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Abstract. We introduce a new class of triangulated categories, which are
Verdier quotients of 3-Calabi-Yau categories from (decorated) marked surfaces,
and show that its spaces of stability conditions can be identified with moduli
spaces of framed quadratic differentials on Riemann surfaces with arbitrary
order zeros and arbitrary higher order poles.

A main tool in our proof is a comparison of two exchange graphs, obtained
by tilting hearts in the quotient categories and by flipping mixed-angulations
associated with the quadratic differentials.
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1. Introduction

The notion of stability conditions on a triangulated category D was introduced by
Bridgeland in [Bri07]. Since then, the stability space Stab D, which as a set consists
of Bridgeland stability conditions on D, has played a major role in algebraic geom-
etry, representation theory, mirror symmetry and some branches of mathematical
physics, providing interesting synergies. By its very definition Stab D comes with a
G̃L

+
2 (R)-action, just as moduli spaces of framed abelian and quadratic differentials

do.
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While the global structure of Stab D as a complex manifold is still unknown
in many cases, there are examples that are quite well understood. This includes
for instance the case of the stability space of a class of three-Calabi-Yau (CY3)
categories constructed from the Ginzburg algebra of quivers with potentials, that
are well known categories in representation and cluster theory. Inspired by the work
of Gaiotto-Moore-Neitzke [GMN13], Bridgeland and Smith have shown in [BS15]
that some moduli spaces of meromorphic quadratic differentials with simple zeros
can be identified with those spaces of stability conditions, appropriately quotiented
by the action of autoequivalences.

Our goal here is to generalize the Bridgeland-Smith correspondence to quadratic
differentials with arbitrary higher order zeros. It implies studying another class
of categories, which are related to the previous ones as quotients, but seem less
well-behaved. Our motivation for this is two-fold.

Categorification. Spaces of quadratic differentials with higher order zeros arise
when zeros collide. As such they form a subspace of the total space of quadratic
differentials with no zero order condition, in fact a subspace locally cut out by linear
conditions in period coordinates. In the spaces of abelian and quadratic differen-
tials, the R-linear submanifolds have received a lot of attention (see e.g. [Fil20] for
a recent survey on the classification problem, however with focus on holomorphic
differentials). Since these submanifolds admit an action of the universal cover of
GL+

2 (R), a natural question is whether they all can be interpreted as spaces of
stability conditions on an appropriate triangulated category.

More generally one can analyze the collision of zeros and poles, or even the col-
lapse of a higher genus subsurface. Our main result gives an answer to the question
how to interpret such collapses categorically. In a nutshell, collapses correspond to
taking Verdier quotients.

Compactification. Spaces of stability conditions are typically non-compact,
even after projectivization, and several strategies of compactification have recently
been explored. Some of them are Thurston-type compactifications with real codi-
mension one boundary ([BDL20], [KKO22]), some of them are partial compact-
ifications ([Bol20], [BPPW22]). On the other hand, spaces of projectivized qua-
dratic differentials have a compactification as smooth complex orbifolds (combine
[BCGGM2] and [BCGGM1]) and in forthcoming work we will recast this com-
pactification in terms of ’multi-scale stability conditions’ for quiver CY3 categories.
Spaces of quadratic differentials with higher order zeros appear naturally as bound-
ary strata in this compactification.

1.1. The main result. The combinatorics of a meromorphic quadratic differen-
tial q on a Riemann surface S is encoded in a weighted decorated marked surface Sw,
the real blow-up of S at the poles of q, see Section 3.2 for the definition. The pole
orders are encoded in the markings of (a finite number of points in) the boundary
components of Sw, and usually hidden from notation. The weights w encode the
tuple of orders of zeros of the differential. The horizontal trajectories of a generic q
induce a tiling of Sw into polygons, whose number of edges depends on the orders
of the zeros they contain.

The case of S∆ := Sw≡1 is the one originally considered by [BS15] and [KQ20]. It
corresponds to quadratic differentials with simple zeros. These differentials induce
a triangulation of S∆ to which, in turn, one associates a quiver with potential
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(Q,W ) and its Ginzburg (differential graded) algebra Γ(Q,W ). The triangulated
category D3(S∆) is defined as the perfectly valued derived category pvd(Γ(Q,W )),
that is the subcategory of D(Γ) of Γ-modules with finite dimensional total homology.
The correspondence of [BS15; KQ20] can be restated as an isomorphism of complex
manifolds

K : FQuad◦(S∆) → Stab◦(D3(S∆)),
involving the moduli space of (Teichmüller-)framed quadratic differentials on S∆
and a connected component Stab◦(D) of the stability manifold of D3(S∆).

Section 2 contains background material on Bridgeland stability conditions and
quotient categories, as well as how to associate Ginzburg categories to quivers with
potential. We summarize the notions of marked surfaces, weighted decorations and
quadratic differentials in Section 3. The geometry of moduli spaces with all kinds
of framings is recalled in Section 4. The previous results by [BS15; KQ20] together
with mapping class group actions are restated in Theorem 7.1.

Consider now quadratic differentials with signature w different from the ’triv-
ial’ case w ≡ 1 and their associated Sw. A weighted decorated marked surface
with non-trivial weight can be obtained by collapsing a subsurface Σ in S∆, as we
explain in Section 5. In such a case we denote it by Sw. In the whole paper the
surface Sw has at least one boundary component (i.e. the quadratic differentials are
meromorphic), there are no punctures (i.e. none of the marked points is a regular
point of the quadratic differentials) and we disallow double poles and simple poles
to avoid several technicalities like working with cohomology valued in local systems
(the space Quad♡ of [BS15]) and self-folded triangles in triangulations.

The main result of this paper is Theorem 7.2, stated in short form as follows:

Theorem 1.1. There is an isomorphism of complex manifolds

K : FQuad•(Sw) → Stab•(D(Sw))

between the principal part of the space of Teichmüller-framed quadratic differentials
inducing the weighted decorated marked surface Sw and the principal part of the
space of stability conditions on the Verdier quotient

D(Sw) := D3(S∆)/D3(Σ).

In this theorem the bullet points (’principal part’) refer to a union of connected
components, defined in Sections 5.4 and 6.3 respectively, and motivated below.
Our results can most likely be extended to include punctures and small order poles
with appropriate care. The case of holomorphic differentials is a whole different
story, for which the recent categorification by Haiden ([Hai21]) could be the point
of departure.

A given decorated marked surface Sw may be realized as the collapse of sev-
eral different surfaces S∆ with simple weights: the case g(S∆) = g(Sw) is always
possible, g(S∆) > g(Sw) is possible if the entries of w are large enough. Since
the spaces of framed quadratic differentials do not depend on the collapse, Theo-
rem 1.1 gives the realization of the same manifold M as M ∼= Stab•(D(Sw)) for
different triangulated categories D(Sw). However the autoequivalences of D(Sw)
detect those different realizations, just as the mapping class groups do on the topo-
logical side, see Section 6.4. On the side of framed differentials, every component
of FQuad(Sw) is realized as a component of FQuad•(Sw) for appropriate choices
of initial triangulations. For spaces of stability conditions however we make no
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claims on the (non)-existence of spurious components of Stab(D(Sw)) not covered
as target of our correspondence, just as this question is left undecided in [BS15] for
simple zeros.

1.2. Techniques. The proof of Theorem 1.1, given in Section 7, shares with the
original proof by Bridgeland and Smith the idea of extending a chamber-wise iden-
tification. The main differences are an explicit isomorphism of exchange graphs on
both sides and a generalization of the method to extend beyond the ’tame locus’,
as we now explain.

Both FQuad(Sw) and Stab(D(Sw)) come with a natural chamber structure. In
FQuad(Sw) the open chambers are given by quadratic differentials without hori-
zontal saddle connections. The trajectory structure of the differential gives rise to
an arc system that we call w-mixed-angulation, generalizing the triangulations in
the simple zero case. The preimage of the mixed-angulation under the collapse is
called a partial triangulation of S∆. Adjacency of chambers is encoded by a notion
of forward flip of the partial triangulation and leads to the definition of an exchange
graph EG(Sw). On the other side, Stab(D(Sw)) is also tiled in chambers identified
by the heart of a bounded t-structure the stability conditions are supported on.
The first step consists of studying and comparing these chamber structures.
Comparison of exchange graphs. We start from a distinguished heart of D(Sw)
and need to consider the exchange graph EG(D(Sw)) whose vertices are hearts of
bounded t-structures and whose arrows are simple tilts (recalled in Section 2). The
idea is to relate (parts of) EG(Sw) and EG(D(Sw)). When w ≡ 1 this is the
relation between triangulations and finite hearts of bounded t-structures of a CY3
Ginzburg category.

Recall that D(Sw) is by definition a Verdier quotient of a CY3 category D3(S∆).
While a partial triangulation can always be refined to a triangulation, a general
expectation is that not all hearts in D(Sw) arise as quotients of hearts in D3(S∆).
When they do, we call them hearts of quotient type. We restrict to the principal
part EG•(Sw) of EG(Sw) whose vertices are those partial triangulations that can
be refined to a successive flip of a triangulation T fixed once and for all. Cor-
respondingly, EG•(D(Sw)) includes precisely hearts that are quotients of tilts of
the heart of D3(S∆) associated to T under the original (w ≡ 1) correspondence.
The definition and study of these graphs covers Sections 5 and 6 and leads to the
isomorphism

EG•(Sw) ∼= EG•(D(Sw)), (1.1)
stated as Theorem 6.9. It allows us to define the map K of Theorem 1.1 on the
complement B2 of the locus of differentials with more than one horizontal saddle
connection.

The viewpoint of refining partial triangulations to triangulations makes it also
clear why quotient categories naturally arise in this context: Any two triangulation
refinements of a partial triangulation differ by successive flips in the additional edges
and we show in Proposition 6.5 that the resulting quotient heart is independent
of these choices. A consequence of the main result and (1.1) is that the union
of C-orbits of hearts of quotient type of D(Sw) form connected components of
Stab(D(Sw)).
Walls have ends. Finally we need extend K|B2 to all of FQuad•(Sw), which is
stratified by the number of closed saddle connections and recurrent trajectories.
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We generalize in Section 4.2 the argument in [BS15] that each component of all
the higher order strata Bp of FQuad(Sw) has ’ends’ where it locally does not
disconnect the complement. Our argument gives an alternative proof that does
not depend on case distinctions of local configurations of hat-homologous saddle
connections. Those configurations probably become hard to list as the orders of
zeros in w grow. As a downside, our approach avoids classifying the moduli spaces
of objects in D(Sw) that are stable and of phase zero in a given stability condition σ,
compare [BS15, Theorems 1.4 and 11.6]. Due to the connection with computing
BPS-invariants in the CY3 context, it seems interesting to analyze this further.

1.3. The category D(Sw). The category D(Sw) is defined as the quotient of
a CY3 triangulated category D(S∆) := pvd(Γ(Q,W )) by a subcategory of the
same form D3(Σ) := pvd(Γ(QI ,WI)), where (QI ,WI) is a subquiver of the quiver
with potential (Q,W ) defined by the combinatorial data of a quadratic differen-
tial. As opposed to D(S∆), the quotient category is in general not Calabi-Yau
and not Hom-finite, yet we need to consider its bounded t-structures. Proposi-
tion 6.8 and Theorem 6.9 in Section 6, beyond proving the isomorphism of the
graphs (1.1), tell us about the possibility to lift a simple tilt in the quotient
pvd(Γ(Q,W ))/pvd(Γ(QI ,WI)) to a simple tilt on pvd(Γ(Q,W )) and viceversa.
A comprehensive description of these categories and their t-structures will appear
in a subsequent paper.

1.4. Exchange graphs and connected components, examples. The classifi-
cation of connected components of spaces of abelian or quadratic differentials has
attracted a lot of attention, and similarly the question whether spaces of stability
conditions are connected is an important question in the topic. We give a short
overview over the literature. For differentials, there are two classification questions.
For (plain, unframed) differentials, the first result is by Kontsevich-Zorich ([KZ03])
for holomorphic abelian differentials, followed by Lanneau ([Lan08]) for holomor-
phic quadratic differentials. Boissy first classified components for meromorphic
abelian differentials ([Boi15]). See work of Chen-Gendron [CG22] for the latest
results. Equally interesting and challenging is the classification of (Teichmüller-
)framed differentials, see [KQ20] for simple zero and higher order pole case and
work of Walker ([Wal09]) and Calderon-Salter ([CS21]) for the latest results in the
holomorphic case. In almost all known cases components are classified by spin in-
variants, hyperellipticity and torsion conditions in genus one, some low genus strata
of quadratic differentials providing exceptions (see [Lan08] and also [CM14]).

For spaces of stability conditions the stability manifold is known to be connected
(and simply connected) for instance for the bounded derived category of curves
(Okada [Oka06] for genus g = 0 and Macrì [Mac07] for higher genus) or of some
abelian surfaces and very general K3 surfaces ([HMS08]). An example for a non-
connected space of stability conditions is given by Meinhardt and Partsch [MP14].
They study the quotient category Db

(1)(X) of the bounded derived category Db(X)
on a smooth projective variety X with dim(X) ≥ 2 by the full subcategory of com-
plexes of sheaves supported in codimension c > 1. The classification of components
is based on computing G̃L

+
2 (R) orbits of Stab(Db

(1)(X)).
The walls-have-ends result Corollary 4.3 implies that connectivity of spaces of

quadratic differentials is equivalent to the connectivity of the corresponding ex-
change graphs. Via our main theorem this gives a criterion to show if the spaces
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Stab•(D(Sw)) are disconnected. In fact, Example 5.15 together with the isomor-
phism 1.1 and Theorem 1.1 shows disconnectivity for example already for the space
of quadratic differentials with a zero of order three and a triple pole.

Corollary 1.2. For a surface Sw of genus one with one boundary component and
one zero with weight w = (3) the principal part Stab•(D(Sw)) is disconnected.

Acknowledgments. This projects has benefited from many inspiring discussions,
and we therefore thank Dylan Allegretti, Tom Bridgeland, Jon Chaika, Xiaowu
Chen, Yitwah Cheung, Merlin Christ, Haibo Jin, Francesco Genovese, Fabian
Haiden, Zhe Han, Bernhard Keller, Paolo Stellari, Alex Wright, Dong Yang, and
Yu Zhou. Special thanks go to Ivan Smith and Dawei Chen for helping us to join
initially independent overlapping projects.

2. Preliminaries on categories and the stability manifold

In this section we set some notation and collect background material about sta-
bility conditions on triangulated categories, quotient categories, quivers with po-
tential and the CY3-categories associated to them. References are [HRS96; GM03;
BBD82; Bri07; Bri09; Nee14; DWZ08; Kel11a].
Notation. We fix k an algebraically closed field for simplicity. All categories con-
sidered in this paper are k-linear and all subcategories are full. For an additive
category C with a subcategory (or set of objects) B, we define

B⊥C := {C ∈ C : HomC(B,C) = 0 ∀B ∈ B} ,
and similarly ⊥C B. We will omit the subscript C when there is no confusion. If C
is triangulated, we denote by thick(B) the smallest thick additive full subcategory
in C containing B. It is triangulated. Moreover, for full subcategories H1,H2 of an
abelian or a triangulated category C, we let

H1 ∗ H2 := {M ∈ C | ∃ s.e.s or triangle T → M → F s.t. T ∈ H1, F ∈ H2},
⟨B⟩ := {M ∈ C | ∃ s.e.s or triangle T → M → F s.t. T, F ∈ Add B}.

Consequently H1 ∗ H2 ⊂ ⟨H1,H2⟩ ⊃ H2 ∗ H1. If H1,H2 satisfy Hom(H1,H2) = 0,
then we write H1 ⊥ H2 for H1 ∗ H2.

A finite length abelian category will be said to be finite if it has finitely many
simple objects. Throughout the paper we will use the following complex half-planes

H :=
{
ρeπiθ | ρ ∈ R>0, 0 < θ < 1

}
,

H :=
{
ρeπiθ | ρ ∈ R>0, 0 < θ ≤ 1

}
.

(2.1)

2.1. Structures on triangulated and abelian categories. Here we collect some
background material about bounded t-structures, stability conditions on triangu-
lated categories, and quotients of abelian and triangulated categories.
Bounded t-structures and simple tilts. A t-structure on a triangulated cat-
egory D is the torsion part of a torsion pair (so that D = P ⊥ P⊥) satisfying
P[1] ⊂ P. The t-structure is said to be bounded if D = ∪m∈ZP[m] ∩ P⊥[−m]. The
heart of a bounded t-structure P ⊂ D is the full subcategory H = P ∩P⊥[1], which
is abelian. Denote by K(H) ≃ K(D) their Grothendieck groups. The bounded
t-structure and its heart determine each other uniquely and hence we will use them
interchangeably.
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Given a torsion pair (T ,F) in the abelian heart of a bounded t-structure H =
T ⊥ F , there is a new heart µ♯

F H := T ⊥D F [1], known as forward tilt with respect
to (T ,F) of H, see e.g. [HRS96]. Obviously, tilting commutes with autoequiva-
lences, i.e., for any Φ ∈ Aut(D),

Φ
(
µ♯

T (H)
)

= µ♯
Φ(T )Φ(H) . (2.2)

A forward tilting H → H♯ is simple if the corresponding torsion free class F
is generated by a simple S of H, i.e. F = ⟨S⟩. For a finite heart H with a rigid
simple S the simple forward tilt with respect to S exists and is denoted by µ♯

SH.
Moreover, by a tilting formula in [KQ15, Proposition 5.4], the new simples are
Simµ♯

SH = {S[1]} ∪ {ψ♯
S(X) | X ∈ Sim H, X ̸= S} where

ψ♯
S(X) = Cone

(
X

f−→ S[1] ⊗ Ext1(X,S)∗
)

[−1] . (2.3)

Recall that the partial order on hearts H1 ≤ H2 means P1 ⊃ P2 ⇔ P⊥
1 ⊃ P⊥

2 .
The following is a characterization for all hearts in the interval [H,H[1]].

Lemma 2.1. [KQ15, Remark 3.3] Fix a heart H. Then a heart H′ is a forward
tilt of H if and only if H ≤ H′ ≤ H[1]. In this case, the tilting is with respect to
the torsion pair T = H′ ∩ H and F = H′[−1] ∩ H.

Stability structures. A stability function on an abelian category H is a group
homomorphism Z : K(H) → C, such that for any 0 ̸= A ∈ H, Z(A) ∈ H. An
object A ∈ H is said to be Z-semistable if for any non-zero proper sub-object
B ↪→ A then 1

π argZ([B]) ≤ 1
π argZ([A]). It is called stable if the inequality holds

strictly. The quantity 1
π argZ(A) is called the phase of A. A stability function is

called a central charge if it moreover satisfies the so-called support property and
Harder-Narasimhan property, see [Bri07; KS08; BMS16] for more details.

A stability condition σ on D is a pair σ = (Z,H), consisting on a heart H together
with a central charge Z ∈ Hom(K(H),C). Let

P(ϕ) := {E[⌊ϕ⌋] | E is Z-semistable in H of phase ϕ− ⌊ϕ⌋} , ∀ϕ ∈ R

be the slice consisting of semistable objects of phase ϕ. The collection of all slices
is known as a slicing, denoted by PR := {P(ϕ)}ϕ∈R ⊂ D. Denote by P(I) = ⟨P (ϕ) |
ϕ ∈ I⟩ for any interval I ⊂ R. The heart of a stability condition σ is H = P(0, 1],
and the data of a stability conditions σ = (Z,H) is equivalent to a pair (Z,PR) with
certain compatibility conditions, see [Bri07]. We recall the main result of [Bri07]:

Theorem 2.2. The set of all stability conditions on D form a complex manifold
Stab(D) with local coordinates given by the central charge Z ∈ Hom(K(D),C).

The group of autoequivalences Aut(D) acts on the left on Stab(D) by

Φ.(Z,H) =
(
Z ◦ Φ−1,Φ(H)

)
,

which commutes with the action by scalars, for any λ ∈ C:

λ(Z,P) = (e−πiλZ,P ′) where P ′(ϕ) = P(ϕ+ Reλ). (2.4)
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Generic-finite connected components. We denote by U(H) the locus of sta-
bility conditions supported on a heart H and by U0(H) its interior. If H is finite,
then U(H) = H| Sim(H)|.

Definition 2.3. Let H be a finite heart, and WS(H) ⊂ U(H) be the real codimen-
sion 1 subset for which a simple S has phase 1 and all other simples in H have
phase in (0, 1). We call WS(H) a wall. A chamber is a connected component of
the complement of the closure of the union of the walls in Stab(D).

If H1 and H2 are finite hearts, the intersection U(H1) ∩ U(H2) = WS(H1) if
and only if H2 = µ♯

SH1 by [Woo10]. We let

Stab0(D) =
⋃

H finite
U0(H) and Stab2(D) =

⋃
H finite

U(H). (2.5)

The indexing convention is parallel with the one that we will use for spaces of
quadratic differentials in Section 4.2. If a connected component of Stab(D) has
been specified, we decorate these spaces by a ◦ accordingly.

Definition 2.4. A connected component Stab◦(D) is called
• a finite type component, if Stab◦ D = Stab◦

2 D;
• a generic-finite type component, if Stab◦ D = C · Stab◦

2 D.

Abelian and triangulated quotient categories. Recall that a subcategory S
of an abelian category A is called a Serre subcategory if it is abelian and for any
short exact sequence 0 → A1 → E → A2 → 0 in A, we may conclude E ∈
S if and only if A1, A2 ∈ S. In such a case, the quotient category A/S is also
abelian, cf. [Nee14, Lemma A.2.3] and [Gab62].

On the other hand, given a triangulated category D and a triangulated subcat-
egory V ↪→ D, we can construct the so-called Verdier quotient D/V. If V is thick
(i.e. closed under direct summands), then

0 → V → D → D/V → 0
is a short exact sequence of triangulated categories with exact functors, [Ver96,
Proposition 2.3.1].

Remark. Whenever π : D → D/V is a quotient functor of triangulated cate-
gories, and B is a subcategory of D, by π(B) we will mean the essential image of B
through π. This will apply in particular to the image of abelian hearts H ⊂ D.

2.2. Quivers with potential, mutation and Jacobian algebras. In this arti-
cle (Q,W ) is a non-degenerate finite (possibly disconnected) oriented quiver Q =
(Q0, Q1, s, t) that has no loops or 2-cycles, with potential W considered up to right
equivalence. The cyclic derivative of W with respect to an arrow a ∈ Q1 is de-
noted ∂aW . We refer to [DWZ08] for all these basic notions.

The operation of mutation at a vertex i ∈ Q0, defined for instance in [KY11,
Section 2], produces a new quiver with potential denoted µi(Q,W ) or (µiQ,µiW ),
that will have no loops nor 2-cycles.

The Jacobian algebra J (Q,W ) of (Q,W ) is the quotient of k̂Q, the completion
of the path algebra with respect to bilateral ideals generated by arrows, by the ideal
∂W := ⟨∂aW | a ∈ Q1⟩. The category of finite dimensional modules over J (Q,W )
is denoted

H(Q,W ) := mod J (Q,W ),
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sometimes shortened to HQ when the quiver with potential is clear. It is a finite
length, finite, abelian category, see for instance [Kel11b, Section 3]. The vertices
of the quiver give the simple objects of the module category Sim(HQ), so that in
particular the Grothendieck group is K(H(Q,W )) = Z|Q0|.

Let I ⊂ Q0 be a proper subset of the set of vertices of Q, and Ic its complement.
There is an operation of restriction on (Q,W ), to get a new quiver with potential,
denoted by (QI ,WI) with vertices (QI)0 = I. It is obtained by deleting vertices
in Ic, arrows incoming or outgoing from vertices in Ic, and all cycles in W passing
through vertices in Ic, [DWZ08]. We call (QI ,WI) a (full) subquiver. When i ∈ I,
the operations of mutation µi and of restriction |I commutes, cf. [LF09]. The
following is obvious.

Lemma 2.5. Let k ̸∈ I ⊂ Q0 be a vertex of Q such that there are no arrows from i
to k or from k to i for all i ∈ I. Then (µk(Q,W ))I = (QI ,WI).

The finite-length property of H(Q,W ) immediately implies:

Lemma 2.6. There is a bijection between Serre subcategories of H(Q,W ) and full
sub-quivers (QI ,WI).

We will be interested in the quotient abelian category
H(Q,W )/H(QI ,WI) (2.6)

which is a category of modules over a finite dimensional algebra as well, [GL91,
Propositions 2.2 and 5.3]. In particular it is a finite length, finite abelian category.
The Grothendieck group splits as

K(H(Q,W )) ≃ K(H(QI ,WI)) ⊕K(H(Q,W ))/K(H(QI ,WI)).

2.3. CY3 categories associated to a quiver with potential. We denote by
Γ := Γ(Q,W ) the complete Ginzburg differential graded (dg) algebra associated to
a quiver with potential (Q,W ). The underlying graded algebra Γ is the completion
of the path algebra of a graded quiver obtained from Q and the differential is given
by the potential W . It is defined in [Gin06; Kel06]. The zero-th homology of this
algebra H0

(
Γ(Q,W )

)
≃ J (Q,W ) gives back the Jacobian algebra of the original

quiver with potential.
Recall that a category C is said to be Calabi-Yau of dimension N , or simply CYN

if for any objects E,F ∈ C there is a natural isomorphism ν : HomC(E,F ) ∼→
HomC(F,E[N ])∨ of k-vector spaces.

Let A be a dg algebra with derived category D(A). Denote by per(A) and
pvd(A) the perfect derived category and the perfectly valued derived category of A,
respectively. The perfect category per Γ is generated by the indecomposables pro-
jective dg modules Pi = eiΓ, i = 1, . . . , n. The perfectly valued derived category
pvd(Γ) coincides with the subcategory of D(Γ) consisting on dg modules of total
finite-dimensional homology.

We collect some well-known results from [Kel11a] and [KY11, Section 3-4].

Proposition 2.7. For Γ = Γ(Q,W ) as above the following statements hold:
• The category pvd(Γ) is Hom-finite and CY3, for any non-degenerated quiver

with potential (Q,W ), and it is contained in per(Γ).
• If Γ′ = Γ(Q′,W ′) is obtained by mutation, then pvd(Γ′) ∼= pvd(Γ) and

per Γ′ ∼= per Γ.
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• The category pvd(Γ) admits a standard heart of bounded t-structure

H(Γ) = H(Q,W ) := mod J (Q,W ).

The CY2 Verdier quotient per(Γ)/ pvd(Γ), sitting in a short exact sequence of
triangulated categories,

0 → pvd(Γ) → per Γ πΓ−−→ C(Γ) → 0 (2.7)

is called the cluster category and denoted by C(Γ), following Amiot [Ami09].
Let (QI ,WI) = (Q,W )I denote a full subquiver of (Q,W ), as in the previous

subsection, and ΓI = Γ(QI ,WI), JI = J (QI ,WI). The standard bounded t-
structure H(Γ) on pvd(Γ) restricts to the standard bounded t-structure

mod JI =: H(ΓI) = pvd(ΓI) ∩ H(Γ) ⊂ H(Γ)

on the subcategory pvd(ΓI) = thickpvd(Γ) H(ΓI) ⊂ pvd(Γ).
We are interested in the Verdier quotient pvd Γ/pvd ΓI and in those hearts

that are the images, under the quotient functor, of a heart in pvd Γ. We will
study a component of the exchange graph of pvd Γ/pvd ΓI containing the heart
H(Γ)/H(ΓI) in Section 6.

3. Decorated marked surfaces and quadratic differentials

3.1. Quadratic differentials. We set up notion for quadratic differentials, using
the book of Strebel [Str84] as background.

Let X be a compact Riemann surface and ωX be its holomorphic cotangent
bundle. A meromorphic quadratic differential q on X is a meromorphic section of
the line bundle ω2

X . We denote by z the collection of points where q has a pole or
vanishes, the singularities or critical points of q. These can be grouped into the
finite critical points (zeros and simple poles) of q, and infinite critical poles (higher
order poles). We denote by Zj(q) the set of finite critical points of q or order j and
Pk(q) the set of poles of q with order k ≥ 2 Finally, let Z(q) =

⋃
j≥−1 Zj(q) and

P (q) =
⋃

j≥2 Pj(q) and group them together as Crit(q) = Z(q) ∪P (q). We let w =
(w1, . . . , wr) be the orders of the finite critical points and w− = (wr+1, . . . , wr+b)
be the negative orders of higher order poles (i.e. wi ≤ −2 for i ≥ r+ 1). The tuple
(w,w−) is the signature of the quadratic differential.

The canonical covering construction. Associated with a quadratic differential q
on a compact curve X there is a canonical double cover π̂ : X̂ → X such that
π̂∗q = ω2 is the square of an abelian differential, unique up to sign. See e.g.
[BCGGM1, Section 2.1] for various methods of construction. The tuple of preimages
of the singularities of (X, q) is denoted by ẑ, and decomposed into the finite critical
points Ẑ and infinite critical points P̂ . To compute the signature of the double
cover we define

(ŵ, ŵ−) :=
(
ŵ1, . . . , ŵ1︸ ︷︷ ︸

gcd(2,w1)

, ŵ2, . . . , ŵ2︸ ︷︷ ︸
gcd(2,w2)

, . . . , ŵr+b, . . . , ŵr+b︸ ︷︷ ︸
gcd(2,wr+b)

)
, (3.1)

where ŵi := 2+wi

gcd(2,wi) − 1 and where now ŵ− is the tuple of the negative entries
among these integers.
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Trajectory structure. We now turn to the global trajectory structure of a qua-
dratic differential q, following [Str84]. We suppose throughout that q has at least
one zero and at least one infinite critical point, i.e. a pole of order ≤ −2 or equiv-
alently that w− ̸= ∅. We do not suppose that q has simple zeros (i.e. we do not
work only with Gaiotto-Moore-Neitzke (GMN) differentials).

A saddle connection is a trajectory (in some arbitrary direction) whose maximal
domain is a finite interval. Both its end points are zeros of q. A saddle trajectory is
a saddle connection in the horizontal direction. A trajectory is closed if its a saddle
trajectory and both its end points coincide. The remaining trajectories are either

(1) separating, i.e., approaching an infinite critical point at precisely one end,
(2) recurrent in at least one of its directions, or
(3) generic, approaching an infinite critical point in both directions.

We now fix the direction to be the horizontal direction unless specified otherwise,
so ’trajectories’ refers to ’horizontal trajectories’. Removing from X the separating
trajectories and saddle trajectories decomposes the surface into connected compo-
nents, which are of the following types.

(1) ring domains or cylinders that are foliated by closed trajectories,
(2) horizontal strips isometric to S = {a < Im(z) < b} with q|S = dz⊗2,
(3) half-planes, isometric to H with q|H = dz⊗2, or
(4) spiral domains, the interior of the closure of a recurrent trajectory.

A ring domain is called degenerate if one of its boundary components is a dou-
ble pole. A saddle trajectory is called borderline if it lies on the boundary of a
degenerate ring domain, half-plane, or horizontal strip.

The quadratic differential q is called saddle-free if is does not have any saddle
trajectories. By [BS15, Lemma 3.1] such a differential does have neither closed
trajectories nor recurrent trajectories. In particular the complement of its saddle
trajectories and separatrices is a union of half planes and horizontal strips. We call
this the horizontal strip decomposition of (X, q).

Given a quadratic differential q on X we define the closed subsurface X+ to be
the closure of the union of all horizontal strips, half-planes and degenerate ring
domains. The closed subsurface X− is defined to be the closure of the union of all
spiral domains and non-degenerate ring domains. The two subsurfaces X± meet
along a collection of saddle connections, all of which are borderlines. See Figure 1
for examples.

If η is a path tracing a saddle connection on X, we let η′ and η′′ be the two lifts
of the path to X̂. We define the lifted class [η̂] ∈ H1(X̂ \ P̂ , Ẑ,Z) to be [η̂] = [η′]
if [η′] + [η′′] = 0 ∈ H1(X̂ \ P̂ , Ẑ,Z) and we define [η̂] = [η′] − [η′′] otherwise.
We declare two saddle connections η1 and η2 to be hat-homologous if for some
choice of orientation the equality [η̂1] = [η̂2] holds in H1(X̂ \ P̂ , Ẑ,Z). We say that
two saddle connections are hat-proportional if [η̂1] and [η̂2] are proportional. The
characterization in [MZ08, Proposition 1] via rigid configurations shows that saddle
connections are hat-proportional if and only if they are hat-homologous. This is
the reason for our definition of [η̂], which differs sometimes by a factor 2 from the
one in [BS15], compare with [Ike17].

3.2. Decorated marked surfaces. The notion of marked surface encodes the raw
combinatorics of a quadratic differential with the limit points of trajectories at the
poles and possible additional auxiliary punctures, but without specifying order and
location of the zeros. Marked points are usually referred to as prongs at the poles



12 ANNA BARBIERI, MARTIN MÖLLER, YU QIU, AND JEONGHOON SO

in flat surface literature. Here we follow [BS15, Section 3] and [KQ20, Section 4] to
relate quadratic differentials and weighted marked surfaces.

Definition 3.1. A marked surface S = (S,M,P) consists of a connected bor-
dered differentiable surface with a fixed orientation, together with a finite set M =⋃b

i=1 Mi of marked point on the boundary ∂S =
⋃b

i=1 ∂i and a finite set P = {pj}p
j=1

of punctures in its interior S◦ = S − ∂S, such that each connected component of
∂S contains at least one marked point.

Up to homeomorphism, S is determined by the following data
• the genus g;
• the number b of boundary components;
• the number p = #P of punctures;
• the negative integer partition w− of −m = −#M into b parts describing the

number of marked points on its boundary, and consisting in w−
i = −#Mi.

The rank of S is defined to be
N = 6g + 3p+ 3b+m− 6. (3.2)

For simplicity, we only consider the P = ∅ case in this paper.
Decorations and weight add to a marked surface the data of the location and

orders of zeros of a differential.

Definition 3.2. A decorated marked surface (abbreviated as DMS) is obtained
from a marked surface S by decorating it with a set ∆ = {zi}r

i=1 of points in the
surface interior S◦. These points are called finite critical points. A weight function
on ∆ is a Z≥−1-valued function

w : ∆ → Z≥−1 .

We write r = |w| = |∆| for the number of finite critical points and ∥w∥ =∑
Z∈∆ w(Z) for their total weight. We say w is compatible with S if

∥w(Z)∥ − (m+ 2b) = 4g − 4 . (3.3)
If w and S is compatible, we will write Sw = (S,∆,w) and call this tuple a

weighted DMS (abbreviated as wDMS).

A weight w is simple if w ≡ 1. We write S∆ to indicate that we work with
a wDMS with simple weight. This is the case studied previously, e.g., in [Qiu16;
Qiu18; QZ20; BQZ21; KQ20], and corresponds to the setting of principal strata of
quadratic differentials discussed in [BS15].
Quadratic differentials on marked surfaces. Fix a quadratic differential q and
a let θ ∈ S1 be a direction. A maximal straight arc (for the metric |q|) in the
direction θ is called trajectory (in the direction θ). Locally near a finite critical
point of order w ≥ −1 there are w + 2 distinguished directions that are limits of a
trajectory in the direction θ. Similarly, at a pole p of order |w| := ordq(p) ≥ 3 there
are |w|−2 distinguished directions that are limits of a trajectory in the direction θ.
These directions are called prongs at the zero or pole.

The real (oriented) blow-up of (X, q) is the differentiable surface Xq, which is
obtained from X by replacing a pole p ∈ P (q) of order at least 3 by a boundary
circle ∂p

∼= S1. Moreover, we mark the points on ∂p that correspond to the distin-
guished tangent directions, so there are ordq(p)−2 marked points on ∂p. This turns
Xq into a marked surface. Adding the set of zeros Z(q) together with their orders
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as weight make Xq into a wDMS, the weighted decorated real blow-up of (X, q).
Fixing moreover a diffeomorphism to a reference surface gives a framing of (X, q).

Definition 3.3. Fix a wDMS Sw. An Sw-framed quadratic differential (X, q, ψ) is
a Riemann surface X with quadratic differential q, equipped with a diffeomorphism
ψ : Sw → Xq, preserving the marked points, decorations and their weights.

Two Sw-framed quadratic differentials (X1, q1, ψ1) and (X2, q2, ψ2) are isomor-
phic, if there exists a biholomorphism f : X1 → X2 such that f∗(q2) = q1 and
furthermore ψ−1

2 ◦ f∗ ◦ψ1 ∈ Diff0(Sw) is isotopic to the identity preserving marked
points, decorations and their weights (setwise). Here f∗ : (X1)q1 → (X2)q2 is the
induced diffeomorphism on real oriented blowups.

In flat surface literature this kind of framing is usually called a (Teichmüller)
marking. To avoid confusion with the (prong) markings used here, we stick to the
terminology common to e.g. [BS15] and [KQ20], but we use “Teichmüller” to refer
to this kind of marking without specifying the underlying wDMS.

3.3. Arc systems. We consider a decorated marked surfaces (wDMS) Sw with
decorations ∆, weight w : ∆ → Z≥−1, and marked points M. We let S◦

w := Sw\∂Sw
and introduce the following additional notation.

• An open arc is an (isotopy class of a) curve γ : I → Sw such that its interior
is in S◦

w \ ∆ and its endpoints are in the set of marked points M.
• A closed arc is a curve η : I → Sw such that its interior is in S◦

w \ ∆ and
its endpoints are in the set of decoration points ∆. (To memorize: The
interval that maps to S◦

w is closed.)
For the simply decorated case, i.e. for w ≡ 1, we denote by CA(S∆) the set of

closed arcs on S∆ = Sw≡1 that have no self-intersections, not even at the endpoints
in ∆. Similarly, let OA(S∆) be the set of open arcs of S∆. Throughout this paper
γ’s denote open arcs and η’s denote closed arcs, unless stated otherwise.

An (open) arc system A = {γi} is a collection of open arcs on Sw such that
there is no (self-)intersection between any of them in S◦

w. Open arc systems first
appeared for triangulations of simply weighted marked surfaces (i.e., w ≡ 1). A
triangulation T of S∆ is a maximal arc system of open arcs, which in fact divide
S∆ into triangles. Two triangulations are related by a flip if they only differ by one
arc. Locally, the two arcs involved in a flip are the two diagonals of a square.

We now move on to the weighted version of this notion. The motivation for the
notion is provided in Section 4.3, compare also with [Kra08].

Definition 3.4. A w-mixed-angulation of Sw is a collection of open arcs that
divides Sw into once-decorated polygons, such that each decoration z with weight
w = w(z) is in a (w + 2)-gon. We denote this (w + 2)-gon by A(z) and call it an
A-polygon.

The forward flip on w-mixed-angulation A, with respect to an arc γ ∈ A, is an
operation that moves the endpoints of γ anti-clockwise along two adjacent sides of
the A-polygons containing γ, cf. Figure 1.

Although the definition allows for 1-gon and 2-gons, we will consider decorations
with weight at least one only (i.e. k-gons with k ≥ 3) in accordance with the
standing assumption from the introduction and the one in Section 5.1 below.

When Sw = S∆ has simple weight w ≡ 1, the w-mixed-angulations are (dec-
orated) triangulations of S∆. We recall here that a quiver QT (without loops or
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Figure 1. The figure shows several local horizontal strip decom-
positions on Sw with fixed weighted decorations, depending on a
quadratic differential q. Here the black vertices are marked points
on ∂Sw, the red vertices are weighted zeros of q, the green arcs are
geodesics, the black arcs are separating trajectories. The blue lines
define w-mixed-angulations of Sw. The red solid arcs are simple
saddle connections, (except for the thick one in the top small oc-
tagon, which is a saddle trajectory) and represent the duel graphs
of the w-mixed-angulations. The picture in the middle represents
crossing a wall of second kind, resulting in a forward flip.

•

•

γ1

••
γ2

•

•

γ3
γ1

γ2

γ3

Figure 2. Local 3-cycle associated to a triangle of T

2-cycles) with a potential WT can be associated to a triangulation T of a simply
decorated marked surface as follows:

• the vertices of QT correspond to the open arcs in T;
• the arrows of QT correspond to (anticlockwise) oriented intersection be-

tween open arcs in TT, so that there is a 3-cycle in QT locally in each
triangle as shown in Figure 2.

• the potential WT is the sum of all 3-cycles that locally coming from a
triangle of T as above.

The corresponding Ginzburg algebra Γ(QT,WT) will usually be denoted by ΓT.
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4. Moduli spaces of quadratic differentials

The main goal is the proof that “walls have ends” in Proposition 4.2, which is used
in Corollary 4.3 to homotope paths into the locus of so-called tame differentials,
inside the moduli space of quadratic differentials. The proof of our main result,
Theorem 7.2, relies on this corollary. These two results are generalization of results
in [BS15] where those statements are proven for differentials with simple zeros only.
Their proof relies crucially on this hypothesis in [BS15, Lemma 5.1]. Our proof
avoids most of the discussion of configuration of hat-homologous saddle connections
and uses more elaborate ways to deform half-translation surfaces instead. We start
by recalling some moduli spaces of quadratic differentials.

4.1. Space of quadratic differentials. Following flat surface literature we let
Quadg,r+b(w,w−) be the moduli space of quadratic differentials (X, z, q) on a
pointed curve (X, z) where z = (z1, . . . , zr+b) such that q has signature (w,w−).
We emphasize that in this space the critical points are labeled. The unlabeled
version is denoted by Quadg(w,w−), i.e., without the subscript for the number of
labeled points. Since every quadratic differential is compatible with a (unique,
up to diffeomorphism) wDMS Sw, which encodes both the zeros (via weight)
and the polar part of the signature (via the marking), we also use the notation
Quad(Sw) = Quadg(w,w−). Next we discuss several types of framed moduli
spaces. Note that Quad(Sw) is in general an orbifold and non-connected. The
(finite) number of components is classified in some cases in [CG22].

Framings by periods. Spaces of quadratic differentials are locally modeled on
the anti-invariant eigenspace of the relative cohomology of the canonical cover, the
so-called hat-cohomology. We fix a quadratic differential q of signature (w,w−)
on a surface X and recall that Ẑ and P̂ are preimages of zeroes and poles on the
double cover. Then the hat-homology group with integral coefficients is defined as

Γ := Ĥ1(q) = H1(X̂ \ P̂ , Ẑ,C)− , (4.1)

where the minus sign denotes the antiinvariant part of the homology with respect
to the involution τ whose quotient map is the canonical double cover π : X̂ → X.

Period coordinates, i.e. integrating the one-form on the double cover against a
basis of hat-homology, give a local isomorphism

Per : U(q) → H1(X̂ \ P̂ , Ẑ,Z)− = Hom(Γ,C) (4.2)

on a neighborhood U(q) of q in the moduli space of quadratic differentials. Note
that if all the entries of w are odd, the hat-homology group is unchanged if we
do not consider homology relative to the zeros. (’The principal strata of quadratic
differentials have no REL’.)

To globalize the period map we fix a trivialization of the hat-homology group.
That is, we fix a reference differential (X0, q0) and define

QuadΓ
g (w,w−) = {(X, q, ρ) ∈ Quadg(w,w−), ρ : Ĥ1(q0)

∼=−→ Ĥ1(q)} ,

the space of period-framed quadratic differentials of signature (w,w−).
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(Teichmüller) framed quadratic differentials. For fixed discrete data (g, b,w−,w)
we denote by FQuad(Sw) the moduli space of Sw-framed quadratic differentials.
This moduli space is a manifold, but non-connected. We denote by FQuad◦(Sw)1

a connected component, in applications typically singled out to contain a given
Sw-framed differential.

These spaces are strata of a vector bundle. The top dimensional stratum of this
vector bundle is FQuad(S∆) with simple weighted decorations.

Mapping class group action. In our context two mapping class groups are im-
portant. In general, the (unpunctured) mapping class group of a marked surface S
is the group MCG(S) of isotopy classes of diffeomorphisms of S relative to the
boundary and marked points. Similarly we define the full mapping class group
MCG(Sw) = MCG(w,w−) as diffeomorphisms with the additional condition to
respect finite critical points and their weight (set-wise).

The mapping class group acts on the set of all Teichmüller framings by precom-
position. Obviously Quad(Sw) = FQuad(Sw)/MCG(Sw) as orbifolds.

4.2. Walls have ends and homotopies to tame paths. In our case, just as
for the GMN-differentials treated in [BS15, Section 5], the space Quad(Sw) has a
stratification by the number of horizontal saddle connections. The difference is that
the number of horizontal trajectories emerging from a zero is not three, but wi + 2
if the zero is of order wi. This means that the number sq of saddle trajectories, the
rq recurrent trajectories and the number tq of separating trajectories satisfy

k := rq + 2sq + tq =
r1∑

i=1
(wi + 2) . (4.3)

Stratification. We define

Bp := Bp(Sw) = {q ∈ Quad(Sw) : rq + 2sq ≤ p} (4.4)

and observe that B0 = B1 is the set of saddle-free differentials by the preceding
observation. There is an increasing chain of subspaces

B0 = B1 ⊂ B2 ⊂ · · · ⊂ Bk = Quad(Sw) . (4.5)

This follows from the lower semicontinuity of the function tq on X. The space B2
is called the space of tame differentials. We define the stratification

Fp := Fp(Sw) = Bp \Bp−1. (4.6)

We observe that F0 is dense, F1 is empty, and F2 consists of differentials with
exactly one saddle trajectory, since the boundary of a spiral domain has a saddle
trajectory ([BS15, Lemma 3.1]). In fact, we have the more precise statement from
[BS15, Lemma 4.11] and [Aul18, Theorem 1.4].

Lemma 4.1. B0(Sw) is dense in FQuad(Sw). In fact, FQuad(Sw) = C ·B0(Sw).

We will see that Bp is not always locally finite, and even if it is, the relation
between the integer p and the codimension of Bp is complicated and depends on sq

and the geometry of the spiral domains.

1The ◦ should remind of the symbol for the connected component of the identity in a topological
group.
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We can now state and prove our goal, the generalization of [BS15, Proposi-
tion 5.8] to zeros of arbitrary order. It follows as a corollary of the following
Proposition 4.2 which is proven in the sequel.

Proposition 4.2. Suppose that p > 2 and suppose that the negative part of the
signature is not w− = (−2). Then each component of the stratum Fp contains a
point q and a neighborhood U ⊂ Quadg(w,w−) of q such that U ∩Bp is contained
in the locus Per(α) ∈ R for some α ∈ Γ, and that this containment is strict in the
more precise sense that U ∩Bp−1 is connected.

The locus Per(α) ∈ R appearing in the first property is the wall (i.e., a real
codimension one locus) the subsection title alludes to, and the second statement
guarantees the end of this wall. We will apply this proposition in the following
form:

Corollary 4.3 ([BS15, Proposition 5.8]). Suppose that the negative part of the
signature is not w− = (−2). Then any path in Quadg(w,w−) can be homotoped
relative to its end points to a path in B2.

Sketch of proof. Suppose the path lies in Bp. We inductively reduce p by first
perturbing it so that it intersects Fp in only finitely many points. For each of them,
drag the path along the nearby Bp−1 to an end of the wall given by Proposition 4.2,
go around and return to the other side of the intersection point with the wall. □

Lemma 4.4. Let R be a ring domain in a surface (X, q) that belongs to a stratum
Fp ⊂ Quadg(w,w−) and let Xc = X \ R be the complement of the closed ring
domain. Then there exists a path α : [0, 1] → Fp such that α(0) = (X, q), such
that Xc is unchanged along α and such that α(1) = Xc is the closure of the ring
domain complement.

Proof. Let I be the intersection X
c ∩ R of the ring domain with the rest of the

surface. Let β be a saddle connection crossing the ring domain once. Consider
horizontal twists of the cylinder R, i.e. the action of the upper triangular group
on R while not changing Xc. This changes the period of β by some real number
while keeping the lengths of all saddle trajectories fixed. We choose this twist so
that there is no vertical saddle connection emanating from a zero on ∂R that stays
within R. (The set of twists where such a vertical saddle connection does exist is
countable.) This is the first part of the path α.

Now we shrink the height of the cylinder, i.e., the imaginary part of the period
of β to zero. We claim that we stay in Quadg(w,w−) during this process. This
is proven in detail in [AW21, Section 4.3] and sketched in [MW17, Section 3.1].
The idea is to draw the vertical separatricies in the cylinder until they leave the
cylinder. This has to happen, since otherwise we’d have a vertical spiral domain,
the boundary of which has vertical saddle connections, but we excluded these.
These vertical lines divide the cylinder into rectangles. In the limiting surface at
Im(β) = 0 the top and bottom of each of these rectangles (considered inside the
surface Xc slit open along I) are glued together.

To see that this path stays in Fp note that all union of the rays emanating into I
and on the boundary of R are saddle trajectories for each surface along the path p
just described, including its end points. Since the set of this rays is constant along p
and since Xc is unchanged along the path, the claim follows. □
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We can also get rid of spiral domains by small perturbation in a fixed stratum.
Recall from [Str84, Section 11.2] that the boundary of a spiral domain consists of
saddle trajectories.

Lemma 4.5. Let S be a spiral domain in a surface (X, q) that belongs to a stratum
Fp ⊂ Quadg(w,w−) and let Xc = X \ S be the complement of the closure of the
spiral domain. Then there exists a path α : [0, 1] → Fp such that α(0) = (X, q),
such that Xc is unchanged along α and such that α(1)\Xc contains a ring domain.

Proof. Since S is a spiral domain there is at least one saddle connection β starting
in the interior of the spiral domain S with Per(β) ̸∈ R, say oriented to have positive
imaginary part. To show this we can e.g. use the decomposition of the spiral domain
into rectangles from [Str84, Section 11.3]: if there was no zero in the interior, this
decomposition would exhibit the spiral domain actually as a ring domain. An
arbitrarily small purely imaginary deformation of β will create a saddle trajectory
that intersects Xc at most at its end points. Since we may make the deformation
smaller than the shortest saddle connections, no two points have collided and we
stay in the space Quadg(w,w−). If after this deformation the complement of Xc

does not yet contain a ring domain it must contain spiral domains and we can
repeat the procedure, creating a new saddle trajectory at each step. The process
has to terminate once p = 2sq and then rq = 0, i.e. the complement of Xc must
contain a ring domain.

We argue that we stay in Fp along this process. This follows since Xc is un-
changed in the whole process, and since all horizontal trajectories emanating from
a zero into the complement of Xc contribute to rq + 2sq at any stage of the pro-
cess. □

Proof of Proposition 4.2. The beginning of the following proof follows [BS15,
Proposition 5.8], replacing an argument using generic (in the sense of loc. cit.)
differentials by an alternative argument. The second part is based on our version
of the surface perturbations.

First recall the following Lemma due to [BS15], that provides the end of the wall,
if the ηi are independent in hat-homology so that their periods can be modified
independently.

Lemma 4.6 ([BS15, Proposition 5.3]). Suppose that q0 has a half-plane or a hori-
zontal strip bounded by exactly s saddle trajectories γi, numbered consecutively. Let
α =

∑s
i=1 γi. Then there is an open neighborhood U of q0 such that

if q ∈ U ∩ Fp then Per(α) ∈ R .
Moreover, q ∈ U ∩ Fp implies that

Im
( k∑

i=1
Per(γi)

)
≤ 0 (4.7)

for all 0 < k < s, if the surfaces is oriented such that a half-plane or a horizontal
strip is above the real axis.

Proof of Proposition 4.2. Consider any point q ∈ Fp with p > 2. In this situation
there is a borderline saddle connection. Hence for a sufficiently small neighbor-
hood U we have

U ∩ Fp ⊆ {q : Per(α) ∈ R} (4.8)
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for some α ∈ Γ by Lemma 4.6 and the analogous [BS15, Lemma 5.4] for the bound-
ary of a degenerate ring-domain. A neighborhood U satisfying the first property is
thus available for every q.

Suppose that q has only one saddle trajectory. Then, since p > 2, there must
exist a spiral domain and X− must be non-empty. The intersection X+ ∩ X−

thus consists of one saddle trajectory only. This saddle trajectory has to be the
boundary of a degenerate ring domain, and since any component of X+ contains
an infinite critical point and a saddle trajectory on its boundary, there is only one
double pole, contradicting the hypothesis.

Consequently, we may assume that there are at least two saddle trajectories.
More precisely, we may assume that α is the class of a union of saddle trajectories on
the boundary of one component of X+ and that either there is another component
of X+ with boundary class α′, or that s ≥ 2 in Lemma 4.6.

If the inclusion in (4.8) is strict, we are done. This happens if s ≥ 2 by (4.7), if
moreover not all γi in this lemma are hat-proportional and so two of them can be
moved independently. This also happens if α′ and α are not hat-proportional (by
tilting α′), or equivalently if they are hat-homologous.

We thus need to analyze the situation that q has two or more borderline saddle
trajectories γ1, γ2, . . . and all the borderline saddle trajectories are hat-proportional.
If a single γi or a union of these separates off a subsurface X0 contained in X−,
i.e. without poles, then we are done by the following subsurface argument: As long
as the subsurface contains spiral domains we apply Lemma 4.4, creating a new
cylinder each time. Since the number of horizontal cylinders is bounded by the
topology, this procedure terminates. Now we apply successively Lemma 4.5 to each
of these cylinders. Note that a saddle connection crossing a cylinder cannot be hat-
homologous to γi. Consequently we arrive after the ring domain shrinking process
at a point where we conclude by Lemma 4.6.

In general there are three cases depending on the position of the first two, say,
of these trajectories γi.

Case 1: Suppose both of them are closed. If there is a path starting and ending
at a pole crossing one γi but not the other, then the two are not hat-proportional,
since the Lefschetz pairing (see [Spa66, Theorem 6.2.17])

H1(X̂ \ P̂ , Ẑ,Z) ×H1(X̂ \ Ẑ, P̂ ,Z) → Z

is non-degenerate. The only case not yet covered by the subsurface argument is
that γ1 and γ2 jointly cut X into two components, one of which has no higher order
poles, i.e. belongs to X−. We conclude again by the subsurface argument applied
to the component without higher order poles.

Case 2: Suppose none of them is closed. If γ1 ∪γ2 does not separate the surface,
take a path joining a pole to itself, crossing γ1 once, but not γ2. Take one of the
lifts of this path to the canonical cover and use that Lefschetz pairing to obtain a
contradiction to [γ̂1] = [γ̂2] in hat-homology. If there are poles on both sides of this
loop, the same Lefschetz pairing argument applies. It remains to deal with the case
that γ splits off a subsurface in X−, which is being dealt with by the subsurface
argument.

Case 3: Suppose that precisely one of them, say γ1, is closed. As in Case 1, if
γ1 separates off a surface without poles we conclude by the subsurface argument.
Otherwise there is a path starting and ending at a pole, crossing γ1 once and not
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crossing γ2. The lift of this path to X̂ and the Lefschetz pairing invalidates that γ1
and γ2 are hat-proportional in H1(X̂ \ P̂ ,Z). □

The locus B2 is not locally connected. We show that in general the homotopy
to a tame path can not be performed locally. Consider an elliptic curve whose
horizontal leaves are dense. Make a slit and glue the two sides of the slit (one after
rotation by π) to adjacent saddle trajectories on the top of a half-plane. This results
in a surface in Quad1(2, 1,−3), consisting of a spiral domain and the half plane.
The two slit segments γ1, γ2 are hat-homologous. This type of surfaces belongs
to F6, and B6 has locally R-codimension one, cut out by Per(γ1) ∈ R.

4.3. Mixed-angulations from quadratic differentials. This section gives the
geometric justification for introducing w-mixed angulations by studying quadratic
differentials with higher order poles, and shows that adjacency of chambers of
saddle-free quadratic differentials is encoded by flips of mixed-angulations.

Definition 4.7. Let (X, q, ψ : Sw → Xq) be an Sw-framed quadratic differential
which is saddle-free. Then there is a w-mixed-angulation Aq on Sw induced from q
(or more precisely from (q, ψ)) where the open arcs are inherited from (isotopy
classes of) generic trajectories.

The dual graph A∗
q also has a geometric interpretation. Its arcs represent the

saddle connections crossing once each horizontal strip. It can be enhanced with
a ribbon-graph structure and as such carries the information about w. We refer
to A∗

q as the w-ribbon graph induced by q. The trajectory structure on Sw induced
by a quadratic differential, hence the local picture of Aq and its dual are illustrated
together with the effect of a forward flip in Figure 1.

Definition 4.7 implies that each component of the locus B0 ⊂ FQuad(w,w−)
of saddle-free differentials gives the same mixed-angulation. We next highlight the
role of the locus of tame differentials:

Proposition 4.8. Two components of B0 can be connected by an arc in B2 with
only one point non-saddle-free if and only if the corresponding w-mixed-angulations
are related by a forward flip.

Proof. Suppose that the two components of B0 are connected by such an arc, which
we may homotope to be a small rotation of a saddle connection near the real axis
while fixing the geometry of the rest of the surface. The question is thus local, in
the neighborhood of this saddle connection. Using a metrically correct drawing,
as in the middle of Figure 3 one checks that rotating in clockwise (anticlockwise)
direction has the effect of passing from the leftmost to the rightmost picture in terms
of horizontal strip decompositions. Picking a generic trajectory from the strips, we
observe that this changes the mixed-angulation by a forward flip (backward flip).

Conversely, if two mixed-angulations differ by a forward flip we take differen-
tials locally as indicated in the metric picture and rotate the saddle connection to
produce a path as required. □

We will recast this statement in terms of exchange graphs and generalize it to
collapsed surfaces in Section 5.
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Figure 3. Horizontal foliation before and after rotating

5. Subsurface collapsing

In this section we formalize in the notion of collapse of a subsurface. In the special
case of collisions, just a collection of simply decorated points (but no topology) are
pinched. This will be the simplest ways to realize the generalized Bridgeland-Smith
correspondence, but also the general case will play a role in sequels.

We summarize several notions of exchange graphs, related to tilting, mutations
and flips, and recall the relations between them, thereby introducing spherical twist
groups and braid twist groups. In particular we recall an isomorphism between ex-
change graphs for pvd(Γ) and for decorated marked surfaces with simple weights.
This isomorphism will subsequently be generalized to non-simple weights. As prepa-
ration on the topological side we analyze refinements of mixed-angulations. Finally,
we show auxiliary connectivity results for the graph of refinements to be used in
the next section.

5.1. Collapse of subsurfaces. Let Σ be a subsurface of a weighted DMS Sw0 ,
possibly disconnected with connected components Σi. We denote by cij the (simple
closed) curves such that the union ∪jcij forms the intersection of the boundary of Σi

with the boundary of Sw0 \ Σ. These will be the boundary components of Σ we
will be most interested in. An assignment of integers κij to each curve cij is called
an enhancement (terminology in accordance with [BCGGM2]) if

−
∑

j

(κij + 2) +
∑

k∈Σi

w0
k = 4g(Σi) − 4 (5.1)

for each i, where we write k ∈ Σi, if the k-th decoration point belongs to Σi.

Definition 5.1. A collapse datum for Sw0 is a subsurface Σ and an enhancement
{κij} with κij ≥ 1 for all (i, j). The collapse of Σ in Sw0 is the weighted DMS Sw
obtained by filling each boundary cij in Sw0 \ Σ by a disc with one decorated point
that carries the weight wij = κij − 2.

The condition (5.1) ensures that the weights of Sw indeed satisfy the condition
of a wDMS. The case of enhancements κ = 0 ruled out here is special and requires
a different treatment. For simplicity we consider here only collapse data
with all κij ≥ 3. (The remaining cases involve mixed angulations with self-folded
edges or 2-gons.) A special case of a collapse is a collision where the subsurface is
topologically a disc. In case of a collision of zeros, the positivity condition for the
enhancements in the strong sense, i.e., κij ≥ 3, is automatically satisfied.

Consider the special case that Sw0 = S∆ has simple weights and its subsurface Σ
also has simple weights. We can consider Σ as a DMS with κij marked points on
each boundary component. We denote by Sw the resulting wDMS and thus we can
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put the three surfaces into a symbolic short exact sequence

Σ S∆ Sw . (5.2)

C11

C12

•

•

• •

•••

• •

•◦•◦
•◦

•◦
•◦ •◦

•◦

•◦
•◦ •◦ •◦ •◦

•◦•◦ •◦
•◦ •◦ •◦ •◦

C11

C12

•
•

•

•
•
•

•

•

•
•

•

•
•

•

•

•
3 2

1

⇝

Σ S∆ Sw

Figure 4. A collapse with κ11 = 5, κ12 = 4.

We formalize the structure induced by a quadratic differential on Sw, generalizing
the notion induced in Definition 3.4

Definition 5.2. A partial triangulation A of a collapsed surface Sw is a collection
of open arcs that triangulates the subsurface of S∆ whose complement is homeo-
morphic to Σ, and such that each boundary component cij of Σ is homotopic in
Sw \ A to a (κij = wij + 2)-gon, possibly with ends points identified.

The forward flip of a partial triangulation A, with respect to an arc γ ∈ A, is
an operation that moves the endpoints of γ anti-clockwise (i.e. by a left fractional
twist) along two the adjacent sides of the smallest A-gon containing γ. The inverse
of a forward flip is a backward flip, which moves the endpoints clockwise.

Refinements. Let T = {γj}j∈J be a triangulation of S∆ and A be a partial tri-
angulation of the collapsed surface Sw. We say that T is a refinement of A if
the preimage of A under S∆ ⇝ Sw is isotopic to a subset of T. (Note that these
preimages are well-defined even though the collapse is not an injective map if a
component of Σ has several boundary components.) We let I = I(T,A) ⊂ J be the
index set of the complementary arcs, the arcs in T \ A.

The same remark justifies:

Definition 5.3. Let (X, q, ψ : Sw → Xq) be an Sw-framed quadratic differen-
tial which is saddle-free. Then there is a partial triangulation Aq on Sw induced
from (q, ψ), the preimage of the mixed-angulation given by Definition 4.7 under the
collapse S∆ ⇝ Sw.

Corollary 5.4. Two components of B0 ⊂ FQuad(Sw) can be connected by an
arc in B2 with only one point non-saddle-free if and only if the corresponding partial
triangulations are related by a forward flip.

Proof. Take the preimage of the construction in Proposition 4.8 under the collapse
map. □
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5.2. Exchange graphs and spherical twists. The mutation (of quivers), tilting
(of categories) and flipping (of edges) operations give rise to a number of exchange
graphs that we summarize here.

• The unoriented exchange graph EG(S) has vertices corresponding to trian-
gulations of S and edges corresponding to flips.

• Given a mutation equivalence class Q of a quiver, the unoriented cluster
exchange graph CEG(Q) is the oriented graph whose vertices are cluster
tilting objects in C(Q) and whose edges are mutations between them (see
[Kel11a] for more details).

For the second definition note that mutation equivalences above identify all the
associated cluster categories (without nontrivial autoequivalences as monodromy).
Hence the symbol C(Q) is well-defined. In general underlined symbols correspond
to unoriented (exchange) graphs. We need the oriented version of these graphs:

• The exchange graph EG(S) of (an undecorated) surface S is obtained from
EG(S) by replacing each unoriented edge with a 2-cycle.

• Similarly, the oriented version CEG(Q) is obtained from CEG(Q) by re-
placing each unoriented edge with a 2-cycle.

• The exchange graph of the wDMS Sw is the directed graph EG(Sw) whose
vertices are partial triangulations and whose oriented edges are forward
flips between them.

• The (total) exchange graph EG(D) of a triangulated category D is the ori-
ented graph whose vertices are all hearts in D and whose directed edges
correspond to simple forward tiltings between them (Section 2.1). We ab-
breviate EG(Γ) := EG(pvd(Γ)).

We usually focus attention on a connected component EG◦(Γ) of the exchange
graph EG(pvd(Γ)), called the principal component, consisting of those hearts that
are reachable by repeated simple tilting from the canonical heart H(Γ) in the quiver
case for Γ = Γ(Q,W ). Similarly, we write EG◦(Sw) for a connected component of
the surface exchange graph. We also write EG◦(Sw) to indicate that the wDMS is
obtained by a subsurface collapse.

Recall that a graph is called (m1,m2)-regular, if each vertex has m1 outgoing
edges and m2 incoming edges. By definition the graphs EG(Sw) and EG(D) are
(m,m)-regular with m being the number of arcs of the mixed-angulation or of the
partial triangulation or the rank of K(D) respectively.

We start the comparison of these graphs in the coarse (undecorated) cases. If
two triangulations are related by a flip, then both the corresponding quivers with
potential are related by a mutation, in the sense of [FST08; DWZ08].

Theorem 5.5 ([FST08]). There is an isomorphism EG(S) ∼= CEG(S) of the un-
oriented (triangulation) exchange graphs and cluster exchange graphs. This iso-
morphism upgrades to an isomorphism EG(S) ∼= CEG(S).

Spherical twist groups. For further graph comparison we let ST(Γ) ≤ Aut(pvd(Γ))
be the spherical twist group of pvd(Γ), that is the subgroup generated by the set of
twists {ΦS | S ∈ Sim H(Γ)}, where the twist functor ΦS is defined by

ΦS(X) = Cone (S ⊗ Hom•(S,X) → X) (5.3)

Note that ST(Γ) is in fact generated by spherical twists along all reachable spherical
objects, that is all simples in some H ∈ EG◦ pvd(Γ), see [Qiu16, § 2.2].
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For a heart H ∈ EG◦(pvd(Γ)) we denote by EG◦[H,H[1]] the full subgraph whose
vertices are intermediate hearts H ≤ H′ ≤ H[1]. The following result is [KQ20,
Theorem 2.10], based on the unpublished result of Keller-Nicolás announced in
[Kel11a, Theoreom 5.6].

Theorem 5.6. Let Γ be the Ginzburg dg algebra of some non-degenerate quiver
with potential (Q,W ). There is a covering of oriented graphs

EG◦(pvd(Γ))/ST(Γ) ∼= CEG(Γ). (5.4)
The fundamental domain of EG◦(pvd(Γ))/ ST(Γ) is EG◦[H,H[1]] for any heart
H ∈ EG◦(pvd(Γ)), in the sense that there is an isomorphism between unoriented
graph

EG◦[H,H[1]] ∼= CEG(Γ),
where EG◦ denotes the underlying unoriented graph of EG◦.

5.3. Braid groups. Two types of braid groups provide the relation between the
various exchange graphs appearing here.
Surface braid groups. One of the standard definitions of the surface braid group
SBr(S∆) of a DMS (with non-empty boundary) is as the fundamental group of the
configuration space conf∆(S) of |∆| (unordered) points in S. It is a well-known
theorem (see e.g. [GJP15, Section 2.4, equation (5)]) that the surface braid group
is a subgroup of mapping class groups

SBr(S∆) := π1 conf∆(S) = ker
(

MCG(S∆) F∗−−→ MCG(S)
)
, (5.5)

where F∗ is induced by the forgetful map F : S∆ → S, forgetting the decorations.
There is a natural isomorphism between graphs

EG(S∆)/SBr(S∆) = EG(S), (5.6)
induced by the induced map F : EG(S∆) → EG(S).

While SBr(S∆) is the traditional generalization of the classical braid group, we
need a (normal) subgroup of it, since we would like to restrict EG(S∆) in (5.6) to
a connected component.
Braid twist groups. For any closed arc η ∈ CA(S∆), there is a (positive) braid
twist Bη ∈ MCG(S∆) along η, as shown in Figure 5. The braid twist group BT(S∆)
of the decorated marked surface S∆ is the subgroup of MCG(S∆) generated by the
braid twists Bη for all η ∈ CA(S∆).

η

+

•◦ •◦
η

•◦ •◦

Figure 5. The braid twist Bη

Let T be a triangulation of the decorated surface S∆ consisting of open arcs. The
dual graph T∗ of T is then a collection of closed arcs η. By [Qiu16, Lemma 4.2],
{Bη | η ∈ T∗} is a set of generators of BT(S∆).
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For later use, we give a characterization of BT(S∆). By (5.5), any ξ ∈ SBr(S∆)
corresponds to |∆| paths pi on S∆. Their union

∐
pi forms a collection of cycles in

S. The product of these cycles gives a well-defined element in H1(S) (more details
are given in the forthcoming paper [Qiu24]) and we obtain a map, called topological
Abel-Jacobi map AJ = AJS∆ : SBr(S∆) → H1(S).

Lemma 5.7. The braid twist group BT(S∆) is precisely the kernel of the map AJ.

Proof. By [QZ20, Proposition 2.7, in particular Figure 4], the group SBr(S∆) ad-
mits a set of generators σi for 1 ≤ i ≤ |∆| − 1, and δr for 1 ≤ r ≤ 2g + b− 1. Here
the σi are are braid twists along a collection of arcs connecting the marked points
(within a topological discs). The δr are point-pushing diffeomorphisms around
simple closed curves based at the first marked point, namely the 2g curves of a
canonical dissection and b−1 curves around the boundary components. We denote
by H the subgroup of SBr(S∆) generated by δr, which is isomorphic to π1(S, Z1).
In particular H is a free group and H/[H,H] ∼= H1(S). By definition, BT(S∆) is
a normal subgroup of SBr(S∆) and contained in ker AJ. Thus we express the map
AJ as

SBr(S∆) = BT(S∆) ·H → H/[H,H],
sending the generators of BT(S∆) to the neutral element and the elements in H
to their classes modulo [H,H]. This implies that BT(S∆) ∩H ≤ [H,H]. A direct
calculation shows that [δs, δr] is in BT(S∆) for any 1 ≤ s < r ≤ 2g+ b− 1. In fact,
if we change generators for convenience as in [QZ20, Proposition 3.1, in particular
Figure 7] and define (setting ε0 = 1)

εr =
{
δrεr−1 if r ̸∈ 2N≤g

δrεr−2 if r ∈ 2N≤g,
i.e. δr =

{
εrε

−1
r−1 if r ̸∈ 2N≤g

εrε
−1
r−2 if r ∈ 2N≤g,

then such a commutator equals (using τj = ϵjσ1ϵ
−1
j , as drawn in [QZ20, Figure 8])

[ϵs, ϵr] =
{

(τsb)−1a(τraτs)−1abτrb if s+ 1 ∈ 2N≤g,
(bbτsb)−1aτra

−1τsabτrb otherwise,

where a = σ2σ1σ
−1
2 and b = σ2. Here the cases depend on the relative position

of τs and τr at Z2. (More precisely, if s < r the first case occurs precisely if τr

is before τs in the counterclockwise order of a neighborhood of Z2 slit along the
arc σ1.) This implies that [H,H] ≤ BT(S∆) and hence that BT(S∆) ∩H = [H,H]
or equivalently BT(S∆) = ker AJ, as claimed. □

We can now summarize the whole discussion in the following two theorems. The
first restricts (5.6) to a connected component.

Theorem 5.8. There is an isomorphism EG◦(S∆)/BT(S∆) = EG(S) between the
exchange graph of the undecorated surface and the braid twist orbits of the exchange
graph of the decorated surface.

Proof. This is the content of [Qiu16, Remark 3.10]. In fact, Lemma 3.9 in loc. cit.
shows that there is a well-defined surjective map EG◦(S∆)/BT(S∆) → EG(S). To
show injectivity it suffices to know that the directed graph of intermediate hearts
is a fundamental domain for the BT(S∆)-action. The Lemma 3.8 in loc. cit. shows
that composition of two forward flips is a braid twist and completes the proof. For
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the claim on fundamental domains we apply [KQ15, Proposition 8.3]. (We can’t
apply Theorem 5.6 since the current theorem is used in its proof.) □

The twist groups in the preceding theorems can be identified and the correspond-
ing isomorphism can be lifted.
Theorem 5.9. [Qiu16; Qiu18] There is an isomorphism ST(ΓT) ∼= BT(T) between
the twist groups, sending the standard generators to the standard generators. Thus
the isomorphism (between oriented graphs) in Theorem 5.5 lifts to an isomorphism

EG◦ pvd(ΓT) ∼= EG◦(S∆) . (5.7)
As a consequence, we have EG◦ pvd(ΓT)/ST(S∆) ∼= EG(S).

5.4. Principal parts of exchange graphs. In order to use the preceding results
on EG(S∆) to explore the graph EG(Sw) we need to relate partial triangulations
and triangulations.
Principal parts. Let us fix an initial triangulation T0 of S∆ and let EG◦(S∆)
be the principal connected component of EG(S∆) containing T0. We define the
principal part EG•(Sw) of EG(Sw) to be the full subgraph of EG(Sw) consisting of
the partial triangulations which admit a refinement that belongs to the component
EG◦(S∆). Note that

• we do not claim that EG•(Sw) is connected. Moreover,
• a priori it is not even clear if EG•(Sw) consists of connected components.

That is, it is not a priori clear that vertices in EG•(Sw) that are connected
through EG(Sw) are in fact connected through EG•(Sw).

Connectedness of refinements. Next, we show that when restricted to principal
part, certain connectedness property holds.
Proposition 5.10. Let A be a partial triangulation in EG•(Sw). The full subgraph
of the exchange graph EG◦(S∆) consisting of refinements of A is connected.
Proof. Without loss of generality we only need to consider the case when Σ has one
connected component. Take any two refinements T1 and T2 of A in EG◦(S∆). Let
T1, T2 be their images in EG(S) under the forgetful map F : S∆ → S. By [Hat91],
there is a flip sequence connecting the triangulation T2 and T1 in the complement
of F (A). Such a sequence lifts to a flip sequence of refinements of A from T2 to
some triangulation T′

1 with the property that F (T′
1) = T1 = F (T1). Then T1 and

T′
1 differ by an element b of BT(S∆) by Theorem 5.8 since these triangulations are

both in the principal component EG◦(S∆). Moreover, b preserves S∆ \ Σ pointwise
as T1 and T′

1 are both refinements of A. By Lemma 5.11, we know that b is actually
in BT(Σ). By Theorem 5.8 again, the two triangulations of Σ induced by T1 and
T′

1 are connected by a flip sequence that lifts to a flip sequence from T1 to T′
1 in

the refinements of A. Composing the two flip sequences implies the claim. □

Lemma 5.11. If an element b in BT(S∆) preserves S∆ \ Σ pointwise, then b is
actually in BT(Σ).
Proof. Since the element b preserves S∆ \ Σ pointwise, it belongs to SBr(Σ). We
conclude that

b ∈ BT(S∆) ∩ SBr(Σ) = ker AJS∆ |SBr(Σ) = ker AJΣ = BT(Σ)
by Lemma 5.7. □
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Remark 5.12. In the case of a collision, i.e., when Σ is a disk (or the disjoint
union of many disks), the exchange graph EG(Σ) is already connected. Then the
lemma above holds automatically.

We end this section with a proposition showing that there exists a refinement of
a flip of a partial triangulation in an appropriate sense.
Proposition 5.13. Let A be a partial triangulation in EG•(Sw). Any forward flip
A γ−→ A♯

γ in EG(Sw) can be refined to a forward flip T γ−→ T♯
γ in EG◦(S∆). That

is, A can be refined to a triangulation T such that the γ-forward flip of T composed
with forgetting the complementary arcs is the same as the γ-forward flip in A.

The same statement holds, with ’forward flip’ replaced throughout by ’backward
flip’. In particular the principal part EG•(Sw) is a union of connected components
of EG(Sw).

Yet another restatement of the first statement of the proposition is that any
forward flip of an arc γ in a partial triangulation A in EG•(Sw) leads again to a
partial triangulation in EG•(Sw).

Proof. Let γ♯ be the new arc in A♯
γ . The vertices at the end points of γ and γ♯

form a quadrilateral Q in Sw. Two of its edges are the counterclockwise adjacent
edges of γ in the A-polygon P0 in Sw containing γ. These two adjacent edges and γ
forms two angles a and b, drawn in red in Figure 6. The other two edges are not
necessarily in A♯

γ , see the green dashed arcs in Figure 6. We only need to refine A

a

b

γ ⇝ γ♯

Figure 6. Refinement of a flip A γ−→ A♯
γ (collision case)

to a triangulation T of S∆ so that the angles a and b are not cut by the new added
arcs. If it is a collision, Figure 6 shows that by including the green dashed arcs
mentioned above in the refinement, the job is done.

In general, the decoration in the A-polygon P0 containing the angle a is obtained
from a boundary component ∂0 of Σ, cf. Figure 7. Then by identifying the marked
points Mi in this component ∂0 with the vertices of P0, the angle a corresponds to
some angle a between segments of ∂0. As κij ≥ 3 one can refine A (by choosing
a triangulation of Σ) so that the angle a (and similarly for b) is not cut by new
added arcs as required. (In fact κij ≥ 2 is enough, but for κij = 1 the green arc in
Figure 7 might not exist.)

The backward flip statement is proven the same way using the quadrilateral
formed by the end points of γ and γ♭. As a consequence, the graph EG•(Sw)
is (m,m)-regular, where m is the number of arcs in any mixed-angulation of Sw.
Since we already remarked the same statement for EG(Sw), the second claim of
the proposition follows. □
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Figure 7. Refinement of a flip A γ−→ A♯
γ (in general)

5.5. Example of non-connectedness. We finish this section by giving an exam-
ple of exchange graphs, showing that EG•(Sw) is not connected in general. We
define EGw(S) to be the exchange graph of partial triangulations of the undeco-
rated collapsed surface S. This graph is easy to draw if the mapping class group
of S is finite and captures some connectivity information of the principal part for
the following reason:

Lemma 5.14. The forgetful map F : EG•(Sw)/ SBr(Sw) → EGw(S) is surjective
and hence an isomorphism. As a result, if EGw(S) is not connected, neither is
EG•(Sw).

Proof. Given any partial triangulation A in EGw(S), one can refine it to a tri-
angulations T of S. By [Hat91], the exchange graph EG(S) of the undecorated
(non-collapsed) surface with simple weights S is connected and thus T ∈ EG(S)
lifts to a triangulation T in the principal component EG◦(S∆) with F (T) = T.
Restricting T back to Sw, we obtain a partial triangulation A ∈ EG•(Sw) with
F (A) = A. □

Example 5.15. Let Sw be a torus with one boundary component ∂ and one deco-
ration with weight w = 3. Then EGw(S) and hence EG•(Sw) are not connected.

Proof. Let S be the undecorated torus with boundary circle ∂. We identify a
fundamental domain of the universal cover S with the unit square in R2 with ∂
being a (real) bubble at the corner of first quadrant. The first homology of this
surface is simply H1(S) = Z2. We denote by Dp,q the Dehn twist along an oriented
simple closed curve Cp,q with homology class H1(Cp,q) = (p, q) for (p, q) ∈ Z2

satisfying gcd(p, q) = 1. The mapping class group of S is the group
MCG(S) = ⟨X,Y ⟩/(XYX − Y XY ) ∼= Br3 ,

generated by X = D1,0 and Y = D0,1. Note that the Dehn twist D∂ := (XY )6 is
in the center of MCG(S).

A partial triangulation A of EGw(S) in this case is just a w-mixed-angulation,
a pentagon with edges γh, γv, ∂, such that glueing edges different from ∂ yields
a torus. We oriented them so that −→γh,

−→γv,−−→γh,−−→γv are in anticlockwise order,
cf. Figure 8.

To show non-connectivity of EGw(S) we coarsify the datum given by a mixed-
angulation and find an invariant. First, up to composition with an element in the
normal subgroup generated by D∂ , a mixed-angulation A is determined by a 2-by-2
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•

• •

•

γv γvγ♭
h

•

• •

•

Figure 8. The forward flips of the pentagon on torus

matrix with rows
−→
h = H1(−→γh) and −→v = H1(−→γv), together with the location (at

which of the four corners) of the boundary ∂. We represent the position by boxing
the corresponding element in the matrix, called the bubble. With our orientation
conventions for the arcs, each mixed-angulation is coarsely represented by one of
the following four matrices:(

p q
r s

)
∼=
(
r s

−p −q

)
∼=
(

−p −q
−r −s

)
∼=
(

−r −s
p q

)
. (5.8)

We shall use, as the normal form, that the bubble is in the left bottom corner. In

such a form the matrix is
(−→
h
−→v

)
=
(
p q
r s

)
. Second, we coarsify by considering

all matrix entries modulo 3Z, and we show that
−→
h +−→v ∈ (Z3)2 is constant on each

connected component.
The flips in Figure 8 can be represented as(

p− r q − s

r s

) µ♯

γ♭
h−−−→

MX ·

(
p q
r s

)
µ♯

γh−−−→
M2

X
·

(
p+ 2r q + 2s
r s

)
,

where, on the level of matrixes, the two flips (i.e., the forward flip at γ♭
h, resp. at γh)

to, resp. starting at, A are represented by multiplying on the left by MX = ( 1 1
0 1 )

and M2
X respectively. Changing to the normal form, we have( −r −s

p− r q − s

) µ♯

γ♭
h−−−→

M ′
X

·

(
p q
r s

)
µ♯

γh−−−→
M

′′
X

·

(
−r −s

p+ 2r q + 2s

)
,

for M ′
X =

(−1 1
−1 0

)
and M

′′

X =
( 0 −1

1 2
)
. It is now straightforward to check that

−→
h + −→v ∈ (Z3)2 remains unchanged. Similarly, the other two flips to/at A can be
represented as(

r − p s− q

−p −q

) µ♯

γ♭
v−−−→

M ′
Y

·

(
p q
r s

)
µ♯

γv−−−→
M

′′
Y

·

(
r + 2p s+ 2q

−p −q

)
for M ′

Y =
( 0 −1

1 −1
)

and M
′′

Y =
( 2 1

−1 0
)
. The row

−→
h + −→v ∈ (Z3)2 is preserved again.

Using
−→
h + −→v ∈ (Z3)2 as an invariant for the selected connected component of

the exchange graph, we see that the mixed-angulations
(

1 0
0 1

)
and

(
1 1
0 1

)
are

not in the same connected component of EGw(S). □
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6. Categorification of collapses

In this section, we categorify the constructions in Section 5, by associating with
a collapse a quotient category. For computations it is convenient to express this
quotient category in terms of triangulations. The main point of this section is to
analyse a subset of hearts of bounded t-structures of the quotient category that
we call of quotient type with respect to the subcategory that has been collapsed.
The leads to a notion of exchange graphs of these quotient type hearts. The goal
of this section, Theorem 6.9, is to show that the principal part of this exchange
graph agrees with the principal part of the exchange of partial triangulations we
introduced previously.

6.1. The quotient categories associated to collapsed surfaces. We have
been associating in Section 3.3 a CY3-category pvd(ΓT) to a triangulation T of
a wDMS S∆ with simple weights. Theorem A1 in [BQZ21] shows that this cate-
gory pvd(ΓT) is in fact canonically associated with S∆, i.e. the derived equivalences
given by Proposition 2.7 can be identified consistently. We call it D3(S∆). Thus
the inclusion Σ ⊂ S∆ in (5.2), together with the discussion in 2.3 and 3.3, induces
a short exact sequence of triangulated categories:

0 D3(Σ) D3(S∆) D(Sw) 0. (6.1)

Equivalently, we define the category D(Sw) as the Verdier quotient D3(S∆)/D3(Σ).
We will now give a more concrete construction of D(Sw) by choosing (partial)
triangulations and show that it is indeed independent of the choices.

Triangulation of subsurfaces. If T is any triangulation of S∆, we can homotope
the arcs to pass each through one of the marked points on ∂Σ. In this way, the
subsurface inherits a triangulation T|Σ. This triangulation is obviously a refinement
of the mixed-angulation A obtained by forgetting the edges in T|Σ and collapsing
to Sw.

This defines an inclusion of triangulated categories pvd(T|Σ) → pvd(T). Any
other refinement of A differs from T by a sequence of flips, see Proposition 5.10,
i.e. of mutations in the vertices of the corresponding subquiver. Then the quotient
category D(Sw) can be realized as pvd(T)/pvd(T|Σ). The independence of D(Sw)
of the chosen refinement is given by the following proposition.

Proposition 6.1. Let I ⊆ Q0 = {1, . . . , n} be a non-empty subset, and µ be
a sequence of mutations at vertices kj ∈ I (possibly repeated), then we have the
following equivalence

pvd(Q,W )/pvd
(
(Q,W )I

)
≃ pvd

(
µ(Q,W )

)
/pvd

(
(µ(Q,W ))I

)
of quotient triangulated categories.

Proof. Let I(0) = I ⊂ Q0 = {1, . . . , n} be a non-empty subset. For simplicity we
omit the potentials in the proof. Denote the quiver Q as Q(0). For j ≥ 0, let
Q(j+1) = µkj

Q(j), for some kj ∈ Q
(j)
0 . We know that (Q(j),W (j)) are all right-

equivalent and their associated triangulated categories pvd(Q(j)) are equivalent,
see [KY11]. The equivalence also holds for pvd(Q(j)

|I) and pvd(µkj
(Q(j)

|I)). By
the mutation-restriction compatibility, the latter is the same as pvd((µkj

Q(j))|I)
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and the equivalence in the bottom level of the following diagram is compatible with
the one above

pvd(Q(j)) ≃
[KY11]⋃ pvd

(
Q(j+1))
⋃

pvd
(
Q(j)

|I

)
≃

[KY11]
pvd

(
µkj (Q(j)

|I)
)

≃
[LF09]

pvd
(
Q(j+1)

|I

)
The diagram is therefore commutative. For the statement to follow, is then enough
to know that the Ginzburg category associated to a sub-quiver is a thick triangu-
lated sub-category of the Ginzburg category attached to the whole quiver, hence
the quotient is well-defined. □

6.2. Partial triangulations induce hearts of quotient type. Now we focus
on hearts of bounded t-structures in the quotient category D(Sw). We will restrict
our attention to certain hearts that we call of quotient type. We show that partial
triangulation induce hearts of quotient type through the choice of a refinement. We
start with a general fact.

Proposition 6.2 ([AGH19, Proposition 2.20]). Let i : C → D be a t-exact fully
faithful functor of triangulated categories equipped with bounded t-structures, with
a well-defined quotient functor j : D → D/C. Let HD and HC be the two hearts in
D and D respectively. Then the following are equivalent

a) the essential image i(HC) ⊂ HD is a Serre subcategory, and
b) the quotient D/C has a bounded t-structure such that j is t-exact, whose

heart is equivalent to HD/HC.

The (bounded) t-structure corresponding to HD/HC in D/C of point b) is de-
scribed in [AGH19, Proposition 2.20].

Definition 6.3. If a heart on a quotient triangulated category arises as described
by [AGH19, Proposition 2.20], we say that it is of quotient type. We say moreover
that it is induced by the hearts in D and C, or induced by the heart on D, if that
heart on C is obtained by restriction.

Note that, a priori, a triangulated category D/C may have many more hearts.
The next definition encodes the key restriction on the pairs of hearts and subcate-
gories we consider. The reader may compare with [BPPW22, Section 3] for other
criteria for hearts (or slicings) to descend to quotient categories or to be lifted from
there.

Definition 6.4. Let V be a full thick triangulated subcategory of D, and H a heart
of D. We say that H is V-compatible if H ∩ V is a heart of V and it is a Serre full
subcategory of H.

We now return to our case of interest, i.e., D = D3(S∆) and V = D3(Σ), for a
choice of a collapse ν. We denote by πν the quotient functor

πν : D ↠ D/V, (6.2)

and always consider its essential images.
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Proposition 6.5. Let T be any refinement of a partial triangulation A of Sw.
Then the canonical heart H = H(ΓT) is V-compatible. Moreover, the quotient heart
H ≃ H/(H ∩ V) is independent of the choice of the refinement.

Proof. The first statement follows from the fact that H is finite and H ∩ V is also
finite, generated by the simples corresponding to arcs in T \ A.

The second statement follows from combining Proposition 5.10 and Lemma 6.6
(below). More precisely, there is a sequence of flips/mutation connecting different
refinements T1 and T2 of the partial triangulation A by Proposition 5.10 which
gives the same quotient hearts of H(QT1) and H(QT2) by Lemma 6.6. □

Let I ⊆ Q0 = {1, . . . , n} be a non-empty subset, and i = (iϵl

l , . . . , i
ϵ1
1 ) be an

ordered sequence with ij ∈ I and ϵj ∈ {♯, ♭}. By the simple tilting formula (2.3),
the sequence i induces a sequence of simple tiltings

µiH = µϵl
il

· · ·µϵ1
i1

H
for any heart H whose simples are parameterized by Q0.

Lemma 6.6. The quotient heart is an invariant under simple tilting in I, in the
sense that for any i = (iϵl

l , . . . , i
ϵ1
1 ) as above

H(Q,W )/H
(
(Q,W )|I

)
= µiH (Q,W ) /µiH

(
(Q,W )|I

)
. (6.3)

Proof. We only consider the case of a single mutation corresponding to a simple tilt,
i.e. i = iϵ for i ∈ I. Possibly repeating the argument then proves the statement.
Let Sim H(Q,W ) = {Sk | k ∈ Q0}. Take D = pvd(Q,W ) and V = pvd(Q,W )I

together with the hearts H = H(Q,W ) and H′ = µϵ
Si

H. Applying Lemma 6.7
below we obtain the lemma. □

Lemma 6.7. Suppose that H,H′ are V-compatible hearts of bounded t-structures
in D. Then the bounded t-structures induced on the quotient D/V by a twice t-exact
fully faithful functor ι : V → D,

(V,H ∩ V) → (D,H) and
(V,H′ ∩ V) → (D,H′) ,

coincide if H′ = µT H at some torsion class T ⊂ H such that T ⊂ V.

An analogous statement holds, and can be proven similarly, for H′ = ΦSH for
S ∈ V, where ΦS is the spherical twist at the simple S ∈ H.

Proof. Let F := T ⊥ in H and H′ = F ⊥ T [−1] be the T -tilted heart in D. We
consider the diagram

HV = V ∩ H // H // H/HV

V ι //

⋂
⋃ D π //

⋂
⋃ D/V

H′
V = V ∩ H′ // H′ // H′/H′

V

Serre-ness of HV ⊂ H, HV
′ ⊂ H′ is equivalent to π being H- and H′-exact, and D/V

is endowed with bounded t-structures with hearts π(H), π(H′) (Proposition 6.2).
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By hypothesis, T ⊂ HV , T [−1] ⊂ HV
′ are in the kernel of the quotient functor.

Moreover, by definition of a torsion pair, for any E ∈ H, there are T ∈ T , F ∈ F ,
and a short exact sequence

0 → T → E → F → 0,

that yields to a short exact sequence in the quotient π(H)

0 → π(T ) ≃ 0 → π(E) → π(F ) → 0.

This means that for any π(E) ∈ π(H) there is π(F ) ∈ π(F) such that π(E) ≃ π(F )
in π(H). Similarly, for any E′ ∈ H′, there is G ∈ F such that π(E′) ≃ π(G) in
π(H′). Hence the fully faithful functor π(F) → π(H) is also essentially surjective.
Therefore, π(F) ≃ π(H), and similarly π(F) ≃ π(H′). We conclude that the
bounded t-structures on the quotient D/V induced by H and H′ coincide. □

6.3. The exchange graphs of hearts of quotient type and its principal
part. Consider the exchange graph EG(D(Sw)) of the quotient category. We want
to relate this exchange graph to the exchange graph of D(S∆). We define the
principal part EG•(D(Sw)) to be full subgraph of EG(D(Sw)) whose vertices can be
realized as quotients of V-compatible hearts H ∈ EG◦(D(S∆)) in a fixed connected
component. As in the topological situation in Section 5.4, it is a priori not clear
that the principal part consists of connected components of EG(D(Sw)). The next
proposition prepares to show that this is indeed the case, namely that simple tilts
of quotient hearts stem from simple tilts of H, if the heart H is conveniently chosen
in terms of some Ext-condition:

Proposition 6.8. Suppose that H is finite rigid heart in D with an abelian subcat-
egory K such that Sim K ⊂ Sim H. Denote by V = thick(K). Let S ∈ Sim H\Sim K
satisfying Ext1(K, S) = 0. Then the simple tilting H S−→ H♯

S in D induces a simple
tilting of quotient hearts

H S−→ H♯

S = H♯
S

in D/V, where ? is the essential image of ? under D ↠ D/V.

Proof. As H and K are both abelian and finite, K is Serre in H and the image of
any simple T in Sim H \ Sim K is a simple T in H/K. By the simple tilting formula
(2.3), simples in Sim K remains in Sim H♯

S by the Ext1-vanishing property of S.
Thus, K is also an abelian Serre subcategory of H♯

S . By Proposition 6.2, the hearts
H and H♯

S induce two hearts H and H♯
S in D/V, such that the quotient functor π is

t-exact. The t-structures on the quotient are the images of the t-structures on D,
therefore H ≤ H♯

S ≤ H[1] implies

H ≤ H♯
S ≤ H[1].

Moreover, ⟨S⟩ = H♯
S [−1] ∩ H implies

⟨S⟩ = H♯
S [−1] ∩ H.

By Lemma 2.1, we see that H♯
S is indeed a forward tilt of H with respect to the

simple S. □

We can now state the generalization of Theorem 5.9 to non-simple weights.
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Theorem 6.9. Fix a triangulation T0 and the component of EG◦(D(S∆)) corre-
sponding to pvd(ΓT0). There is an isomorphism

EG•(Sw) ∼= EG•(D(Sw))

of the principal parts, determined by T0 and EG◦(D(S∆)) respectively, of the ex-
change graphs for partial triangulations and for hearts of quotient type.

In particular EG•(D(Sw)) is a union of connected components of EG(D(Sw)).

Proof. Let A be a partial triangulation in EG•(Sw) with a refinement T in the
component of T0. Define φ : EG•(Sw) → EG•(D(Sw)) on vertices by mapping A
to the quotient H(T) of the canonical heart H(T) of pvd(ΓT) in D(Sw) = D/V.
This is well-defined by Proposition 6.5. The surjectivity of φ follows from the
surjectivity part of the isomorphism (5.7) from Theorem 5.9. For the injectivity
of φ we combine the injectivity part of this isomorphism with Proposition 5.10 and
Proposition 6.5.

We now consider the edges. For any forward flip A γ−→ A♯
γ = A′ in EG•(Sw),

by Proposition 5.13, we can refine it to a forward flip T γ−→ T♯
γ = T′ in EG◦(S∆)

with the property that there is no arrow from γ to any open arc in T \ A in QT.
Let H(T) S−→ H(T′) be the simple tilting corresponding to T γ−→ T′, i.e., so that the
simple S corresponds to the arc γ. Let K be the subcategory of H(T) generated by
the simples in Sim H(T) corresponding to arcs in T \ A. By [KY11, Lemma 2.15]
the no-arrow-condition above implies Ext1(K, S) = 0. Then by Proposition 6.8 the
simple tilting at S induces a (’quotient’) simple tilting H(A) → H(A′), and this is
indeed an edge in EG•(D(Sw)). Conversely, every edge in EG•(D(Sw)) arises by
definition (and (5.7)) from a flip H(T) S(γ)−−−→ H(T′) between triangulations in the
component of T0. This gives rise by definition to an edge in EG•(Sw). We have
thus shown that φ is indeed a graph isomorphism.

For the last statement recall from the end of the proof of Proposition 5.13 that
EG•(Sw) ∼= EG•(D(Sw)) is an (m,m)-regular graph, where m is the number of
edges in any w-mixed-angulation of Sw. On the other hand, EG(Sw) has at most
m = rank(K(D(Sw))) many edges. Since EG•(Sw) is defined as a (full) subgraph
of EG(Sw), there cannot be any edges of EG•(Sw) connecting a vertex of EG•(Sw)
to a vertex outside this subgraph. It must thus consist of components of EG(Sw),
as we claimed. □

6.4. The symmetry groups. We study the symmetry groups of the surfaces and
the categories, which will be used later. For D = D3(S∆), we have the following
subgroups

Nil◦(D) ⊂ Aut◦
K(D) ⊂ Aut◦(D) ⊂ Aut(D) (6.4)

defined as follows. Aut◦(D) is the subgroup of Aut(D) consisting on autoequiv-
alences of D that preserve the principal component Stab◦(D) corresponding to
EG◦(D). Let Aut◦

K(D) be the subgroup of autoequivalences that moreover act
as identity on the Grothendieck group K(D). We call autoequivalences that act
trivially on Stab◦(D) negligible autoequivalences. We will also be interested in the
quotients

Aut ◦(D) = Aut◦(D)/Nil◦(D) and Aut ◦
K(D) = Aut◦

K(D)/Nil◦(D) . (6.5)

Note that as Aut ◦(D) acts faithfully on Stab◦(D), it also acts faithfully on EG◦(D).
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As preparation, we show that autoequivalences correspond to mapping classes
in the classical case. The following result is implicit in [KQ20]:

Proposition 6.10. There is an embedding

iT0 : Aut ◦(D3(S∆)) → MCG(S∆)

depending on the choice of the initial triangulation T0. Restricted to ST(ΓT0), the
embedding iT0 becomes the isomorphism between twist groups in Theorem 5.9.

The map iT0 surjects onto the subgroup MCG◦(S∆) of MCG(S∆) that stabilizes
the component EG◦(S∆).

Proof. Given f ∈ Aut ◦(D3(S∆)), it maps the heart H0 associated to T0 to some
heart H ∈ EG◦(D3(S∆)). Let T be the triangulation corresponding to H in (5.7).
Since f is an autoequivalence, there is an element γ ∈ MCG(S) that maps the
triangulation T of the corresponding undecorated surface to T0. In fact, in this
way [BS15, Theorem 9.9] (see also [KQ20, Theorem 4.12]) show that there is short
exact sequence

1 → ST (D) → Aut ◦(D) → MCG(S) → 1, (6.6)
where ST (D) = ST (D3(S∆)) = ST (ΓT0) is the image of the spherical twist group in
the quotient by negligible autoequivalences. It thus suffice to alter γ by an element
in the surface braid group to exhibit an element an element iT0(f) in MCG(S∆)
that maps T0 to T. This element is unique up to isotopy by the Alexander Lemma
(stating that any homeomophism of a once-decorated disk is isotopy to identity if it
preserves the boundary pointwise). This uniqueness also shows that the assignment
iT0(·) is actually a group homomorphism. It is injective as we have taken the quo-
tient by the negligible autoequivalences. Comparing with the proof of Theorem 5.9
we see that iT0 gives the isomorphism between twist groups there.

For the surjectivity and thanks to (6.6) we only need to ensure that the elements
in the surface braid group that stabilizes EG◦(S∆) are in the image of iT0(f). This
stabilizer subgroup is the braid twist group BT(T0) by Theorem 5.8 and then the
isomorphism BT(T0) ∼= ST(ΓT0) yields the claim, since the latter group is obviously
a subgroup of Aut ◦(D3(S∆)). □

Now let us consider the case of Sw obtained from S∆ by collapsing Σ, and the
quotient categories D(Sw) = D3(S∆)/D3(Σ). We need the follow subgroups of
mapping class groups. For any subgroup G of MCG(S∆) let

GΣ = {g ∈ G | g(Σ) = Σ}

be the subgroups leaving invariant the subsurface Σ. Finally we let MCG(Σ) be the
mapping class group of the unmarked surface associated with Σ and let MCG◦(Σ) =
MCG(Σ)∩MCG◦(S∆)Σ. We define the liftable subgroup of the mapping class group
of the collapsed surface to be the quotient group and the subgroup

MCG•
lift(Sw) : = MCG◦(S∆)Σ

MCG◦(Σ) ⊆ MCGlift(Sw) := MCG(S∆)Σ

MCG(Σ) ⊆ MCG(Sw)

Collapsing Σ, a subsurface with two non-isomorphic connected components, say
one of them a disc and one with positive genus, such that the collapse results in the
same weights wi > 1, shows that in general the inclusion is strict: mapping class
group elements that swap the marked points corresponding to the higher weights
are not liftable.
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We define the groups of autoequivalences like Aut•(D),Aut •(D) as in (6.4) and
(6.5) by the requirement to stabilize the principal part (instead of a fixed com-
ponent). For any subgroup G ⊂ Aut(D3(S∆)) we write GΣ for the subgroup
that stabilizes the subcategory D3(Σ). Finally we let Aut ◦(D3(Σ)) be the sub-
group of Aut ◦(D3(Σ)) consisting of elements that are restricted from elements in
Aut ◦(D3(S∆)). We define

Aut •
lift(D(Sw)) = Aut ◦(D3(S∆))Σ

Aut ◦(D3(Σ)) . (6.7)

We can now state the goal of this subsection:

Proposition 6.11. There is an embedding
iT0 : Aut •

lift(D(Sw)) → MCG(Sw)
depending on the choice of the initial triangulation T0 of S∆. The map iT0 surjects
onto the subgroup MCG•

lift(Sw).

To prove Proposition 6.11 we only need the following two lemmas.

Lemma 6.12. There is an isomorphism Aut ◦(D3(Σ)) ∼= MCG◦(Σ) obtained by
restriction of the isomorphism Aut ◦(D3(Σ)) → MCG◦(Σ).

Proof. Choose any triangulation T0 of S∆ that can be homotoped to a triangu-
lation TΣ of Σ. By definition, an element in Aut ◦(D3(Σ)) is restricted from an
element in γ ∈ Aut ◦(D3(S∆))Σ. Regarding this element γ as mapping class on S∆
by Proposition 6.10, the restriction condition on the categorical side translates by
Lemma 6.14 to the condition that the mapping class needs to preserve the collaps-
ing data. Thus iT0(γ) ∈ MCG◦(S∆)Σ and by definition the initial automorphism
iTΣ restricts to an injection Aut ◦(D3(Σ)) → MCG◦(Σ). It is surjective since any
element in MCG◦(Σ) can be regarded as an element in MCG◦(S∆) or equivalently
via iT0 as an element in Aut ◦(D3(S∆)). Restricted to D3(Σ), we see that it is indeed
an element in Aut ◦(D3(Σ)) and the lemma follows. □

Lemma 6.13. There is an isomorphism Aut ◦(D3(S∆))Σ → MCG◦(S∆)Σ obtained
by restriction of the isomorphism Aut ◦(D3(S∆)) → MCG◦(S∆).

Proof. We regard Aut ◦(D3(S∆))Σ as a subgroup of MCG◦(S∆) and the condition of
stabilizing D3(Σ) translates topologically to stabilizing all simple closed arcs in Σ,
using the correspondence between closed arcs and reachable spherical objects in
[Qiu16, Thm. 6.6]. By [Qiu16, Lemma 4.6], Σ is in fact a neighbourhood of the
union of any triangulation dual to the closed arcs in Σ. Thus, the condition of
stabilizing the arcs is topologically equivalent to the condition of stabilizing Σ and
the lemma follows. □

In the proofs above we have been using the following statement.

Lemma 6.14. Let Σ1 and Σ2 be two DMS with simple weights and without punc-
tures, with associated CY3 categories D3(Σi). Then D3(Σ1) is triangle equivalent
to D3(Σ2) if and only if Σ1 is homeomorphic to Σ2.

Proof. The existence of a homeomorphism obviously implies the existence of a
triangle equivalence. For the converse we reconstruct the surface Σ from a single
heart H in a way that is obviously inverse to the construction of H from Σ. First,
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the quiver Q is the graph given by the simples Si in H with edges given by non-
trivial Ext1’s. Second we reconstruct the potential W from the Ext-algebra of the
Γ-module S = ⊕i∈Sim(H)Si. This Ext-algebra carries an A∞-structure, unique up
to A∞-isomorphism. An explicit construction of this structure is given for any
quiver with potential in [Kel11a, Appendix A.15]. Since in our case the potential
consists of 3-cycles only, the Ext-algebra is formal, i.e. the higher multiplication
maps mn for n ≥ 2 vanish. This means that the model given in loc. cit. is the
minimal model of the A∞-isomorphism class and that the multiplication map m2
given in log. cit. is canonically associated with S. This map m2 determines the
potential W uniquely.

Finally, we reconstruct the surface from (Q,W ), reversing the construction in
Section 3.3: For 3-cycle in W glue a triangle to the corresponding edges of Q. For
each arrow of Q not in a 3-cycle, glue a triangle with one edge as boundary edge to
the two edges representing head and tail of the arrow. For each vertex of Q to which
only a single of the preceding rules apply (in the since that such a 3-cycle passes
through the vertex, or such an arrow starts or ends in the vertex), glue a triangle
with two boundary edges (and one boundary marked point). Finally, if for a vertex
none of the preceding rules apply (which happens only for the A1-quiver), then we
glue two such triangles. Since all data used for this reconstruction procedure are
preserved by the equivalence, the lemma follows. □

7. An extension of the Bridgeland-Smith correspondence

In their paper [BS15] Bridgeland and Smith gave a correspondence roughly be-
tween the space of framed quadratic differentials with only simple zeroes and stabil-
ity conditions on the category pvd(Q,W ) where (Q,W ) is the quiver with potential
associated with a saddle-free differential. In this section we recall their result and ex-
tend it to our main result, a correspondence between the space of framed quadratic
differentials with higher order zeros and certain stability conditions supported on
the quotient categories introduced in Section 6. Various mapping class subgroups
and groups of autoequivalence have been defined in Section 6.4.

7.1. The original Bridgeland-Smith correspondence. We state the Bridge-
land-Smith correspondence in the version of [KQ20] lifted to Teichmüller-framed
quadratic differentials and in the case that each boundary component of S has at
least one marked point, i.e. the quadratic differentials have poles of higher order
≥ 3 only. In this way we avoid the extra technicalities of local orbifold structure
(the space Quad♡(S,M) introduced in [BS15]). For the notation concerning spaces
of quadratic differentials we refer the reader to Section 4.1.

Fix a genus g polar part w− of the signature, the number n = 2g − 2 + |w−| of
simple zeros with S∆ a reference surface of this type, and fix an initial Teichmüller-
framed quadratic differential (X0, q0, ψ0) ∈ FQuad(S∆) and suppose that q0 is
saddle-free. Denote by FQuad◦(S∆) the connected component containing q0. Us-
ing (the classical version in [BS15] for simple weights of) Definition 4.7 the differ-
entials gives us a triangulation T0, which gives a quiver with potential (Q0,W0)
by the construction in Section 3.3 and thus the category D = pvd(ΓT0) defined
in Section 2.3 with its standard heart H0. Fix a canonical double cover (X̂0, ω0).
For each horizontal strip let ηi be the saddle connection crossing that strip, by
definition a closed arc dual to T0. Let η̂i be the corresponding hat-homology class,
oriented such that its ω0-period Per(η̂i) ∈ H. Denoting by Si ∈ Sim(H0) the simple
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object corresponding to η̂i and define the map Z0 by Z0(Si) = Per(η̂i). In total we
defined a stability condition σ0 = (H0, Z0).

Fix an isomorphism θ0 : Γ → Ĥ1(q0) and fix an isomorphism ν0 : Γ → K(D).
Recording just the central charge gives a map

π2 : Stab◦(D) → HomZ(Γ,C),
(Z,A) 7→ (Z ◦ ν0).

(7.1)

whose factorization through Stab◦(D)/Aut K(D) we denote by the same symbol. On
the other hand, on the space of period-framed quadratic differentials the projection
gives a map

π1 : QuadΓ
g (1r,w−) → HomZ(Γ,C),

(q, ρ) 7→ (Per(q) ◦ ρ ◦ θ0).
(7.2)

Note that our notion of Teichmüller framing does not frame the double cover, while
the hat-homology depends on the double cover. Thus a priori it is not clear whether
the cover FQuad(S∆) dominates the cover QuadΓ

g (1r,w−). This is proven along
with the following theorem.

Theorem 7.1. There is an isomorphism of complex manifolds
K : FQuad◦(S∆) → Stab◦(D) . (7.3)

The natural covering map FQuad(S∆) → Quadg(1r,w−) factors through a covering
π0 : FQuad(S∆) → QuadΓ

g (1r,w−). The map K commutes with the maps π1 ◦
π0 and π2 to Hom(Γ,C) given by periods and by the central charge respectively.
This map K is equivariant with respect to the action of the mapping class group
MCG(S∆) on the domain and of the group Aut ◦(D) on the range. The map K
descends to isomorphisms of complex orbifolds

KΓ : QuadΓ,◦
g (1r,w−) → Stab◦(D)/Aut ◦

K(D)
K : Quadg(1r,w−) → Stab◦(D)/Aut ◦(D) ,

(7.4)

where QuadΓ,◦
g (1r,w−) is the connected component given by the image of π0.

Proof. The existence of KΓ is the content of [BS15, Theorem 11.2]. The map is con-
structed in Propositions 11.3 and 11.11 and the fact that the isomorphism descends
is argued along with diagram (11.6) in loc. cit. The lift K is constructed in [KQ20,
Theorem 4.13]. The quotient K is obtained from K thanks to Proposition 6.10. We
expand on two arguments that are only briefly discussed in these sources. First,
the orbifold structure requires that Aut ◦(D) acts properly discontinuously. See the
proof of Theorem 7.2 for this argument.

Second, we elaborate on the existence of π0, implicitly needed in [KQ20, Theo-
rem 4.13]. As we will recall in more detail in the proof of Theorem 7.2, the map K
is constructed first as a map K0 on the locus B0 of saddle-free differentials pro-
ceeding as we did with q0 above. This involves the choice of a lift η̂i of the crossing
saddle connections ηi on each of the chambers, i.e., connected components of B0.
This lift also provides the map π0 on each chamber. The map K0 is then extended
to a map K2 on the locus B2 of tame differentials, identifying chambers adjacent
by forward flips and and forward tilts respectively, using the exchange graph iso-
morphism (5.7) in Theorem 5.9. The continuity of K2 and π0 on B2 \ B0 then
follows once we checked the following condition, using our standard choice of ori-
ented lifts of saddle connections so that their periods are H-valued: The lift of the
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Figure 9. Hat-homology classes on the double cover before (first
row) and after (last row) a flip. The middle row illustrates the
transition.

flipped standard saddle connection are related to the lifts of the original standard
saddle connection in the same way as the image simples objects are related, namely
by (2.3)2. This is a local topological statement, to be checked only for the case
where ext1 is non-trivial. Consider Figure 9 where shaded slits indicate branch
cuts and black arrows the positive real axis. In particular on the central horizontal
strips the imaginary axis points upwards and all hat-homology classes are oriented
to have positive imaginary part. We can now verify η̂12 = η̂1 + η̂2 in hat-homology,
using the obvious homotopy exhibiting this relation for each of the two sheets of
the canonical double cover. □

7.2. The correspondence in the generalized setting. We modify the setup of
Section 7.1 as follows. Let now w be any tuple of non-zero integers and let Sw be a
wDMS, obtained as collapse of the surface S∆. (That is, a collision g(Sw) = g(S∆)
is the easiest possibility to realize this situation but we also allow the case where
the collapse is not a collision.) Applying Definition 4.7 to an initial saddle-free
(X0, q0, ψ0) ∈ FQuad(Sw) now gives a mixed-angulation A0 on Sw, and thus a

2This is probably well-known, see around [BS15, Proposition 10.4], but we are uncertain about
the role of the orientation of lifts there.
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partial triangulation on S∆, which we refine to an initial triangulation T0 on S∆.
We let H0 be the quotient heart in the quotient category D(Sw) given by the
construction in Theorem 6.9. As above let ηi be the saddle connections crossing
strips, and lift them to hat-homology classes η̂i using the convention in Section 3.2
and orient the lifts (which now might be non-closed, i.e., relative periods) so that
Per(η̂i) ∈ H. Finally, as above we define the map Z0 by Z0(Si) = Per(η̂i) and define
the stability condition σ0 = (H0, Z0) on D(Sw).

The choice of q0 and T0 above fixes a principal part EG•(Sw) of the exchange
graph of partial triangulations and by the isomorphism in Theorem 6.9 also a
principal part in EG•(D(Sw)). We let FQuad•(Sw) be the connected components
whose associated partial triangulations belong to EG•(Sw). These components
include the one with (X0, q0, ψ), and possibly others. On the stability side we
consider the set

Stab•(D(Sw)) = C ·
⋃

H∈EG•(D(Sw))

U(H). (7.5)

which is not a priori a union of connected components of Stab(D(Sw)).
For the period and central charge map we fix isomorphisms θ0 : Γ → Ĥ1(q0) and

ν0 : Γ → K(D), keeping in mind that the rank of Γ depends on (w,w−). We define
the projections π1 and π2 just as in (7.1) and (7.2), with domains Stab•(D(Sw))
and QuadΓ

g (w,w−) respectively. Again it is not a priori clear whether the cover
FQuad•(Sw) dominates the cover QuadΓ

g (w,w−).
Moreover, recall the definition of the liftable mapping class groups and autoe-

quivalences from Section 6.4. We write

Quadg(wΣ,w−) = FQuad•(Sw)/MCG•
lift(Sw).

This space is a finite cover of the moduli space of quadratic differentials where the
zeros can be permuted only if the realization of Sw as collapse allows this, i.e. if
the permutation can be lifted to a mapping class element in S∆.

Theorem 7.2. There is an isomorphism of complex manifolds

K : FQuad•(Sw) → Stab•(D(Sw)) . (7.6)

The natural covering map FQuad•(Sw) → Quadg(w,w−) factors through a cov-
ering π0 : FQuad•(Sw) → QuadΓ

g (w,w−). The map K commutes with the maps
π1 ◦π0 and π2 to Hom(Γ,C) given by periods and by the central charge respectively.
This map K is equivariant with respect to the action of the mapping class group
MCG•

lift(Sw) on the domain and of the group Aut •
lift(D(Sw)) on the range. The

map K descends to isomorphisms of complex orbifolds

KΓ : QuadΓ,•
g (w,w−) → Stab•(D(Sw))/Aut •

K(D(Sw))
K : Quadg(wΣ,w−) → Stab•(D(Sw))/Aut •

lift(D(Sw)) ,
(7.7)

where QuadΓ,•
g (w,w−) are the connected components given by the image of π0.

This result has topological consequences for the principal parts:

Corollary 7.3. The principal part Stab•(D(Sw)) is a union of connected compo-
nents of Stab(D(Sw)). In particular these components in the image of FQuad(Sw)
are generic-finite in the sense of Definition 2.4.
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Proof of Theorem 7.2. We proceed similarly as in the proof of Proposition 11.3 in
[BS15] using the stratification (4.5) by the number of horizontal saddle connections.
Recall for this purpose the definition of Bp and Fp = Bp \Bp−1 from Section 4.2.

The maps on the tame locus. We first define the map on the saddle-free locus

K0 : B0 → Stab•(D(Sw))

associating with a framed differentials a stability condition just as we did with q0
in the introductory paragraph of this section.

We check that this map continuously extends to a map K2 the tame locus. By
Corollary 5.4 any two neighboring chambers C,C ′ in B0 are related by a forward
flip of the partial triangulations A → A′ at some arc γ. Consider a differential q on
the wall between C and C ′. We need to show the continuity of the extension of K0
to 0 along the arc

ρ : t 7→ eitq ∈ FQuad•(Sw) for t ∈ (−ϵ, ϵ) \ {0} . (7.8)

By the isomorphism of exchange graphs from Theorem 6.9 there is a tilt at some
simple S that relates K0(C) to a neighboring chamber. We moreover want to show
that this chamber is indeed K0(C ′). This follows since the assignment of stability
conditions to partial triangulations is defined using a refinement to a triangulation
and the exchange graph isomorphism is derived from the isomorphism (5.7) at the
level of triangulations, i.e., there are refinements so that the forward tilt lifts to a
tilt T γ−→ T′. Next we check the compatibility of the lifted hat-homology classes
η̂i at this wall-crossing, i.e. that the lifted classes of saddle connections crossing
cylinders satisfy the same base change relation as the corresponding simples, which
is (2.3). We checked this in the proof of Theorem 7.1 along with Figure 9 from the
refining triangulation and this continues to hold after setting to zero the classes of
dual complementary arcs and the corresponding simples. Now we are in position
to use the periods of the dual arcs in T and the corresponding simples as a co-
ordinate system on a full neighborhood of the wall, see Definition 2.3 and [BS15,
Lemma 7.9]. We conclude, since the periods of all dual arcs (and hence all simples)
vary continuously along the arc ρ.

Extension to non-tame differentials. We now construct Kp defined on Bp in-
ductively, assuming the existence of Kp−1 to eventually obtain K = Kk, where k
was defined as the maximal number of horizontal saddle connections. Just as in
[BS15, Proposition 5.5] for any differential q ∈ Fp any small rotation eitq ∈ Bp−1
for 0 < |t| < ε and ε small enough. By induction on p and C-equivariance the
limiting generalized stability conditions

σ±(q) = lim
t→0+

Kρ,p−1(e±itq) (7.9)

exist and we need to show that they coincide. The continuity of the C-action on
framed differentials and Stab•(D(Sw)) implies that the agreement of the limits has
a locally constant answer. Since walls have ends on any connected component of Fp

(Proposition 4.2), this agreement locus is all of Fp. We thus obtain eventually a
map K defined everywhere.
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Injectivity. Suppose that the differentials q1 and q2 have the same image K(q1) =
K(q2). Using the C-action we may assume that both differentials lie in the in-
terior of chambers. Using the injectivity of the exchange graph isomorphism in
Theorem 6.9 shows that the chambers agree and since periods of crossing saddle
connections are coordinates we conclude q1 = q2.

The surjectivity. of K is obvious from the surjectvity of the exchange graph
isomorphism in Theorem 6.9 and the compatibility with the C-action.

The maps π0. has been defined locally on each chamber of B0 by using the lift to
hat-homology with periods in H. On each wall crossing this assignment has been
verified along with the continuity of K2 to be compatible with the base change in the
Grothendieck group K(D(Sw)). By definition of spaces of stability conditions sim-
ple objects are labeled globally and in particular a basis of K(D(Sw)) can be chosen
globally over Stab•(D(Sw)) (and in fact over Stab•(D(Sw))/Aut •

K(D(Sw))). This
implies that the base change formula (2.3) is consistent over loops in EG•(D(Sw)),
i.e., the product of the wall-crossing base changes along a closed loop is the iden-
tity. Since hat-homology is isomorphic to the Grothendieck group (say in the initial
chamber) this implies that the corresponding base change in hat-homology is con-
sistent over loops in EG•(Sw). This shows that the local definition of π0 gives
well-defined function on B2. We extend π0 to a global function over higher Bk

using the C-action just as we did with K2.

The compatibility of K with the projections. This compatibility with π2 and
π1 ◦ π0 holds on the initial chamber by definition, on all the other chambers by
construction of π0 and globally, since all these maps are equivariant with respect
to the C-action.

Quotient orbifolds. In order to show that Stab•(D(Sw))/Aut •(D(Sw)) is an orb-
ifold we need to show the properness of the action of Aut •(D(Sw)) and that this
group acts with finite stabilizers. For properness we use that the C-action, which
commutes with automorphisms, to assume that the two points whose orbits we have
to separate lie in the interior of a chamber. Since Aut •(D(Sw)) maps (open) cham-
bers to chambers, properness is obvious if the two orbits are never in a common
chamber. Otherwise we use that Aut •(D(Sw)) preserves the integral lattice Γ∨

in HomZ(Γ,C) and the fact that there is no infinite sequence in GLd(Z), where
d = rank(Γ), that fails to displace a small ball. This argument shows moreover the
finiteness of stabilizers. (Compare with [Smi18, Lemma 3.3].)

Descending to KΓ and to K. Recall from Proposition 6.11 the existence of an
isomorphism Aut •

lift(D(Sw)) → MCG•
lift(Sw). The equivalence of K with respect to

this isomorphism follows from the construction in Proposition 6.10 (using the same
initial triangulation), since flipping arcs commutes with the mapping class group
action. □

The following proof adapts the argument of Bridgeland-Smith in a way so that
the complete description of the moduli space of stable objects of given class (see
[BS15, Theorem 11.6]) can be avoided. We expect the analogue of this theorem to
have more and more complicated case distinctions as the entries of w grow.

Proof of Corollary 7.3. The image of the holomorphic map K is obviously open,
so we need to check that it is closed. Suppose that we have a one-parameter
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family σ(t) in Stab•(D(Sw)) with σ(t) = K(q(t)) in the image of the comparison
isomorphism for t ̸= 0. To show that σ = σ(0) is also in the image we need by
[BS15, Proposition 6.8] a lower bound for the lengths of saddle connections of q(t)
as t → 0. We claim that for each t ̸= 0 and for each saddle connection γ on q(t)
there is stable object E ∈ σ(t) with mass m(E) = |Z(γ)|. We then obtain the lower
bound of lengths as t → 0, since the masses of stable objects in the limit σ(0) are
bounded thanks to the support property of the stability condition.

To prove the claim we may assume by rotation that Z(γ) ∈ R. After a small
rotation now γ becomes a standard saddle connection crossing a horizontal strip.
(The nearby directions where this is not true have a saddle connection or a spiral
domain, hence a saddle connection, and this exception set is countable.) The
stability condition corresponding to the slightly rotated differential has a simple
(and hence stable) object of class α. This property persists after undoing the small
rotation. □
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