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Abstract. We consider a banking network represented by a system of stochastic differential equations coupled
by their drift. We assume a core-periphery structure, where banks in the core hold a bubbly asset.
Investments are modeled by the weight of the links, which is a function of the robustness of the
banks. In this way, a preferential attachment mechanism of the banks in the periphery towards the
core takes place during the growth of the bubble. We then investigate how the bubble distorts the
shape of the network for both finite and infinitely large systems, assuming a nonvanishing impact
of the core on the periphery. Due to the influence of the bubble, banks are no longer independent,
and the strong law of large numbers cannot be directly applied to the average of banks' investments
towards the periphery. This results in a term in the drift of the diffusions which does not average
out, increasing systemic risk when the bubble bursts. We test this feature of the model by numerical
simulations.
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1. Introduction. In this paper we study the impact of financial asset bubbles on the
evolution of dependence structures and systemic risk in banking networks for both finite and
infinitely large systems.

Systemic risk has been recently studied with different approaches. One stream of research
aims at extending the traditional regulatory framework of monetary risk measures that quan-
tify the risk of financial institutions based on a stand alone basis to multivariate systemic risk
measures that take as a primitive the whole financial system. For an overview of this topic,
see Biagini et al. (2019, 2018a), Bisias et al. (2012), Chen, Iyengar, and Moallemi (2013),
Drapeau et al. (2016), Feinstein, Rudloff, and Weber (2017), Hoffmann, Meyer-Brandis, and
Svindland (2016a,b), Kromer, Overbeck, and Zilch (2016), and references therein.

Another popular ansatz to analyze systemic risk is based on explicit network models for
the financial system and the study of potential default cascades due to various contagion
effects. In the seminal work of Eisenberg and Noe (2001) and its many extensions (see, e.g.,
Hurd (2016) and references therein), cascade processes in static, deterministic network models
are analyzed by computing endogenously determined clearing/equilibrium payment vectors.
Within the framework of random graph theory, cascade processes are studied in large financial
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FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 431

random networks by means of law-of-large-number effects in Amini and Minca (2016), Amini,
Cont, and Minca (2012, 2016), Detering et al. (2015, 2017, 2018), and Hurd (2016), and in
finite random networks by Elliott, Golub, and Jackson (2014) and Gai and Kapadia (2010).

The approach we present in this paper is placed within the theory of mean-field equations,
first introduced in the influential papers of McKean (1966a,b). In recent years, this framework
has been applied to the study of systemic risk in large financial networks where, contrary to
the static network models mentioned above, the dynamic evolution of a network of interacting
financial institutions is studied by means of a system of interacting diffusions. In this setting
the diffusions represent, e.g., the wealth, monetary reserves, or other more general indicators
of the health of financial institutions, and are tied together through a term in the drift that
implies the network structure. A first simple model in this direction is given in Fouque and
Sun (2013), where a system of SDEs is proposed with dynamics

(1.1) dXi
t =

\lambda 

n

n\sum 
j=1

(Xj
t  - Xi

t)dt+ \sigma dW i
t , 0 \leq t <\infty ,

where W = (W 1
t , . . . ,W

n
t )t\geq 0 is a standard n-dimensional Brownian motion and \lambda , \sigma > 0.

Here, theXi stand for log-monetary reserves of banks, and the drift terms \lambda (Xj
t - Xi

t) represent
the connections between banks in the network. In this case, the borrowing and lending rate
\lambda is assumed to be the same for every pair of banks. When the network size n grows towards
infinity, it is a well-known result (see Sznitman (1991)) that due to law-of-large-number effects,
the diffusions in (1.1) converge towards their mean-field limit,

d \=Y i
t = \lambda 

\bigl( 
\BbbE [ \=Yt] - \=Y i

t

\bigr) 
dt+ \sigma dW i

t , 0 \leq t <\infty .

Thus, for large networks, propagation of chaos applies, and the evolution of the Xi asymp-
totically decouples due to averaging effects, which allows one to asymptotically describe the
complex system by a representative particle evolution. The model in (1.1) to study systemic
risk has been generalized in various ways in a number of articles; see, for example, Fang, Sun,
and Spiliopoulos (2017), where heterogeneity is introduced by allowing for different \lambda i and
\sigma i for every bank in (1.1); Carmona, Fouque, and Sun (2015), Carmona et al. (2016) and
Maheshwari and Sarantsev (2018), where mean-field games are considered; Fouque and Ichiba
(2013), where the probability distributions of multiple default times are approximated; Gar-
nier, Papanicolau, and Yang (2013a,b) and Battiston et al. (2012), where a trade-off between
individual and systemic risk in a banking network is described; and Chong and Kl\"uppelberg
(2015) and Kley, Kl\"uppelberg, and Reichel (2015), where partial mean-field limits are stud-
ied. We also mention the work of Bo and Capponi (2015), where a system of jump diffusion
processes is introduced with a banking sector indicator depending on positive or negative an-
nouncements, and Hambly, Ledger, and Sojmark (2018), where distance-to-default of financial
institutions is studied in a model where herd behavior and common exposures can lead to a
structural contagion mechanism.

In this paper, the main objective is to extend the model in (1.1) in order to study the
effect of a financial speculation bubble on the evolution of the network and on propagation
of systemic risk. It is common understanding that bubbles are intimately connected withD
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432 FRANCESCA BIAGINI, ANDREA MAZZON, AND THILO MEYER-BRANDIS

financial crises, and many historical crises indeed originated after the burst of a bubble (e.g.,
the Great Depression of the 1930s and the financial crisis of 2007--2008). This causality is
investigated, for example, in Brunnermeier (2008) and statistically confirmed in Brunnermeier
and Schnabel (2016). However, it seems that literature on mathematical models that deal with
this question is very scarce.

We here specify a model for the network of financial robustness of institutions, introduced
by Battiston et al. (2012) and Hull and White (2001) as an indicator of an agent's creditwor-
thiness or distance-to-default, and also considered in Kley, Kl\"uppelberg, and Reichel (2015) by
means of a system of coupled diffusions. In particular, we are able to include in the robustness
dynamics the delayed impact of an asset bubble on the financial network and mean-reversion
features, as we explain in detail in the following. The banks affect one another's robustness
by being financially exposed to one another, for example, because of cross-holdings, which
results in a coupling of the drift terms. Following the setting in Battiston (2015), we then
assume that a fixed number of banks are directly investing in a bubble that affects their fi-
nancial robustness. The remaining banks have the possibility to participate in the bubble by
investing in the bubble banks. This results in a typical core-periphery structure for financial
networks, where here the core is formed by the banks holding the bubble. In our model, banks'
investments depend on the robustness of the other institutions, allowing for heterogeneity of
the drift rates of the SDEs. More precisely, in our case the rates depend on the robustness of
the attracting institution with a delay \delta > 0, where the delay reflects the fact that the banks'
investments do not immediately react to changes in the system. This extends previous mod-
els, where the coupling drift rates representing the weighted network connections are constant
(as in Bo and Capponi (2015), Carmona, Fouque, and Sun (2015), Fouque and Sun (2013),
Kley, Kl\"uppelberg, and Reichel (2015)), are functions of time (Chong and Kl\"uppelberg (2015),
Maheshwari and Sarantsev (2018)), or show the difference in monetary reserves (Fouque and
Ichiba (2013)) but are not functions of the state of other banks. In this way, we introduce a
preferential attachment mechanism, where the attractiveness of a node does not depend on
its degree but on its ``fitness,"" as proposed by Bianconi and Barab\`asi (2001). Due to this be-
havior, the bubble causes a distortion in the network evolution: during the expanding phase
of the bubble, the network structure shifts towards an increasingly intense and centralized
connectivity due to the strong growth of the bubbly banks' robustness, which then causes
instability in the case when the bubble bursts.

We then study the behavior of the system when its size gets large. More precisely, we let
the number of periphery banks tend to infinity but keep the number of core banks holding the
bubble constant, and we assume that their impact on the system does not vanish when the
total number of banks tends to infinity. In this way the bubble produces a common stochastic
source in the system that does not not average out even for large networks. Our main result
then determines a partial mean-field limit for the system where the influence of the bubble is
represented via stochastic interaction with the core banks even in the limit. Because of this
term, the banks in the periphery are also affected by a potential bubble burst. This effect is
amplified by the impossibility of immediately disinvesting when the robustness of some banks
decreases due to the delay \delta . We also refer the reader to Chong and Kl\"uppelberg (2015),
who investigate partial mean-field limits in a different setting, without taking into account
the delay and the influence of the bubble.

The remaining part of the paper is organized as follows. In section 2 we introduce our
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FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 433

model and some technical results. In section 3 we define the limit system and prove a conver-
gence result, whereas in section 4 we perform Monte Carlo simulations in both the finite and
the limit systems in order to numerically investigate the impact of the bubble on systemic
risk.

2. The model. Let (\Omega ,\scrF ,\BbbF , P ) be a filtered probability space endowed with an (m+n+2)-
dimensional Brownian motion \=W = (W 1

t , . . . ,W
n
t ,W

B,1
t , . . . ,WB,m

t , B1
t , B

2
t )t\geq 0, m, n \in \BbbN ,

where \BbbF = (\scrF t)t\in \BbbR + is the natural filtration of \=W . We consider a network of m + n banks,
consisting of m banks holding a bubbly asset in their portfolio (also referred to as core) and
n banks that do not directly hold the bubbly asset (also referred to as periphery).

By following a similar approach as in Kley, Kl\"uppelberg, and Reichel (2015), we model the
robustness of the banks in the system. This coefficient dynamically evolves and represents a
measure of how healthy a bank remains in stress situations. Let \rho i,n = (\rho i,nt )t\geq 0, i = 1, . . . , n,

and \rho k,B = (\rho k,Bt )t\geq 0, k = 1, . . . ,m, be the robustness of banks not holding and holding the
bubble, respectively. We assume that they satisfy the following system of stochastic differential
delay equations (SDDEs) for t \geq \delta , \delta > 0:

d\rho i,nt =

\Biggl( 
1

n - 1

n\sum 
j=1,j \not =i

fP (\rho j,nt - \delta  - An,m
t - \delta )(\rho 

j,n
t  - An,m

t )

+
1

m

m\sum 
k=1

fB(\rho k,Bt - \delta  - An,m
t - \delta )(\rho 

k,B
t  - An,m

t )

\Biggr) 
dt

+ \lambda (An,m
t  - \rho i,nt )dt+ \sigma 1dW

i
t ,(2.1)

d\rho k,Bt =

\Biggl( 
1

n

n\sum 
i=1

fP (\rho i,nt - \delta  - An,m
t - \delta )(\rho 

i,n
t  - An,m

t )

+
1

m - 1

m\sum 
\ell =1,\ell \not =k

fB(\rho \ell ,Bt - \delta  - An,m
t - \delta )(\rho 

\ell ,n
t  - An,m

t )

\Biggr) 
dt

+ \lambda (An,m
t  - \rho k,Bt )dt+ \sigma 2dW

k,B
t + d\beta t,(2.2)

where \lambda > 0, \sigma 1 > 0, \sigma 2 > 0, and

(2.3) An,m
t =

1

m+ n

\Biggl( 
n\sum 

r=1

\rho r,nt +

m\sum 
h=1

\rho h,Bt

\Biggr) 
, t \geq \delta ,

is the mean of the robustness of all the banks in the network at time t. For t \in [0, \delta ),

we assume that (\rho i,ns )s\in [0,\delta ), (\rho 
k,B
s )s\in [0,\delta ), i = 1, . . . , n, k = 1, . . . ,m, satisfy (2.1)--(2.2) with

\delta = 0 by following the approach of Mao (2007). We also suppose that \rho i,n0 = \rho 0 > 0 for all
i = 1, . . . , n.

Remark 2.1. Note that robustness may become negative in our model, as in Hull and
White (2001) and Kley, Kl\"uppelberg, and Reichel (2015), since it is used as an indicator of
banks' creditworthiness. See also Fouque and Sun (2013), where log-monetary reserves play
the role of robustness.D
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434 FRANCESCA BIAGINI, ANDREA MAZZON, AND THILO MEYER-BRANDIS

The process \beta = (\beta t)t\geq 0 in (2.2) represents the influence of the asset price bubble on the
robustness of core banks and has dynamics

(2.4) d\beta t = \mu tdt+ \sigma Bt dB
1
t , t \geq 0,

where \sigma B = (\sigma Bt )t\geq 0 is a positive and adapted process such that

(2.5)

\int t

0
\BbbE [| \sigma Bs | 2]ds <\infty , 0 \leq t <\infty ,

and \mu is an adapted process, unique strong solution of

(2.6) d\mu t = \~b(\mu t)dt+ \~\sigma (\mu t)dB
2
t , t \geq 0,

where \~b, \~\sigma fulfill the usual Lipschitz and sublinear growth conditions such that there exists a
unique solution of (2.6), satisfying

(2.7)

\int t

0
\BbbE [| \mu s| 2]ds <\infty , 0 \leq t <\infty .

In section 4 we will specify a model for the bubbly evolution in (2.4) and provide further
explanations on asset price bubbles; see subsection 4.1.

We assume the following hypothesis on fB and fP .

Assumption 2.2. The functions fB, fP : \BbbR \rightarrow \BbbR + are measurable, with

(2.8) fB(0) = fB(0+) = fB(0 - ) <\infty , fP (0) = fP (0+) = fP (0 - ) <\infty ,

and such that the functions FB(x) := xfB(x), FP (x) := xfP (x), x \in \BbbR , are Lipschitz
continuous, i.e.,

(2.9) | xf \ell (x) - yf \ell (y)| \leq K1| x - y| , x, y \in \BbbR , \ell = B,P, K1 > 0.

Note that (2.8) and (2.9) imply that fB and fP are continuous on \BbbR and bounded, since
if f(x)x is Lipschitz, then

(2.10) | f(x)x| = | f(x)x - f(0) \cdot 0| \leq K1| x| .

The interdependencies of the banks' robustness and corresponding contagion effects are
specified through the drifts in (2.1) and (2.2). The term \lambda (An,m

t  - \rho i,nt ) represents an attraction
of the individual robustness towards the average robustness of the system with rate \lambda as in the
classical mean-field model (1.1). In addition to the homogeneous average term, we introduce

the terms of type fP (\rho j,nt - \delta  - An,m
t - \delta )(\rho 

j,n
t  - An,m

t ) and fB(\rho k,Bt - \delta  - An,m
t - \delta ) (\rho k,Bt  - An,m

t ) that
represent a robustness-dependent evolution of the network connectivity: for typically positive
and increasing fB and fP , bank i is more connected to bank j the higher bank j's robustness
is above the average. In this way, the evolution of the bubble alters the connectivity structure
of the network according to a model of preferential attachment. Moreover, the propensity of
a node i to attract future links depends not only on the current level of robustness of i butD
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also on the robustness of the banks already connected to i. This produces different kinds of
preferential attachment: a direct preferential attachment towards banks with the bubbly asset,
and an indirect preferential attachment towards banks that have invested money in the banks
with the bubbly asset, increasing their robustness. This mechanism is called preferential
preferential attachment in Battiston (2015) and creates a network with a set of financial
institutions which are very strongly connected to one another. These banks form a cluster,
which is in fact the core of the network. This is referred to as ``strong clustering effect"" in
Battiston (2015).

This change in network structure then comes along with an increasing systemic risk and
instability in the case when the bubble bursts, as noted by Battiston (2015). We introduce the
delay \delta > 0 to reflect the fact that bank i's investment decision does not immediately react
to changes in bank j's robustness. Note that when there are no bubble banks and fP = \lambda ,
the system (2.1)--(2.2) boils down to the basis mean-field model in (1.1), apart from the fact
that here we have the term 1

n - 1 instead of 1
n in front of the sum, since we are averaging the

investments with respect to the other (n  - 1) banks. However, the impact of these terms is
the same for large networks, i.e., when n tends to infinity.

Example 2.3. We have that f(x) = 1 + 2 arctan(x)/\pi satisfies Assumption 2.2: f takes
values in [0, 2], and both f and F (x) = xf(x) are Lipschitz because they have bounded
derivatives.

In particular, f is increasing, so that if \rho jt > \rho it, then the link towards j is stronger than
the link towards i. If the robustness \rho jt of bank j is equal to the average An,m

t in (2.3), then
the link towards bank j has weight f(0) = 1; if \rho jt > An,m

t , the link has weight greater than 1;
and if \rho jt < An,m

t , the link has weight less than 1. If all the banks have the same robustness,
we have a homogeneous network, where all the links have weight equal to 1.

We note that different choices for f are possible. In particular, we could use different
functions for core and periphery banks (for example, by considering a parametric dependence
in f) in order to introduce heterogeneity in the model. Here we choose only one function for
both kinds of banks for the sake of simplicity. Furthermore, any constant function clearly
satisfies Assumption 2.2. For such a choice, we have a static and homogeneous network.

Proposition 2.4. Under Assumption 2.2, for every \delta \geq 0 there exists a unique strong solu-
tion for the system of SDEs (2.1)--(2.2). Moreover,

sup
0\leq s\leq t

\BbbE [| \rho i,ns | 2] <\infty , 0 < t <\infty , i = 1, . . . , n,(2.11)

sup
0\leq s\leq t

\BbbE [| \rho k,Bs | 2] <\infty , 0 < t <\infty , k = 1, . . . ,m.(2.12)

Proof. Suppose by simplicity \lambda = 1 and that \sigma B = (\sigma Bt )t\geq 0 is constant, i.e., \sigma Bt = \sigma B > 0
for all t \geq 0.1 For \delta = 0 we can write the system of SDEs given by (2.1), (2.2), and (2.6) as
an (m+ n+ 1)-dimensional SDE

(2.13) dXt = b(Xt)dt+ \sigma (Xt)d \=Wt, t \geq 0,

1We suppose that \sigma B = (\sigma B
t )t\geq 0 is constant in order to ease the computations and the notation in the

proof. However, condition (2.5) guarantees that the result also holds in more general cases.D
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where
\=Wt = (W 1

t , . . . ,W
n
t ,W

1,B
t , . . . ,Wm,B

t , B1
t , B

2
t )t\geq 0.

Moreover,
(2.14)

b(x) =

\left(             

1
n - 1

\sum n
j=2 f

P (xj  - \=x)(xj  - \=x) + 1
m

\sum m+n
k=n+1 f

B(xk  - \=x)(xk  - \=x) + \=x - x1
...

1
n - 1

\sum n - 1
j=1 f

P (xj  - \=x)(xj  - \=x) + 1
m

\sum m+n
k=n+1 f

B(xk  - \=x)(xk  - \=x) + \=x - xn
1
n

\sum n
j=1 f

P (xj  - \=x)(xj  - \=x) + 1
m - 1

\sum m+n
k=n+2 f

B(xk  - \=x)(xk  - \=x) + \=x - xn+1

...
1
n

\sum n
j=1 f

P (xj  - \=x)(xj  - \=x) + 1
m - 1

\sum m+n - 1
k=n+1 f

B(xk  - \=x)(xk  - \=x) + \=x - xm+n

\~b(xm+n+1)

\right)             
,

with x = (x1, . . . , xm+n+1) \in \BbbR m+n+1 and \=x = 1
m+n

\sum m+n
i=1 xi. Here \sigma (x) is an (m+ n+ 1)\times 

(m+ n+ 1) block matrix of the form

(2.15) \sigma (x) =

\left(  \Sigma 1 0 0
0 \Sigma 2 0
0 0 \~\sigma (xm+n+1)

\right)  ,

where \Sigma 1 is an n\times n diagonal matrix with diagonal (\sigma 1, . . . , \sigma 1), and \Sigma 2 is the m\times (m+ 1)
matrix

\Sigma 2 =

\left(     
\sigma 2 0 . . . 0 \sigma B
0 \sigma 2 . . . 0 \sigma B
...

...
. . . 0 \sigma B

0 0 . . . \sigma 2 \sigma B

\right)     .

We use Theorem 2.9 in Chapter 5.2 of Karatzas and Shreve (1991) to prove existence and
uniqueness of the strong solution of (2.13), and to show that the second moments of the
solution are finite; see the proof of Proposition 5.2.3 in Mazzon (2018).

When \delta > 0, (2.13) becomes

(2.16) dXt = \=b(Xt, Xt - \delta )dt+ \=\sigma (Xt, Xt - \delta )d \=Wt, t \geq \delta ,

where \=\sigma (x, y) = \sigma (x) as in (2.15), and

b(x, y) =

\left(             

1
n - 1

\sum n
j=2 f

P (yj  - \=y)(xj  - \=x) + 1
m

\sum m+n
k=n+1 f

B(yk  - \=y)(xk  - \=x) + \=x - x1
...

1
n - 1

\sum n - 1
j=1 f

P (yj  - \=y)(xj  - \=x) + 1
m

\sum m+n
k=n+1 f

B(yk  - \=y)(xk  - \=x) + \=x - xn
1
n

\sum n
j=1 f

P (yj  - \=y)(xj  - \=x) + 1
m - 1

\sum m+n
k=n+2 f

B(yk  - \=y)(xk  - \=x) + \=x - xn+1

...

y 1
n

\sum n
j=1 f

P (yj  - \=y)(xj  - \=x) + 1
m - 1

\sum m+n - 1
k=n+1 f

B(yk  - \=y)(xk  - \=x) + \=x - xm+n

\~b(xm+n+1)

\right)             
.
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By Theorem 3.1 in Mao (2007, Chapter 5), to prove existence and uniqueness of the solution
it suffices to show that the linear growth condition

(2.17) \| \=b(x, y)\| 2 \leq C(1 + \| x\| 2 + \| y\| 2)

holds and that \=b is Lipschitz in the variable x uniformly in y, i.e., that there exists a constant
\~K \in (0,\infty ) such that

(2.18) \| \=b(x, y) - \=b(x\prime , y)\| 2 \leq \~K\| x - x\prime \| 2

for all y \in \BbbR , x, x\prime \in \BbbR m+n. Property (2.17) can be proven by computations similar to
those used for \delta = 0; see the proof of Proposition 5.2.3 in Mazzon (2018). For the Lipschitz
condition, we have

| \=b1(x, y) - \=b1(x
\prime , y)| \leq 1

n - 1

n\sum 
j=2

| fP (yj  - \=y)| | (xj  - \=x) - (x\prime j  - \=x\prime )| 

+
1

m

m+n\sum 
k=n+1

| fB(yk  - \=y)| | (xk  - \=x) - (x\prime k  - \=x\prime )| + | \=x - \=x\prime | + | x1  - x\prime 1| .

Hence, as fB and fP are bounded by K1, the computations to show (2.18) are identical to
the case for \delta = 0.

In order to prove (2.11) and (2.12), we apply the same argument used in the proof of
Theorem 3.1 in Mao (2007, Chapter 5): on [0, \delta ] we have by hypothesis a classic stochastic
differential equation, and by Theorem 2.9 in Chapter 5.2 of Karatzas and Shreve (1991),

\BbbE 

\Biggl[ 
sup

0\leq s\leq \delta 
\| Xs\| 2

\Biggr] 
<\infty .(2.19)

On the interval [\delta , 2\delta ], we can write (2.16) as

dXt = \=b(Xt, \xi t)dt+ \=\sigma (Xt, \xi t)dWt, \delta \leq t \leq 2\delta ,

where \xi t = Xt - \delta . Once the solution on [0, \delta ] is known, this is again a classic SDE (without
delay) with initial value X\delta = \xi 0, so that again by Theorem 2.9 in Chapter 5.2 of Karatzas
and Shreve (1991), there exists a constant C2\delta > 0 such that

\BbbE 

\Biggl[ 
sup

\delta \leq s\leq 2\delta 
\| Xs\| 2

\Biggr] 
\leq C2\delta 

\bigl( 
1 + \BbbE [\| X\delta \| 2]

\bigr) 
e2\delta C2\delta ,(2.20)

which is finite by (2.19). Repeating this argument on the interval [2\delta , 3\delta ], we obtain

\BbbE 

\Biggl[ 
sup

2\delta \leq s\leq 3\delta 
\| Xs\| 2

\Biggr] 
\leq C3\delta 

\bigl( 
1 + \BbbE [\| X2\delta \| 2]

\bigr) 
e3\delta C3\delta \leq C3\delta 

\Biggl( 
1 + \BbbE 

\Biggl[ 
sup

\delta \leq s\leq 2\delta 
\| Xs\| 2

\Biggr] \Biggr) 
e3\delta C3\delta <\infty 
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by (2.20). Recursively we have

\BbbE 

\Biggl[ 
sup

(k - 1)\delta \leq s\leq k\delta 
\| Xs\| 2

\Biggr] 
<\infty .

Then,

sup
0\leq s\leq t

\BbbE [\| Xs\| 2] = sup
s\in [\=k\delta ,(\=k+1)\delta ]

\BbbE [\| Xs\| 2] <\infty (2.21)

for some \=k with [\=k\delta , (\=k + 1)\delta ] \subseteq [0, t].

3. Mean-field limit. We now study a mean-field limit for the system of banks (2.1)--(2.2)
for large n.

Define the processes \~\rho i = (\~\rho it)t\geq 0, i = 1, . . . , n, \=\rho k,B = (\=\rho k,Bt )t\geq 0, k = 1, . . . ,m, and
\nu = (\nu t)t\geq 0 as the solutions of the following system of SDEs for t \geq \delta :

d\~\rho it =  - \lambda \~\rho itdt+ \sigma 1dW
i
t ,

(3.1)

d\nu t =

\Biggl( 
\varphi (t, t - \delta ) +

1

m

m\sum 
k=1

fB
\Bigl( 
\=\rho k,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) \Bigl( 
\=\rho k,Bt  - \nu t  - \BbbE [\~\rho it]

\Bigr) 
+ \lambda \BbbE [\~\rho it]

\Biggr) 
dt,

(3.2)

d\=\rho k,Bt =

\left(  \varphi (t, t - \delta ) +
1

m - 1

m\sum 
\ell =1,\ell \not =k

fB
\Bigl( 
\=\rho \ell ,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) \Bigl( 
\=\rho \ell ,Bt  - \nu t  - \BbbE [\~\rho it]

\Bigr) \right)  dt

(3.3)

+
\Bigl( 
\mu t + \lambda (\BbbE [\~\rho it] + \nu t  - \=\rho k,Bt )

\Bigr) 
dt+ \sigma 2dW

k,B
t + \sigma Bt dB

1
t ,

with

\varphi (t, t - \delta ) := \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigr] 
= \BbbE 

\bigl[ 
\BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigm| \bigm| \~\rho it - \delta 

\bigr] \bigr] 
= \BbbE 

\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) 
\BbbE 
\bigl[ 
\~\rho it
\bigm| \bigm| \~\rho it - \delta 

\bigr] \bigr] 
 - \BbbE [\~\rho it]\BbbE 

\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigr] 
= e - \lambda \delta \BbbE 

\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) 
\~\rho it - \delta 

\bigr] 
 - \rho 0e

 - \lambda t\BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigr] 
(3.4)

for t \geq \delta . For t \in [0, \delta ] we assume that (\~\rho t)0\leq t\leq \delta , (\nu t)0\leq t\leq \delta , and (\=\rho k,Bt )0\leq t\leq \delta satisfy (3.1)--(3.3)

for \delta = 0, with initial conditions \~\rho i0 = \rho 0 \in \BbbR , \nu 0 = 0, \=\rho k,B0 = \rho k,B0 \in \BbbR .
Note that in (3.2) the expression of \varphi is independent of the choice of i since \~\rho i, i = 1, . . . , n,

are identically distributed. For the same reason, the process \nu in (3.2) does not depend on i.
Set

(3.5) \=\rho i := \~\rho i + \nu , i = 1, . . . , n.D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.1

87
.2

54
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 439

In particular,

\=\rho it =\=\rho i\delta +

\int t

\delta 

\Biggl( 
\varphi (s, s - \delta ) +

1

m

m\sum 
k=1

fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])
\bigl( 
\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is]

\bigr) 
+ \lambda (\BbbE [\~\rho is] - \~\rho is)

\Biggr) 
ds

(3.6)

+ \sigma 1W
i
s , t \geq \delta .

Remark 3.1. The processes (\=\rho it)t\geq 0, i = 1, . . . , n, are not independent, so a priori the strong
law of large numbers could not be applied. However, as shown in (3.5), \=\rho i can be written as
the sum of (\~\rho it)t\geq 0 from (3.1) and (\nu t)t\geq 0 from (3.2), respectively. In particular, the processes
\~\rho i, i = 1, . . . , n, are independent Ornstein--Uhlenbeck processes, and \nu is independent of i and
common to all \=\rho i, i = 1, . . . , n. In this way, we obtain a decomposition of \=\rho i which permits
one to apply the strong law of large numbers to the sum of \~\rho i, i = 1, . . . , n, and then prove
Theorem 3.3.

Proposition 3.2. Under Assumption 2.2, for every \delta \geq 0 there exists a unique strong solu-
tion of the system of SDEs (3.1)--(3.3). In particular,

sup
0\leq s\leq t

\BbbE [| \nu s| 2] <\infty , 0 < t <\infty ,(3.7)

sup
0\leq s\leq t

\BbbE [| \rho k,Bs | 2] <\infty , 0 < t <\infty , k = 1, . . . ,m.(3.8)

Proof. For the sake of simplicity we take \lambda = 1 and \sigma Bt = \sigma B > 0 for all t \geq 0 as before.
It is well known that (3.1) admits a unique strong solution. For \delta = 0, the system given by
(3.2), (3.3), and (2.6) can be written as an (m+ 2)-dimensional SDE

(3.9) dXt = b(t,Xt)dt+ \sigma (t,Xt)dWt, t \geq 0,

where W = (WB,1
t , . . . ,WB,m

t , B1
t , B

2
t )t\geq 0, and

(3.10)

b(t, x) =

\left(       
\varphi (t) + 1

m

\sum m
k=1 f

B(xk  - x1  - \psi (t))(xk  - x1  - \psi (t)) + \psi (t),

\varphi (t) + 1
m - 1

\sum m+1
\ell =3 fB(x\ell  - x1  - \psi (t))(x\ell  - x1  - \psi (t)) + x1 + xm+2  - x2 + \psi (t),

...
\varphi (t) + 1

m - 1

\sum m
\ell =2 f

B(x\ell  - x1  - \psi (t))(x\ell  - x1  - \psi (t)) + x1 + xm+2  - xm+1 + \psi (t),
\~b(xm+2)

\right)       
with \psi (t) = \BbbE [\~\rho it] and

\varphi (t) := \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigr] 
, t \geq 0.(3.11)

The (m+ 2)\times (m+ 2) matrix \sigma (x) has the form

(3.12) \sigma (t, x) =

\left(         

0 0 . . . 0 0 0
\sigma 2 0 . . . 0 \sigma B 0
0 \sigma 2 . . . 0 \sigma B 0
...

...
. . . 0 \sigma B 0

0 0 . . . \sigma 2 \sigma B 0
0 0 . . . 0 0 \~\sigma (xm+2)

\right)         
.
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Computations similar to those in Proposition 2.4 guarantee existence and uniqueness of the
solution of (3.9) and show that the second moments exist and are finite by Theorem 2.9 in
Chapter 5.2 of Karatzas and Shreve (1991); see Mazzon (2018).

The proof for the case \delta > 0, based on Theorem 3.1 in Mao (2007, Chapter 5), is analogous
to the proof of Proposition 2.4.

We now present the main theoretical result of the paper, which guarantees that, in the
setting of Assumption 2.2, the system (2.1), (2.2) can be approximated by (3.6), (3.3) for
large networks. Denote | x - y| \ast t = sups\leq t | xs  - ys| . We have the following.

Theorem 3.3. Fix i \in \BbbN . Under Assumption 2.2, for any t \in [0,\infty ) and \delta \geq 0 it holds that

lim
n\rightarrow \infty 

\Bigl( 
\BbbE 
\bigl[ 
| \rho i,n  - \=\rho i| \ast t

\bigr] 
+ \BbbE [| \rho k,B  - \=\rho k,B| \ast t ]

\Bigr) 
= 0, k = 1, . . . ,m,

where \rho i,n, \=\rho i, \rho k,B, \=\rho k,B are defined in (2.1), (3.6), (2.2), and (3.3), respectively.

Remark 3.4. We now interpret the results of Theorem 3.3. Note that the influence of the
bubble on the limit system is twofold: it rules out propagation of chaos and increases systemic
risk. Indeed, the bubble makes the banks of the core mutually dependent at the limit, as they
share a common stochastic source. Furthermore, their impact does not vanish in the limit. As
a consequence, all banks in the system remain dependent on one another in large networks as
well. This breaks down the propagation of chaos, that is, the property by which the system
decouples more and more as the network gets larger. On the contrary, the bubble acts as a
driving force of the system in the limit, too.

The term

(3.13)
1

m

m\sum 
k=1

fB
\Bigl( 
\=\rho k,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) \Bigl( 
\=\rho k,Bt  - \nu t  - \BbbE [\~\rho it]

\Bigr) 
in (3.2) makes this influence explicit: the banks not holding the bubble also are affected by
its evolution through the robustness of the banks with the bubbly asset. Moreover, again
by (3.13) it can be seen how the bubble increases systemic risk: when the bubble bursts,
the banks in the periphery also suffer a loss, because they are not able to promptly disinvest
due to the delay \delta in (3.13). In this way the most systemic banks (i.e., the most connected
institutions in the network) are the most exposed to the shock as well.

We also note that the mean reverting term \lambda (\BbbE [\~\rho it] + \nu t  - \=\rho k,Bt ) in (3.3), which is the limit

of \lambda (An,m
t  - \rho k,Bt ) in (2.2), reduces the risk since it slows down the fall of \=\rho k,B after the burst.

For further details, we refer the reader to subsection 4.3, where numerical simulations are
performed in order to investigate the behavior of the system after the burst of the bubble.

We provide the proof of Theorem 3.3 in the appendix. In order to prove Theorem 3.3, we
give the following.

Proposition 3.5. Under Assumption 2.2, for 0 \leq \delta <\infty ,

lim
n\rightarrow \infty 

\int \delta 

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds = 0

(3.14)

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.1

87
.2

54
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 441

and

lim
n\rightarrow \infty 

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds = 0,

for 0 \leq \delta \leq t <\infty , where \~\rho i and \=\rho i satisfy (3.1) and (3.6), respectively, and

(3.15) \=An,m
t =

1

m+ n

\Biggl( 
n\sum 

r=1

\=\rho rt +
m\sum 

h=1

\=\rho h,Bt

\Biggr) 
, t \geq 0.

Proof. We restrict ourselves to proving the second limit, since the first follows as a par-
ticular case of the second limit. Let us write, for t \geq \delta > 0,

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho it - \delta  - \=An,m
t - \delta )(\=\rho 

i
t  - \=An,m

t ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] 

\leq 1

n

n\sum 
i=1

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\=\rho it - \delta  - \=An,m

t - \delta )(\=\rho 
i
t  - \=An,m

t ) - fP (\~\rho it - \delta  - \BbbE [\~\rho it - \delta ])(\~\rho 
i
t  - \BbbE [\~\rho it])

\bigm| \bigm| \bigm| \biggr] 

+ \BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\~\rho it - \delta  - \BbbE [\~\rho it - \delta ])(\~\rho 
i
t  - \BbbE [\~\rho it]) - \BbbE 

\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ,
since \=\rho i, i = 1, . . . , n, are identically distributed, and the same holds for \~\rho i, i = 1, . . . , n.

By (3.5) we have

\=An,m
t =

1

m+ n

\Biggl( 
n\sum 

r=1

\=\rho rt +

m\sum 
h=1

\=\rho h,Bt

\Biggr) 
=

1

m+ n

\Biggl( 
n\nu t +

n\sum 
r=1

\~\rho rt +

m\sum 
h=1

\=\rho h,Bt

\Biggr) 
,

so that

lim
n\rightarrow \infty 

\=An,m
t = \nu t + lim

n\rightarrow \infty 

1

m+ n

n\sum 
r=1

\~\rho rt = \nu t + \BbbE [\~\rho it] a.s.

by (2.12) and the strong law of large numbers, as \~\rho i, i = 1, . . . , n, are independent and
identically distributed. Then we have

lim
n\rightarrow \infty 

fP (\=\rho it - \delta  - \=An,m
t - \delta )(\=\rho 

i
t  - \=An,m

t ) =fP
\bigl( 
\nu t - \delta + \~\rho it - \delta  - (\nu t - \delta + \BbbE [\~\rho it - \delta ])

\bigr) \bigl( 
\nu t + \~\rho it  - (\nu t + \BbbE [\~\rho it])

\bigr) (3.16)

= fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) 
a.s.

We now prove that the family of random variables \{ 1
n

\sum n
i=1 f

P (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s )\} n\in \BbbN 
is uniformly integrable for every s \in [\delta , t], so that almost sure convergence implies convergence
in L1.D
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By point (iii) of Theorem 11 in Protter (2005, Chapter 1) it is enough to prove that for
every s \in [\delta , t],

(3.17) sup
n

\BbbE 

\left[  \Biggl( 1

n

n\sum 
i=1

fP (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s )

\Biggr) 2
\right]  <\infty .

For every s \in [\delta , t], we have that

\BbbE 
\biggl[ \Bigl( 1
n

n\sum 
i=1

fP (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s )
\Bigr) 2\biggr] 

\leq (K1)
2\BbbE 
\biggl[ \Bigl( 1
n

n\sum 
i=1

| \=\rho is  - \=An,m
s | 

\Bigr) 2\biggr] 

\leq (K1)
2\BbbE 
\biggl[ \Bigl( 

(1 - n/(m+ n))| \nu s| +
\bigm| \bigm| \~\rho is\bigm| \bigm| + 1

m+ n

n\sum 
r=1

| \~\rho rs| +
1

m+ n

m\sum 
h=1

\bigm| \bigm| \bigm| \=\rho h,Bs

\bigm| \bigm| \bigm| \Bigr) 2\biggr] 

\leq (K1)
2\BbbE 
\biggl[ \Bigl( 

| \nu s| +
\bigm| \bigm| \~\rho is\bigm| \bigm| + 1

n

n\sum 
r=1

| \~\rho rs| +
1

m

m\sum 
h=1

\bigm| \bigm| \bigm| \=\rho h,Bs

\bigm| \bigm| \bigm| \Bigr) 2\biggr] 

\leq 4(K1)
2

\biggl( 
\BbbE 
\Bigl[ 
| \nu s| 2 + | \~\rho is| 2 +

m\sum 
k=1

| \=\rho k,Bs | 2
\Bigr] 
+ \BbbE 

\Bigl[ \Bigl( 1
n

n\sum 
r=1

| \~\rho rs| 
\Bigr) 2\Bigr] \biggr) 

\leq 4(K1)
2

\biggl( 
\BbbE 
\Bigl[ 
| \nu s| 2 + | \~\rho is| 2 +

m\sum 
k=1

| \=\rho k,Bs | 2
\Bigr] 
+

1

n
\BbbE 
\biggl[ n\sum 

r=1

| \~\rho rs| 2
\biggr] \biggr) 
.

\leq 4(K1)
2

\biggl( 
\BbbE 
\Bigl[ 
| \nu s| 2 + | \~\rho is| 2 +

m\sum 
k=1

| \=\rho k,Bs | 2
\Bigr] 
+ \BbbE [| \~\rho is| 2]

\biggr) 
<\infty 

by (3.7) and (3.8) and because \BbbE | \~\rho is| 2] <\infty . Hence, \{ 1
n

\sum n
i=1 f

P (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s - \=An,m

s )\} n\in \BbbN 
is uniformly integrable, and therefore we obtain by (3.16) that

lim
n\rightarrow \infty 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\=\rho it - \delta  - \=An,m

t - \delta )(\=\rho 
i
t  - \=An,m

t ) - fP (\~\rho it - \delta  - \BbbE [\~\rho it - \delta ])(\~\rho 
i
t  - \BbbE [\~\rho it])

\bigm| \bigm| \bigm| \biggr] = 0.

Moreover, for \delta \leq s \leq t,

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\=\rho is - \delta  - \=An,m

s - \delta )(\=\rho 
i
s  - \=An,m

s ) - fP (\~\rho is - \delta  - \BbbE [\~\rho is - \delta ])(\~\rho 
i
s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] 
\leq K1(\BbbE [| \=\rho is  - \=An,m

s | ] + \BbbE [| \~\rho is  - \BbbE [\~\rho is| ]),

where the second term belongs to L1 ([\delta , t]) and does not depend on n. On the other hand,
we have\int t

0
\BbbE [| \=\rho is  - \=An,m

s | ]ds \leq 
\int t

0
\BbbE 

\Biggl[ 
| \~\rho is| + (1 - n/(m+ n)) | \nu s| +

1

m+ n

n\sum 
r=1

| \~\rho rs| +
1

m+ n

m\sum 
h=1

| \=\rho h,Bs | 

\Biggr] 
ds

\leq 
\int t

0
\BbbE 
\Bigl[ 
2| \~\rho is| + | \nu s| + | \=\rho h,Bs | 

\Bigr] 
ds

\leq t sup
0\leq s\leq t

\BbbE 
\Bigl[ 
2| \~\rho is| + | \nu s| + | \=\rho h,Bs | 

\Bigr] 
<\infty (3.18)
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by (3.7) and (3.8). We can then apply the dominated convergence theorem to obtain, for
t \in [\delta ,\infty ),
(3.19)

lim
n\rightarrow \infty 

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\=\rho is - \delta  - \=An,m

s - \delta )(\=\rho 
i
s  - \=An,m

s ) - fP (\~\rho is - \delta  - \BbbE [\~\rho is - \delta ])(\~\rho 
i
s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds = 0, t \geq \delta .

It remains to show that for t \geq \delta it holds that
(3.20)

lim
n\rightarrow \infty 

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\~\rho is - \delta  - \BbbE [\~\rho is - \delta ])(\~\rho 
i
s - \BbbE [\~\rho is]) - \BbbE 

\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds = 0.

Since \~\rho i, i = 1, . . . , n, are independent and identically distributed, we have that, for \delta \leq s \leq t,

lim
n\rightarrow \infty 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\~\rho is - \delta  - \BbbE [\~\rho is - \delta ])(\~\rho 
i
s  - \BbbE [\~\rho is]) - \BbbE 

\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] = 0.

Then limit (3.20) follows by the dominated convergence theorem, by Assumption 2.2, and
since the Ornstein--Uhlenbeck process has finite moments; see the computations in (3.18).

4. Liquidity induced bubbles: Theory and numerics.

4.1. Liquidity induced bubbles in an information network. We now provide more details
on the theory of asset price bubbles and our model choice for \beta .

The formation of asset price bubbles has been thoroughly investigated from an economical
point of view; see, e.g., Tirole (1982), Allen and Gale (2000), Choi and Douady (2009, 2013),
Harrison and Kreps (1978), Kaizoji (2000), Earl, Peng, and Potts (2007), DeLong et al. (1990),
Scheinkman and Xiong (2003, 2013), Xiong (2012), Abreu and Brunnermeier (2003), F\"ollmer
(2005), Miller (1977), and Zhuk (2013).

Different causes have been indicated as triggering factors for bubble birth, such as hetero-
geneous beliefs between interacting agents (as in F\"ollmer (2005), Harrison and Kreps (1978),
Scheinkman and Xiong (2003, 2013), Xiong (2012), and Zhuk (2013)), a breakdown of the
dynamic stability of the financial system (Choi and Douady (2013, 2009)), the diffusion of
new investment decision rules from a few expert investors to a larger population of amateurs
(Earl, Peng, and Potts (2007)), the tendency of traders to choose the same behavior as the
other traders' behavior as thoroughly as possible (see Kaizoji (2000)), and the presence of
short-selling constraints (Miller (1977)).

From the mathematical point of view, financial asset bubbles have been mainly studied
via the martingale theory of bubbles, introduced by Cox and Hobson (2005) and Loewenstein
and Willard (2000) and mainly developed by Jarrow and Protter (2009, 2011), Jarrow et al.
(2007, 2010, 2011), and Protter (2013). In this setting a Q-bubble is defined as the difference
between the market price of a given financial asset and its fundamental value, given by the
expectation of the future cash flows under an equivalent local martingale measure Q.

Furthermore, other constructive approaches have been proposed, where the fundamental
value is exogenously given, whereas the market value is endogenously determined; see Jarrow,
Protter, and Roch (2012) and Biagini, Mazzon, and Meyer-Brandis (2018b).D
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We here follow the approach of Biagini, Mazzon, and Meyer-Brandis (2018b) and Jarrow,
Protter, and Roch (2012) and assume that the market wealth is determined by the trading
activity of investors and studied through the analysis of the liquidity supply curve. In partic-
ular, the stock is traded through a limit order book, so that limit orders and market orders
are possible. Market orders, which deplete or fill in the limit order book, produce a variation
in the price over a small interval of time. If new market orders quickly enter before the price
has time to decay again to the fundamental value, these short-term price variations may ac-
cumulate and result in a deviation from the fundamental wealth with a consequent bubble
birth.2

Motivated by the above analysis, the bubble is assumed to follow the dynamics

(4.1) d\beta t =Mt\Lambda t( - k\beta tdt+ 2dXt), t \geq 0,

where M = (Mt)t\geq 0 and \Lambda = (\Lambda t)t\geq 0 are, respectively, a measure of illiquidity and the so-
called resiliency of the limit order book, which takes values in [0, 1]. The process X = (Xt)t\geq 0

is the signed volume of market orders, defined as the accumulated difference between the
buy market orders and the sell market orders. Moreover, in agreement with the approach of
Jarrow, Protter, and Roch (2012), k > 0 is the speed of decay, which is assumed to be strictly
positive since the market price is assumed to go back to the fundamental value in the long
term.

We consider that X satisfies the dynamics

dXt = \=\mu tdt+ \=\sigma tdB
2
t , t \geq 0,(4.2)

where \=\mu = (\=\mu t)t\geq 0 and \=\sigma = (\=\sigma t)t\geq 0 are progressively measurable processes satisfying some
integrability conditions. In this way,

(4.3) d\beta t = \Lambda tMt

\bigl[ 
( - k\beta t + 2\=\mu t)dt+ 2\=\sigma tdB

2
t

\bigr] 
, t \geq 0,

i.e., \beta solves (2.4) with

\mu t =Mt\Lambda t( - k\beta t + 2\=\mu t), \sigma Bt = 2\=\sigma tMt\Lambda t, t \geq 0.

In the simulations below, the illiquidity M is assumed to be a geometric Brownian motion,
whereas \Lambda is taken constant.

In Biagini, Mazzon, and Meyer-Brandis (2018b), the evolution of X is modeled through a
contagion process within an information network of investors. Traders may imitate neighbors
in the network that have successfully bought the bubbly asset, and place as a consequence
a buy market order on the asset. This eventually leads to some self-exciting herding effect,
which in turn blows up the signed volume of market orders and then generates the bubble.
The analysis of the contagion mechanism is based on some epidemiological studies describing
virus diffusion in a population. In particular, virus diffusion is reinterpreted as trading con-
tagion and modeled through the Susceptible--Infectious--Susceptible (SIS) model, studied, for
example, by Pastor-Satorras and Vespignani (2001a,b).

2For more details about the economical motivation of this setting, see Biagini, Mazzon, and Meyer-Brandis
(2018b) and Jarrow, Protter, and Roch (2012).D
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The evolution of the bubble is then characterized by two different phases: in the first
one the bubble blows up, since the quick increase of the signed volume of market orders X
dominates in (4.1). In this phase, the essential force of the bubble is given by the contagion
mechanism driving X. The contagion accelerates to a maximum and then slows down, since
it tends towards an equilibrium. At this point, the drift of X gets smaller, and the mean-
reverting term of (4.1) starts to dominate. This leads to the burst of the bubble, here identified
by a stopping time time \tau , and to the second phase, i.e., the decrease of the bubble towards
zero. In particular, in the next subsections we characterize \tau as the first time when the drift
in (4.3) becomes negative.

4.2. Risk analysis for the finite case. We now study by numerical simulations how the
system described in section 3 reacts to the growth and the burst of a bubble. In particular,
we investigate how a bank not holding the bubbly asset can be affected by a bubble burst
through contagion mechanisms. We first consider the case of (2.1)--(2.2), i.e., of a network
with a finite number of banks, and then we analyze the limit system (3.1)--(3.3).

We choose the same function f for both core and periphery banks in (2.1)--(2.2), i.e.,
fB = fP = f . In particular, we take f(x) = 1 + 2 arctan(x)/\pi , as in Example 2.3. We
investigate how the first bank reacts when banks holding the bubble are in trouble. Specifically,
we here introduce and compute the risk measure

(4.4) Riski,\Delta \alpha =  - sup

\Biggl\{ 
x \in \BbbR :

\Biggl[ 
1

Ns

Ns\sum 
k=1

1\Bigl\{ 
\rho i,n,k
\tau k+\Delta  - \rho i,n,k

\tau k
\leq x

\Bigr\} 
\Biggr] 
\leq \alpha 

\Biggr\} 
,

with \alpha > 0, where Ns is the number of simulations of the processes in (2.1)--(2.2), \tau k is the

value at the kth simulation of the bursting time \tau of the bubble, and \rho i,n,kt is the value of \rho i,nt
computed in the kth simulation. Here \Delta represents a time interval after bubble burst, which
can be considered as an exogenously given risk management time horizon.

The risk measure Riski,\Delta \alpha , as defined in (4.4), measures the systemic impact of realized
distress of the institutions holding the bubble at the moment of the burst. In this sense, it can
be seen as the CoVar of a bank without the bubbly asset when banks holding the bubbly asset
suffer a loss (for a definition of CoVar, see, e.g., Biagini et al. (2019) and Brunnermeier and
Oehmke (2013)). Note that, since the banks not holding the bubble are identically distributed,
we only compute the risk for one bank.

From now on, we set \alpha = 0.05 in (4.4). We perform Ns = 10000 simulations of Risk1,\Delta 0.05

in the case when there are n = 6 banks not holding the bubble and m = 2 banks holding it.
We consider different values of \lambda and of the delay \delta .

The results are given in Table 4.1, Table 4.2, and Table 4.3 for \Delta = 0.05, 0.1, 0.2,
respectively.

We note a nonmonotonic behavior with respect to the delay \delta : when the delay is small,
banks are able to quickly disinvest when other institutions holding the bubble are in trouble,
reducing the loss. However, in all three cases \Delta = 0.05, \Delta = 0.1, and \Delta = 0.2, we observe that
for delays larger than \Delta , the risk is still big but decreases because we check the robustness
of the banks at time \tau + \Delta : at this time, when \delta > \Delta , f is smaller than in the case \delta = \Delta 
because banks are cross investing on one another according to a value of the robustness, which
is realized long before the bubble's burst.D
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Table 4.1
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2), with parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.05,

\rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.109 0.150 0.292 0.289 0.290 0.288 0.286

\lambda = 1 0.083 0.135 0.252 0.251 0.245 0.245 0.249

\lambda = 0.5 0.083 0.119 0.230 0.227 0.226 0.225 0.222

Table 4.2
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2), with parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.1,

\rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.125 0.176 0.441 0.672 0.886 0.864 0.863

\lambda = 1 0.121 0.163 0.301 0.540 0.777 0.758 0.751

\lambda = 2 0.120 0.130 0.246 0.485 0.703 0.686 0.684

Moreover, the risk is decreasing with \lambda . Indeed, it follows by (2.1) that \rho i,n reverts to

An,m
t +

1

\lambda 

\left(  1

n

n\sum 
i=1

f(\rho i,nt - \delta  - An,m
t - \delta )(\rho 

i,n
t  - An,m

t ) +
1

m - 1

m\sum 
\ell =1,\ell \not =k

f(\rho \ell ,Bt - \delta  - An,m
t - \delta )(\rho 

\ell ,n
t  - An,m

t )

\right)  ,

so that for large \lambda the term involving the network, and then the direct effects of the banks
holding the bubbly asset, is less significant.

Remark 4.1. By (4.1), we note that the mean reversion term  - k\beta t is the main driving force
of the shock at the moment of the bubble's burst. This term dominates when the contagion
mechanism triggering the bubble slows down. Since it is a linear function of the bubble, we
see that the size of the bubble at the moment of the burst affects the risk in two ways:

\bullet it amplifies the shock suffered by the banks holding the bubbly asset, through the
above-mentioned term  - k\beta t;

\bullet it makes the network more centralized towards the banks detaining the bubbly asset.
This is due to the fact that the bubble's size also influences the term f(\rho k,B\tau  - \delta  - An,m

\tau  - \delta )
in (2.1), so that banks in the periphery have a strong connection with the banks that
suffer the shock. This makes the system more prone to systemic risk.

In order to investigate this last phenomenon, we now consider (2.1)--(2.2) when \beta is re-
placed by \=\beta , where

\=\beta t =

\Biggl\{ 
0 for t \leq \tau ,

\beta t  - \beta \tau for t > \tau .
(4.5)

In this way we model the case when the banks that hold the bubbly asset are subject at time
\tau to the same shock, but without having experienced the growth of the bubble.

Remark 4.2. Note that we assume the same shock size in the scenario with and without
the bubble. This is a conservative assumption, as the shock size would be expected to beD
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Table 4.3
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2), with parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.2,

\rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.261 0.294 0.493 0.753 1.085 2.070 2.007

\lambda = 1 0.190 0.215 0.382 0.585 0.893 1.900 1.879

\lambda = 2 0.170 0.181 0.330 0.535 0.785 1.812 1.806

smaller when there is no bubble. Considering the same shock in both scenarios allows us to
isolate the impact on systemic risk due to the distortion of the network's shape caused by the
bubble. We see that even under this conservative assumption, the risk is smaller when there
are no banks holding the bubbly asset.

The results are given in Table 4.4, Table 4.5, and Table 4.6 for \Delta = 0.05, 0.1, 0.2,
respectively.

Table 4.4
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2) with no bubble in the system, but with the
same shock at time \tau , for parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.05, \rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.113 0.143 0.279 0.277 0.276 0.276 0.274

\lambda = 1 0.085 0.130 0.224 0.222 0.221 0.220 0.217

\lambda = 2 0.079 0.111 0.202 0.196 0.191 0.190 0.190

Table 4.5
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2) with no bubble in the system, but with the
same shock at time \tau , for parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.1, \rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.138 0.172 0.320 0.500 0.773 0.765 0.760

\lambda = 1 0.122 0.160 0.259 0.434 0.641 0.611 0.600

\lambda = 2 0.127 0.126 0.193 0.343 0.524 0.511 0.506

Remark 4.3. We note that also in this case, the risk is maximum when \delta = \Delta . This
means that the risk first increases and then (slightly) decreases with respect to the delay, not
because of the presence of the bubble but due to the nature of the system (2.1)--(2.2). Of
course when the delay is small, the risk is also smaller, because banks can promptly disinvest
when the others are hit by the shock. However, the behavior for delays larger than \Delta is more
subtle. Even if there is no bubble, the robustness of some banks in the system may be bigger
than that of the rest, because of the random effect of Brownian motions. In the case under
examination, the worst scenarios occur when \zeta t,\delta := \rho k,Bt - \delta  - An,m

t - \delta is big for t \in [\tau , \tau + \Delta ], so
that the banks have a stronger link towards those hit by the shock. This happens for the
choice \alpha = 0.05 in (4.4) if \delta \geq \Delta . Moreover, \zeta t,\delta is slightly smaller for large delays if t - \delta \leq \tau 

(which is the case for every t \in [\tau , \tau +\Delta ] if \delta \geq \Delta ). For this reason, Risk1,\Delta 0.05 is smaller when
\delta > \Delta compared to the case \delta = \Delta .
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Table 4.6
Risk1,\Delta 

0.05 in the case when the robustness is given by (2.1)--(2.2) with no bubble in the system, but with the
same shock at time \tau , for parameters \sigma 1 = \sigma 2 = 0.2, \Delta = 0.2, \rho i,60 = \rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.268 0.290 0.425 0.680 0.999 1.773 1.765

\lambda = 1 0.187 0.210 0.356 0.480 0.695 1.449 1.412

\lambda = 2 0.173 0.180 0.202 0.447 0.570 1.269 1.262

We now compare the results to the case when there is a bubble in the system. Note that
for \delta = 0 there is no significant difference, since the banks are able to disinvest immediately
at the time when the shock hits the banks with the bubble. Anyway, this difference increases
with the delay. When the delay is big, the banks with no bubble are in much more trouble in
the first case, i.e., when they are attached to banks holding the bubbly asset.

We can then conclude that the increase of the value of the bubbly asset can put the
network in trouble, because it makes the system more centralized on the riskier banks, due to
the preferential attachment mechanism implied by (2.1)--(2.2).

This can also be seen by considering a static network, i.e., by taking fB = fP = 1 in
(2.1)--(2.2); see Table 4.7.

Table 4.7
Risk1,\Delta 

0.05 in the case of a static network, with fB = fP = 1 and with parameters \sigma 1 = \sigma 2 = 0.2, \rho i,60 =
\rho k,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

\Delta = 0.05 \Delta = 0.1 \Delta = 0.2

\lambda = 0.5 0.251 0.702 1.821

\lambda = 1 0.191 0.533 1.754

\lambda = 2 0.158 0.437 1.765

Note that in this case the delay plays no role since it only affects the dynamics through
fB and fP . Comparing this result with Table 4.1, Table 4.2, and Table 4.3, we see that when
\delta < \Delta , the fact that banks are able to disinvest before the risk management time horizon \Delta 
makes the measure Risk1,\Delta 0.05 smaller than in the case of a static network. On the other hand,
for big values of \delta , a centralized network towards the banks holding the bubbly asset and the
impossibility to quickly disinvest after the burst give rise to a more dangerous system than in
the static case.

4.3. Risk analysis for the mean-field limit. We now consider the case of the limit system
(3.1)--(3.3). We compute

(4.6) Risk1,\Delta 0.05 =  - sup

\Biggl\{ 
x \in \BbbR :

\Biggl[ 
1

Ns

Ns\sum 
k=1

1\Bigl\{ 
\=\rho 1,k\tau k+\Delta  - \=\rho 1,k\tau k

\leq x
\Bigr\} 
\Biggr] 
\leq 0.05

\Biggr\} 
,

where Ns and \tau k are the number of simulations and the time of the bubble's burst in the kth
simulation, respectively, and \=\rho 1,kt is the value of \=\rho 1t computed in the kth simulation.

As before, we consider m = 2 banks holding the bubble, and we make Ns = 10000
simulations of (3.1)--(3.3) taking different values of \lambda , \delta , and \Delta .D

ow
nl

oa
de

d 
05

/2
9/

23
 to

 1
29

.1
87

.2
54

.4
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 449

Note that, calling \mu \~\rho ,s = \rho 0e
 - \lambda s and \sigma \~\rho ,s = (\sigma 1)2

2\theta (1  - e - 2\theta s) the expectation and the
variance of \~\rho is, we can directly compute \varphi (t, t - \delta ) in (3.4) with fp(x) = 1 + 2

\pi arctan(x) as

\varphi (t, t - \delta ) = e - \lambda \delta 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) 
\~\rho it - \delta 

\bigr] 
 - \mu \~\rho ,t\BbbE 

\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigr] 
= e - \lambda \delta 

\int \infty 

 - \infty 

1\sqrt{} 
2\sigma \~\rho ,t - \delta \pi 

e - (x - \mu \~\rho ,t - \delta )
2/(2\sigma \~\rho ,t - \delta )

\biggl( 
1 +

2

\pi 
arctan(x - \mu \~\rho ,t - \delta )

\biggr) 
xdx

 - \mu \~\rho ,t

\int \infty 

 - \infty 

1\sqrt{} 
2\sigma \~\rho ,t - \delta \pi 

e - (x - \mu \~\rho ,t - \delta )
2/(2\sigma \~\rho ,t - \delta )

\biggl( 
1 +

2

\pi 
arctan(x - \mu \~\rho ,t - \delta )

\biggr) 
dx

= e - \lambda \delta 2

\pi 

\int \infty 

 - \infty 

1\sqrt{} 
2\sigma \~\rho ,t - \delta \pi 

e - (x - \mu \~\rho ,t - \delta )
2/(2\sigma \~\rho ,t - \delta ) arctan(x - \mu \~\rho ,t - \delta )(x - \mu \~\rho ,t - \delta )dx

+
2

\pi 
(e - \lambda \delta  - 1)\mu \~\rho ,t - \delta 

\int \infty 

 - \infty 

1\sqrt{} 
2\sigma \~\rho ,t - \delta \pi 

e - (x - \mu \~\rho ,t - \delta )
2/(2\sigma \~\rho ,t - \delta ) arctan(x - \mu \~\rho ,t - \delta )dx

= e - \lambda \delta 2

\pi 

\int \infty 

 - \infty 

1\sqrt{} 
2\sigma \~\rho ,t - \delta \pi 

e - x2/(2\sigma \~\rho ,t - \delta ) arctan(x)xdx

= e - \lambda \delta +1/(2\sigma \~\rho ,t - \delta )\surd \sigma \~\rho ,t - \delta 

\sqrt{} 
2

\pi 
Erfc(1/

\sqrt{} 
2\sigma \~\rho ,t - \delta ), 0 \leq \delta \leq t,(4.7)

with Erfc(x) = 2\surd 
\pi 

\int \infty 
x e - t2dt, where we used the fact that

\int \infty 
 - \infty e - x2/(2\sigma 2

\~\rho ,t - \delta ) arctan(x)dx = 0.

The results of the simulations are gathered in Table 4.8, Table 4.9, and Table 4.10 for
\Delta = 0.05, 0.1, 0.2, respectively.

Table 4.8
Risk1,\Delta 

0.05 with \Delta = 0.05 of the mean-field limit (3.1)--(3.3), with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5,
k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.078 0.169 0.331 0.320 0.318 0.315 0.313

\lambda = 1 0.087 0.168 0.327 0.315 0.311 0.311 0.308

\lambda = 2 0.085 0.160 0.325 0.313 0.309 0.307 0.302

Table 4.9
Risk1,\Delta 

0.05 with \Delta = 0.1 of the mean-field limit (3.1)--(3.3), with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5,
k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.134 0.210 0.442 0.762 1.043 1.041 1.040

\lambda = 1 0.131 0.215 0.428 0.739 1.015 1.011 1.010

\lambda = 2 0.128 0.213 0.425 0.663 0.918 0.909 0.909
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Table 4.10
Risk1,\Delta 

0.05 with \Delta = 0.2 of the mean-field limit (3.1)--(3.3), with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5,
k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.218 0.297 0.512 0.827 1.192 2.764 2.710

\lambda = 1 0.215 0.295 0.510 0.815 1.152 2.586 2.547

\lambda = 2 0.215 0.286 0.488 0.736 1.027 2.377 2.307

As before, the risk is increasing with the delay until \delta = \Delta and decreasing with \lambda , since
\=\rho it reverts to

1

\lambda 

\Biggl( 
\varphi (t, t - \delta ) +

1

m

m\sum 
k=1

f
\Bigl( 
\=\rho k,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) \Bigl( 
\=\rho k,Bt  - \nu t  - \BbbE [\~\rho it]

\Bigr) \Biggr) 
+ \BbbE [\~\rho it] - \~\rho it,

so that a large \lambda diminishes the influence of the banks holding the bubbly asset.
We can also see that the risk is bigger at the limit by comparing (2.1) and (3.6): since

\nu t - \delta + \BbbE [\~\rho it] < An,m
t - \delta because the first term is the average robustness of banks not holding the

bubble, the argument of f is bigger in (3.6). This leads to a bigger weight multiplying the
loss at the moment of the burst at the limit.

In Table 4.11, Table 4.12, and Table 4.13 we report the results for the case when \beta is
replaced by \=\beta as in (4.5), i.e., when there is no bubble in the network, and for \Delta = 0.05, 0.1, 0.2,
respectively.

Table 4.11
Risk1,\Delta 

0.05 with \Delta = 0.05 of the mean-field limit (3.1)--(3.3) with no bubble in the system but with the same
shock at time \tau , with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.087 0.152 0.281 0.279 0.274 0.274 0.269

\lambda = 1 0.091 0.152 0.280 0.277 0.274 0.273 0.268

\lambda = 2 0.088 0.151 0.275 0.272 0.270 0.267 0.264

Table 4.12
Risk1,\Delta 

0.05 with \Delta = 0.1 of the mean-field limit (3.1)--(3.3) with no bubble in the system but with the same
shock at time \tau , with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.142 0.200 0.369 0.583 0.801 0.799 0.791

\lambda = 1 0.137 0.205 0.359 0.579 0.790 0.788 0.770

\lambda = 2 0.140 0.203 0.357 0.559 0.759 0.753 0.740

Table 4.13
Risk1,\Delta 

0.05 with \Delta = 0.2 of the mean-field limit (3.1)--(3.3) with no bubble in the system but with the same
shock at time \tau , with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, k = 1, 2.

\delta = 0 \delta = 0.025 \delta = 0.05 \delta = 0.075 \delta = 0.1 \delta = 0.2 \delta = 0.3

\lambda = 0.5 0.229 0.294 0.445 0.670 0.919 2.011 1.976

\lambda = 1 0.219 0.285 0.443 0.655 0.897 1.882 1.858

\lambda = 2 0.219 0.280 0.433 0.630 0.875 1.735 1.724
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As before, it can be seen that when the delay is large enough, the preferential attachment
mechanism that takes place during the ascending phase of the bubble creates a network
more exposed to systemic risk at the time of the shock. This is made explicit by the term

f
\Bigl( 
\=\rho k,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) 
in (3.2), which is big in the presence of a bubble; see also Remark 3.4.

If we consider a static network, with fB = fP = 1, the results, shown in Table 4.14, agree
with those obtained in the case of the finite network: for small delays the dynamic network is
less exposed to systemic risk with respect to the static one, whereas when the delay increases
and the banks in the dynamic network are slower in disinvesting, the risk is bigger than that
for the static network.

Table 4.14
Risk1,\Delta 

0.05 in the case of a static network with fB = fP = 1 of the mean-field limit, with parameters
\sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, k = 1, 2.

\Delta = 0.05 \Delta = 0.1 \Delta = 0.2

\lambda = 0.5 0.256 0.690 1.754

\lambda = 1 0.248 0.677 1.750

\lambda = 2 0.235 0.675 1.681

Remark 4.4. By comparing the tables of subsection 4.2 and subsection 4.3, we see that
the choice of the risk management time horizon \Delta does not strongly impact the qualitative
behavior of the results: for every choice of \Delta , Risk1,\Delta 0.05 is bigger in the presence of the bubble

and is decreasing with respect to the parameter \lambda . For all values of \Delta , Risk1,\Delta 0.05 is maximum
when \delta = \Delta ; see also Remark 4.3.

In order to further display the effects of the bubble and of the delay, we present some
graphics. Figure 4.1(a) and Figure 4.1(b) show the evolution of a bank in periphery (for the
same realization of the driving Brownian motion, i.e., for the same \omega \in \Omega ) in the case when
the banks of the core own a bubbly asset, and in the case when they suffer the same shock at
the time of the burst, but without having experienced the growth of the bubble. The value
of the robustness of the bank in the periphery at the time when the shock hits the banks in
the core is indicated by a black ``x."" We see that immediately after the burst, the robustness
of the bank continues to grow because the core banks' robustness is higher than the average
in the term

(4.8)
1

m

m\sum 
k=1

fB
\Bigl( 
\=\rho k,Bt - \delta  - \nu t - \delta  - \BbbE [\~\rho it - \delta ]

\Bigr) \Bigl( 
\=\rho k,Bt  - \nu t  - \BbbE [\~\rho it]

\Bigr) 
.

However, after a while, (4.8) becomes negative, and the bank is also indirectly impacted by
the shock. The decrease of the robustness is higher in the case with the bubble and for \delta = \Delta .

The impact of the delay \delta on the risk is further illustrated by Figure 4.2, where the
robustness of a bank in the periphery is plotted for different values of \delta , again for the same
\omega \in \Omega . Here we can see the behavior described in Remark 4.3: when \delta = 0 the bank can
immediately disinvest when the banks in the core get into trouble, and thus its robustness
does not decrease after the shock. However, when \delta gets bigger, the decline of the robustness
is more pronounced: for example, the decrease for \delta = 0.1 and \delta = 0.2 is the same up toD
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Figure 4.1. Evolution of the robustness of a bank of the periphery in the limit system, with and without
a bubble in the market, but with the same shock at time \tau , with parameters \sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, and
\Delta = 0.2.

\tau + 0.1, but after \tau + 0.1 the bank disinvests and stops the decrease if \delta = 0.1, whereas it
continues to sink if \delta = 0.2.

Time
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Figure 4.2. Evolution of the robustness of a bank of the periphery in the limit system, with parameters
\sigma 1 = \sigma 2 = 0.2, \rho k,B0 = 0.5, \Delta = 0.2, and different values of the delay \delta .

Appendix A. Proof of Theorem 3.3. We assume by simplicity \lambda = 1 and proceed by
steps, starting from the case when 0 \leq t < \delta , i.e., when there is no delay in (2.1)--(2.2) and
(3.2)--(3.3).

First step: Case 0 \leq t < \delta . For every i = 1, . . . , n and t \in [0, \delta ), we have

\rho i,nt  - \=\rho it =

\int t

0
\Delta n

s ds,
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where

\Delta n
s =

1

n - 1

n\sum 
j=1,j \not =i

fP (\rho j,ns  - An,m
s )(\rho j,ns  - An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] 
+

1

m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs  - An,m

s )(\rho k,Bs  - An,m
s ) - fB(\=\rho k,Bs  - \nu ns  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])

\Bigr) 
 - (\rho i,ns  - \=\rho is) + (An,m

s  - \=An,m
s ) + ( \=An,m

s  - \BbbE [\~\rho is] - \nu s).

Thus,

| \rho i,n  - \=\rho i| \ast t =sup
s\leq t

\bigm| \bigm| \bigm| \bigm| \int s

0
\Delta n

udu

\bigm| \bigm| \bigm| \bigm| \leq sup
s\leq t

\int s

0
| \Delta n

u| du =

\int t

0
| \Delta n

u| du.

Therefore, for every i = 1, . . . , n and t \geq 0, we have

\BbbE [| \rho i,n  - \=\rho i| \ast t ] \leq \BbbE 
\biggl[ \int t

0
| \Delta n

s | ds
\biggr] (A.1)

\leq 
\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns  - An,m
s )(\rho j,ns  - An,m

s ) - fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds

+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs  - An,m

s )(\rho k,Bs  - An,m
s ) - fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s )

\Bigr) \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ 
1

m

m\sum 
k=1

\bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m
s )(\=\rho k,Bs  - \=An,m

s )

 - fB(\=\rho k,Bs  - \nu ns  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])
\bigm| \bigm| \bigm| \biggr] ds

+

\int t

0
\BbbE [| \rho i,ns  - \=\rho is| ]ds+

\int t

0
\BbbE [| An,m

s  - \=An,m
s | ]ds+

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \BbbE [\~\rho is] - \nu s| 
\bigr] 
ds.
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By (2.9),

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns  - An,m
s )(\rho j,ns  - An,m

s ) - fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds(A.2)

\leq 1

n - 1

n\sum 
j=1,j \not =i

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\rho j,ns  - An,m

s )(\rho j,ns  - An,m
s ) - fP (\=\rho js  - \=An,m

s )(\=\rho js  - \=An,m
s )

\bigm| \bigm| \bigm| \biggr] ds
\leq K1

1

n - 1

n\sum 
j=1,j \not =i

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| (\rho j,ns  - An,m

s ) - (\=\rho js  - \=An,m
s )

\bigm| \bigm| \bigm| \biggr] ds
\leq K1

1

n - 1

n\sum 
j=1,j \not =i

\int t

0

\BbbE 
\bigl[ \bigm| \bigm| \rho j,ns  - \=\rho js

\bigm| \bigm| + \bigm| \bigm| An,m
s  - \=An,m

s

\bigm| \bigm| \bigr] ds
= K1

\int t

0

\BbbE 
\bigl[ \bigm| \bigm| \rho i,ns  - \=\rho is

\bigm| \bigm| \bigr] ds+K1

\int t

0

\BbbE 
\bigl[ \bigm| \bigm| An,m

s  - \=An,m
s

\bigm| \bigm| \bigr] ds, t \geq 0.

By (2.3) and (3.15) we have that

\int t

0
\BbbE 
\bigl[ \bigm| \bigm| An,m

s  - \=An,m
s

\bigm| \bigm| \bigr] ds \leq \int t

0
\BbbE 
\Bigl[ 1

m+ n

n\sum 
r=1

| \rho r,ns  - \=\rho rs| 
\Bigr] 
ds(A.3)

+

\int t

0
\BbbE 
\Bigl[ 1

m+ n

m\sum 
k=1

\bigm| \bigm| \bigm| \rho h,Bs  - \=\rho h,Bs

\bigm| \bigm| \bigm| \Bigr] ds
\leq 
\int t

0
\BbbE 
\bigl[ \bigm| \bigm| \rho i,ns  - \=\rho is

\bigm| \bigm| \bigr] ds+ \int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,Bs  - \=\rho k,Bs

\bigm| \bigm| \bigm| \Bigr] ds, t \geq 0,

because all \rho i, i = 1, . . . , n, and \rho k,B, k = 1, . . . ,m, are identically distributed.
We can conclude by (A.2) and (A.3) that

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns  - An,m
s )(\rho j,ns  - An,m

s ) - fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds(A.4)

\leq 2K1

\int t

0
\BbbE 
\bigl[ \bigm| \bigm| \rho i,ns  - \=\rho is

\bigm| \bigm| \bigr] ds+K1

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,Bs  - \=\rho k,Bs

\bigm| \bigm| \bigm| \Bigr] ds
\leq 2K1

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+K1

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,B  - \=\rho k,B

\bigm| \bigm| \bigm| \ast 
s

\Bigr] 
ds, t \geq 0.

Similarly,

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs  - An,m

s )(\rho k,Bs  - An,m
s ) - fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s )

\Bigr) \bigm| \bigm| \bigm| \biggr] ds(A.5)

\leq K1

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ 2K1

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,B  - \=\rho k,B

\bigm| \bigm| \bigm| \ast 
s

\Bigr] 
ds t \geq 0.
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From (A.1), (A.3), (A.4), and (A.5) we have that

\BbbE [| \rho i,n  - \=\rho i| \ast t ]

(A.6)

\leq (3K1 + 2)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ (3K1 + 1)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,B  - \=\rho k,B

\bigm| \bigm| \bigm| \ast 
s

\Bigr] 
ds

+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s ) - fB(\=\rho k,Bs  - \nu ns  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \BbbE [\~\rho is] - \nu s| 
\bigr] 
ds, t \geq 0.

Proceeding as before, we find

\BbbE [| \rho k,B  - \=\rho k,B| \ast t ]

(A.7)

\leq (3K1 + 1)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ (3K1 + 2)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,B  - \=\rho k,B

\bigm| \bigm| \bigm| \ast 
s

\Bigr] 
ds

+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s ) - fB(\=\rho k,Bs  - \nu ns  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds,

so that, summing up (A.6) and (A.7), we have

\BbbE [| \rho i,n  - \=\rho i| \ast t ] + \BbbE [| \rho k,B  - \=\rho k,B| \ast t ]

(A.8)

\leq (6K1 + 3)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ (6K1 + 3)

\int t

0
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \rho k,B  - \=\rho k,B

\bigm| \bigm| \bigm| \ast 
s

\Bigr] 
ds

+ 2

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s ) - fB(\=\rho k,Bs  - \nu ns  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+ 2

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds, t \geq 0.
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We can now apply Gronwall's lemma and obtain

\BbbE [| \rho i,n  - \=\rho i| \ast t ] + \BbbE [| \rho k,Bt  - \=\rho k,Bt | \ast s]

(A.9)

\leq e(6K1+3)t

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+ e(6K1+3)t

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+ 2e(6K1+3)t

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s )

 - fB(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])
\bigm| \bigm| \bigm| \biggr] ds

+ 2e(6K1+3)t

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds, t \geq 0.

We can write

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
\leq 
\biggl( 

1

n - 1
 - 1

n

\biggr) \int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| n\sum 

j=1,j \not =i

fP (\=\rho js  - \=An,m
s )(\=\rho js  - \=An,m

s )
\bigm| \bigm| \bigm| \biggr] ds

+

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

1

n

\int t

0
\BbbE 
\bigl[ \bigm| \bigm| fP \bigl( \~\rho is  - \BbbE [\~\rho is]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigm| \bigm| \bigr] ds t \geq 0,

with

\biggl( 
1

n - 1
 - 1

n

\biggr) \int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| n\sum 

j=1,j \not =i

fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s )
\bigm| \bigm| \bigm| \biggr] ds

\leq 1

n(n - 1)

\int t

0

n\sum 
j=1,j \not =i

\BbbE [| fP (\=\rho is  - \=An,m
s )(\=\rho is  - \=An,m

s )| ]ds

=
1

n

\int t

0
\BbbE [| fP (\=\rho is  - \=An,m

s )(\=\rho is  - \=An,m
s )| ]ds \leq K1

n

\int t

0
\BbbE [| \=\rho is  - \=An,m

s | ]ds, t \geq 0,

where the last term tends to zero when n\rightarrow \infty by (3.18).D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.1

87
.2

54
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINANCIAL ASSET BUBBLES IN BANKING NETWORKS 457

Since it can be shown, for t \geq 0, that

lim
n\rightarrow \infty 

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs  - \=An,m

s )(\=\rho k,Bs  - \=An,m
s ) - fB(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])(\=\rho k,Bs  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds = 0,

and that

(A.10) lim
n\rightarrow \infty 

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds = 0, t \geq 0,

with the same proof as for (3.18), then by (3.14) we obtain the result for t \in [0, \delta ).
Second step: Case t \in [\delta , 2\delta ). For every i = 1, . . . , n and t \geq \delta , we have

| \rho i,nt  - \=\rho it| \leq 
\bigm| \bigm| \bigm| \bigm| \int \delta 

0
(\rho i,ns  - \=\rho is)ds+

\int t

\delta 
\Delta \delta ,n

s ds

\bigm| \bigm| \bigm| \bigm| ,
where

\Delta \delta ,n
s =

1

n - 1

n\sum 
j=1,j \not =i

fP (\rho j,ns - \delta  - An,m
s - \delta )(\rho 

j,n
s  - An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho it - \delta  - \BbbE [\~\rho it - \delta ]

\bigr) \bigl( 
\~\rho it  - \BbbE [\~\rho it]

\bigr) \bigr] 
+

1

m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs - \delta  - An,m

s - \delta )(\rho 
k,B
s  - An,m

s )

 - fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])(\=\rho 
k,B
s  - \nu s  - \BbbE [\~\rho is])

\Bigr) 
 - (\rho i,ns  - \=\rho is) + (An,m

s  - \=An,m
s ) + ( \=An,m

s  - \BbbE [\~\rho is] - \nu s).

Thus

| \rho i,n  - \=\rho i| \ast t = sup
s\leq t

\bigm| \bigm| \bigm| \bigm| \int \delta 

0
(\rho i,nu  - \=\rho iu)du+

\int s

\delta 
\Delta \delta ,n

u du

\bigm| \bigm| \bigm| \bigm| \leq \int \delta 

0
| \rho i,nu  - \=\rho iu| du+ sup

\delta \leq s\leq t

\int s

\delta 

\bigm| \bigm| \bigm| \Delta \delta ,n
u

\bigm| \bigm| \bigm| du
(A.11)

=

\int \delta 

0
| \rho i,nu  - \=\rho iu| du+

\int t

\delta 

\bigm| \bigm| \bigm| \Delta \delta ,n
u

\bigm| \bigm| \bigm| du, \delta \leq t.
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For every i = 1, . . . , n, we have

\BbbE 
\biggl[ \int t

\delta 
| \Delta \delta ,n

s | ds
\biggr] (A.12)

\leq 
\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns - \delta  - An,m
s - \delta )(\rho 

j,n
s  - An,m

s ) - fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds

+

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s )

 - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs - \delta  - An,m

s - \delta )(\rho 
k,B
s  - An,m

s ) - fB(\=\rho k,Bs - \delta  - \=An,m
s - \delta )(\=\rho 

k,B
s  - \=An,m

s )
\Bigr) \bigm| \bigm| \bigm| \biggr] ds

+

\int t

\delta 
\BbbE 
\biggl[ 
1

m

m\sum 
k=1

\bigm| \bigm| \bigm| fB(\=\rho k,Bs - \delta  - \=An,m
s - \delta )(\=\rho 

k,B
s  - \=An,m

s )

 - fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])(\=\rho 
k,B
s  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

\delta 
\BbbE [| \rho i,ns  - \=\rho is| ]ds+

\int t

0
\BbbE [| An,m

s  - \=An,m
s | ]ds+

\int t

0
\BbbE 
\bigl[ 
| \=An,m

s  - \BbbE [\~\rho is] - \nu s| 
\bigr] 
ds, \delta \leq t.

By (2.10),

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns - \delta  - An,m
s - \delta )(\rho 

j,n
s  - An,m

s ) - fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds

(A.13)

\leq 1

n - 1

n\sum 
j=1,j \not =i

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\rho j,ns - \delta  - An,m

s - \delta )
\bigl( 
(\rho j,ns  - An,m

s ) - (\=\rho js  - \=An,m
s )

\bigr) \bigm| \bigm| \bigm| \biggr] ds
+

1

n - 1

n\sum 
j=1,j \not =i

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| (\=\rho js  - \=An,m

s )
\Bigl( 
fP (\rho j,ns - \delta  - An,m

s - \delta ) - fP (\=\rho js - \delta  - \=An,m
s - \delta )

\Bigr) \bigm| \bigm| \bigm| \biggr] ds
\leq K1

\int t

\delta 
\BbbE [| \rho i,ns  - \=\rho is| ]ds+K1

\int t

\delta 
\BbbE [| An,m

s  - \=An,m
s | ]ds

+

\int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m
s - \delta ) - fP (\=\rho is - \delta  - \=An,m

s - \delta )
\bigm| \bigm| \bigm| \Bigr] ds.
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We have that for \delta \leq t,

\int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m
s - \delta ) - fP (\=\rho is - \delta  - \=An,m

s - \delta )
\bigm| \bigm| \bigm| \Bigr] ds

\leq 
\int t

\delta 

\Bigl( 
\BbbE 
\bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| 2\bigr] ds\Bigr) 1/2\biggl( \BbbE \biggl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m
s ) - fP (\=\rho is - \delta  - \=An,m

s )
\bigm| \bigm| \bigm| 2\biggr] \biggr) 1/2

ds

\leq 
\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| 2\Bigr] ds\biggr) 1/2\biggl( \int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m

s - \delta ) - fP (\=\rho is - \delta  - \=An,m
s - \delta )

\bigm| \bigm| \bigm| 2\biggr] ds\biggr) 1/2

\leq 
\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| 2\Bigr] ds\biggr) 1/2\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m

s - \delta )
2  - fP (\=\rho is - \delta  - \=An,m

s - \delta )
2
\bigm| \bigm| \bigm| \Bigr] ds\biggr) 1/2

\leq 
\sqrt{} 

2K1

\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| 2\Bigr] ds\biggr) 1/2\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m

s - \delta ) - fP (\=\rho is - \delta  - \=An,m
s - \delta )

\bigm| \bigm| \bigm| \Bigr] ds\biggr) 1/2

,

where we have used the fact that | a - b| 2 \leq | a2  - b2| for a, b \in \BbbR +.

Then, setting Gn
1 (t) :=

\Bigl( \int t
\delta \BbbE 
\Bigl[ \bigm| \bigm| \=\rho is  - \=An,m

s

\bigm| \bigm| 2\Bigr] ds\Bigr) 1/2, by (A.13) we have

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns - \delta  - An,m
s - \delta )(\rho 

j,n
s  - An,m

s ) - fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds

(A.14)

\leq K1

\int t

\delta 
\BbbE [| \rho i,ns  - \=\rho is| ]ds+K1

\int t

\delta 
\BbbE [| An,m

s  - \=An,m
s | ]ds

+
\sqrt{} 

2K1G
n
1 (t)

\biggl( \int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m

s - \delta ) - fP (\=\rho is - \delta  - \=An,m
s - \delta )

\bigm| \bigm| \bigm| \Bigr] ds\biggr) 1/2

, \delta \leq t.

For \delta \leq t < 2\delta ,

\int t

\delta 
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m

s - \delta ) - fP (\=\rho is - \delta  - \=An,m
s - \delta )

\bigm| \bigm| \bigm| \Bigr] ds
= \BbbE 

\biggl[ \int t

\delta 

\Bigl( \bigm| \bigm| \bigm| fP (\rho i,ns - \delta  - An,m
s - \delta ) - fP (\=\rho is - \delta  - \=An,m

s - \delta )
\bigm| \bigm| \bigm| \Bigr) ds\biggr] 

= \BbbE 
\biggl[ \int t - \delta 

0

\bigl( \bigm| \bigm| fP (\rho i,nu  - An,m
u ) - fP (\=\rho iu  - \=An,m

u )
\bigm| \bigm| \bigr) du\biggr] 

\leq 
\int \delta 

0
\BbbE [
\bigm| \bigm| fP (\rho i,nu  - An,m

u ) - fP (\=\rho iu  - \=An,m
u )

\bigm| \bigm| ]du,
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and thus we can rewrite (A.14) as

\int t

\delta 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

(fP (\rho j,ns - \delta  - An,m
s - \delta )(\rho 

j,n
s  - An,m

s ) - fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ))
\bigm| \bigm| \bigm| \biggr] ds

(A.15)

\leq K1

\int t

\delta 
\BbbE [| \rho i,ns  - \=\rho is| ]ds+K1

\int t

\delta 
\BbbE [| An,m

s  - \=An,m
s | ]ds

+
\sqrt{} 

2K1G
n
1 (t)

\biggl( \int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\biggr) 1/2

, \delta \leq t \leq 2\delta .

Similarly,

\int t

0
\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
m

m\sum 
k=1

\Bigl( 
fB(\rho k,Bs - \delta  - An,m

s - \delta )(\rho 
k,B
s  - An,m

s ) - fB(\=\rho k,Bs - \delta  - \=An,m
s - \delta )(\=\rho 

k,B
s  - \=An,m

s )
\Bigr) \bigm| \bigm| \bigm| \biggr] ds

(A.16)

\leq K1

\int t

\delta 
\BbbE [| \rho k,Bs  - \=\rho k,Bs | ]ds+K1

\int t

\delta 
\BbbE [| An,m

s  - \=An,m
s | ]ds

+
\sqrt{} 

2K1G
n
2 (t)

\biggl( \int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fB(\rho i,ns  - An,m

s ) - fB(\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\biggr) 1/2

, \delta \leq t,

with Gn
2 (t) :=

\bigl( \int t
\delta \BbbE 
\bigl[ \bigm| \bigm| \=\rho k,Bs  - \=An,m

s

\bigm| \bigm| 2\bigr] ds\bigr) 1/2. From (A.3), (A.11), (A.12), (A.15), and (A.16),
we obtain

\BbbE [| \rho i,n  - \=\rho i| \ast t ]

(A.17)

\leq (3K1 + 2)

\int t

\delta 

\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ (3K1 + 1)

\int t

\delta 

\BbbE [| \rho k,B  - \=\rho k,B | \ast s]ds

+
\sqrt{} 
2K1G

n
1 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

+
\sqrt{} 

2K1G
n
2 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fB(\rho i,ns  - An,m

s ) - fB(\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs - \delta  - \=An,m

s - \delta )(\=\rho 
k,B
s  - \=An,m

s ) - fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])(\=\rho 
k,B
s  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int \delta 

0

\BbbE [| \rho i,ns  - \=\rho is| ]ds+
\int t

0

\BbbE 
\bigl[ 
| \=An,m

s  - \BbbE [\~\rho is] - \nu s| 
\bigr] 
ds, \delta \leq t < 2\delta .
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In the same way, by (2.2) and (3.3) we have

\BbbE [| \rho k,B  - \=\rho k,B | \ast t ]

(A.18)

\leq (3K1 + 1)

\int t

\delta 

\BbbE 
\Bigl[ \bigm| \bigm| \rho i,n  - \=\rho i

\bigm| \bigm| \ast 
s

\Bigr] 
ds+ (3K1 + 2)

\int t

\delta 

\BbbE [| \rho k,B  - \=\rho k,B | \ast s]ds

+
\sqrt{} 
2K1G

n
1 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

+
\sqrt{} 
2K1G

n
2 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fB(\rho i,ns  - An,m

s ) - fB(\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs - \delta  - \=An,m

s - \delta )(\=\rho 
k,B
s  - \=An,m

s ) - fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])(\=\rho 
k,B
s  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int \delta 

0

\BbbE [| \rho k,Bs  - \=\rho k,Bs | ]ds+
\int t

0

\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds, \delta \leq t < 2\delta .

Summing up (A.17) and (A.18) we find

\BbbE [| \rho i,n  - \=\rho i| \ast t ] + \BbbE [| \rho k,B  - \=\rho k,B | \ast t ]

(A.19)

\leq (6K1 + 3)

\int t

0

\bigl( 
\BbbE [| \rho i,n  - \=\rho i| \ast s] + \BbbE [| \rho k,B  - \=\rho k,B | \ast s]

\bigr) 
ds

+ 2
\sqrt{} 
2K1G

n
1 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

(A.20)

+ 2
\sqrt{} 
2K1G

n
2 (t)

\Biggl( \int \delta 

0

\BbbE 
\bigl[ \bigm| \bigm| fB(\rho i,ns  - An,m

s ) - fB(\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds\Biggr) 1/2

(A.21)

+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| fB(\=\rho k,Bs - \delta  - \=An,m

s - \delta )(\=\rho 
k,B
s  - \=An,m

s ) - fB(\=\rho k,Bs - \delta  - \nu s - \delta  - \BbbE [\~\rho is - \delta ])(\=\rho 
k,B
s  - \nu s  - \BbbE [\~\rho is])

\bigm| \bigm| \bigm| \biggr] ds
+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1

n - 1

n\sum 
j=1,j \not =i

fP (\=\rho js - \delta  - \=An,m
s - \delta )(\=\rho 

j
s  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+

\int t

0

\BbbE 
\biggl[ \bigm| \bigm| \bigm| 1
n

n\sum 
i=1

fP (\=\rho is - \delta  - \=An,m
s - \delta )(\=\rho 

i
s  - \=An,m

s ) - \BbbE 
\bigl[ 
fP
\bigl( 
\~\rho is - \delta  - \BbbE [\~\rho is - \delta ]

\bigr) \bigl( 
\~\rho is  - \BbbE [\~\rho is]

\bigr) \bigr] \bigm| \bigm| \bigm| \biggr] ds
+ 2

\int t

0

\BbbE 
\bigl[ 
| \=An,m

s  - \nu s  - \BbbE [\~\nu is]| 
\bigr] 
ds, \delta \leq t < 2\delta .

With the same computations used in the first step of the proof, we show that the last four
terms of (A.21) converge to zero when n\rightarrow \infty by the proof of Proposition 3.5.D
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It remains to show that (A.19) and (A.20) tend to zero. We write\int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \=An,m
s )

\bigm| \bigm| \bigr] ds(A.22)

\leq 
\int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \nu s  - \BbbE [\~\rho is])
\bigm| \bigm| \bigr] ds

+

\int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\=\rho is  - \nu s  - \BbbE [\~\rho is]) - fP (\=\rho is  - \=An,m

s )
\bigm| \bigm| \bigr] ds.

We now show that the terms in (A.22) tend to 0 by the dominated convergence theorem. To
this end, we first note that we have\int \delta 

0
\BbbE [| \rho i,ns  - An,m

s  - (\=\rho is  - \nu s  - \BbbE [\~\rho is])| ]ds \leq 
\int \delta 

0
\BbbE [| \rho i,ns  - \=\rho is| ]ds+

\int \delta 

0
\BbbE [| An,m

s  - \nu s  - \BbbE [\~\rho is]| ]ds

\leq 
\int \delta 

0
\BbbE [| \rho i,ns  - \=\rho is| ]ds+

\int \delta 

0
\BbbE [| An,m

s  - \=An,m
s | ]ds+

\int \delta 

0
\BbbE [| \=An,m

s  - \nu s  - \BbbE [\~\rho is]| ]ds

\leq 2

\int \delta 

0
\BbbE [| \rho i,ns  - \=\rho is| ]ds+

\int \delta 

0
\BbbE [| \rho k,Bs  - \=\rho k,Bs | ]ds+

\int \delta 

0
\BbbE [| \=An,m

s  - \nu s  - \BbbE [\~\rho is]| ]ds

by (A.3). By the first step of the proof, the first two integrals above tend to zero when n\rightarrow \infty ,
since \int \delta 

0
\BbbE [| \rho i,ns  - \=\rho is| ]ds \leq 

\int \delta 

0
\BbbE [| \rho i,n  - \=\rho i| \ast \delta ]ds = \delta \BbbE [| \rho i,n  - \=\rho i| \ast \delta ],(A.23)

whereas

lim
n\rightarrow \infty 

\int \delta 

0
\BbbE [| \=An,m

s  - \nu s  - \BbbE [\~\rho is]| ]ds = 0

by (A.10). Moreover,\int \delta 

0
\BbbE [| \=\rho is  - \nu s  - \BbbE [\~\rho is] - (\=\rho is  - \=An,m

s )| ]ds =
\int \delta 

0
\BbbE [| \=An,m

s  - \nu s  - \BbbE [\~\rho is]| ]ds,(A.24)

which goes to zero when n\rightarrow \infty as shown above.
We have then proved that for all m, (\rho i,ns  - An,m

s )n\in \BbbN and (\=\rho i,ns  - \=An,m
s )n\in \BbbN converge to

\=\rho is  - \nu s  - \BbbE [\~\rho is] in L1([0, \delta ]\times \Omega , dt \otimes P ). This implies that for all m, (\rho i,ns  - An,m
s )n\in \BbbN and

(\=\rho i,ns  - \=An,m
s )n\in \BbbN converge to \=\rho is - \nu s - \BbbE [\~\rho is] in measure with respect to dt\otimes P on [0, \delta ]\times \Omega . By

the continuous mapping theorem, since fP is continuous, it follows that
\bigl( 
fP (\rho i,ns  - An,m

s )
\bigr) 
n\in \BbbN 

and
\bigl( 
fP (\=\rho i,ns  - \=An,m

s )
\bigr) 
n\in \BbbN converge to fP

\bigl( 
\=\rho is  - \nu s  - \BbbE [\~\rho is]

\bigr) 
in measure with respect to dt\otimes P

on [0, \delta ]\times \Omega . By (2.10), we can apply the dominated convergence theorem (see Theorem 2 in
Chapter 6 of Chow and Teicher (2012)) and obtain that\int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\rho i,ns  - An,m

s ) - fP (\=\rho is  - \nu s  - \BbbE [\~\rho is])
\bigm| \bigm| \bigr] ds  -  -  - \rightarrow 

n\rightarrow \infty 
0
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and \int \delta 

0
\BbbE 
\bigl[ \bigm| \bigm| fP (\=\rho is  - \nu s  - \BbbE [\~\rho is]) - fP (\=\rho is  - \=An,m

s )
\bigm| \bigm| \bigr] ds  -  -  - \rightarrow 

n\rightarrow \infty 
0.

Hence, by (A.22), (A.19) converges to zero when n\rightarrow \infty . Analogously, we can prove the same
for (A.20).

Then applying Gronwall's lemma to (A.21), we prove the result for t \in [\delta , 2\delta ). The result
then follows by proceeding in the same way for all t \in [k\delta , (k + 1)\delta ), k \geq 2.
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