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Abstract: A significant amount of attention has recently been devoted to the mechanisms involved
in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal
hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course
in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using
lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile,
progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-
inducing strategies has been made possible as a result of a better understanding of γ-globin regulation.
In this review, we will provide an update on all current pharmacological inducer agents of HbF
in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially
therapeutic, HbF-inducing agents.

Keywords: β-thalassemia; sickle cell disease; fetal hemoglobin; globin gene; γ-globin; pharmacological
induction

1. Introduction

Hemoglobinopathies are among the most common inherited monogenic disorders
in the world and they exhibit a large range of clinical phenotypes with varying disease
severity [1–3]. The levels of fetal hemoglobin (HbF) in erythrocytes make up a large part
of the clinical heterogeneity that is observed in patients with β-thalassemia and sickle cell
disease (SCD).

HbF is the predominant form of Hb expressed throughout gestation and has a crucial
role in facilitating transplacental gas exchange [4–6]. Composed of two α-globin chains and
two γ-globin chains, HbF has a greater affinity for oxygen when compared to hemoglobin
A (HbA) [4,7,8]. After birth, the predominant form of Hb produced switches from HbF to
HbA, which has a lower affinity for oxygen [4–6,8–10]. This switch is genetically regulated
by transcription factors such as BCL11A, KLF-1 and MYB [4,11] and results in adults
typically expressing low levels of HbF [4,12,13]. However, as expression switches from
HbF to HbA, individuals who have mutations in the β-globin gene end in either deficiency
in globin chain synthesis or production of pathologic Hb such as in β-thalassemia or SCD.
Fetal erythrocytes or fetal cells contain nearly 100% of HbF. Following the transcriptional
switch in definitive erythroid progenitors from HbF (α2γ2) to adult hemoglobin (α2β2)
around birth, very low levels of HbF are found a year after birth [14], suggesting this
switch is not complete. In some individuals, higher levels of HbF persist into childhood
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and adulthood, reflected in a continuous positively skewed distribution of HbF across
healthy adults. Adult erythrocytes that contain detectable levels of HbF are called F cells.
These cells arise from erythroid precursors that can give rise to both HbF-containing and
non-HbF-containing erythrocytes [15]. Hereditary persistence of fetal hemoglobin (HPHF)
is defined as the heterogenous group of inherited defects in the switch from fetal to adult
hemoglobin [16]. Large deletions or point mutations within the HBB gene cluster that result
in higher than normal levels of HbF persisting into adulthood cause the most frequently
recognized type of HPFH. Pancellular vs. heterocellular HbF distribution has been used as
a defining aspect of HPFH [16]. The three main loci that control HbF levels outside of the
locus control region at the 5’ end of the β-globin gene cluster and promoter regions on the
β- and γ-globin genes are BCL11A, ZBTB7A and MYB [15].

In recent years, progress on the knowledge of molecular mechanisms involved in Hb
switching, the concept of HPHF, combined with epidemiological and clinical observations
has provided important evidence on the beneficial role of increasing HbF levels in ame-
liorating the clinical complications of β-thalassemia and SCD [17]. This can be achieved
by either classic drug-modulating approaches or by gene therapy and genome-editing
approaches [18–24]. Although encouraging and promising results have been reported on
gene therapy/genome editing and HbF expression, their safety is still to be determined
and their expected costs are to be considered as well [25–27]. Accordingly, pharmacological
induction of HbF production is still an interesting option to decrease the severity of these
disorders. In this review, we will provide an update on all current pharmacological inducer
agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other
novel and potentially curative HbF-inducing agents (Figure 1).
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Figure 1. Summary of all established pharmacological approaches and experimental therapeutic
strategies for HbF induction in β-thalassemia and SCD.

2. Established Pharmacologic Approaches to HbF Induction in Hemoglobinopathies

Different pharmacological agents have been pre-clinically and clinically tested at
various stages of clinical trials for their ability to increase γ-globin expression. In this
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section, we describe these already established and major pharmacological approaches and
agents for HbF induction. These are also summarized in Figure 1.

2.1. Chemotherapeutic Agents
2.1.1. Hydroxyurea

The primary mechanism of action of hydroxyurea (HU) in β-thalassemia and SCD
is the upregulation of the γ-globin gene expression in erythroid cells [28]. Hydroxyurea
enhanced the percentage of F cells in the circulations of patients with hemoglobinopathies,
with a heterogenous distribution within red cells, leading to overall improvements in the
hematologic phenotype [29–33]. While the clinical efficacy of HU is primarily due to its
ability to induce HbF, its exact mechanism of action remains not fully understood [34].

Studies conducted in β-thalassemia patients showed that HU induced a 2-to-9-fold
increase in γ-mRNA with a good correlation between γ-mRNA and HbF levels [35–38]. Re-
sponses in these patients were observed at HU doses ranging between 10 and 20 mg/kg/day.
In addition to its known effects in stimulating γ-globin production, the use of HU was
also associated with a decrease in transfusion requirement and an improvement in the
prothrombotic profile, especially in splenectomized patients [39,40]. Collectively, these
studies present several limitations such as the small sample size, the definition of trans-
fusion dependence, the heterogeneity of the β-thalassemic patient populations and the
lack of control groups. Thus, we might conclude that these data generate a rationale to
design new studies to assess the possible beneficial effects of HU in β-thalassemia patients,
particularly in those with non-transfusion-dependent thalassemia.

Improvements in HbF levels after HU treatment have been shown in patients with SCD,
HbSC disease, HbS-β0 and HbS-β+ thalassemia [40–43]. In SCD, two different mechanisms
exist for HU-induced increases in HbF synthesis: (i) inhibition of ribonucleotide reductase,
promoting the selection of high HbF expression erythroid precursors and (ii) the direct
selection of HbF cell production by inhibiting soluble guanylate cyclase [44–46]. Several
studies on SCD have proposed that curative therapies with HU should aim to achieve HbF
>30%, F cells >70% and >4–10 pg F/F cell [47–49]. Other studies demonstrated that the
early initiation of HU using individualized and pharmacokinetics-guided dosing can lead
to robust and sustained HbF levels beyond 30–40% in most SCD patients who are adherent
to therapy [50,51]. Hydroxyurea has also been associated with improved mortality and
morbidity in both adults and children with SCD [52]. Indeed, HU significantly reduced
hospitalization rate, acute chest syndrome, VOCs and transfusion requirements [53]. Few
studies have shown a possible declining effect of HU on HbF synthesis over time [54]. The
beneficial effects of HU are noteworthy and go beyond HbF synthesis in SCD. Hydroxyurea
also acts as a multimodal agent targeting neutrophils, modulating inflammatory response
and vascular endothelial activation, contributing to nitric oxide biosynthesis [55–58].

2.1.2. DNA Methyltransferase Inhibitors

DNA methyltransferase (DNMT) inhibitors, such as 5-azacytidine and decitabine, can
reactivate γ-globin gene expression via DNA hypomethylation [59]. Initially, 5-azacytidine
was studied and used in SCD but it was quickly abandoned due to its toxicity profile and
possible carcinogenicity risk [60]. Decitabine, an analogue of 5-azacytidine, is also a potent
DNMT1 inhibitor with a more favorable safety profile. A pilot study by Oliviera et al.
showed that decitabine administered subcutaneously at a dose of 0.2 mg/kg twice per week
for 12 weeks increased total hemoglobin (Hb) from 78.8 to 90.4 g/L, and increased absolute
HbF levels from 36.4 to 42.9 g/L in 5 β-TI patients [61]. An improvement in RBC indices
was also noted. Treatment was well tolerated overall, with the main adverse event being an
elevation in platelet counts [61]. Small studies in SCD have also suggested that decitabine
can substantially increase HbF and total Hb levels [62–65]. However, if taken orally,
decitabine is rapidly deaminated and inactivated by cytosine deaminase. To overcome
this challenge, one clinical trial used decitabine in combination with tetrahydrouridine
(THU), a cytosine deaminase inhibitor, to induce HbF production (NCT01685515). A
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phase I study showed that the combination of decitabine and THU led to the persistent
inhibition of the DNMT1 protein with induction and increase in HbF levels, and more
importantly, HbF-enriched red cells (F cells) increased to 80%. While these agents do not
have major myelotoxic effects, they might induce thrombocytosis. This might be taken into
consideration in patients with SCD that is per se a thrombophilic state [66].

Recently, an innovative and orally bioavailable DNMT1-selective inhibitor known as
GSK3482364 has emerged [67]. In contrast with the cytidine analog DNMT1 inhibitors, the
inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible.
In cells, treatment with GSK3482364 caused DNA hypomethylation, and resulted in HbF
induction. These effects were approximately equivalent and comparable to decitabine
treatment [67]. In an in vitro model of erythropoiesis, GSK3482364 and decitabine led to
comparable increases in HbF cells. However, treatment with GSK3482364 resulted in a
larger proportion of cells maturing into HbF-expressing reticulocytes [67]. The effects of
GSK3482364 on the bone marrow of transgenic SCD mice were also studied and showed a
clear induction of F cells that exceeded the corresponding effects of decitabine at tolerated
doses over a 12-day period [67]. The compound was well-tolerated by SCD mice and there
was no evidence of adverse hematological effects [67]. Notably, and unlike what has been
reported and observed with decitabine, the use of GSK3482364 was not associated with
significant increases in platelet count. Taken together, these data suggest that GSK3482364
is a promising molecule to further study the role of DNMT1 inhibitors in both in vitro and
in vivo models of SCD.

2.2. Histone Deacetylase Inhibitors

Histone deacetylase (HDAC) inhibitors have also been considered as therapeutic
targets for HbF induction. This group of regulatory molecules is involved in the epigenetic
silencing of the γ-globin genes [34,68]. The earliest HDAC inhibitor investigated and used
as a HbF inducer was butyrate. Butyrate increased the transcription rate of the HBG genes,
as well as the translation of HBG1/HBG2 mRNA [69]. In clinical trials conducted on
patients with β-thalassemia and SCD, intravenous administration of arginine butyrate and
oral administration of sodium phenylbutyrate increased HbF levels. However, these oral
butyrate compounds were only successful in producing a very mild raise in HbF levels and
the overall patient compliance was poor [70]. Panobinostat is a pan-HDAC inhibitor that
has been reported to have a greater potency than sodium butyrate [71]. It is currently being
tested in a phase I clinical trial on adult SCD patients (NCT01245179).

Vorinostat (also known as suberoylanilide hydroxamic acid or SAHA) is a hydroxamic
acid group pan-HDAC inhibitor that has been used in many research studies including
cancer treatment [72]. In 2019, Mettananda et al. demonstrated that in human erythroid
cells, vorinostat downregulates α-globin expression while inducing γ-globin expression
and its use can thus be considered as a potential therapy for β-thalassemia [73]. As a potent
inducer of γ-globin and HbF, vorinostat has also been considered as a potential therapy
for SCD [74]. Thus, it was postulated that vorinostat may help in the treatment SCD by
increasing the amount of HbF in the blood. One 2010 study by Hebbel et al. showed
that the HDAC inhibitors trichostatin A and vorinostat were beneficial for the vascular
pathobiology of sickle transgenic mice and led to an increase in HbF levels [75]. A phase
2 trial assessing the safety and efficacy of vorinostat (once a day for three consecutive
days every week for 12–16 weeks) in adult SCD patients resistant to HU was also initiated
(NCT01000155). However, the study was eventually terminated early as recruitment
was poor. A novel class I-restricted HDAC inhibitor and largazole analog known as
CT-101 has been recently evaluated for its pharmacodynamics, cytotoxicity and targeted
epigenetic effects in sickle erythroid precursors [76]. Results demonstrated that CT-101
was successfully able to activate γ-globin transcription selectively and increase F cells and
HbF levels [76]. Moreover, the combination of CT-101 with HU produced a better effect on
HbF levels. CT-101 produced very limited cell toxicity after 5 days of treatment as shown
by slightly reduced sickle erythroid maturation. Despite this, cell numbers continued to
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increase [76]. CT-101 also increased acetylated histone H3 and H4 levels and conferred
an open chromatin conformation in the γ-globin promoter [76]. Thus, CT-101 may be a
possible lead candidate to be further developed and transferred to clinical studies as a
pharmacologic inducer of HbF.

EHMT1/2 Inhibitors

Other pharmacological agents targeting histone methyl transferase to induce HbF
expression include euchromatic histone-lysine-N-methyltransferases 1 and 2 (EHMT1/2) in-
hibitors. In vitro, UNC0638 has been shown to induce γ-globin mRNA and HbF expression
in normal erythroid precursors [77–79]. This was associated with a decreased accumulation
of H3K9me2 near the γ-globin loci and with increased loop formation between the locus
control region and the γ-globin promoters through the recruitment of the LDB1 complex
to the γ globin promoters [77–79]. In a recent study conducted on erythroid precursors
derived from CD34+ cells of β0-thalassemia/HbE patients, the HbF-inducing activity of
UNC0638, either alone or in combination with pomalidomide and decitabine, was investi-
gated [80]. UNC0638 was able to increase in γ-globin mRNA levels, HbF levels and F cells.
This HbF induction was 25.5 ± 4.2% above baseline levels, with a more pronounced effect
when added at an early stage (day 4) of erythropoiesis [80]. It is noteworthy that UNC0638
exhibited an HbF-inducing activity similar to pomalidomide, but higher than decitabine
under the same culture conditions [80]. UNC0638 shows a synergic effect on HbF synthesis
when used in combination with either pomalidomide or decitabine. Although UNC0638
showed a strong HbF-inducing activity in ex vivo erythroid cell culture systems, its in vivo
pharmacokinetic properties were shown to be due to a lack of drug-like properties [81]. In
the future, EHMT1/2 inhibitors should undergo further development to achieve a higher
potency and improved in vivo pharmacokinetic properties.

2.3. Immunomodulators: Thalidomide and Its Derivatives

Thalidomide is an immunomodulatory compound used in clinical practice for the clin-
ical management of multiple myeloma [82,83]. Thalidomide and its derivate pomalidomide
have been considered as new therapeutic options for β-thalassemia. In vitro models of
pathologic erythropoiesis have established that thalidomide might induce γ-globin mRNA
expression in a dose-dependent manner throughout the modulation of γ-globin mRNA
expression targeting BCL11A, SOX6, GATA1 and KLF1 as well as by post-translational
modification induced by p38MAPK activation [82–84]. Several small case series and few
observational studies have reported the efficacy and safety of thalidomide in patients with
β-thalassemia [85–92]. Collectively, these studies show that thalidomide (range dosage
from 75–100 mg/kg/day to 150–200 mg/kg/day) increases Hb levels by elevating the
HbF level and reduces spleen size [93–97]. Furthermore, the efficacy of thalidomide on
hematologic phenotype of patients with β-thalassemia was not inferior of HU [93]. Since
large doses of thalidomide can be detrimental, the lowest effective dose of 50 mg/day was
proposed to improve anemia in β-thalassemic patients [93,94,98,99]. In the future, larger
randomized controlled trials are needed to establish the efficacy of thalidomide in patients
with β-thalassemia.

Pomalidomide, a third-generation immunomodulatory drug and thalidomide deriva-
tive with less adverse events (AEs), has been shown to be an effective and potent HbF
inducer in in vitro β-thalassemia/HbE erythropoiesis [94]. Its use has also been docu-
mented to increase HbF levels in SCD. Similar to HU, pomalidomide increased the level
of HbF production without myelosuppressive effects in a humanized mouse model of
SCD [100]. In addition, treatment of human hematopoietic stem cells (HSCs) with poma-
lidomide and lenalidomide significantly stimulated the proliferation of HSCs and induced
HbF by modulating the transcription of HBB and HBG gene through the downregulation
of BCL11A IKZF1, KLF1, LSD1 and SOX-6 repression factors [82,101]. A phase 1 trial was
conducted to assess the efficacy, safety and maximum tolerated dose of pomalidomide
(0.5–4 mg/day for 84 days) in SCD patients (NCT01522547). Two out of four patients
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treated with pomalidomide at 4 mg/day showed an increase in HbF levels [15]. Lately,
pomalidomide–nitric oxide donor derivatives (3a–f) have been synthesized and their suit-
ability as novel and potential HbF inducers has also been evaluated and successfully shown
in an early preliminary study [70]. This could pave the way in the future for further
investigation to use these pomalidomide derivatives in the treatment of SCD.

2.4. cGMP Modulators: Phosphodiesterase-9 Inhibitor

IMR-687 (Tovinontrine) is a highly selective phosphodiesterase 9 inhibitor that is
currently being developed as an orally administered therapy for β-thalassemia and SCD pa-
tients. Similar to HU, IMR-687 increases intracellular cGMP levels and its use in preclinical
studies showed an increase in HbF expression [102]. In a phase 2a study conducted on adult
patients with SCD (N = 93) (NCT03401112), IMR-687 was given at a dose of 50–200 mg
once daily (N = 63) for up to 6 months. IMR-687 was generally well-tolerated when used
alone or in combination HU and the data showed a mean absolute change of +1.9 and +7.3
in HbF (%) and F cells (%) at 4 months, respectively, with minimal changes in Hb [103].
A phase 2a open-label extension study (NCT04053803) is ongoing to assess the long-term
efficacy and safety of IMR-687 in SCD patients for up to 4 years at a dose of 200 mg once
daily [104]. Seventeen patients with SCD were treated with IMR-687 monotherapy and
seven were treated with a combination of IMR-687 and HU. Preliminary results from the
patients that had an evaluable pharmacodynamic data at 8 months showed that seven
(47%) patients had a ≥6% absolute increase in F cells and four patients (36%) had a ≥3%
absolute increase in HbF [104]. With these encouraging data, a phase 2b study in SCD
patients is currently ongoing to further evaluate the efficacy of IMR-687 as a HbF-inducing
agent at higher doses (NCT04474314).

A summary of the mechanism of action of these established pharmacologic approaches
to HbF induction has been included in Table 1.

Table 1. Mechanism of action of established pharmacologic approaches to HbF induction.

Agent Mechanism of Action

Hydroxyurea • Ribonucleotide reductase inhibitor (inihibition of DNA analysis)

DNA methyltransferase inhibitors • Hypomethaltion of DNA and post-transcriptional mechanism

HDAC inhibitors
• Inhibition of HDAC activity
• Epigenetic silencing of γ-globin genes

Immunomodulators: Thalidomide
and its derivatives

• Activation of p38 MAPK kinase
• Histone acetalation at γ-globin gene promoter

cGMP modulators: PDE-9 inhibitor • Inhibition of PDE9 and increased levels of cGMP

Abbreviations: HbF: Hemoglobin F; DNA: Deoxyribonucleic acid; HDAC: Histone deacetylase; cGMP: Cyclic
guanosine monophosphate; PDE-9: Phosphodiesterase 9.

3. Novel Experimental Strategies for the Pharmacologic Induction of HbF
in Hemoglobinopathies

Progress on the knowledge of molecular mechanisms involved in the modulation
of HbF synthesis has paved the way for the identification of new potential therapeutic
targets, which are currently under evaluation at the pre-clinical stage to then possibly be
transferable to clinical studies in patients with in hemoglobinopathies (Figure 1).

3.1. FTX-6058: Embryonic Ectoderm Development (EED) Inhibitor

FTX-6058 is a small and potent molecule that acts as an inhibitor of embryonic ec-
toderm development (EED), which is part of the polycomb repressive complex 2 (PRC2)
that is involved in the repression of gene transcription by histone 3 methylation. In both
in vitro and in vivo models of SCD, FTX-6058 induced the upregulation of HbF expression
(up to 40% total Hb) [105]. The safety and efficacy of single- and multiple-ascending doses
of FTX-6058 are currently being investigated in a phase-1 trial enrolling healthy adult
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volunteers (NCT04586985) [106]. FTX-6058 was tested at the dosage of 2 mg to 60 mg
both given once daily for 14 days vs. placebo [106]. Interim results showed proportional
increases in HbF levels, and increased numbers of F reticulocytes in the dose-ascending
groups [106]. After 14 days, the 6 mg dose increased mRNA levels by more than three-fold
and the 10 mg dose by more than four-fold. New data from the group of patients receiving
a dose of 20 mg and 30 mg showed that by day 14, Hb mRNA levels had risen by a mean
of 5.6 times and 6.2 times, respectively [106]. Moreover, 7 to 10 days after dosing, the
percentage of F reticulocytes increased by a mean of 1.8 times and 2.4 times in the 20 mg
group and 30 mg group, respectively [106]. FTX-6058 was generally well-tolerated without
major AEs reported. All the above mentioned results further support the rationale to design
clinical studies with FTX-6058 in patients with SCD. Indeed, a phase 1b proof-of-concept
study is awaited to evaluate FTX-6058 in people with SCD [106].

3.2. Lysine-Specific Histone Demethylase 1 (LSD1) Inhibitors

With the use of RNA interference strategies and pharmacological inhibitors, lysine-
specific histone demethylase 1 (LSD1) has been identified as a therapeutic target for HbF
induction [107]. Tranylcypromine (TC) is a selective monoamine oxidase inhibitor of
LSD1 that is currently FDA approved and used for the management of major depressive
disorders [108]. Shi et al. initially reported that inhibition of LSD1 by TC enhances HbF
synthesis in primary human erythroid cells, as well as in β-YAC mice [107]. However,
in vitro erythropoiesis, high TC concentrations delayed erythroid maturation with a rapid
decrease in total β-like globin mRNA [109].

Additionally, RN-1 is a TC analog that can act as an effective, irreversible LSD1
inhibitor with IC50 lower than TC (0.07 µM vs. 2 µM) [110]. In humanized healthy
and SCD mice, LSD1 inactivation by RN-1 was shown to induce γ-globin expression
and HbF synthesis [111]. In particular, treatment with RN-1 increased the expression of
murine embryonic εy- and βh1-globin genes without any changes in the expression of
adult β-globin [111]. When tranylcypromine (TCP) and RN-1 were tested in primate and
murine erythroid cell cultures, RN-1 was shown to induce F cells and γ-globin mRNA
at much greater levels than either TCP or HU [112]. More recently, the use of RN-1 was
investigated in erythroid progenitor cells derived from β0-thalassemia/HbE patients [113].
At a concentration of 0.004 uM, RN-1 significantly increased the expression of γ-globin
mRNA and HbF expression without any significant toxicity and regardless of HbF baseline
levels [113]. Transcript levels of numerous key γ-globin repressors and co-repressors such
as NCOR1, SOX6 and MYB were also modulated by RN-1 treatment [113]. Collectively,
these data suggest the consideration of RN-1 for further development as an additional
strategy to induce HbF in both SCD and thalassemic syndromes.

3.3. Modulators of Redox-Related Transcriptional Factors: Nrf2 or FOXO3
3.3.1. Dimethyl Fumarate

Dimethyl fumarate (DMF), a small and orally active molecule that acts as a nuclear
factor erythroid derived-2-like 2 (Nrf2) agonist, is currently approved for the treatment of
relapsing-remitting multiple sclerosis [114–117]. Being a transcription factor, Nrf2 triggers
the cytoprotective and antioxidant pathways in response to oxidation [118–121]. A study
by Krishnamoorthy et al. examined the ability of DMF to activate γ-globin transcription
and enhance HbF in SCD-derived erythroid precursors cells, SCD transgenic mice and non-
anemic cynomolgus monkeys [122,123]. Across all these settings, DMF (with or without
HU) significantly increased the level of γ-globin mRNA, the ratio of γ/β-globin mRNA
and the percentage of F cells [122]. The greatest average increase in γ/β-globin mRNA
was observed in the group receiving a combination of DMF and HU [122]. This was
associated with increased Gγ-globin and Aγ-globin chains synthesis [122]. In humanized
SCD, DMF (100 mg/kg) enhanced Aγ-globin expression and Nrf2-dependent genes such
as NQO1 and HO-1 with beneficial effects in murine hematologic sickle cell phenotype
as well as an improvement in inflammatory vasculopathy [122]. These findings are in
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agreement with previously published studies where Nrf2 was genetically activated by
decreasing expression of one its binding protein Keap1 [124,125]. Thus, DMF might be an
interesting new approach to the biocomplexity of SCD by acting as multimodal therapy,
not only as an HbF inducer agent but also as a modulator in inflammatory response and
vascular dysfunction.

3.3.2. Metformin

Metformin has been shown to activate the redox-related transcriptional factor FOXO3
in both non-erythroid cell lines and hepatocytes [126–128]. Gene silencing of FOXO3
reduced γ-globin RNA expression and HbF levels in erythroblasts, whereas overexpression
of FOXO3 produced the opposite effect [129]. When primary CD34+ cell-derived erythroid
cultures were treated with metformin (0, 50 and 100 mM), dose-related FOXO3-dependent
increases in the percentage of HbF as well as in the amounts of HbF-immunostaining cells
(F cells) were observed, without any changes in BCL11A, MYB or KLF1 expression [129].
Studies in erythroid precursors from SCD patients treated with metformin alone or in
combination with HU show a three-fold reduction in in vitro sickling, comparable to that
observed with HU alone. It is noteworthy that the combination of metformin and HU have
a synergic effect on the reduction in the percentage of sickled erythroid cells compared with
monotherapy. Metformin was also evaluated in 18 patients with SCD with SS, Sβ0, Sβ+

and SC genotypes [130]. The increase in HbF was shown to be minimal in patients with
SS, Sβ0 genotype [130]. Although some concerns on the use of metformin in SCD patients
was raised due to the possible lactic acidosis which might accelerate HbS polymerization,
no data on lactic acidosis were reported in patients with SCD [130]. Although the data on
metformin are stimulating, the small number of SCD patients and the absence of data on
clinical outcomes limit the conclusion of its use as a HbF inducer in clinical practice [131].

3.4. Agents Involved in Displacement/Suppression of γ-Globin Gene Promoters

This family includes a heterogenous group of molecules, such as benserazide, TN1,
nethylpiperazine, acyclovir, tenofovir disoproxil fumarate and cilostazol, which are in-
volved in the displacement/suppression of γ-globin gene promoters such as LSD-1, BCL11A
and HDAC3 [132] (Figure 1).

3.4.1. Benserazide

Benserazide is a peripheral dopa decarboxylase inhibitor used in combination with L-
DOPA for treatment of Parkinson’s disease. In preclinical models, benserazide was shown
to induce HbF production [133,134]. Benserazide was also shown to increase fetal γ-globin
gene transcription and the proportions of cells expressing HbF (F reticulocytes and F cells)
in erythroid precursors from patients with HbE-β0-thalassemia and SCD [133,135]. An
observational study by Santos et al. on a total of 50 individuals was conducted to evaluate
the ability of benzeraside (at daily doses that ranged from 100 mg to 700 mg) to increase
HbF production and circulating F cells. No correlations were found between the average
daily dose of benserazide and HbF levels [136]. Moreover, no hematologic AEs related to
benserazide use were recorded, even after up to 22 years of treatment [136]. Another recent
study evaluated the efficacy of (R,S)-benserazide in comparison to its enantiomers to iden-
tify the best optimal form for clinical development transferable to hemoglobinopathies such
as β-thalassemia or SCD [132]. Non-inferiority data on HbF expression between benser-
azide and its individual enantiomers were reported [132]. In addition, in β-YAC mice, the
intermittent treatment with all forms of benserazide significantly increased the proportions
of F cells with similar pharmacokinetic profiles in the absence of myelotoxicity [132]. Thus,
the use of benserazide either alone or in combination with other HbF-inducing agents, such
as HU or decitabine, might be considered another possible strategy to further increase HbF
levels and proportions of F cells through complimentary mechanisms.
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3.4.2. Purine-Based Fetal Hemoglobin Inducers

An early study by Nam et al. provided the first evidence on TN1 (2,6-diamino-
substituted purine), a potent purine-based HbF inducer [137]. In leukemia cell lines, TN1
(100 nM) induced HbF more potently than HU [137]. However, another study conducted
on human primary erythroid cells showed that this agent did not significantly increase γ-
globin gene expression [138]. These drawbacks limited the development of this compound
and its capability of being used in clinical trials in patients with hemoglobinopathies. Lai
et al. then reported another potent and orally active purine-based HbF inducer known as
Nethylpiperazine, or compound 13a [138]. In vitro assays demonstrated that in primary
erythroid cells as well as in HU-resistant primary erythroid cells, compound 13a might
efficiently induce γ-globin expression at a non-toxic concentration [138]. In a mouse model
for SCD, compound 13a was safe and well tolerated with a dose-dependent beneficial
effect on the hematologic SCD phenotype [138]. Thus, compound 13a can be considered
an interesting molecule to be further developed as an inducer of HbF. It may be used in
combination with HU or in HU low-responder patients with β-thalassemia and SCD.

Acyclovir (ACV) is another cyclic purine nucleotide analog, recently reported to induce
HbF. Acyclovir is an FDA-approved antiviral agent against herpes simplex viruses, and
its antiviral activity is highly specific [139]. Ali et al. reported the increased expression of
γ-globin gene and HbF synthesis in CD34+-derived erythroid precursors. No major effects
on either erythroid proliferation and maturation were observed [140]. ACV significantly
downregulated the γ-globin repressors BCL11A and SOX6. This was associated with
the upregulation of GATA-1 [140]. Data from β-YAC transgenic mice treated with ACX
revealed a substantial increase in HbF mRNA expression as well as in the percentage of F
cells [140].

Tenofovir disoproxil fumarate (TDF) is an acyclic nucleotide analogue of adenosine
used in the treatment of the human immunodeficiency virus and hepatitis B infection.
TDF has also been investigated as a pharmacologically active HbF inducer. A study
by Khan et al. observed that TDF increased erythroid differentiation, γ- globin gene
mRNA transcription and HbF expression in K562 cells [141]. In vivo studies using β-YAC
transgenic mice confirmed that the beneficial effects of TDF (at a dose of 200 mg/kg/day
for four weeks) was even better than HU on the percentage of HbF-positive RBCs in the
absence of myelotoxic and cytotoxic effects [141].

3.4.3. Cilostazol (OPC-13013)

Cilostazol, a quinolinone derivative, is a reversible specific type 3 phosphodiesterase
inhibitor. Cilostazol was shown to increase cyclic adenosine monophosphate (cAMP) cellu-
lar content, resulting in the inhibition of platelet aggregation and modulation of vascular
tone [142]. Ali et al. demonstrated that cilostazol (20, 30, 40, 50 and 100 µM) induces
erythroid differentiation of K562 cells in a concentration-dependent manner and signifi-
cantly increases cell hemoglobinization [143]. This was associated with the upregulation
of γ-globin mRNA transcripts as well as the amount of F cells [143]. In β-YAC mice,
cilostazol upregulated γ-globin mRNA level and increased the percentage of F cells [143].
No adverse events secondary to the drug were observed. Although these are preliminary
data, the multimodal action of cilostazol targeting vascular endothelial cells, platelets and
HbF expression make this molecule an ideal candidate to further study in β-thalassemia
and SCD.

3.5. Molecules Targeting Post-Translational Modifications Involved in HbF Expression

Recent reports have highlighted the novel role of post-translational modifications such
as phosphorylation in the induction of HbF, most likely amplifying signaling pathways
activated in response to stress erythropoiesis [144,145] (Figure 1).
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3.5.1. Salubrinal (SAL)

Salubrinal is a selective inhibitor of protein phosphatase 1 (PP1) that participates in the
recruitment of phosphorylated eukaryotic initiation factor 2α (p-eIF2α) which in turn acti-
vates downstream targets such as activating transcription factor 4 (ATF4) [146]. Chen et al.
demonstrated that SAL ameliorates anemia in mice genetically lacking the discoidal domain
receptor1 (DDRGK1F/F), a model of stress erythropoiesis. [147]. Hahn et al. on the other
hand showed that in normal erythroid precursors, SAL might prevent dephosphorylation of
p-eIF2α, resulting in increased HbF production by a post-transcriptional mechanism [144].
Lopez et al. investigated whether SAL can induce HbF expression through the stress-
signaling pathway by the activation of p-eIF2α and ATF4 trans-activation in the γ-globin
gene promoter [148]. In sickle erythroid precursors, SAL (24 µM) increased F cells and
significantly reduced oxidative stress, and increased levels of p-eIF2α and ATF4 [148]. In
humanized SCD mice, a single intraperitoneal injection of SAL (at a dose of 5 mg/kg for
four weeks) mediated a 2.3-fold increase in F cells and reduced the percentage of sickle
erythrocytes and erythrocyte ROS production [148]. Although the study did not report an
additive effect when SAL was used in combination with HU, it was concluded that SAL
was as effective as HU[148].

3.5.2. PGC-1α Agonist: ZLN005

The pharmacologic induction of peroxisome proliferator-activated receptor-γ coactiva-
tor 1-α (PGC-1α) has recently been shown to induce HbF gene expression [149]. PGC-1α
interacts with different nuclear receptors such as PPARg or TR4, as well as in the recruit-
ment of chromatin complexes. In human CD34+ cell-derived primary erythroid precursors,
Sun et al. recently showed that the upregulation of PGC-1α by ZLN005, a small-molecule
PGC-1α agonist, induced both γ-globin mRNA expression and HbF and increased F cells
without significantly affecting cell proliferation and differentiation [149]. It was also re-
ported that the use of ZLN005 in combination with HU exhibited an additive effect on the
expression of γ-globin and the generation of F cells [149]. In addition, ZLN005 induced
human γ-globin gene expression in SCD mice [149].

The mechanism of action of the abovementioned novel experimental strategies out-
lined in this section has also been summarized in Table 2.

Table 2. Mechanism of action of novel experimental strategies for HbF induction.

Agent Mechanism of Action

EED inhibitors
• Inhibition of the activity of PRC2 (which catalyzes tri methylation of

histone H3 at lysine 27) and elevation in gene expression (e.g., HBG1/2)

LSD1 inhibitors • Disruption of the DRED complex that controls the expression of γ-globin

Modulators of redox-related transcriptional
factors

• Activation of Nrf2 transcriptional pathway
• Enhancement of FOXO3 expression

Agents involved in the displacement/
suppression of γ-globin gene promoters

• Displacement/suppression of γ-globin gene promoters

Modulators of cell signaling
• Activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene

promoter
• Induction of PGC-1α

Abbreviations: HbF: Hemoglobin F; EED: Embryonic ectoderm development; PRC2: Polycomb repressive
complex 2; Nrf2: Nuclear factor erythroid 2-related factor 2; FOXO3: Forkhead box O-3; p-eIF2α: Phosphorylated
eukaryotic initiation factor 2α; ATF4: Activating transcription factor 4; PGC-1α: Peroxisome proliferator-activated
receptor-γ coactivator 1-α.

4. Conclusions and Future Perspectives

In conclusion, pharmacological agents to induce HbF are currently being used to
alleviate the morbidity profile and disease burden that is associated with β-thalassemia and
SCD. Understanding the complex regulation of HbF is key and necessary to supporting
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the generation of newer modalities. Research into novel pharmacologic strategies directed
at elevating HbF levels is currently ongoing. The development of such novel curative
treatments and approaches for β-thalassemia and SCD is crucial to diminish the clinical
disease severity and substantially improve the quality of patients’ lives.
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