams), position (sentence number in the
abstract), neighbor (content features of nearby sentences) and ontological features (us-
age of terms from reference vocabularies). Then, sequence labeling with CRFs is per-
formed to identify the components of unit procedures. In [168], the authors propose an
NLP approach to automatically label right ventricular dysfunction size, and the func-
tion [169] from echocardiographic free text reports. In particular, manually annotated
written reports were used to ne-tune a 12-layer BERT model pre-trained on a large
dataset. The remaining written reports are used as test material. The extracted labels are
nally used to annotate image data, training a 4-layer 3D convolutional neural network.

In [170], NLP is used for adverse event detection from radiology reports and follow-up
telephone call notes. In particular, hip dislocation after a primary total hip replacement



102 6 Extracting procedural knowledge in surgical textbooks

[171] is used as a case study. Radiology reports are manually labeled into three cate-
gories (current dislocation, evidence of previous dislocation, and no dislocation). In
comparison, telephone notes are organized into two categories (evidence of previous
dislocation and no dislocation). Then, the performance of different machine learning
and deep learning models is compared. In [172] is observed that textual radiology re-
ports contain relevant information for determining the likelihood of radiology signs of
COVID-19inthe lungs. Machine Learning NLP approaches and SNOMED-CT reference
terminology [173] are thus adopted to detect COVID-19-related disorders within radi-
ology reports automatically.

These studies are examples of NLP applications in the medical domain. However, the
texts' typology differs remarkably from ours: they mainly analyze medical notes, often
written in highly structured language or abstracts, while we analyze free-text technical
manuals or papers. Finally, the purpose is different: our goal is to lay the foundations
for extracting a synthetic work ow by mining descriptions of surgical procedures abun-
dantly available in the literature, while theirs is mainly focused on helping surgeons or
assistants to analyze available data.

Procedural knowledge extraction.

More similar in terms of the overarching goal but more diverse in the application do-
main are the studies that, similarly to our work, propose approaches for extracting pro-
cedural knowledge for domains other than the biomedical one. In Chapter 4 we already
presented some of these papers for the related problem of procedural sentence detec-
tion, but this paragraph explains their contributions to the procedural knowledge ex-
traction one. In [22], the authors tackle the problem of procedural knowledge extrac-
tion in technical documentation as a multi-class classi cation task using Support Vec-
tor Machine with linguistic and structural features, but they do not extract sentence-
level procedural entities, such as words expressing actions, agents, or instruments. The
authors of [23] address the mining of cooking recipes and maintenance manuals, for-
malizing the task into the multi-grained text classi cation task: rst, they detect pro-
cedural sentences, then they recognize their semantics (procedure begins or ends and
successive, optional and concurrency relations), and nally they assign semantic roles
(only action's executor, action name and direct object are considered) to words in a
procedural sentence. They adopted a deep learning model that encodes BERT word
vectors extracted from input sentences using a BI-LSTM to capture inherent clues in a
sentence and a CNN to capture local ngram features. A multi-layer perceptron module
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is nally used to perform the word-level predictions. Recipe for nanomaterials' synthe-
sis has been mined in [24], where, after having classi ed each sentence as relevant or
non-relevant, they adopt a rule-based parser to extract recipes, i.e. a set of speci ¢ ac-
tions that are applied to a set of recognized base materials during the synthesis of nano-
materials. In [25], the authors address the problem of extracting repair instructions in
user-generated text from automotive web communities. In particular, they use ngrams,
domain-speci c lexical features (e.g. text length, readability index, occurrences of enu-
merations and URLS), and syntactical features to feed several machine-learning meth-
ods. Their goal is to classify texts as containing repair instruction or not, and thus they
do not deal with sentence-level procedural entity extraction. In [26], the authors ex-
tract procedural information in technical support documentation, where procedures
are typically described using lists. They aim at extracting decision points within pro-
cedures, identifying blocks of instructions corresponding to these decision points, and
mapping instructions within a decision block. To do it, they developed a manually an-
notated dataset and exploited parse-tree-based syntactical rules. Also, the authors of
[27] address the extraction of procedural knowledge from structured instructional texts,
exploiting nite-state grammars. In particular, they aimed to extract procedural entities
such as conditions, actions verbs, agents, instruments, and temporal or spatial parame-
ters. Furthermore, recent deep-learning-based NLP techniques have recently been ap-
plied to extract business processes from Standard Operating Procedure documents [28].

All these works address the extraction of procedural knowledge from written text and
are thus similar to our foreseen application, They, however, deal with typologies of tex-
tual content substantially different from the description of a surgical procedure. Trou-
bleshooting and product documentation, cocking recipes, maintenance manuals, and
repair instructions differ signi cantly from descriptions of surgical procedures. They
are different both from the terminological and structural points of view.

6.3 Method

We framed extracting procedural surgical knowledge from the text as an SRL problem
since SRL is also applied for information extraction in various biomedical domains [174,
175, 176]. The related theory about SRL is described in 2.6. In this chapter, we use the
PropBank-based SRL, exploiting the Robotic-Surgery Propositional Bank described in
Chapter 5.
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Figure 6.1 summarises the proposed approach.

Fig. 6.1: Overview of our approach for procedural surgical knowledge extraction. The
pipeline is composed of three stages (top to bottom): (i) the collection of surgical texts
from the web and a simple pre-processing (grey box - Chapter 3). (ii) Using the data
from the grey box, we adapt the R OBERTA pre-trained language model to the surgi-
cal domain, obtaining S URGICBERTA (right part of the blue box - Chapter 3); (iii) We
then ne-tune S URGICBERTA in a supervised way on the downstream SRL task using
general-English and RSPB datasets (red box - this chapter); S URGICBERTA thus learns
the surgical SRL task. (iv) With the performance evaluation step (green box), we evalu-
ate the obtained model on a further test dataset consisting of SRL-style annotated sur-
gical sentences (this chapter).
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We recall that the typical SRL task is composed of two sub-tasks. The rstisthe pred-
icate identi cation and disambiguation  task. It is aimed to identify each predicate in a
sentence, assigning it the appropriate meaning (i.e. sense in RSPF) in the given con-
text, among the available ones for that predicate lemma codi ed in the target lexical
resource. The second is the argument identi cation and classi cation  task. It aims to
detect the argument spans or syntactic argument heads of a predicate and assign them
the appropriate semantic role labels according to the target lexical resource.

As an example in the robotic-surgery domain, consider the following sentence, fo-
cusing on the verb “grasp":

“Using the cadiere grasper (robot arm #3), grasp the soft tissues along the lesser
curvature of the stomach to straighten out the Iga perpendicular to the celiac
axis."

In the predicate identi cation and disambiguation phase, “grasp" is recognized as a
predicate, assigning it the RSPF meaning of grasp.02: “to clasp or embrace especially with
the ngers or arms" , rather than grasp.0L “to take hold of, comprehend" . Then, in the
argument identi cation and classi cation phase, SRL produces the following output:

“[ Arg2: Using the cadiere grasper (robotarm #3)],[ grasp.02 grasp] [Argl: the soft
tissues] [Arg3: along the lesser curvature of the stomach to straighten out the Iga
perpendicular to the celiac axis]."

where, for the sense grasp.02in RSPF, Arg2 represents the “instrument used for grasp-
ing", Arglisthe “thing grasped”, and Arg3 identi es an “important spatial indication for
correct grasping”.

Another example for the verb “dissect" follows:

“The lymphatic tissue is dissected off with meticulous hemostatic and lymphatic
control, using bipolar electrocautery and hem-o-lok®clips, to improve visualiza-
tion."

is annotated as:

“[Arg-1: The lymphatic tissue] is [ dissect.02 dissected] off [ Arg-3: with meticu-
lous hemostatic and lymphatic control],[ Arg-2: using bipolar electrocautery and
hem-o-lok® clips], [ ArgM-PRP : to improve visualization.]"

where Arg-1 is the entity dissected, Arg-3 is the surgical technique, Arg-2 is the instru-
ment, and ArgM-PRP is the modi er role for purpose.
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6.3.1 The SRL neural architecture adopted

As stated in 2.6.3, SRL is traditionally performed with data-driven methods. Since re-
cent approaches leverage self-attention techniques [87] and Transformer-based archi-
tectures with pre-trained language models [88], in this work, we also follow this trend
and adopt a neural approach, thus addressing the SRL task in an end-to-end fashion
while testing different pre-trained language models. The pre-trained language mod-
els considered in this chapter are the state-of-the-art R OBERTA (described in 2.4.2),
BIOMEDROBERTA [177] and SURGICBERTA, the one we contributed in Chapter 3. In
particular, B IoM EDROBERTA is obtained from R 0oBERTA via continuous pre-training
on 2.68M full-text biomedical papers from S20RC [178]. This amounts to 7.55B tokens
and 47GB of data. With this con guration, we want to implicitly verify if the biomedical
domain is similar to the surgical one and if we can obtain performance improvements
by adopting a more accurate pre-trained language model than the generaldomain R 0-
BERTA. All pre-trained language models use the same transformer-based architecture
[33] and are trained with an MLM obijective.

The word representations learned in the pre-trained models have then been reused
for the SRL task through ne-tuning. In more detail, the SRL models used in this chap-
ter are instantiated on top ofthe R 0BERTA encoder (the same also used by B 10M EDRO-
BERTA and SURGICBERTA). At its core, the system is a standard BIO tagger whose ob-
jective is to assign a label of the form B-X(beginning of argument with role X), [1-X (con-
tinuing of argument with role X) or  O(not an argument) to the tokens of the sentence,
with respect to the considered predicate. Figure 6.2 illustrates the neural architecture
we use. First, we encode the input text using contextualized word embeddings for each
token using the pre-trained language model; we then use linear transformations of the
word embeddings to obtain a concatenated input for a two-layer ReLU, which is next
input to a linear layer followed by softmax activation to produce a probability distribu-
tion over labels for each word (to avoid over tting, a standard dropout layer [179] with
probability 0.5 is used). To capture the sequential dependencies between labels, we use
a standard CRF layer [180] to produce at testing the most probable label sequence using
standard Viterbi decoding.

For training and validation, the CoNLL-2012 dataset [90], alarge-scale ( » 318k anno-
tated SRL predicates), multi-genre general-English corpus, is used to train and validate
the “zero-shot" models, while RSPB dataset is used in combination with CONLL-2012 for
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the “few shot" and “full ne-tuning” models that will be described later. RSPB contains
four different robotic-surgery domains:

» Urology - 51.51% of the sentences;

» Gastrointestinal procedures - 24.82% of the sentences;
» Thoracic procedures - 13.02% of the sentences;

» Gynecology- 10.65% of the sentences.

We therefore used the CoNLL-2012 dataset to make the architecture learn the stan-
dard SRL task and RSPB to specialize the model to understand better the surgical lan-
guage and to perform the SRL task in the given surgical sub-domains.

Both datasets (CoNLL-2012 and RSPB) adhere to the PropBank way of annotating
predicates and semantic arguments. Evaluation is carried out on different test splits of
the robotic-surgery annotated dataset, detailed next in Section 6.3.2. Sentences of the
test sets were never seen during the training and validation phase.

In all experiments, we inform the model about the tokens playing the predicate's
role. Differently from [88], we do not use the gold frame sense since our purpose is also
to evaluate the model's ability to disambiguate the predicate meaning correctly. The
predicate disambiguation adopts a similar architecture.

6.3.2 Splits of the robotic-surgery annotated dataset

Due to the high computational costs needed for training, validating and testing the
SRL models, we adopted the classical evaluation protocol of manually splitting the
RSPB dataset into three components (train, validation, and test) instead of following
a more computationally demanding cross-validation protocol. More in detail, we split
the robotic-surgery annotated dataset into three different combinations:

» BAL.: the split train-test-validation is balanced between different surgical domains.
The procedures are split into train-test-validation, preserving the number of sen-
tences per domain (thoracic, gynecological, urological, gastrointestinal). Then, 80%
of sentences are used to train (10% of them are removed and used to validate the
dataset) and 20% as a test dataset. A similar approach is also used by [56].

* GYN: train and validation datasets contain all the sentences of thoracic, gastroin-
testinal, and urological descriptions. The test dataset contains only sentences of the
gynecological domain. No sentences describing gynecological surgeries were seen
during the training and validation steps.
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Fig. 6.2: The neural architecture used for SRL. Sentences are tokenized and each token
is input to a pre-trained language model to produce a contextualized representation,
which is then fed into ReLU layers and a linear layer. Next, a softmax layer produces a
probability distribution over the labels. A CRF layer nally captures dependencies be-
tween labels by decoding the resulting representations into the most probable label
sequence.

» THO: train and validation datasets contain all the sentences of gynecological, gas-
trointestinal, and urological descriptions. The test dataset contains only sentences
of the thoracic domain. No sentences describing thoracic surgeries were seen dur-
ing the training and validation steps.
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The BAL split wants to investigate the ability of the method to learn a general surgical
domain procedural language from a limited set of annotated sentences. The GYN and
THO splits * aim instead to verify if the annotations are general across different surgi-

cal sub-domains, i.e. if the models trained on them perform comparably with the one
trained with the BAL split. Table 6.1 summarizes some statistics about the splits.

Table 6.1: Statistics of the different splits. The numbers outside the parenthesis rep-
resent the percentage of the corresponding semantic argument in the respective train
+ validation or test datasets: the sum by columns of the numbers outside the paren-
thesis is 100. The parenthesis numbers represent the corresponding argument's split in
the train + validation and test dataset. For each argument, the sum of the number in
the parenthesis of train + validation and test datasets is 100. The same is for predicates
(Predsin table).

Split | BAL THO GYN

Arg \Train+VaI (%) Test(%) Train+Val (%) Test(%) Train+Val (%) Test (%)
PREDS| (80.20) (19.80) (87.46) (12.54) (89.28) (10.71)
ARG-0| 5.50(81.90) 4.96 (18.10) 5.15(81.74) 7.64 (18.26) 5.40(87.26) 6.01 (12.74)
ARG-1 | 40.48 (80.21)40.71 (19.79)41.84 (87.22)40.66 (12.78)42.03 (89.31)38.34 (10.69)
ARG-2 | 13.18 (83.56)10.56 (16.44)12.96 (87.52)12.26 (12.48)13.05 (89.87)11.21 (10.13)
ARG-3| 4.94(75.95) 6.37 (24.05) 5.50(87.26) 5.34 (12.74) 5.69 (91.93) 3.80(8.07)
ARG-4| 2.81(69.29) 5.07 (30.71) 3.67(90.43) 2.58(9.57) 3.72(93.40) 2.00 (6.60)
ARG-5| 0.54(82.22) 0.47 (17.78) 0.55(89.13) 0.44(10.87) 0.49 (80.43) 0.90 (19.57)
ARG-6| 0.07 (55.56) 0.24 (44.44) 0.13(0.90) 0.09(0.10) 0.11(0.89) 0.10(0.11)

ARGM | 32.48 (80.71)31.62 (19.29)30.20 (86.60)30.99 (13.40)29.51 (85.66)37.64 (14.34)

6.3.3 Fine-tuning of language models on the SRL downstream task

Using the neural architecture and the language models of Section 6.3.1, the general-
English CoNLL-2012, and RSPB, we trained 18 different models, six for each split. In par-

1 Although any of the sub-domains in the SPKS dataset could have been chosen as a test set while training on
the others, given the relatively small size of the robotic-surgery annotated dataset, we opted for testing on these
two domains as they are the smaller ones and thus maximize the size of the available material (from the other
domains) used for training.
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ticular, for each one, we ne-tuned R OBERTA, BIOMEDROBERTA, and SURGICBERTA
on two different scenarios:

» Zero-Shot : we ne-tuned the language models only on CoNLL-2012 annotated data
(train and validation sets), i.e. on non-surgical data. We then evaluated the obtained
models on the surgical test set for the various splits;

* FullFine-Tuning : starting from the ne-tuned models of the Zero-Shot scenario, we
continued to ne-tune them on the train and validation sets for the different splits
of the robotic-surgery annotated dataset. We then evaluated the resulting models
on the corresponding surgical test set according to the split, the same used in the
Zero-Shot scenario.

Transformer-based language models are known for their capability to achieve high
scores also when ne-tuned with a limited amount of task-speci ¢ training material
(Few-Shot learning [181]). This capability is bene cial in situations of a scarcity of an-
notated data due to few resources or costly content annotation, such as the robotic-
surgical one. We thus decided to run some experiments to assess whether this also
holds for the surgical SRL task. We created various subsets of the train and validation
splits for the BAL scenario of the robotic-surgical annotated dataset, having a number
of sentences that are respectively of 0%, 1%, 5%, 10%, 25%, 50% and 100% of the initial
training and validation sets. We then trained the S URGICBERTA model on these differ-
ent subsets, validating them on the same reference test set.

Following the guidelines provided by the authors of [88], we performed the ne-
tuning of the models on the downstream SRL task in two stages, with the following
suggested con gurations:

e stage 1. ne-tuning using cross-entropy loss for 30 epochs with learning rate 3 £
101 %;

* stage 2: further ne-tuning using the combined loss for additional 5 epochs with a
lower learning rate (1 £ 10 °.)

Details on the loss functions used can be found in [88].

6.3.4 Evaluation methodology

Performance is evaluated according to three different dimensions:

« argument identi cation and disambiguation : the capability of assigning the cor-
rect semantic role label to the predicate arguments mentioned in the text, after
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identifying it. This is the traditional dimension used for benchmarking SRL tools
[84, 88, 182], adopted also in the CoNLL-2012 Shared Task evaluation (and corre-
sponding script);

« predicate disambiguation : the capability of assigning the correct RSPF frame (i.e.
meaning) to the predicate in the text. In our domain setting, this evaluation is partic-
ularly useful to assess if the models are capable to discriminate the domain-speci ¢
usage of some verbs with respect to their general-English usage;

 predicate-argument disambiguation : the capability of assigning the correct seman-
tic role label to the predicate arguments as well as to assign the correct sense (i.e.
frame) to the corresponding predicate.

The rst two dimensions correspond to the two standard SRL sub-tasks, while the
third one aims at combining the correctness of both dimensions. To the best of our
knowledge, the assessment of this combined predicate-argument disambiguation per-
formance was not addressed in previous works and evaluation campaigns, although we
deem it particularly relevant for assessing SRL performance, especially for Propbank-
style annotations: indeed, as arguments are de ned in RSPF (and PropBank) according
to predicate senses (i.e. different senses of the same predicate have different semantic
roles), if a tool correctly predicts the role label (e.g. Arg-1) for the argument but fails
to disambiguate the sense of the corresponding predicate (e.g. proposing dissect.02 in-
stead of correct dissect.01), it fails in predicting the actual semantic arguments for that
predicate, as it predicted a semantic role but for a different predicate sense. Note that
these cases are not handled by the standard CoNLL-2012 argument disambiguation, for
which the role assigned to an argument is correct independently of the disambiguated
sense of the corresponding predicate.

In practice, the evaluation compares the annotations made on the sentence with the
gold ones. Namely, for each token of the sentence, the predicted annotation is com-
pared with the gold one. For the rst dimension, only the labels of the arguments are
considered, while in the second dimension, only the labels of predicates are used. Fi-
nally, for the third dimension, the comparison is performed on enriched labels derived
from the raw ones as follows: the argument label on each token (both gold and pre-
dicted) is concatenated with the label of the corresponding predicate sense so that the
same annotation contains both information on the role of the argument and the pred-
icate sense to which that role refers. Then, for each dimension, performance is com-
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puted with standard metrics for classi cation tasks, i.e. precision, recall, and F1-score
described in 2.6.4.

6.3.5 Computational aspects

All models are computed using one NVIDIA RTX A6000 GPU, with 48 GB of GPU mem-
ory, with the (one-time) MLM training required for building S URGICBERTA taking ap-
proximately 8 hours.

Since the compared models share the same SRL neural architecture and vary in the
language model used, we observed no signi cant difference in the time required for
ne-tuning them on the annotated dataset. Indeed, each model has required approxi-
mately 20 hours for this step. Although the training time is substantial, once the models
have been trained, getting the annotations automatically on the test sentences is ex-
tremely fast, taking approximately 15 seconds on the largest test split, consisting of ap-
proximately 400 sentences (i.e. roughly 0.04 seconds per sentence): exploiting already
available models, the extraction of surgical actions and related semantic information
from a sentence is almost instantaneous.

6.4 Results

In this section, we report and discuss the results obtained using the methods described
in Section 6.3. Each score reported in the section is the average over three distinct runs
of the considered method.

6.4.1 Argument disambiguation

We rst evaluate the obtained models on the traditional argument disambiguation task.
The results are reported in Table 6.2.

The results show that having annotated domain data available is essential to improve
the arguments' disambiguation performance. In fact, ne-tuning the language models
with some domain data allows us to signi cantly increase considered metrics on all
splits. By focusing on the F1 metric of the BAL split, moving from a zero-shot scenario
to a full ne-tuning one, we improve the performance of 0.061 for R OBERTA, of 0.065
for BIoOMEDROBERTA and of 0.063 for SURGICBERTA. Similar considerations hold for
precision (R oBERTAA0.057; BloM EDROBERTAA0.061 and SURGICBERTA A0.054) and
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Table 6.2: Performance (overall) on the arguments-disambiguation task for BAL, THO
and GYN splits. FFT means Full Fine-Tuning scenario, while ZS stands for Zero-Shot
scenario. The best scores are highlighted in bold.

SPLIT BAL THO GYN
MODEL P R F1 P R F1 P R F1
ROBERTAzs 0.714 0.688 0.701]0.692 0.677 0.685 0.775 0.767 0.771
BIOMEDROBERTAzs |[0.718 0.696 0.707|0.708 0.684 0.696/ 0.788 0.777 0.782
SURGICBERTAzs 0.724 0.696 0.710|0.726 0.700 0.713|0.827 0.781 0.775
ROBERTAEET 0.771 0.752 0.762/0.753 0.744 0.748 0.799 0.781 0.790
BIOMEDROBERTARer |0.779 0.764 0.772/0.756 0.738 0.747/0.798 0.794 0.796
SURGICBERTAEET 0.778 0.768 0.773|0.759 0.749 0.753|0.813 0.796 0.804

recall (ROBERTA A0.064; BloM EDROBERTA A0.065 and SURGICBERTA A0.072). These
results con rm that using domain annotated data helps the models to both improve
the proportion of positive identi cations that was actually correct and the proportion

of actual positives that were identi ed correctly. This is in line with what was expected:
being RSPF an extension of PropBank for the surgical domain, the CoNLL-2012 dataset,
the only SRL training material used for the zero-shot models, does not contain anno-
tated examples for some of the labels of RSPF (the ones in RSPF but not in PropBank),
and thus it wont be able to predict them on the test set, where some of these labels are
likely to occur. Furthermore, the domain annotated data is fundamental to accurately
understanding the surgical procedural language which often has different needs than
those of general-English [48].

Similar considerations also apply to the performance on the THO split: the full ne-
tuning improves precision (R oBERTA A0.061; BloM EDROBERTA A0.048 and SURGIC-
BERTAA0.033), recall (ROBERTAA0.067; BloM EDROBERTA A0.054 and SURGICBERTA
A0.049) and F1-score (ROBERTA A0.063; BloM EDROBERTA A0.051 and SURGICBERTA
A0.040) for all considered models. The improvement between zero-shot and full- ne
tuning is comparable to that observed for the BAL split. Full ne-tuning typically im-
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proves the performance over zero-shot learning also on the GYN split, although the
improvement is somehow restrained with respect to the other two splits: precision(R  0o-
BERTAA0.024; BoMEDROBERTAA0.010 and SURGICBERTA | 0.014), recall (ROBERTA
A0.014; BoMEDROBERTA A0.017 and SURGICBERTA A0.016) and F1-score (ROBERTA
A0.019; BoMEDROBERTA A0.014 and SURGICBERTA A0.029). This minor improve-
ment may be due to the presence of fewer sentences in the GYN split that require an-
notation using the RSPF specializations (i.e. those labels in RSPF but not in PropBank):
this is somehow con rmed by the signi cantly higher values obtained with zero-shot

on GYN than on the other two splits. We can thus answer RQ1 and RQ2: injecting do-
main sentences in the training step helps to substantially improve performance in all
compared scenarios (RQ2), also when leveraging general-English and biomedical mod-
els (RQ1), whose zero-shot scores are lower than the full ne-tuned ones. Also, RQ5 has

a positive answer since the improvement from zero-shot to full ne-tuning is compara-

ble between the different splits, showing that the models perform reasonably well when
tested on surgical sub-domains not seen during training.

Note that S URGICBERTA achieves the best results in both the zero-shot and full ne-
tuning scenarios for almost all metrics of all splits. 2 This con rms that using unsuper-
vised domain adaptation techniques such as MLM can improve performance even in
the presence of few or no annotated data. It is interesting to note that S URGICBERTA
also improves performance compared to B 10M EDROBERTA, which has been special-
ized in biomedical domain texts. This means that the procedural robotic-surgical do-
main, which is a specialized subset of the biomedical one, uses a “distinct” language
that deserves appropriate, specialized training resources to be adequately covered by
language models. We can thus positively answer RQ4.

Table 6.3 goes deeper into the analysis and compares the ne-grained performance,
argument-by-argument, by the baseline model (i.,e. R  0BERTA in the zero-shot scenario
- ROBERTAzs) with those obtained by the best model for the BAL split (i.e. S URGIC-
BERTA in a full ne-tuning scenario - S URGICBERTARFT). The detailed results show
that full- ne tuning for the BAL split improves the disambiguation of almost all core
and modi er arguments. The most substantial improvements are among the core num-
bered arguments (i.e. Arg-N with N 2 0..6. Quite often, especially for N , 3, these are
the ones not present in the standard PropBank but introduced in RSPF, and therefore
are very specialized arguments of the surgical domain never seen in CoNLL-2012 data.

2 The only exception is in the zero-shot scenario for the F1 metric of the GYN split, where B 10M EDROBERTA attains
a slightly better score.
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Table 6.3: A ne-grained comparison between a baseline model and the best model for
the argument disambiguation task. Best F1 scores are highlighted in bold.

MODEL ROBERTAzs SURGICBERTAEET
ARGUMENT P R F1 P R F1
ARG-0 0.696 0.655 0.675 0.879 0.691 0.773
ARG-1 0.903 0.890 0.896 0.911 0.926 0.919
ARG-2 0.647 0.553 0.596 0.671 0.603 0.635
ARG-3 0.000 0.000 0.000 | 0.554 0.380 0.451
ARG-4 0.000 0.000 0.000 | 0.614 0.628 0.621
ARG-5 0.000 0.000 0.000 | 0.000 0.000 0.000
ARG-6 0.000 0.000 0.000 1.000 0.250 0.400
ARGM-ADJ 0.000 0.000 0.000 | 0.000 0.000 0.000
ARGM-ADV 0.564 0.585 0.574 0.553 0.491 0.520
ARGM-CAU 0.500 1.000 0.667 0.500 1.000 0.667
ARGM-DIR 0.154 0.240 0.188 0.292 0.280 0.286
ARGM-DIS 0.500 0.286 0.364 | 0.429 0.429 0.429
ARGM-EXT 0.500 1.000 0.667 0.500 1.000 0.667
ARGM-GOL 0.000 0.000 0.000 | 0.000 0.000 0.000
ARGM-LOC 0.381 0.500 0.432 0.436 0.578 0.514
ARGM-MNR 0.267 0.722 0.390 | 0.544 0.681 0.605
ARGM-MOD 0.988 0.976 0.982 0.988 1.000 0.994
ARGM-NEG 1.000 1.000 1.000 1.000 1.000 1.000
ARGM-PNC 0.000 0.000 0.000 | 0.000 0.000 0.000
ARGM-PRD 0.000 0.000 0.000 | 0.000 0.000 0.000
ARGM-PRP 0.754 0.754 0.754 0.708 0.807 0.754
ARGM-TMP 0.827 0.865 0.845 | 0.865 0.865 0.865
R-ARGO 1.000 1.000 1.000 1.000 1.000 1.000
R-ARG1 0.857 1.000 0.923 0.857 1.000 0.923
R-ARG2 1.000 1.000 1.000 0.000 0.000 0.741
R-ARGM-LOC 1.000 1.000 1.000 0.500 1.000 0.667

This, again, answers RQ1, since although the zero-shot scenario with R 0OBERTA obtains
acceptable results, using more speci ¢ language models and annotated data allows for

improved performance.
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6.4.2 Predicate and Predicate-argument disambiguation

Table 6.4 shows the results of the other two dimensions considered in our analysis, i.e.
predicate disambiguation and predicate-argument disambiguation. For predicate dis-
ambiguation, as the used SRL tool was con gured to work with gold predicate men-
tions (i.e. having an oracle that predicts whether a token denotes a predicate or not), °
for predicate disambiguation we only report the accuracy score, as in this setting, by
de nition, P=R=F1=Acc.

Table 6.4: Performance (overall) on the predicate disambiguation and predicate-
argument disambiguation tasks for BAL, THO, and GYN splits. The best scores are high-
lighted in bold.

SPLIT BAL THO GYN

TASK Pred Pred-Args Pred Pred-Args Pred Pred-Args
MODEL Acc P R Fl1|Ac P R Fl1|Acc P R F1
ROBERTAzs 0.731 0.544 0.525 0.5340.769 0.555 0.543 0.5490.835 0.649 0.642 0.645

BIOMEDROBERTAzs
SURGICBERTAzg

0.748 0.560 0.543 0.551
0.735 0.565 0.544 0.555

0.777 0.573 0.555 0.564
0.732 0.559 0.540 0.549

0.810 0.641 0.632 0.636
0.827 0.646 0.643 0.645

ROBERTARFT
BIOM EDROBERTAFET
SURGICBERTARET

0.907 0.706 0.689 0.697
0.897 0.707 0.694 0.700
0.925 0.737 0.727 0.732

0.910 0.680 0.672 0.676
0.887 0.669 0.653 0.661
0.910 0.690 0.680 0.685

0.930 0.745 0.729 0.737
0.935 0.752 0.748 0.750
0.938 0.756 0.741 0.749

Similar considerations as the one reported for argument disambiguation also hold
for these two assessments: using domain annotations allows for improving the per-
formance of the models. The improvements are comparable and very noticeable for
the BAL and THO splits, while they are less substantial in the GYN split. Also for the
predicate disambiguation and the predicate-argument disambiguation tasks, using a
domain language model (i.e. S URGICBERTA) often improves performance. The most

3 Note that this is by no means a limitation of the comparison conducted in our work as: (i) predicates can be easily
spotted via part-pf-speech tagging, considering only the tokens labeled as Verb, or Proper Nouns having speci ¢
suf xes (e.g. -ize, -ation); and (ii), this applies for all the models considered in the assessment.
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substantial improvements are achieved within the full- ne tuning scenario. Again, this
con rms the trends of the data observed on argument disambiguation, thus con rming
the answers for RQ1, RQ2, RQ4, and RQ5.

Furthermore, note that the scores for argument disambiguation in Table 6.2 are sub-
stantially lower than the ones for predicate-argument disambiguation reported in Table
6.4. For example, SURGICBERTAgrT Obtains an F1 of 0.773 for argument disambiguation
in BAL splitand only a 0.732 (i.e. j 0.041) in predicate-arguments disambiguation. The
difference in the scores between argument disambiguation and predicate-arguments
disambiguation is even larger in the Zero-Shot scenario (e.g. 0.701 vs. 0.534 for R O-
BERTAzs. That is, in many cases, while the argument label proposed by the models
may be correct per se (i.e. ignoring the predicate to which the argument refers), it ac-
tually denotes the argument label for a wrong predicate sense, and therefore a wrong
argument label in the end, since argument labels are predicate-sense specic in re-
sources such as PropBank. This further con rms the relevance of considering the pro-
posed joint predicate-argument disambiguation performance in SRL evaluations, in
addition to the standard (and independent) argument disambiguation and predicate
disambiguation.

6.4.3 Few-shot Learning

Finally, Figure 6.3 shows the few-shot learning curve of the S URGICBERTA model, ob-
tained by varying the number of training (and validation) sentences. This assessment
allows us to address RQ3.

The curve shows that if the number of added domain annotations is too small, a
detrimental effect is obtained for all the analyzed metrics (P, R, and F1). However, with
at least 15% of the training material (approximately 190 sentences), the performance
constantly grows as annotations are added. Indeed, the curve shows a positive trend
also when using all the available domain annotated material (i.e. full ne-tuning), thus
suggesting that further improvements are likely by injecting additional annotated ex-
amples. However, as stated in Chapter 5, the data annotation for the SRL task in the
surgical domain is quite demanding, requiring both linguistic and surgical skills, and
its cost is not negligible. This analysis answers RQ3.
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Fig. 6.3: Few-Shot performance of S URGICBERTA model by varying the number of
training (and validation) domain sentences.

6.5 Conclusions

In this chapter, we tackled the problem of automatically extracting procedural surgical
knowledge from available surgical text materials, such as textbooks and academic pa-
pers. Given a text, the goal is to extract structured information about the surgical actions
described, the agents performing them, the anatomical parts involved, the tools used,
and so on. We proposed to frame the problem as an SRL task and to apply a state-of-the-
art approach based on Transformer-based language models. In detail, we experimented
with different models: R 0BERTA (general-English), B 10M EDROBERTA (biomedical do-
main), and S URGICBERTA, the pre-trained language model we presented in Chapter
3. We assessed the performance of the models in different, classical scenarios: the
zero-shot scenario, where no domain-speci ¢ SRL training data is used, and the full
ne-tuning scenario, where the models are additionally trained with SRL annotated
sentences according to the predicate and roles de ned in RSPF, a recently proposed
PropBank-style resource covering the typical actions (and related information) of the
surgical domain.

Results show that: (i) existing state-of-the-art tools, trained on general-English data,
have low performance in extracting structured procedural content in robotic-surgery
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procedural texts; (ii) exploiting language models unsupervisely trained on domain-
related (BiIoM EDROBERTA) or domain-speci ¢ data (S URGICBERTA) helps to improve
the SRL performance even in the zero-shot scenario; (iii) supervised training with
domain-speci ¢ SRL data substantially improves the performance of all models on all
the SRL evaluation dimensions investigated, i.e. predicate disambiguation, argument
disambiguation, and predicate-argument disambiguation. This suggests that for adapt-
ing general SRL methods to unexplored, speci c domains like the surgical one, some
domain-speci ¢ SRL manual annotation like the one performed in Chapter 5 is neces-
sary.






2

Towards robotic-surgery task planning from text

The expert in anything was once a beginner.

Helen Hayes

7.1 Introduction

In the previous chapters, we developed language models to extract complex surgical
procedures from as-is textbooks. This chapter aims to introduce a use case and show
how, after having de ned some constraints on the language, the SRL method, together
with other rule-based methods, can help the engineer write the logic rules needed to
de ne the plan for the robot. In particular, we propose AUTOMATE (I  AngUageTo |Ogic
teMPplATES), a pipeline that helps the translation of natural language instructions to lin-
ear temporal logic (LTL). However, this chapter uses a controlled language and a gen-
eral English language model. We made this choice for two reasons. First, state of the
art in autonomous surgical robotics mainly uses two tasks as benchmarks: peg transfer
and tissue retraction, presented later. Although performed with surgical robots, they are
still simpli ed tasks whose description does not require particularly complex surgical
expressions. Nonetheless, as the surgical robotics community moves to more realistic
and complex benchmarks requiring more specialized surgical language, the models de-
veloped in the previous chapters will allow for more in-depth language understanding.
Secondly, we started this use case when RSPB, SURGICBERTA, and its ne-tuned ver-
sion on the SRL task were not yet available.

The purposes of this chapter are to empirically show that SRL technology is a fun-
damental tool to extract logical entities from procedural natural language text and to
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highlight the technological de ciencies for achieving a completely automated transla-
tion. As future work, beyond the purpose of this thesis, we will test the SRL ne-tuned
release of SURGICBERTA for task planning.

7.2 Surgical language analysis

As stated before, this chapter uses controlled language, i.e. we impose constraints on
how a procedure can be expressed. Nevertheless, to impose suitable language con-
straints, we analyze in this section the linguistic and stylistic properties of texts describ-
ing robotic-surgery procedures. Speci cally, we are interested in three aspects that are
essential to extract useful task knowledge for autonomous execution:

- the description of robot setup relevant to identify agents of the task, i.e. surgical instru-
ments;

- the action representations, i.e. how operations of the procedure are expressed in do-
main language;

- the causal and temporal ow of actions, e.g. conditions for speci ¢ operations and
temporal duration.

For our analysis, we considered the resources used to develop the SPKS dataset de-
scribed in Chapter 4.

7.2.1 Robot setup

Analyzing the structure of surgical manuals used in creating the SPKS dataset, we noted
that an initial part of the description is often dedicated to the robot's setup, instruments'
docking, and patient positioning. These parts are often described in a separate para-
graph, indicated by titles such as Port Placement and Instruments , Robotic Setup and
Patient Positioning , or similar. The setup of the robot is often described with the incre-
mental numbering of arms (e.g. rstand second arm), indicating which instruments are
mounted on them, using verbs such as equip, place, install , use, mount and attach. The
procedural description is instead preceded by evoking titles suchas Procedural Details,
Key Operative Steps or Surgical Technique. In these sections, however, frequent are also
non-procedural sentences describing properties of speci ¢ anatomical parts or other
considerations not necessary for actual task execution.
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Table 7.1: Common linguistic styles usable to express the action of grasping anatom-
ical tissue using a particular surgical instrument. In (Id. 1), the action is expressed in
the present tense, and the human is the agent; In (Id. 2), the action is expressed in the
passive tense, and the human is the agent; In (Id. 3), the action introduced by the verb
to use and human is the agent; In (Id. 4), the action is expressed in the imperative tense,
and the agentis not speci ed; In (Id. 5), the action is expressed in the present tense, and
the instrument is the agent;

Id. Example

The surgeon grasps the tissue with forceps

The tissue is grasped by the surgeon with forceps
The surgeon uses the forceps to grasp the tissue
To grasp the tissue with forceps

Forceps grasps the tissue

ga s~ wWwWNBE

7.2.2 Action representation

In surgery, actions are typically expressed using different styles and verbal tenses. Ta-
ble 7.1 reports several examples of the action of grasping an anatomical tissue using a
particular surgical instrument, expressed following different styles. For the verbal tense,
we note that the same procedural action can be described using the imperative (Id. 4),
passive(ld. 2), or present (Ids. 1, 3 and 5) form. Modal verbs and phrasal verbs are also
frequent. Furthermore, verbs as use, employand synonyms are often used in procedural
texts to introduce the main action that must be performed (Id. 3). The main action is ac-
companied by a list of procedural entities, such as the agent performing the action, the
target anatomical part affected by the action, and the surgical instrument used to carry
out the action. These entities may be either expressed explicitly, or taken for granted
(e.g. with pronouns or references to previous sentences). The agent may either be a hu-
man operator (surgeon, operating room assistant, nurse) (lds. 1, 2, and 3) or coincide
with the surgical instrument (Id. 5).

7.2.3 Causal and temporal ows

We are also interested in analyzing how the following causal and temporal relations are
expressed in surgical expert-written texts:
- conditions required for facts to become true, or actions to become feasible;
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- temporal sequencesbetween facts and actions;
- loop iterations de ning perduration of (sequences of) actions and facts or stop condi-
tions of the corresponding action.

Conditions are mostly expressed with statements containing if / otherwise words
(%2 85%) or with expressions as in case / otherwise (¥4 15%). Temporal sequences are
mostly conveyed with sentences containing then (Y467%), when (¥26%), after (Y48%),
before (¥4a5%), once (Y413%) words; moreover, when two actions appear in consecutive
sentences, they are often assumed to be part of a temporal sequence. Finally, loop it-
erations are almost exclusively expressed in sentences containing the until preposition
and accompanied by expressions such as continue to or repeat (or synonyms) action
until some condition occurs.

7.2.4 Language variability

One dif culty that emerged during the analysis is the use of alternative forms to de-
scribe the same concept. Synonyms can be used for actions (e.g. "move", "go" and "ap-
proach” are used with the same meaning), or different expressions can refer to the same
anatomical parts (e.g. "renal tissue", "kidney tissue"). The synonym management could
be tricky in surgical texts since their detection requires not available adequate domain-
speci ¢ lexical resources. In this work, we adopt a standard general state-of-the-art so-
lution based on WordNet [183], leaving more advanced techniques for future works.

7.2.5 Language constraints for surgical texts

Based on the observations made in Sections 7.2.1-7.2.4, we propose some language
constraints which preserve most of the generality of the surgical domain language yet
favouring the processing with NLP tools. For temporal and causal relations, we allow
only expressions whose frequency in SPKS datasetis , 10%, in order to reach a tradeoff
between language generality and NLP performance. The following choices are made for
our benchmark texts:

» The elements of the robot are described with incremental numbering (e.g. rstarm
and second arm);

» The robotic setup is described in the rst paragraph; docking of instruments to the
robot can be only described by verbs such as equip, place, install , use, mount and
attach;
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» verbsare expressed in active or passive form, at present or imperative tense. Verbs
such as use and synonyms are allowed to introduce the main action;

» The list of usable instruments is a-priori known (e.g. described in state-of-the-art
ontologies such as [184]);

 instruments may or may not coincide with agents, i.e. with those who perform the
action;

» conditions can be only expressed with if / otherwise and in case / otherwise state-
ments;

» temporal sequencescan only contain then and once connectors;

* loop iterations can only be expressed with until / repeat constructs; the action to
be repeated must be explicitly indicated and has to coincide with a verb already
mentioned before in the text;

» The use of synonymsis limited to those statically recognized by the state-of-the-art
resources, such as WordNet [183];

« Standard logic connectors (e.g. and, or) are allowed in texts to specify more or alter-
native actions in the same sentence.

7.3 Benchmark tasks

This section describes the surgical training tasks chosen for experimental validation,
presenting texts written by experts in the domain used as validation. The texts follow the
language constraints de ned in the previous section. For both tasks, we consider two
different ways of writing the procedural description: one written from the point of view

of the autonomous robot (i.e. the robot as the agent) and one from the point of view of a
surgeon using the surgical robot (i.e. the surgeon as ageni). Besides being a reference for
the surgical robotic community, these tasks also represent concrete examples of robotic
manipulation tasks. Thus they are relevant both to validate the potential generality of
the AUTOMATE pipeline and interesting for the more generic problem of robotic and
process automation from texts.

7.3.1 Peg transfer

The peg transfer (Figure 7.1a) is a training task from the Fundamentals of Laparoscopic
Surgery (FLS) [185], recognized as a benchmark for performance assessment in au-
tonomous robotic surgery [186]. The setup consists of three patient-side  arms of the
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(b) Tissue retraction (ROl in red, APs sewed in top
(a) Peg transfer. left.

Fig. 7.1: The setup for the benchmark surgical training tasks with dVRK.

DaVinci Research Kit (dVRK), the research version of the DaVinci surgical robot, two
equipped with graspers ( rst arm and second arm), and one for the camera. The grasp-
ing arms operate on a peg base with up to four colored rings, with the goal of placing
them on the same-colored pegs. Several constraints in uence the work ow of execu-
tion. In particular, rings can be picked only from the closest arm, and can be placed
on a peg only by the closest arm to it. As a consequence, one single arm can pick and
place aring (e.qg. the right with the red ring in Figure 7.1a), or transfer from one arm to
the other may be needed (e.g. the blue ring in Figure 7.1a). Furthermore, rings may be
initially placed on grey pegs; thus, extraction may be needed before moving them to the
peg or transfer point.

Text descriptions

PEG TRANSFER - Robot as agent

The setup has three arms. The rst and second arms are equipped with grippers, while the third arm has a camera
mounted on it for vision. 4 rings of different colors (red, green, blue, yellow) are placed on a base with 4 colored pegs
and 4 grey pegs. First, the camera identi es the rings. Then, the rst and second arm open the grippers. The camera
selects one colored ring in the scene. If the ring is close to rstarm, the rst arm attains it; otherwise, the second arm
reaches the ring. Then, the gripper grasps the ring. Once the ring is on a peg, the arm raises it. Then, if the peg with
the same ring's color is close to the arm, the arm reaches it; otherwise, it transfers the ring to the other arm. If the
gripper is at the peg, the ring is placed on the peg. Then, the arm opens the gripper and goes to home position. The
camera selects a ring to grasp and the procedure repeats until all visible rings are not on the same-colored pegs.
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PEG TRANSFER - Surgeon as agent

The setup has three arms. The rst and second arms are equipped with grippers, while the third arm has a camera
mounted on it for vision. 4 rings of different colors (red, green, blue, yellow) are placed on a base with 4 colored pegs
and 4 grey pegs. First, the surgeon identi es rings via camera. Once rings are detected, the surgeon opens grippers
of rstand second arms and use camera to select one colored ring in the scene. If the ring is close to rst arm, the
surgeon uses rst arm to reach it; otherwise, the second arm is used to reach the ring. Once reached, the surgeon
employs the grippers to grasp the ring. If the ring is on a peg, with help of the arm the surgeon raises it. Then, if the
peg with the same ring's color is close to the arm, they use grippers to reach it; otherwise, the ring is transferred to
the other arm. If the gripper is at the peg, the surgeon places the ring on the peg, then opens the gripper and moves
the arms to home position. The surgeon nally uses third arm to identify a ring to grasp and the procedure repeats
until all rings are not on the same-colored pegs.

7.3.2 Tissue retraction

Tissue retraction (Figure 7.1b) is a benchmark task for evaluating the performance of
autonomous surgical systems [187]. The robotic setup is the same as peg transfer. The
goal is to reveal a (red in gure) Region Of Interest (ROI), e.g. a tumor, hidden below a
(rectangular) ap of soft (e.g. adipose) tissue (yellow in gure). The ROI can be exposed
by grasping and pulling the tissue with one arm. Candidate grasping points are equally
spaced on the tissue surface, discretizing itina N £ N grid of sub- aps and consider-
ing their centroids as possible targets for arms. For safe manipulation, the set of can-
didate grasping points is restricted, excluding ones that lie within sub- aps containing
Attachment Points (APs), where the tissue is anchored to surrounding anatomies. Given
a randomly selected grasping point, the closest arm executes the task. Pulling does not
always ensure task completion. In fact, an arm can pull up to a pre-de ned extent, de-
pending on workspace constraints imposed, e.g. by the anatomy of the patient. Fur-
thermore, pulling must be interrupted in case the force exerted by the arm is too high,
in order to avoid tissue damage. If pulling is not successful, the robotic tool can move
the tissue away from the camera, in order to fold it and ease ROI exposure. In case this
action fails (e.g. due to high force on tissue) or is not successful, a new grasping point is
selected.
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Text description

TISSUE RETRACTION - Robot as agent

The setup consists of three robotic arms. First arm and second arm are equipped with grippers, while third arm holds

a camera for vision. A ap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers a
region of interest (ROI). The camera identi es the APs. First and second arms open the grippers. The camera selects
a point on the tissue if it is far from APs. In case the point is close to rst arm, the point is reached by rst arm;
otherwise, the second arm reaches the point. Then, the gripper grasps the tissue and raises it up. The arm lifts the
tissue until a maximum height is reached, or maximum force is reached, or the ROl is visible. If the ROl is not visible
in case of raising, the gripper goes towards the centre of tissue, horizontally. If the ROI is still not visible, the arm
opens the gripper and goes upwards, the third arm selects a different grasping point and the procedure is repeated.

TISSUE RETRACTION - Surgeon as agent

The setup consists of three robotic arms. First arm and second arm are equipped with grippers, while third arm holds
a camera for vision. A ap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers
a region of interest (ROI). The surgeon uses camera to identify APs. Then, the surgeon opens rst and second arm
grippers. The surgeon exploits camera in order to select a point on the tissue if it is far from APs. If the point is close
to rstarm, the rst arm is used to reach it; otherwise, the surgeon uses the second arm to reach the point. Then,
the surgeon grasps the tissue with gripper and raises it. Using the arm, the surgeon lifts the tissue until a maximum
height is reached, or maximum force is reached, or the ROl is visible. If the ROI is not visible in case of raising, the
surgeon moves the gripper towards the centre of tissue horizontally. If the ROl is still not visible, the surgeon opens
the gripper and moves it upwards, use the camera arm to select a different grasping point and the procedure is
repeated.

7.4 AUTOMATE pipeline

A schematic representation of the proposed pipeline is shown in Figure 7.2. The rst
step is Itering procedural knowledge from textual resources to select only robot setup
information and procedural sentences. These are processed by a SRL module and some
Itering rules that highlight the  main action of each sentence together with procedural
entities such as agent, object, instrument and causal / temporal information. The out-
put of this module is then automatically translatedto ~ LTL formalism .

Before describing single steps in more detail, supported by clarifying examples from
our benchmark tasks, we explain how synonyms and natural language variability are
managed through the whole pipeline.

7.4.1 Synonyms and natural language variability

A complex feature of natural language is the extensive use of synonyms and alternative
forms to express similar concepts. A module for reducing the language variability based
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Fig. 7.2: Overview of the proposed AUTOMATE approach for automatic translation of
procedural texts to executable ASP rules.

on the resolution of synonyms is fundamental to restructure the natural language de-
scription of a procedure. In this chapter, we exploit WordNet's synsets [183] to identify
and cluster synonyms. Wordnet is a large lexical database of English verbs, adjectives
and adverbs, organized into sets of cognitive synonyms (synsets).

For instance, in peg transfer text with the robot as agent, consider the sentence:

Ifthe ring is close to rstarm, the rst arm attains it; otherwise, the second arm reaches the ring.

Verbs reach and attain belong to the same synset in WordNet, so they are recognized
as synonyms for the same action. WordNet is designed for general English and there-
fore may fail to fully cover all the terms used in surgical language: we leave a WordNet
specialization to the domain as a future work. Anyway, this section is meant to empha-
size that a module of reduction of natural language variability through resolution of
synonyms is fundamental to structure the natural language description of a procedure.

7.4.2 ldentifying robot setup and procedural sentences

Before pruning non-procedural sentences from texts, we need to extract robotic setup
information. As explained in Section 7.2.5, this knowledge is contained in the rst para-
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graph of surgical text descriptions and we assume to know in advance the list of all
instrument's names: this is not a strict requirement since surgical instruments are com-
mon to most procedures, and ontologies, as the one presented in [184], already contain
general surgical knowledge, in particular about surgical instruments. We then build a
semantic connection between arms and instruments, searching for verbs listed in Sec-
tion 7.2.5 (e.g. equip, place, install, use and synonyms). In this way, arms and instru-
ments can be used interchangeably in the procedural description.

As an example, consider the text for the peg transfer task, with the surgeon as an
agent:

The setup has three arms.

The rst and second arms are equipped with grippers, while the third arm has a camera mounted on it for

vision.
Assuming camera and grippers to be known as surgical instruments, they are linked to
third arm and rst and second arm , respectively, after identifying the words equipped
and mounted as setup-evoking terms. This means that in descriptions, we can use, for
example, third arm and camera with the same meaning.

Afterward, we can exploit the methodology proposed in Chapter 4 to select only pro-
cedural sentences in surgical texts. For instance, consider the following sentence from
the text for tissue retraction with the robot as an agent:

A ap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers a region of
interest (ROI).

The sentence describes the anatomical setting and, being classi ed as non-procedural,
it is not processed further.

7.4.3 Procedural knowledge extraction

For each identi ed procedural sentence, we extract actions and relevant semantic in-
formation, which represent the procedural knowledge needed for LTL template extrac-
tion. To this purpose, we exploit PropBank-based SRL described in 2.6.2 and some rules
de ned on the language constraints presented in Section 7.2.5.

Selecting main action

Given a procedural sentence, we rst use Part-Of-Speech (POS) algorithm [155] to iden-
tify verbs (hence potential actions). However, multiple verbs may occur in a sentence.
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For instance, consider the following excerpt from the text for peg transfer, with the sur-
geon as agent:

If the ring is close to rstarm, the surgeon uses rstarmto reachiit; [...]

Three verbs are identi ed in this sentence, i.e. is, usesand reach. However, only reach
is the main action. In order to identify it, we proceed as follows: rst, we exclude -ing
forms, modals and auxiliaries (e.g. is), as well as verbs such as use and its synonyms,
which only introduce main task actions; we then exclude all the candidate verbs that
appear in a span of text that SRL has labeled with semantic roles referred to causal and
temporal relations (c.f., next section). This approach is robust with respect to different
verbal forms, e.g. passive verbs.

Identifying semantic roles

Semantic roles from SRL must be matched to the relevant meanings for task procedural
description, i.e.:

« the agent who performs the action

« the object (e.g. anatomical part) undergoing the action

« the instrument (or robotic arm ) used to perform the action

» causal and temporal relations such as conditions, temporal sequences and loops

Assuming the language constraints from Section 7.2.5, we combine the spotting of con-
nectors (e.g. if, until ) and semantic roles to detect causal / temporal information. In
particular, for detecting conditions, spans of text labeled by the SRL with ArgM-ADV
(adverbial maodi ers) or ArgM-DIS (discourse Markers) and respecting the form pre-
sented in Section 7.2.5 (i.e. containing if / otherwise or in case words) are selected. A
similar approach is adopted for loops and temporal sequences, by selecting spans of
text labeled with ArgM-TMP (temporal markers) and containing connectors (i)  then and
once for temporal sequences and (i) repeat/ until forloops.

In order to identify agents, objects and instruments, we need a different strategy for
robot-as-agent and surgeon-as-agent scenarios. In the rst scenario, the robot' arm or
instrument plays the role of agent and thus span of texts labeled with Arg0 are selected.
Instead, the object of the action always plays the role of proto-patient, and thus spans of
text labeled as Argl are selected. For instance, in the tissue retraction text, the sentence
The camera selects a point on the tissue if it is far from APs. is labeled as:

[Arg0: The camera] [V: selects] [Argl: a point on the tissue] [ArgM-ADV: if it is far from APs].
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Thus, by looking at the arguments labeled with Arg0 ( camera) and Argl (point on the
tissue), the agent and the object of the action ( to selecf) are identi ed respectively.

When the surgeon is the agent, the situation is more complex because the instru-
ment/arm is not the agent (Arg0) and, if mentioned, it occurs in other roles of the
corresponding action. In particular, the instrument/arm can be contained either in a
core argument (Arg2 or Arg3) or a non-core argument (ArgM-MNR), depending on the
speci ¢ verb. For instance, in the peg transfer scenario, the sentence  First, the surgeon
identi es rings via camera is annotated via SRL as:

[ArgM-TMP: First], [Arg0: the surgeon] [V: identi es] [Argl: rings] [ArgM-MNR: via camera].

The span via camera is labeled as an ArgM-MNR.

In this case, we can rely on available resources (e.g. a knowledge base or ontology
such as [184]) listing surgical instruments and we search the sentence for mentions of
these instruments within arguments labeled as Arg-MNR, Arg2, or Arg3 by SRL. In the
considered example, camera is a candidate instrument, itis labeled as ArgM-MNR, and
thus is recognized as the instrument for the identify action.

The use of SRL also for instrument detection has to be necessarily performed since
not all mentions of medical instruments in a sentence refer to the actual usage of an
instrument to perform the main action. In particular, it has to be applied after iden-
tifying the candidate arguments possibly containing the instrument. For instance, the
sentence The surgeon uses the rstarm to grasp scissorsmentions scissors a surgical in-
strument, but without referring to its usage to perform the action herein described ( to
grasp). Indeed, SRL returns the following annotations:

[Arg0: The surgeon] uses the rst arm to [V: grasp] [Argl: scissors].

That is, scissorsis correctly recognized as the thing grasped (Argl of grasp), and not as
the instrument used to perform the grasping (i.e, Arg2, Arg3, or ArgM-MNR).

7.4.4 From SRL to LTL relations

The output of SRL highlights relevant semantic information about task knowledge. This
section shows how this information is automatically translated to LTL logic templates
representing procedural relations for the task. Consider the following example sen-
tences from the texts of our benchmark tasks (the same considerations apply also to
the other sentences of the benchmark tasks):

(A 1): In case the pointis close to rstarm, pointis reached by rst arm; otherwise, the second arm reaches
point.
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(A 2): Then, the gripper grasps the tissue.

(A 3): The arm lifts the tissue until a maximum height is reached, or maximum force is reached, or the ROI
is visible.

The output of SRL and Itering steps described before is, respectively:

(B 1): [ArgM-ADV: In case the point is close to rst arm,] [Argl: the point] is [V: reached] [Arg0: by rstarm;]
[ArgM-ADV: otherwise] [Arg0: the second arm] [V: reaches] [Arg1l: the point.]

(B 2): [ArgM-TMP: Then,] [Arg0: the gripper] [V: grasps] [Arg1l: the tissue.]

(B 3): [Arg0: The arm] [V lifts] [Argl: the tissue] [ArgM-TMP: until a maximum height is reached, or maxi-
mum force is reached, or the ROl is visible.]

In order to highlight relevant semantic entities (verb, agents, objects, and tempo-
ral/causal information), these can be re-written in a more convenient predicate form
as follows, with the verb as the name of the predicate with ordered arguments  agent -
object - additional information
(C1):

reach(the rst arm, the point, ADV: in case the point is close to rst arm)
reach(the second arm, a point on the tissue, ADV:otherwise)

(C2):
grasp( rst arm, the tissue, TMP:then)

C3):
Eais;( rst arm, the tissue, TMP:until a maximum height is reached, or maximum force is reached,
or the ROl is visible.

Annotations (C 1) correctly split sentence (A 1) into two main reach actions, having
either rst arm or second arm as agent and a point on the tissue as object / anatomi-
cal target. SRL correctly identi es the conditions if / otherwise as ADV roles. Sentence
(A 2) leads to annotation (C 2), where the temporal relation then is also marked. The
agent gripper is automatically translated to rst arm , following instruments recogni-
tion from the robot's setup description (see Section 7.4.2). Finally, in sentence (A 3), the
until temporal relation is recognized. Furthermore, the main action  lift is automatically
translated to the synonym raise, which is arbitrarily chosen as the representative lemma
of the synset in WordNet (see Section 7.4.1) containing both lift and raise.

Given the SRL output, we translate logic / temporal connectors de ned in the lan-
guage constraints to corresponding LTL operators. This can be done automatically, as-
suming such an injective map exists. We obtain the following LTL rule templates:
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(D 1):
reach(first arm, a point on the tissue ) A the point is close to first arm
reach(second arm, a point on the tissue ) A : the point is close to first arm

(D 2):
+grasp(first arm, tissue )
(D 3):

raise(first arm, tissue ) U (maximum height is reached _
maximum force is reached _the ROI is visible )

where U denotes until operator, *is the next operator, A is the logic implication , _
is logic disjunction and : islogic negation.

7.4.5 From LTL templates to executable logic program

LTL templates encode task actions, agents, relevant objects / anatomical parts, and
temporal/causal relations, which determine the ow of execution. However, they must
be translated to the syntax of a speci ¢ logic program, in order to actually implement
an autonomous task planner for robotics.
A logic program represents a domain of interest with a  signature and axioms. The
signature is the alphabet of the domain, de ning its relevant attributes. Attributes may
be statics, i.e. domain attributes whose values do not change over time, or  uents, i.e.
time-dependent domain attributes. Attributes may be  terms, atoms, predicates of terms
(e.g.atom(t 4, ..., t p) iS an atom with terms t,_, as arguments), and their classical or
default negations (respectively, : a, meaningthat ais false, or not a, meaningthat ais not
known to be true). Values of terms are constants (either integers, Booleans or strings). A
term whose value is assigned is ground, and an atom is ground if its terms are ground.
Axioms are logical relations between attributes. Acausalrule h A by, .., b ,denes
constraint, meaning that body atoms cannot be ground concurrently. Axioms can also
represent temporal relations between atoms, thanks to the de nition of an explicit time
variable t for uents . Forinstance, att) A b(t-1) is equivalentto the next operator in
LTL, meaning that aoccurs at the subsequent time step with respectto b; similarly, a(t)
A a(t-1), : b encodesLTL releaseoperator, meaningthat akeeps holdinguntil bdoes
not.
1 There exist logic programming frameworks, e.g. telingo [188], which implement LTL operators. However, we con-

sider the explicit temporal variable de nition to adhere to ASP syntax, which is more popular in the robotics and
Al community.
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In the classical representation of task knowledge, statics typically de ne agents and
invariant environmental resources, while uents are actions and dynamic environmen-
tal features. Axioms encode task speci cation, capturing the causal relations between
the agents and the environment, following the pattern  precondition ! action ! effect
with constraints proposed in the Planning Domain De nition Language (PDDL) [189].
As an example, consider LTL relation (D 1), de ning the precondition for  reaching ac-
tion. Assuming that the point is close to rst arm is encoded with an atom close(first
arm, tissue point) , being first arm and tissue point constant values for domain variables
Agent and Object , respectively, we can write the following axiom:

reach(Agent, Object, t) A close(Agent, Object, t).

LTL templates can then be automatically implemented in the formalism of a logic
program with the following steps:

» implementation of LTL operators in the speci c logic programming syntax;
* de nition of variables and atoms, with variables lifting information retrieved from
SRL (e.g.reach(Agent, Object), which can be lifted from reach( rst arm, tissue) ).

Representing operators is trivial since they are implemented in any logic program. The
second step, however, requires yet missing information. In particular, underlined parts
in LTL templates (D 1 - D 3) represent low-level concepts and variables, which at the
moment need to be encoded by a logic programming expert manually. They mostly rep-
resent commonsense knowledge (e.g. the pointis close to rstarm , associated with the
notion of spatial distance, or ROI visibility and maximum force measurement), which
are not related to the speci ¢ procedure, but rather to the generic surgical and robotic
domains. Hence, similarly to instrument knowledge (see Section 7.4.2), we can assume
these concepts are stored and retrieved from clinical domain [190] or even general-
scope ontologies [191], in order to make the translation to an executable logic program
possible.

7.5 Application of AUTOMATE

In this section, we empirically test the utility of AUTOMATE. In other words, we verify
that the extracted task knowledge is correct and general enough to compute suitable
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plans for our benchmark robotic tasks, given any possible initial environmental con-
text. This requires:

1. implementation of LTL templates into a speci c logic programming language for
autonomous planning;

2. implementation of low-level routines for robotic motion planning/control and per-
ception, needed for environmental context evaluation and instantiations of LTL
predicates;

3. an environment to replicate the benchmark tasks and the robot.

To address the rst requirement, we implement LTL templates in the formalism of ASP,
speci cally with Clingo 5 [192] software for ASP representation and solving (i.e. plan
computation). For the second requirement, we adopt the framework for integrated
planning and execution of surgical robotic tasks proposed in [193], including the dVRK
and vision sensors. For the third requirement, we create simulation environments for
the peg transfer and tissue retraction.

We empirically evaluate the quality of the extracted task speci cations in terms of
planning successand planning computational performance

The planning success measures the percentage of successful generation of task plans
in a set of random environmental contexts. It is important that random contexts are
representative of the variability of the task, hence lead to the generation of multiple
work ows of execution. Hence, we randomize relevant variables for our two benchmark
tasks, for a total of 100 different contexts for each task.

The computational performance is calculated as the time required by Clingo solver
to nd a rstplan (i.e. neglecting possible re-planning in case bad events occur), given
some initial environmental context. We evaluate this metric for increasing size of each
domain of interest, which affects the number of variables/atoms to be grounded by
ASP. For each complexity class of context con guration, we replicate 20 executions to
calculate the mean and variance of Clingo's planning time. In this way, we can analyze
the evolution of computational effort as task complexity increases.

For both metrics, we compare the performance of the extracted ASP program with
the ASP task description written by an expert in both of the domain and the logic syn-
tax, following PDDL-like classical representation. Standard task description from PDDL
does not always match LTL formulas extracted from texts with NLP. For example, con-
sider relation D 2. It speci es that grasp shall occur after the previous action ( reach).
This can be encoded as:
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grasp(Agent, Object, t) A reach(Agent, Object, t-1).

In classical PDDL representation, a speci c effect for reach should be de ned, which
then acts as a precondition to reach. An example is provided below:

at(Agent, Object, t) A reach(Agent, Object, t-1).

grasp(Agent, Object, t) A at(Agent, Object, t).

where at(Agent, Object, t) IS a uentrepresenting the location of an arm with respectto
an object.

7.5.1 Peg transfer

In the peg transfer domain, the simulation is implemented in CoppeliaSim. 2 The per-
ception module is in charge of identifying locations of rings, pegs, and robotic arms,

in order to instantiate LTL predicates properly (e.g. distances between rings and arms)
[193].

Planning success

Domain variables which in uence the work ow of execution, hence are relevant for
assessing planning success, are:

» number of visible rings (affecting the number of required actions to complete the
task successfully);

» placement of rings on the pegs, which requires extraction before bringing them to
the pegs;

* relative positions of rings with respect to arms, affecting reachability conditions and
thus possibly requires a transfer between arms before placement on pegs.

Hence, we generate random scenarios as follows:

» 19 scenarios present only 1 ring, 30 scenarios 2 rings, 22 scenarios 3 rings, and 29
scenarios 4 rings®;

» 84 /100 scenarios present at least one ring on a peg, so they require extraction;

» 80/ 100 scenarios require transferring of rings between arms.

2 https:/iwww.coppeliarobotics.com/
3 The maximum number of rings in the scene is set as of FLS speci cations [185].
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Fig. 7.3: On top, the ratio between planning times with ASP program from text and
hand-written ASP program, for 100 random initial con gurations (sorted and clustered

by plan length) of peg transfer task. Inthe bottom , mean and standard planning times
for the two ASP programs vs. plan length. In the box, focus on the results for ASP encod-
ing extracted by AUTOMATE (same units as the main plot).

The task is considered successful when all visible rings are placed on the same-colored
pegs. In all scenarios, a 100% success rate is achieved with both ASP programs.
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Computational performance

The complexity classes for the ring transfer are de ned by the same variables random-
ized for planning success evaluation. In fact, the number of rings and actions to be
executed for each of them affects the plan length, hence the number of atoms to be
grounded by Clingo. Hence, we consider the same scenarios as above and arrange them
by plan length, reporting mean and standard deviation for each cluster of scenarios
with the same plan length.

In particular, Figure 7.3a shows the ratio between the planning time with the ASP
program extracted from text and the expert-written one. Except for shorter plans, the
ratiois C 1when planlengthis E 12, meaning that extracted ASP task knowledge is more
ef cient for the solver. Moreover, the ratio decreases signi cantly for longer plans.

This is even more evident in Figure 7.3b, showing the planning time for both ASP
programs against the plan length. As the plan length increases, the computational per-
formance of the ASP program extracted from text scales linearly with the length of
the plan, thus signi cantly better than the hand-written program with quadratic pro-
gression. This happens because of the different ASP representation, with the classical
PDDL-like formalization possibly having more axioms as explained at the beginning of
Section 7.5. In fact, Clingo computes plan grounding atoms iteratively, starting from ini-
tial conditions and propagating through axioms. Hence, more or longer axioms require
more computational time.

Notice that the two ASP programs generate plans with different lengths, though un-
der the same initial con gurations. This depends on a slightly different action represen-
tation. For instance, in the text description, there are actions as  selecting a target ring
with camera which are captured by SRL and then converted to LTL / ASP predicates.
However, such actions are not properly moving actions, so they do not affect the work-
ow of execution. Hence they are not encoded by the expert writing ASP program from
scratch.

7.5.2 Tissue retraction

For tissue retraction, we assume that the grasping points may be selected in a dis-
cretized set, obtained as follows:

1. the rectangular tissue apis discretizedasa N £ N grid;
2. candidate grasping points are centroids of cells in the grid.
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At LTL / ASP level, a variable for the candidate grasping point is added, with a unique
identi er for each pointin{1,..., N?2}. We use a simulation within the Sofa framework “to
emulate soft tissue deformation via nite element methods. The simulated perception
module is in charge of identifying locations of grasping points and APs on the tissue and
measuring ROI nal visibility. In this way, it is possible to ground LTL / ASP predicates
and reason on task knowledge to compute a plan, which is then executed by the motion
planning and control module.

Planning success

Variables that affect the work ow of execution are:

« initial grasping and pulling of the tissue may not be suf cient to expose ROI, so re-
planning (either further pulling or moving away from the camera) may be useful;

« adifferent arm (PSM) may be needed to grasp the tissue, depending on the chosen
grasping point, which depends on APs locations (recall that arms should not operate
close to APs).

Hence, we generate random contexts with xed N A5 grid discretization, speci cally 35
/100 requiring re-planning and 67 / 100 requiring usage of the rstarm. The taskis con-
sidered to be successfully executed if the nal ROl exposure percentageis E 70%. When
the hand-written ASP program is implemented for task planning, the planning success
rate is 98%, against 94% with the ASP program extracted from text. However, the mean
and standard deviation of ROl exposure with hand-written ASP program and extracted
from text (considering only successful task executions) are respectively 92.26% § 9.53%
(100% median) and 97.47%8 6.90% (100% median). Overall, extracted ASP encoding has
similar performance on planning success with respect to expert-written one.

Computational performance

The planning time with Clingo depends mainly on the number of candidate grasping
points, i.e. the grid discretization parameter N since it increases the number of ASP
variables. On the contrary, the speci ¢ location of ROI does not affect the computa-
tional complexity since we only evaluate the initial planning time, i.e. neglecting any
re-planning occurrence. Then, we consider different N £ N grid discretizations of the
tissue ap, with N 2 {5,...,15}, and randomize 20 different locations of APs and ROI for

4 https://www.sofa-framework.org/
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Fig. 7.4: Ontop, the ratio (mean § standard deviation) between planning times with
ASP program from text and hand-written ASP program for tissue retraction task, for
different size N of grid discretization of the tissue (100 initial con gurations per size).
In the bottom , mean and standard planning times for the two ASP programs vs. grid
size.

each of them. In other words, a complexity class of scenarios for the tissue retraction
task is represented by the value of N.

In Figure 7.4a we show the ratio between planning times obtained with the ASP pro-
gram extracted from text and the hand-written one. The ratio is always C 1, meaning
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that ASP axioms extracted from text are more ef cient than hand-written ones. The
ratio does not signi cantly vary for different tissue discretizations, while the absolute
discrepancy between planning times for the two ASP programs increases (Figure 7.4b).
Thus, extracted ASP task knowledge is still slightly more ef cient for the ASP solver.

7.6 Discussion

This chapter empirically shows that it is possible to extract procedural information with
NLP techniques, in the form of LTL relations, from text written by a domain expert. The
extracted knowledge can then be easily translated into any logic programming formal-
ism for autonomous planning. A solver for the task planning problem (Clingo in our
experiments) is then able to compute a suitable plan, given any random initial context,
with a similar percentage of success as a logic program written by an expert both of
the domain and the logic paradigm. Furthermore, we found that the logic program ex-
tracted from text is computationally more convenient for the solver since less time is
needed for plan computation, thanks to the more ef cient formalization with respect
to PDDL-like speci cationsinthe precondition-action-effect paradigm. However, one of
the goals of this chapter is also to highlight the issues that still remain to be addressed.
In this chapter, we applied a general-English model on a controlled language, built
on purpose to be correctly interpreted by state-of-the-art tools. Moving to completely
unconstrained natural language, interpretation problems are likely to increase, espe-
cially in a domain such as surgery, where the plan must be certi ed before being per-
formed. In that case, the use of S URGICBERTA presented in Chapter 3 will be nec-
essary to understand the procedural surgical language better. Another similar prob-
lem is related to the speci ¢ domain lexicon that is sometimes used, which is com-
pletely unknown to state-of-the-art resources. For example, one limitation concerns
synonyms and alternative expressions for the same concept. Often general-English re-
sources (such as WordNet used in this chapter) are not effective in dealing with the
surgical domain, and further research should be carried out to enrich them with surgi-
cal terminology and expressions manually. For example, the verb  excisecan sometimes
be used with the same meaning as remove, but this does not emerge from WordNet.
Furthermore, in order to automate the entire process without requiring human in-
tervention, we should deal with the intrinsic incompleteness of natural language de-
scriptions that often leave some knowledge unsaid. This is the case, for instance, of spe-
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ci ¢ encoding of environmental uents (see Section 7.4.4) that have to be lled man-
ually: at the moment, this pipeline signi cantly helps the programmer to write a logic
program encoding effective task representation, for example, it can identify actions,
agents, relevant environmental/domain entities as target objects and anatomies, and
semantic roles which can be directly mapped to LTL syntax. Hence, the programmer
shall only convert LTL expressions to a speci ¢ logic program syntax (e.g. ASP), with no
required awareness of the speci ¢ task/surgical procedure. Anyway, encoding of envi-
ronmental information, instead, is mostly related to commonsense concepts (e.g. spa-
tial information) or the considered domain at large (e.g. surgery) rather than the speci ¢
task. The concept of commonsense is analyzed in Chapter 8.

Anotherimportant aspectto be considered is the difference between classical PDDL-
style task knowledge representation and text-extracted one. Experimental results have
evidenced that ASP programs extracted from the text are not only adequate to represent
the domains of the two tasks considered in this chapter, but they are also more ef cient,
i.e. the planning time required by state-of-the-art Clingo solver is reduced (the amount
of the improvement depends on the speci ¢ task domain). This is probably related to
the different complexity of axioms between classical and extracted representations.

A nal pointto be discussed is completenessof LTL relations extracted from text, i.e.
their adequacy to represent all possible task occurrencies (i.e. initial con gurations) and
guarantee successful task completion. Procedural texts usually describe a limited range
of possible scenarios. Unexpected events and conditions (originated, e.g. by the un-
certainty of pre-operative information, intra-operative anomalies, and patient-speci ¢
clinical situation) may not be described. This also happens in the training tasks studied
in this chapter. For instance, consider the peg transfer task. In the analyzed initial con-
gurations of rings on the peg base, we have allowed rings to be placed either on grey
or no pegs. However, rings may also be placed on colored pegs. An example is shown
in Figure 7.5. The blue and red rings occupy red and blue pegs, respectively, and they
are all reachable only by rst (right) arm. Obviously, we could enrich the description
by adding a nal paragraph in the text where all well-known exceptions are described,
similarly to what is done for the robot setup. However, when the plan is not complete,
human intervention must always be requested.
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