Towards a unified model of search in theorem

proving: subgoal-reduction strategies *

Maria Paola Bonacina

Dipartimento di Informatica
Universita degli Studi di Verona
Strada Le Grazie 15, 1-87134 Verona, Italy

Abstract

This paper advances the design of a unified model for the representation of search in
first-order clausal theorem proving, by extending to tableau-based subgoal-reduction
strategies (e.g., model-elimination tableaux), the marked search-graph model, al-
ready introduced for ordering-based strategies, those that use (ordered) resolution,
paramodulation /superposition, simplification, and subsumption. The resulting a-
nalytic marked search-graphs subsume AND-OR graphs, and allow us to represent
those dynamic components, such as backtracking and instantiation of rigid vari-
ables, that have long been an obstacle to model subgoal-reduction strategies prop-
erly. The second part of the paper develops for analytic marked search graphs the
bounded search spaces approach to the analysis of infinite search spaces. We analyze
how tableau inferences and backtracking affect the bounded search spaces dur-
ing a derivation. Then, we apply this analysis to measure the effects of regularity
and lemmatization by folding-up on search complexity, by comparing the bounded
search spaces of strategies with and without these features. We conclude with a
discussion comparing the marked search-graphs for tableaux, linear resolution and
ordering-based strategies, showing how this search model applies across these classes
of strategies.

Key words: Automated theorem proving, subgoal-reduction strategies,
tableau-based strategies, strategy analysis, search model

* Supported in part by the Ministero per I'Istruzione, I'Universita e la Ricerca with

grant no. 2003-097383.
Email address: mariapaola.bonacina@univr.it (Maria Paola Bonacina).
URL: http://www.sci.univr.it/~bonacina/ (Maria Paola Bonacina).

Preprint submitted to Elsevier Science 6 January 2005

1 Introduction

1.1 Motivation and background

The objective of this research is the construction of mathematical models
of the search spaces generated by theorem-proving strategies, with the aim of
improving our understanding of their complexity. Classical complexity analysis
is concerned with decidable problems, and therefore does not apply to first-
order theorem proving, which is semi-decidable. The lack of analytical tools
to compare theorem-proving strategies makes it harder to assess progress in
the field, appreciate new ideas before implementation, and understand why
theorem provers succeed or fail. As the growth of methods and systems has
increased the need for classification, evaluation and comparison, various efforts
have clustered along four lines of research that we regard as complementary.

The most traditional one (1) is to consider decidable cases (e.g., propositional
logics, the guarded fragment, decidable modal logics) and apply classical com-
plexity analysis. In the general case, this kind of investigation involves showing
that certain first-order strategies terminate, if inputs satisfy specific syntactic
constraints (e.g., Fermiiller et al., 1993; Fermiiller and Leitsch, 1998; Fermiiller
et al., 2001; Armando et al., 2003; Peltier, 2003; Comon-Lundh and Courtier,
2003). A second direction (2) is to study the relative complezity of first-order
calculi, usually adopting proof length as complexity measure. We mention
(Eder, 1992), as a central reference, (Letz, 1993; Letz and Stenz, 2001b), for
the application of this approach to tableau-based strategies, and (Baaz et al.,
1994), on how different reductions to clausal form may cause non-elementary
differences in proof length, because non-elementary differences in proof length
are relevant also to proof search. A more recent pursuit (3) is to make the
experimental comparison of theorem provers more systematic (e.g., Pelletier
et al., 2002; Donini and Massacci, 2000a), so that it can give more information
on the strengths and weaknesses of the methods implemented. A fourth ap-
proach (4) is to develop mathematical models of the behavior of strategies, that
allows one to capture their essential features and establish some comparative
results also in the general semi-decidable case (e.g., Plaisted and Zhu, 1997;
Bonacina and Hsiang, 1998b; Bonacina, 1999a; Leitsch, 1997). The emphasis
is on search and search space pruning, rather than proof length, and on dif-
ferences that occur after reduction to clausal form. This paper contributes to
this fourth direction by extending to tableau-based subgoal-reduction strategies
the methodology developed in (Bonacina and Hsiang, 1998b) and (Bonacina,
1999a) for sequential and distributed ordering-based strategies, respectively.

Among refutational deduction methods, we distinguish instance-based, orde-
ring-based and subgoal-reduction strategies. For simplicity, we refer to their

clausal versions, even when the methods are not necessarily clausal. Instance-
based strategies are perhaps the oldest, as they date back to Gilmore’s multi-
plication method (Chang and Lee, 1973). The idea is to implement Herbrand’s
theorem directly by generating ground instances of the clauses in the set to
be refuted, and detecting inconsistencies at the propositional level. Contem-
porary strategies include hyperlinking (Lee and Plaisted, 1992) and ordered
semantic hyperlinking (Plaisted and Zhu, 2000). The motivation is to avoid
the “duplication by combination” (Plaisted and Zhu, 1997) represented by the
repetition of most of the parents’ literals in resolvents, and use efficient SAT
checkers to guide the instance-generation process. A recent treatment can be
found in (Ganzinger and Korovin, 2003).

Ordering-based methods generate clauses by expansion inference rules, such
as resolution and paramodulation, and delete them by contraction inference
rules, such as subsumption and simplification. They keep clauses in a database,
formally a multiset, and succeed when the empty clause O is derived. By de-
ducing and keeping clauses, they build implicitly many proof attempts, and the
generation of O signals that one of them has been completed into a proof,
given by the graph of ancestors of O. This class includes strategies that have
been called at various times resolution-based, rewriting-based, completion-based
and saturation-based. We proposed “ordering-based” since (Bonacina, 1999b)
to encompass them all and underline the role of well-founded orderings in the
definition of contraction, refinements of expansion and completeness proofs.
Contraction-based strategies are ordering-based methods that apply contrac-
tion eagerly (e.g., Bonacina, 1999a).

Subgoal-reduction strategies select a goal clause, say ¢q, from the input set 5,
and work by reducing the goal to subgoals. In linear resolution (Kowalski and
Kuehner, 1971; Loveland, 1972; Chang and Lee, 1973), the subgoal-reduction
is done by generating resolvents; the sequence of goal clauses thus generated
forms a linear deduction (i.e., a resolution tree shaped like a comb), and a linear
refutation is a linear deduction of O. Linear deductions are proof attempts
and linear refutations are proofs. Model elimination (Loveland, 1969, 1978)
builds a survey of interpretations starting from ¢, and seeks to show that
none is a model of S. It can be defined on chains (Loveland, 1969, 1972;
Chang and Lee, 1973) or tableaux of literals (e.g., Baumgartner and Furbach,
1993; Baumgartner and Briining, 1997; Letz, 1998). Although independent
of resolution, the chain-based version was understood as the improvement
of linear resolution that made subgoal-reduction theorem-proving practical
for first-order logic, by eliminating the need to keep all generated goals for
ancestor-resolution. In the tableau-based presentation, the subgoal-reduction
is done by steps that extend or close the branches of a tableau. Thus, open
tableaux are proof attempts and closed tableaux are proofs.

Model elimination belongs to the class of clause normal form tableaux strate-

gies (e.g., Letz, 1998; Baumgartner and Furbach, 1998; Letz and Stenz, 2001b),
that are subgoal-reduction strategies, inheriting on one hand from natural de-
duction methods, such as semantic or analytic tableaux (e.g., Smullyan, 1995),
and on the other hand from mating-based (Andrews, 1981) and connection-
based, or matrix-based, (Bibel, 1981) calculi. Among the rules of analytic
tableaux, only the (-rule (for disjunction) and the ~-rule (for universally
quantified variables) apply to clauses. In ground tableauz, the ~-rule replaces
universally quantified variables by ground terms: it is not a mechanical rule,
because it requires to enumerate ground terms or to guess the “right” ones.
In free-variable tableaux, the y-rule replaces universally quantified variables by
free variables, also called parameters, that can be instantiated by most general
unification. Since universal quantifiers in clauses are implicit, the y-rule boils
down to extending a branch of the tableau with a fresh copy of a clause. Clause
normal form tableaux are free-variable tableaux, where y-rule and g-rule are
merged into a single rule called extension. Variables are instantiated when a
branch is closed, because it contains two unifiable complementary literals, and
their most general unifier (mgu) is applied to the tableau. In this context, the
expression rigid variables, from unification theory, refers precisely to the fact
that mgu’s apply to the whole tableau.

In natural deduction (e.g., Smullyan, 1995), rules are seen as analytic, when ap-
plied bottom-up (i.e., for problem-analysis or subgoal-reduction), and as syn-
thetic, when applied top-down (i.e., to generate consequences from premises).
If we extend this classification to theorem-proving strategies, ordering-based
strategies are synthetic, whereas subgoal-reduction strategies are analytic. The
term analytic is also used for a finer distinction: subgoal-reduction rules are
analytic if all formulae in the result of a reduction are instances of subformu-
lae of existing formulae, non-analytic otherwise. Thus, tableau-based subgoal-
reduction strategies are still analytic, whereas resolution-based subgoal-re-
duction strategies are not. We consider tableau-based strategies as analytic
subgoal-reduction strategies, and we venture to use synthetic subgoal-reduction
strategies for linear-resolution strategies. We shall see that this choice makes
sense in terms of the respective search spaces.

1.2 QOutline of contributions

1.2.1 A model of the search process for subgoal-reduction tableaux

In the first part of this paper we study the problem of modelling the search
space of analytic subgoal-reduction strategies. Consistently with much liter-
ature in artificial intelligence and theorem proving, at least since (Kowalski,
1969), we use search space for the space of data, e.g., clauses, that the strat-
egy may generate, and reserve state space for the space of all derivations. For

instance, for ordering-based strategies, a state of a derivation is a multiset
of clauses, the state space is a graph with vertices labelled by multisets of
clauses (e.g., the I-tree of (Bonacina and Hsiang, 1995)), and the search space
is a graph with vertices labelled by clauses (e.g., the marked search-graph of
(Bonacina and Hsiang, 1998b)). We will instantiate these notions for subgoal-
reduction strategies as well. Clearly, these can be considered views of the same
at different abstraction levels, with different advantages and disadvantages,
that will be discussed in the paper.

It is important to observe that modelling the search space is intertwined with
modelling the search process. This is all the more true in theorem proving,
because theorem-proving strategies modify the search space during the search.
Take again as possibly better-known example ordering-based strategies: delet-
ing a clause by contraction modifies the search space given by the graph of
all deducible clauses prior to the search. For tableau-based strategies, it is not
even possible to adopt a concept of the search space, where substitutions are
applied prior to the search (e.g., all deducible clauses as above), because sub-
stitutions are not applied locally to clauses, but globally to proof attempts.
Thus, the strategy modifies the search space even by applying substitutions.
For such reasons, one needs to model search space and search process together.

We begin in Section 2 by presenting tableau-based subgoal-reduction strate-
gies, emphasizing those notions, such as search plan, backtracking, iterative
deepening, closure, fairness, that are most relevant to modelling search. In
Section 3, we develop a modular approach that distinguishes between static
and dynamic aspects of the search. We model the former by the structure (i.e.,
vertices and hyperarcs) and the latter by the marking of a marked search-
graph. We define analytic marked search-graphs for first-order clause normal
form tableaux, including model elimination, and we give several examples
showing how this model covers the various features of the strategies. The
structure of the graph is determined by the analytic decomposition of clauses,
while the marking represents all dynamic components, including application
of substitutions to rigid variables, closures and backtracking. We establish a
correspondence between stages of a derivation and markings of the underlying
search graph, in such a way that the analytic marked search-graph associated
to a stage offers a complete and accurate picture of the corresponding state
of the search.

1.2.2 An approach to the measure of infinite search spaces

In Section 4, we move from modelling to analyzing the search process of
tableaux-based subgoal-reduction strategies. What characterizes validity as a
semi-decidable problem is that the search space is infinite. During the search,
a strategy keeps in memory a finite amount of data (e.g., a set of clauses, a

tableau, one of its branches), with the possibility of generating any other such
data that the inference rules can derive from the input. Our methodology is
to reason in terms of both the present of the search (e.g., the finite amount
of data held in memory), and its future, the infinite space of all its possible
continuations. The marking of the marked search-graph allows us to define
these concepts properly.

Since the future is infinite, the second major ingredient of our approach is a
way of finitizing it. We define a notion of dynamic path length, that reflects
not only the structure of the graph but also its marking, hence the actions
of the strategy (e.g., backtracking). Then, we define the bounded search space
within a certain distance, that is, the search space of all paths of the marked
search-graph whose length is smaller than (or equal to) the bound. In this way,
an infinite search space is reduced to an infinite succession of bounded search
spaces, which are finite and can be compared in a well-founded ordering. As a
basis for the comparison of strategies, we study how the different types of steps
that a tableau-based strategy may perform, including both inference steps and
backtracking, affect the bounded search spaces, making them smaller or larger.

1.2.8 Analysis of reqularity and folding-up

In Section 5, we consider tableau-based strategies with and without regular-
ity check and lemmatization by folding-up, and compare how their bounded
search spaces evolve during derivations from the same input problem. The
regularity check, also known as identical ancestor pruning (Astrachan and
Stickel, 1992), or equal predecessor fail (Wallace and Wrightson, 1995), ex-
cludes tableaux with repeated literals on branches. This does not necessarily
help from the point of view of proof length, since minimal closed tableaux
may not be regular (Letz et al., 1994; Letz and Stenz, 2001b), but it is con-
sidered indispensable in practice for its strong search pruning effect, that was
observed in experiments at least since (Letz et al., 1992). Here we contribute
to explain this phenomenon by showing that applying the regularity check
reduces the bounded search spaces. Such a result is relevant to comparing
eventually refinements of model elimination such as (Plaisted, 1990; Baum-
gartner and Briining, 1997; Baumgartner and Furbach, 1998), since not all of
them are compatible with regularity.

Lemmatization, or lemmaizing, was introduced with model elimination itself
(Loveland, 1969) to counter the redundancy due to repeated subgoals. The
intuition is to avoid redundant search by memorizing that certain goals have
already been solved. Let S be the input set of clauses, ¢ the selected input
goal clause, and T the set of all other clauses, i.e., S = TU{pq}. Operationally,
lemmatization consists of turning solved goals into lemmas, and adding them
to the consistent set 7', so that they can be applied to subsequent goals.

Conceptually, lemmatization is a meta-level rule, because a lemma is inferred
based on a fragment of the derivation, that adds unsupported inferences, since
lemmas are logical consequences of T" only (g and its descendants can be
considered as the set of support) (Bonacina and Hsiang, 1998a). A different
feature is static lemmatization, that consists of generating and adding lemmas
to T by, e.g., UR-resolution, before the subgoal-reduction derivation starts
(Schumann, 1994; Fuchs, 2000).

In early implementations, lemmatization did not help (Fleisig et al., 1974).
This led to investigate various techniques inspired by lemmatization, such
as C-reduction (Shostak, 1976), folding-up (Letz et al., 1994; Wallace and
Wrightson, 1995; Fuchs, 2000; Letz and Stenz, 2001b), also called backward or
regressive merging (Wallace and Wrightson, 1995), and success caching (e.g.,
Astrachan and Stickel, 1992; Letz et al., 1994; Bonacina and Hsiang, 1998a),
or success substitutions (Letz and Stenz, 2001b), that, together with other
features such as failure caching (e.g., Astrachan and Stickel, 1992; Letz et al.,
1994; Bonacina and Hsiang, 1998a), or failure substitutions (Letz and Stenz,
2001b), have contributed to the growth of Prolog-technology (Stickel, 1992)
and tableau-based theorem proving (e.g., Letz et al., 1992). While in most
cases lemma generation must be heuristically controlled in order to be helpful,
the analysis of search complexity in (Plaisted and Zhu, 1997) showed that unit
lemmaizing and caching reduce from exponential to linear the amount of dupli-
cation in the search spaces of model elimination for problems in propositional
Horn logic, and the discussion of experiments in (Astrachan and Loveland,
1997) reversed the negative judgement of (Fleisig et al., 1974). Here, we study
the limited form of lemmatization traditionally called folding-up, or, more re-
cently, context unit lemmas (Letz and Stenz, 2001b). This mechanism trades
generality for efficiency, by allowing the strategy to apply non-unit lemmas
like unit lemmas, provided they are applied in a restricted context. Then, we
prove that folding-up reduces the bounded search spaces. Nevertheless, since
the strategies under study employ backtracking, a given refinement — regu-
larity, folding-up or other — reduces the search space only if its application is
not undone. This is an intrinsic weakness of strategies that enumerate proof
attempts by backtracking, and the analysis cannot but reflect it.

1.2.4 A unified framework for representing search

While it is desirable to cover all classes of strategies eventually, in this pa-
per we study primarily tableau-based subgoal-reduction strategies based on
clausal normal form. These strategies have “come of age,” as exemplified,
for instance, by the Setheo prover (Letz et al., 1992; Goller et al., 1994;
Schumann, 2001), much like how the Otter prover (McCune, 1994) marked
the maturity of ordering-based strategies. In Section 6, we extend our model
of search to resolution-based subgoal-reduction strategies, defining synthetic

marked search-graphs for linear resolution. Section 6.3 compares analytic and
synthetic marked search-graphs. Section 6.4 compares the synthetic marked
search-graphs for linear resolution with those for ordering-based strategies
from (Bonacina and Hsiang, 1998b). Thus, we have a unified framework for
ordering-based strategies, analytic subgoal-reduction strategies and synthetic
subgoal-reduction strategies. Section 7 compares the marked search-graph ap-
proach with other ways to model search (e.g., AND-OR graphs, state space).
This leads us to discuss hybrid strategies that combine subgoal reduction and
instance generation (e.g., Billon, 1996; Bierwald and K&ufl, 1997; Baumgart-
ner, 1998; Baumgartner et al., 1999; Beckert, 2003; Giese, 2001; van Eijck,
2001). The analysis of these strategies, or those based on non-normal form
tableaux, is a direction for future work, considered with others in Section 8.

2 Analytic subgoal reduction: tableau-based strategies

2.1 Inference mechanism

We assume the usual basic notions in theorem proving, such as literal, clause,
substitution, application of substitution, unifier and most general unifier (mgu).
Let © be the given signature, and let Litg, Lo, Seq(Lite), and Te, denote, re-
spectively, the sets of literals, clauses, finite sequences of literals, and tableaux,
on signature ©. For I' = (L4, ..., L,) € Seq(Litg), we use leaf(I") to denote
L, and ancestors(I") to denote {L1, ..., L,_1}, meaning that {L;,...,L,_1}
are the ancestors of L, in I'. With a slight abuse of notation we may also
write, e.g., L; € ' for an 7, 1 < i < n. © includes the symbol Goal to be used
as a dummy literal.

Definition 2.1 (theorem-proving problem) A (subgoal-reduction) theo-
rem-proving problem is given by a set of clauses S = TU{py}, where po = Q1V
...V Q, is selected as input goal clause and rewritten as =GoalV Q1V...VQ,.

Simply put, clause normal form tableaux are trees, with nodes labelled by
literals. It is convenient to identify a branch with the sequence of literals that
labels it, and view a tableau as a multiset of sequences of literals (Baumgartner
and Furbach, 1994). As usual, a sequence I' € Seq(Litg) represents the partial
Herbrand interpretation (or, equivalently, a set of Herbrand interpretations),
that makes all instances of all literals in I" true.

Definition 2.2 (initial tableau) Given a theorem-proving problem S = TU
{¢o}, where oo = Q1 V ...V Q,, the initial tableau for S = T U {¢py}, is the
multiset X, = {(Goal, Q;)|1 <i < n}.

The two basic rules to manipulate tableaux are extension and mgu atomic
closure. We characterize them as inference rules that work on pairs (S; X),
where S is a set of clauses, and X is a tableau:

Unrestricted Extension (uFExt)

(SU{FV...VE}LXU{(L,...,Ly)})
(SU{FALV...VFEXU{(Ly,..., Ly, F)|1 <i < k})

A branch is closed if it contains two complementary literals, and open oth-
erwise. A tableau is closed if all its branches are, and open otherwise. In the
view of tableaux as multisets, closed branches are removed, so that a closed
tableau is empty (denoted by 0)). We assume that applying a substitution to
a sequence of literals means applying it to all literals in the sequence, and
applying it to a multiset of sequences means applying it to all sequences in
the multiset:

Mgu atomic closure (aClo)

(5; Xo)

LiO' = ﬂL]'O'

where 1 < 4,7 < n, and o is the mgu of L; and L;.

The weak link condition allows an extension only if it makes it possible to
close at least a branch. The strong link condition allows an extension only if
it makes it possible to close a branch with adjacent complementary literals:

FExtension with link condition

(SU{FV...VE}; XU{(L,...,L,)})
(SU{FALV...VF}E XoU{(Ly,..., Ly, F)o|l <i<k,i#m})

LjO' = _‘FmU

where 1 < m < k, o is the mgu of L; and F,, and j = n in extension
with strong link condition (sExt), while 1 < j < n, in extension with weak link
condition (wExt). Model elimination tableaux assume the strong link condition:
extension with strong link condition is called MFE-extension, while mgu atomic
closure applied to non-adjacent literals is called ME-reduction.

Factoring, also called forward merging (Wallace and Wrightson, 1995), and
usually implemented as folding-down (Goller et al., 1994; Letz and Stenz,
2001b), can be added as a refinement. Assume that the leaves of two open
branches I' and I unify (i.e., leaf(I')o = leaf(I")o), and all ancestors of

leaf(I'") are ancestors of leaf(T") (e.g., leaf(I") is a sibling of an ancestor of
leaf(T')). Then, if a closed tableau can be built under leaf(I')o, the same
closed tableau can be built under leaf(I")o. Thus, factoring closes I" and ap-
plies ¢ to the tableau:

Factoring (fClo)

(5; X U{l,1"})
(S; Xou{l'o})

leaf(T)o = leaf(I')o, ancestors(I") C ancestors(I)

where o is the mgu of leaf(I") and leaf(I").

In the rest of the paper, we consider the tableau inference systems Irap =
{wExt,aClo}, Iypr = {sExt,aClo}, and Iypr = {sExt,aClo, fClo}, and
we use I = {ext, clo} to stand for anyone of them, where ext stands for either
wFExt or sExt, and clo covers aClo or fClo.

2.2 Deriwation and refutation

Given a theorem-proving problem S = T'U {(y}, its initial tableau X, = X,
can be reduced to different tableaux in general. A depth-first search plan will
pick one to be X;, and ignore the others for the time being, proceeding next
to reduce Xi. A breadth-first search plan, on the other hand, will generate all
tableaux which X can be reduced to, before reducing any of them. Therefore,
in depth-first search, a state of a derivation features one tableau — the most
recently generated one, whereas in breadth-first search (likewise in best-first
search) a state of a derivation features a set of tableauz.

Subgoal-reduction strategies implemented in state-of-the-arts provers typically
use depth-first search, precisely because it keeps in memory only one proof
attempt at a time. Accordingly, we choose to define the notion of derivation
as a sequence of tableaux, as opposed to a sequence of sets of tableaux:

Definition 2.3 (derivation) Given a theorem-proving problem S = TU{po}
and a tableau inference system I, a derivation by I is a sequence (S; Xo)Fr...
(S; Xi) 1. .. such that Xo = X, and Vi > 0, X;11 is generated from (S;X;)
by applying a rule in I.

Definition 2.4 (refutation) A finite derivation (S;Xo)Fr...(S;Xk) is a
refutation of S by I if X} = 0.

Definition 2.5 (refutational completeness) A tableau inference system I
is refutationally complete if, whenever S =T U {py} is unsatisfiable, and T
1s satisfiable, there exists a refutation of S by I.

10

The above definitions can be easily generalized to sequences of sets of tableaux,
if needed.

2.8 Backtracking and iterative deepening

If X; # 0 and no rule in I applies to (S; X;), there is a failure. Precisely
because it develops one proof attempt at a time, depth-first search requires
backtracking to switch to another proof attempt when the current one fails,
and iterative deepening to retain completeness. For the purpose of modelling
search, we need to make the notion of derivation more concrete by adding
these features. In order to feature backtracking in the derivation, we add a
counter d, whose value is incremented, whenever an inference is performed,
and reset to the value of the stage the derivation is backtracking to, whenever
backtracking occurs:

Definition 2.6 (derivation with backtracking) Given a theorem-proving
problem S = T U {po} and a tableau inference system I, a derivation with
backtracking is a sequence (S; Xo;do)br...(S; X di)bFr. .., such that Xy =
Xy, do =0, and Vi > 0:

e cither X1 is generated from (S; X;) by applying a rule in I, and d; 1 = i+1,
® Or Xz'—i—l = Xdi—l and dz‘+1 == dz — 1.

The following example illustrates the usage of the counter d to represent back-
tracking:

Example 1 Assume that a derivation starts with five inference steps, followed
by two backtracking steps, three more inferences, and another backtracking
step. The first five steps yield the state (S; X5;5). The first backtracking step
brings us back to (S; Xy;4). However, this is stage 6 in the derivation, that is,
1 =06, X¢ = X4 and dg = 4: the i counter is increased, precisely because the
derivation is defined to include backtracking steps. The second backtracking
step takes us back to (S; X3;3) fori =7, X; = X3 and d; = 3. Notice how
it would be wrong to capture backtracking by writing X;.1 = X;_1 in Defini-
tion 2.6: such a definition would not work properly for consecutive backtracking
steps, since we would have, for instance, X; = X5! At this point the strategy
selects another inference that generates (S; Xs;8): the d counter is reset to
agree with the index i, because the strateqy is no longer backtracking. Two
more inferences lead us to (S; X10;10), and the following backtracking step to
(S, X9,9) fOTi =].1, X11 == Xg and dll =9.

If the inference system included unrestricted extension, backtracking would

not be necessary, even with a depth-first search plan, because if it is possi-
ble to extend any branch with a fresh copy of any clause, it is unnecessary to

11

undo instantiations, and therefore it is unnecessary to backtrack. However, un-
restricted extension is too non-deterministic to be practical, and tableau-based
strategies adopt an inference system with at least the weak link condition and
a depth-first search plan with backtracking.

Iterative deepening (Korf, 1985) assumes a heuristic evaluation function: back-
tracking occurs if no rule applies to the current tableau (natural failure), or
the value of the evaluation function on the current tableau is equal to the limit
(unnatural failure):

Definition 2.7 (derivation with iterative deepening) Given a problem
S =TU{po}, a tableau inference system I, a tableau evaluation function h,
an initial limit k* > 0, and an increment m > 0 for the limit, a derivation with
backtracking and iterative deepening on h is a sequence (S; Xo; do; ko) Fr. .. (S;
Xiydiski)Fr..., such that Xo = X, do =0, ko = k*, and Vi > 0:

o if h(X;) < ki, and at least a rule of I applies to X;: X;11 is generated from
(S; X)) by applying a rule in I, diyy =i+ 1, and ki = ki;

o otherwise: X;11 = Xg,—1, dis1 =d; — 1, and
“kiy1=ki, if di — 1 #0,

The last subcase covers the situation when the search returns to the initial
stage and increments the limit, because all tableaux whose heuristic value is
below the limit have been tried. Possible choices of h include number of steps,
number of extension steps, depth of the current tableau. For instance, Stickel’s
PTTP (e.g., Stickel, 1992) used IDA*, or depth-first search with iterative
deepening on an evaluation function defined, as in A*-search!, as the sum
of a cost function and a heuristic function. The cost function captures the
cost of the search effort already done, while the heuristic function estimates
the cost of the search effort to be done. In PTTP, the cost function was
the size of the current tableau, and the heuristic function was the number
of its (open) branches, since at least this number of extensions is needed.
The initial limit £* and the increment m are fixed within a derivation, but
different derivations may have different initial limit and increment. In the
next section, we shall make h, k* and m part of the search plan. This can be
generalized to let the search plan change the increment during a derivation,
based on some heuristic criterion. The property that ensures that all legal
tableaux are explored eventually is called fairness and will be defined formally
in Section 2.6.

L A*-search itself is a best-first search procedure with no iterative deepening and
no backtracking.

12

2.4 Search plan

In order to determine uniquely the derivation generated from a given input, we
need to define the notions of search plan and derivation generated by a search
plan. As a search plan makes decision based on the state of the derivation, its
definition will involve the set of all possible states, that we call States. Since
in Definition 2.7, the state of a derivation is given by a set of clauses, a tableau
and two natural numbers, we stipulate that States stand for P(Lg) x Tg X
IN x IN, where P is powerset:

Definition 2.8 (search plan) Given a tableau inference system I, a depth-
first search plan with iterative deepening and branch-selection function is a
tuple Y= <h7 k*a m, 617 Ca 62) w>; where:

e h: Tg — IN, k* > 0, and m > 0, are, respectively, the evaluation function,
the initial limit, and the increment of the limit, for iterative deepening;

e {:States — Seq(Litg) is the branch-selection function: &;((S; X;d; k)) =
e X;

e (:States x Seq(Lite) — I U {backtrack} is the rule-selection function,
which decides whether to backtrack, and returns an applicable rule r € I
otherwise:

backtrack if no rule of I applies to T’
C((S: X3 d; k), T) = or h(X) =k,
T where v € I applies to I', otherwise.

o &: States x Seq(Litg) x I — Lg X Litg x Litg x Seq(Lite) is the premise-

selection function:

(¢, F,L,1) wherey € S,F ey, LeT, L and
= F unify, if r = wExt;

(Y, F, L, 1) where € S,F €, leaf(T) and
=F unify, if r = sExt;

60((S: X2 d: k). T.r) = (L, L, L', 1) where L,L' €T, L and =L unify,
if r = aClo;

(L, L, L, T) where I € X, leaf(T) and leaf(I")
unify, ancestors(I'") C ancestors(T),
if r = fClo;

(L, L, 1, 1) otherwise.

13

o w: States — Bool is the termination-detection function:

t f X =
(S Xsd Ry = TR

false otherwise.

Searching the state space by depth-first search does not imply selecting bran-
ches in the current tableau in depth-first order; this happens under an addi-
tional hypothesis:

Definition 2.9 (depth-first branch-selection function) A branch-selec-
tion function & is a depth-first branch-selection function, if it selects the
leftmost (or rightmost) longest branch.

Definition 2.10 (tableau-based strategy) A tableau-based strategy is a
pair C = (1, %), where I is a tableau inference system, and ¥ is a depth-first
search plan with iterative deepening and branch-selection function.

Definition 2.11 (derivation generated by a strategy) Given a problem
S =TU{po} and a tableau-based strategy C = (I, X)), with ¥ = (h, k*,; m, &, (,
&,w), the derivation generated by C from S = T U {po} is the sequence
(S; XO; do; k‘o) l_C Ce (S, Xi; di; k’l) l_C ... such that XO = XQDOf do = 0, k’o = k‘*,
and Yi > 0: if w((S; Xy dis ki) = false, and & ((S; Xi;diy ki) =T, then

o if (((S;Xi;di; k), T) = r € I, X;y1 is the tableau generated by applying
r to I' and the clause, literals or branch selected by &, divy = i@+ 1, and
k’i+1 = ki;

o if C((S; Xi;dis ki), T) = backtrack, X;y1 = Xg,—1, dip1 = d; — 1, and kiyq =
ki, ifdi—1#0, kiyy =ki+m, ifd; — 1 =0.

Note how, with branch selection, natural failure occurs when no rule applies
to the selected branch.

2.5 Refinements: reqularity and lemmatization by folding-up

Regularity affects backtracking, and therefore it is a feature of the search plan:

Definition 2.12 (irregularity) A branch I' = (L,...,L,) is irregular if
L; = L;, for somei and j, 1 <i# j <n, regular, otherwise. A tableau X is
irregular if some I' € X s, regular, otherwise.

Definition 2.13 (regularity check) A search plan ¥ with rule-selection fun-
ction ¢ features the regularity check, if (((S; X; d; k),T') = backtrack whenever
X s wrregular.

14

If a sub-tableau with root L is closed without using ME-reduction or factoring,
it means that no model of T contains L, or T' = =L, and =L is a lemma. If
the sub-tableau was closed by ME-reduction steps with ancestors Aq,..., A,
of L, it means that no model of T" containing A, ..., A, also contains L, that
is, T = —-LV—-A;V...V—A,. Less frequently, if a factoring step with another
leaf B was applied to close a descendant of L, no model of T contains L and
-B,or T =-LV B.

If a unit lemma —L is generated, added to T, and subsequently applied to
extend and close a branch containing a literal L', such that Lo = L'o, no
subgoals are generated. On the other hand, extension with a non-unit lemma
=LV Ay V...V —A, would generate subgoals —A0,...,nA,o. Further-
more, once a non-unit lemma has been generated and added to T, it can
be used also to extend any A’, such that A;o0 = Ao, generating subgoals
-Lo,—~Ajo..., A _10,0A;10...,0A,0.

Folding-up avoids the explicit addition of lemmas to T, hence preserving the
subgoal-reduction character of the strategy. Lemmas are encoded within the
tableau (“folded”). If a unit lemma —L is generated, —L is attached as an
additional label to the root of the whole tableau. If a non-unit lemma —L V
—=A; V...V A, is generated, =L is attached as an additional label to the
node of label A,, if A, occupies the deepest position among the Aq,..., A,.
This encoding is consistent with reading branches as partial interpretations:
if T = —L, =L is attached to the root because it is true in all models of
T;if T = -LV-A V...V —-A,, —L is attached to the node of label A,
because it is true in all models of T" where Aq,..., A, are true. Then, the
strategy may use the additional label —L to close branches by mgu atomic
closure or ME-reduction. This amounts to restricting the application of non-
unit lemmas to a context where no subgoals need to be generated. Indeed,
assume 7' = =LV —A; V...V —A, and —L is attached to the node of label
A,: a branch I" that contains Ay,..., A,, and an L, such that Lo = L'o, can
be closed by using the additional label —L. If, instead of folding the lemma,
I' had been extended with =L V —A; V...V —A4,, the =A,..., A, would
have been closed by n closure steps with the literals Ay,..., A, in I'. Since
folding-up does not introduce a new inference rule, but an extended usage of
ME-reduction or mgu atomic closure, we treat it as a feature of the search
plan.

2.6 Closure and fairness

In order to define the search space of a theorem-proving strategy C = (I, %)
on an input problem S, one needs to define the domain of all the data that
I can derive from S. This concept is traditionally called deductive closure,

15

and is obtained as a fixed point of an operator on sets induced by I. For
instance, assume an ordering-based strategy with an inference system I made
only of expansion rules, e.g., ordered resolution: then one defines the operator
I(S) = SU{f(X)| X CS,f eI}, and the closure of S with respect to I
is the fixed point S* = Ugso I*(S), where I°(S) = S and I*(S) = I(I*71(9))
(e.g., Bonacina and Hsiang, 1998b). For instance, for ordered resolution, the
closure contains all ordered resolvents. Such an operator is monotonic (A C B
implies I(A) C I(B)) and increasing (A C I(A), e.g., page 54 of (Winskel,
1994)).

This definition of I is not sufficient if the strategy features contraction, because
deletions jeopardize both monotonicity and increasingness. The approach of
(Leitsch, 1997) handles deletions by subsumption by a notion of “replace-
ment sequences” in the closure (Def. 4.2.10 page 174). That of (Bonacina and
Hsiang, 1998b) treats contraction in general, including both subsumption and
equational simplification, by extending I to include also clauses generated
by contraction, e.g, equational simplification, and handling deletions in the
marked search-graph.

For subgoal-reduction strategies, the notion of closure needs to be different,
because subgoal reduction does not produce the closure of a set of clauses
with respect to an inference system, but rather of a goal with respect to an
inference system and a set of input clauses. The operator associated to a
tableau inference system, given a set S of clauses and a set M of tableaux,
produces the set of tableaux derivable from those in M by using the rules in
I and the clauses in S:

Definition 2.14 (operator induced by inference system) A tableau in-
ference system I induces the operator I: P(Leg) x P(Te) — P(Te) such that,

for any set of clauses S and set of tableaux M, 1(S, M) ={X | X is generated
by applying some f € I to some X' € M and possibly some ¢ € S}.

Then, the closure yields the set of all tableaux that can be generated:

Definition 2.15 (deductive closure) Given a theorem-proving problem S =
T U{po} and a tableau inference system I, the deductive closure of po w.r.t.
I and S is the set T*(S, 1, ¢o) = Ur>o 1(8,{X,,}), where I°(S, M) = M and
I¥(S, M) = I(S, I*Y(S, M)) for all k > 1.

The notion of closure allows us to define fairness:

Definition 2.16 (fairness) A derivation (S; Xo)tFc...(S;X;)Fo. .. is fair
if and only if either it is a refutation, orVi >0,V regular X € 1(S,{X;}), 3j
such that X; = X. (If C does not feature the reqularity check, the word “reg-
ular” is dropped.) A search plan is fair if all the derivations that it generates
are.

16

Fairness ensures that all legal tableaux will be considered eventually.

Definition 2.17 (completeness) A tableau-based strategy C = (I,%) is
complete if I is refutationally complete and X is fair.

Note how I is monotonic in its second argument (M; C M, implies I (S, M) C
I(S,Ms)), but not increasing (M ¢ I(S,M)). In model elimination and
tableau-based strategies, at level k of the construction of the closure, I needs
to add only data that can be derived from data generated at level k—1. There-
fore, I does not need to be increasing. On the other hand, for ordering-based
strategies, the operator I needs to be increasing, in order to add at level k
also clauses derivable from a premise generated at level £k — 1 and a premise
generated at any level 0,...k — 2.

3 A model of search for tableau-based strategies

In this section we introduce the marked search-graphs for tableau-based strate-
gies. In order to distinguish them from those for ordering-based strategies, we
call them analytic (marked) search-graphs, and use synthetic (marked) search-
graphs for those from (Bonacina and Hsiang, 1998b).

3.1 Analytic search-graphs

Since a tableau inference system works by decomposing clauses into literals,
we represent its search space as a hypergraph, with vertices labelled by literals,
and hyperarcs for all the extensions in the deductive closure. We give first an
abstract notion of analytic search-graph and then we define the analytic search-
graph induced by a tableau inference system for a theorem-proving problem.

Definition 3.1 (analytic search-graph) An analytic search-graph is a hy-
pergraph (V, E, vg, 1), where V is the set of vertices, E is the set of hyperarcs,
vg € V' is the root, and l:' V — Litg is a vertez-labelling function from vertices
to literals.

Definition 3.2 (induced analytic search-graph) Given a theorem-proving
problem S =T U{po}, and a tableau inference system I, the analytic search-

graph induced by I for S, denoted G(S,I,¢y), is the analytic search-graph

(V, E,vg,1) that satisfies the following properties:

e [(vy) = Goal, and
e V and E are the smallest sets such that: for all tableauz X, X' € T*(S, I, o),
if X' can be generated from (S; X), by applying an extension inference rule

17

inI to somep=F V...VF, €S andl =(Lq,...,L,) € X, V contains
vertices v, uy, . .., ug, such that l(v) = Ly, l(u;) = F; for 1 <j <k, and E
contains a hyperarc e = (v;uy, ..., uy).

For e = (vjuy,...,u), root(e) = v and children(e) = {uy,...,ux}. Since
G(S, I, o) has a hyperarc if an extension applies, link conditions on the ex-
tension rule in I affect the structure of G(S, I,), as the next example shows:

Example 2 Assume S = {-PV —-Q,Q V B,Q V —-P,—~B V R} with ¢y =
=PV =Q. Figure 1 shows two fragments of G(S, Iyer, vo) (strong link con-
dition) and G(S, Itap, po) (weak link condition) on the left and on the right,
respectively. G(S, Itap, po) includes additional arcs such as a and b, closing

Goal Goal

A LA
A AN
Al AN

-B R
Fig. 1. Fragments of analytic search-graph with strong and weak link condition,
respectively.

branches with non-adjacent complementary literals QQ and —(Q).

G(S, 1, pg) contains the structure of all possible tableaux starting with ¢q, but
does not account for the dynamics of the search, namely most general unifiers,
closure steps and backtracking. In the next section we shall define a marking for
analytic search-graphs, such that the analytic marked search-graph captures
these aspects as well.

3.2 Analytic marked search-graphs

Unlike in synthetic strategies, where unifiers apply locally, and the search
graph contains the resolvents prior to the search process, in analytic strategies
unifiers apply globally, so that their application is part of the search process.
The following example illustrates this difference:

Example 3 Assume S = {P(a), 7 P(z)V-Q(x), P(b),Q(b)} and py = - P(x)
V=Q(x). Figure 2 shows the synthetic search-graph for resolution, on the left,
and G(S,1,¢0), on the right. On the left, the substitutions {z «— a} and
{z « b} are applied to the resolvents =Q(a) and —Q(b), which label distinct

18

P@ -PMor-Qx) Pb) Qb /K
Q@) -Q(b) /P(b) : /—P(x)\ -Q(x)\
O | P@ PO) Q)

Fig. 2. Synthetic and analytic search-graphs.

vertices. In G(S,1,pq), the vertices labelled by —P(x) and —-Q(x) cannot be
istantiated prior to the search, because the same vertexr cannot be labelled
simultaneously with, e.g., =P(a) and =P (b). The search spaces of synthetic
and analytic strategies need to be represented in different ways.

Thus, the first component of the marking of an analytic search-graph will be
a substitution:

Definition 3.3 (marking substitution) A marking substitution for an an-
alytic search-graph (V, E, vg, 1), with I:V — Lite, is a substitution on signa-
ture ©.

Once a substitution is associated to an analytic search-graph, only one active
proof attempt can be represented:

Example 4 Reconsider Example 3 and Figure 2: the synthetic marked search-
graph allows us to simulate a depth-first derivation that generates —=Q(a), fails,
backtracks, generates —=Q(b), and then the empty clause, as well as a breadth-
first derivation that generates —Q(a), —Q(b), ~P(b), and the empty clause,
keeping in memory both proof attempts and doing no backtracking. This is im-
possible in the analytic marked search-graph, because it is either {x <« a} or
{z < b}. An analytic strategy with a breadth-first search plan would gener-
ate and keep multiple tableauz, hence it would need multiple markings of the
analytic search-graph.

To model closure steps, we define first ancestor-paths and then path-marking
functions:

Definition 3.4 (ancestor-path) Given an analytic search-graph G = (V, E,
vo, 1), and a vertex v € V', an ancestor-path of v is a sequence of vertices
P = (vo,...,v,), such that Vi, 0 < i < n — 1, Je € E with root(e) = v;
and viy1 € children(e), and v, = v. Such an e contributes to P, writ-
ten as e €. P. AP(QG) denotes the set of ancestor-paths in G. For P,P' €
AP(G), P is a prefix of P', written as P <, P', if P = (vo,...,v,) and
P = (vg,...,0n,Vps1,...,0n) for vertices vpy1, ..., 0y and m > n. We write

19

P'>, P, if P <, P.

Definition 3.5 (path-marking function) Given an analytic search-graph
G = (V, E, vy, 1), a path-marking function is a function b: AP(G) — {open, clo-
sed}, such that for all P,P" € AP(G), if b(P) = closed and P <, P', then
b(P") = closed.

After substitutions and closures, the third dynamic component is backtracking:
in the presence of backtracking, modelling a state of the search requires to
capture which proof attempt is being pursued, and which have been tried and
undone. For this purpose we use a hyperarc-marking function:

Definition 3.6 (hyperarc-marking function) Given an analytic search-
graph (V, E,vg, 1), a hyperarc-marking function is a function c: E — {—1,0, 1}.

We shall see that c(e) = 1, if e was executed, and therefore is included in the
active proof attempt, c(e) = —1, if e was executed and undone, and c(e) = 0
otherwise.

Lemmatization by folding-up is also part of the dynamics of the search, and in
order to model it, we add to the marking a function sl, which labels vertices
with sets of literals, that will be interpreted as folded-up literals. Clearly, when
we model a strategy that does not feature folding-up, sl(v) = () for all vertices,
so that it can be ignored. We now have all ingredients to define a marking,
and hence an analytic marked search-graph:

Definition 3.7 (analytic marking) Given an analytic search-graph (V, E,
vo,) with I:V — Litg, an analytic marking is a tuple (0,b,c,sl), where o
1s a marking substitution, b a path-marking function, ¢ a hyperarc-marking
function, and sl a second vertex-labelling function sl: V — P(Litg).

Definition 3.8 (analytic marked search-graph) An analytic marked sear-
ch-graph is a tuple (V, E, vy, 1, 0,0, ¢, sl), where (V, E, vy, 1) is an analytic search-
graph, and (o,b,c, sl) is an analytic marking.

In the next section, we shall define the analytic marked search-graph induced
by a derivation.

3.3 Modelling the search generated by a derivation

An analytic marked search-graph (V, E,vg,1,0,b, ¢, sl), where (V, E, v, 1) is
G(S, 1, o), for some S, I, and g, represents a state of the search for a refu-
tation of S by [starting from ¢q. In this section we make this notion pre-
cise by defining the analytic marked search-graph corresponding to a state

20

of a derivation. Thus, a derivation will yield a succession of analytic marked
search-graphs, that represents the search process.

Given a marking, a hyperarc can be selected if its root has not been extended
otherwise, and its extension step applies under the marking substitution:

Definition 3.9 (label of ancestor-path) Given an analytic marked search-
graph G = (V, E vy, l,0,b,¢,sl), for all P = (vg,v1,...,v,) € AP(G), let
labelg(P) = (Goal, l(vy), ..., l(v,))o = (Goal, l(vy)o, ..., l(v,)0).

Definition 3.10 (enabled hyperarc) Given an analytic marked search-gra-
ph G = (V,E, vy, l,0,b,¢,sl), a hyperarc e = (v;uy...,u,) € E, under ance-
stor-path P = (vg,...,v) € AP(G), is enabled, if for all a € E, such that
root(a) =v and a # e, c(a) # 1, and the inference of e applies to labelg(P).

The second requirement is due to the link condition and makes the status of
a hyperarc dependent on the marking substitution, as the following example
shows. If an enabled hyperarc is no longer such, we write that it is “disabled:”

Example 5 Let [= Iypr and S = {P(x) V Q(z,2) V C(2),~P(f(u)) Vv
C(f(u)), ~P(y)V E(y),~Q(d, d), ...}, where gy = P(x) v Q(x,)V C(2), and
d is a constant. In Figure 3, 0 = ¢ (the emply substitution), all hyperarcs are
enabled, and all paths are open: when hyperarc e is fired, the only change is that

Goal

P(x)/}f\ c@)
Qx2)
a b N

-P(f(u)) C(f(u)) -Ply) E(y) -Q(d.Jd)

Fig. 3. Initial marking of a fragment of analytic marked search-graph.

c(e) becomes 1. If hyperarc a is selected next, the marking has o = {x — f(u)}
and c(a) = 1, the leftmost ancestor-path becomes closed, and hyperarcs b and g
are disabled: hyperarc b is disabled, because P(x) has been extended in another
way; hyperarc g is disabled, because Q(x,z)o = Q(f(u),z) and Q(d,d) do not
unify, so that ME-extension does not apply. Note how o affects at each step
the appropriate variables, because each clause has its own variables: if hyperarc
b were selected instead of a, it would be 0 = {y «— x} (the substitution may
be simply a variable renaming), ¢(b) = 1, the third ancestor-path from the left
would be closed, a would be disabled, but g would not be, because Q(x,z)o =

Q(z,2) and Q(d,d) unify.
In the propositional case, the static structure of the graph is sufficient to

capture the impact of a link condition (e.g., Example 2). In the first-order
case, the applicability of an extension step depends on the substitution, which

21

belongs to the marking; therefore, a link condition affects both the structure
of the graph and the dynamic status (enabled or not) of its hyperarcs. The
strong link condition may disable more arcs than the weak link condition, and
no hyperarc would become disabled because of the substitution if there were
no link condition.

By adding to the marking the counter d; of Definition 2.11, we have now all
the elements to define the succession of markings induced by a derivation:

Definition 3.11 (analytic marked search-graphs: induced succession)
Let S = T U{po} be a theorem-proving problem, C =< 1,3 > a tableau-
based strateqy with search plan ¥ = (h,k*,m,&,(, &,w), and G(S,I,¢) =
(V, E, vy, 1) the analytic search-graph induced by I for S. The derivation gen-
erated by C from S = T U {po} induces the succession of analytic marked
search-graphs {G; = (V, E,vo,l,04,b;, ¢, 8l;,d;) }iso defined as follows. Ini-
tially, og = €, bo(P) = open for all ancestor-paths P € AP(G(S,I, o)),
co(a) = 0 for all hyperarcs a € E, sly(v) = O for all vertices v € V, and
dy = 0. Then, for all stages i > 0:

(1) Assume & selects ', ¢ selects wExt and & returns (1, Fy,, L, L), where
v=FV..VF, 1<m<k, and 0 is the mgu of L and —F,,. Similarly,
assume & selects I' € X, (selects sExt and & returns (¢, F,,, L, 1),
where Y = F1V ...V F, 1 <m <k, and 0 is the mgu of leaf(T') and
—F,,. In either case, let P = (vo,...,v) be the ancestor-path such that
labelg,(P") =T, let e = (v;uy,...,ux) be the enabled hyperarc under P’
such that l(u;) = F;, for 1 < j <k, and let P* = (vg, ..., v, Uy). Then:
Oiy1 = 0; 00,

closed if P = P~, 1 ifa=e,
bi_,_l(P) = Ci+1(a> =

b;(P) otherwise, ¢i(a) otherwise,

and d;y1 =1+ 1. Furthermore:
(a) If no lemma is derived, then sl = sl;.
(b) If a unit lemma —L is derived by closing P*:

sli(v) U{=L} if v = v,
sliv1(v) =
sl;(v) otherwise.

(¢) If a non-unit lemma ~LV —A; V...V A, is derived by closing P*:

sl(v) U{=L} if [;(v) = A,,

sl;(v) otherwise,

sliv1(v) =

where A,, is the deepest among the A, ..., A,.

22

(2) Assume&; selectsT' = (Lq, ..., Ly), ¢ selects aClo, & returns (L, Lj, L,, L
), 1 < j,q <n, and 0 is the mgu of L; and —L,. Similarly, assume &
selects T, ¢ selects fClo, & returns (L, L, L.T"), and 0 is the mgu of
leaf(T) and leaf(I'). In either case, let P* be the ancestor-path such
that labelg,(P*) =T. Then: 0,01 = 0,00, ¢c;y1 = ¢, diyg =i+ 1, and

closed if P = P*,
b;(P) otherwise.

bi+1(P) =

Furthermore, sl;1 is defined as in Case 1.
(3) If ¥ backtracks undoing an extension step represented by hyperarc e:

-1 ifa=ce,
ciri(a) =
c¢i(a) otherwise.

If ¥ backtracks undoing a closure, c;41 = cq,—1. For the other components,
di+1 = dl — 1, Oi+1 = 04d;—1, bi-i-l = bdi—l; and Sli+1 = Sldi—l regardless.

In Case 1, ¥ may select a hyperarc that was never tried before, whose marking
goes from 0 to 1, or one that was tried and undone, and in such a case its
marking goes from —1 to 1. Indeed, during a derivation, the strategy may
re-consider steps that were undone in a different state of the search.

In summary, each stage (S; X;;d;) of a derivation has its associated analytic
marked search-graph G; = (V, E,vg, 1, 04, b;, ¢;, sl;, d;), where the hyperarcs
with positive marking are in the current proof attempt (X;), and those with
non-zero marking constitute the portion of the search space visited by the
strategy:

Definition 3.12 (active search space) Given an analytic marked search-
graph G = (V, E, vy, 1,0, b, c, sl), the active search space is the analytic marked
search-graph Gt = (Vt ET v, 1T, 07,07, ¢t slT), where EY = {a | a €
E, c(a) = 1}, V't C V is the subset of vertices touched by arcs in E™, and
[T, 0%, 0", ct, slt are the appropriate restrictions of I, 0,b, ¢, sl to V' and E*.

Definition 3.13 (visited search space) Given an analytic marked search-
graph G = (V, E, v, 1, 0,b, ¢, sl), the visited search space is the analytic marked
search-graph G* = (V*, E* vy, I*, 0%, 0%, ¢*, sl*), where E* = {a | a € E, c(a) #
0}, V* C V is the subset of vertices touched by arcs in E*, and l*,0*,b*, c*, sl*
are the appropriate restrictions of l,0,b,c, sl to V* and E*.

For instance, if hyperarc e is fired at the i-th step, ¢;(¢) = 1 and e becomes
part of G and Gj; if ¢;(e) = —1 for some j > i because of backtracking,
e is not in Gj but still in G7. Thus, G} is the search space explored up to

23

stage i, which contains both the current tableau and those that were tried
and undone.

The following two examples illustrate how the analytic marked search-graph
models various features, e.g., backtracking and factoring in Example 6, and
ME-reduction and lemmatization in Example 7.

Example 6 Let S = {—-Q(z)V—P(z,y),Q(b)V-P(b, f(b)),Q(k)V-P(k, k),
P(k,k)}, where b and k are constants, with I = Iypr and ¢y = —Q(z) V
—P(x,y). Figure 4 shows on the left the initial state of the analytic marked
search-graph, where oy = €, all hyperarcs are enabled, and all ancestor-paths
are open: assume that hyperarcs e and then a are exvecuted as the first two

Goal Goal

Q(X) -P(xy) Q(X) -P(x.y)

A ARk

Q(b) F’(bf(b)) Q(k) -P(kK) P(kk). Q(b) P(bf(lo)) Q(k) -P(kk) P(kk)

open open open pen closed closed closed

Fig. 4. Initial and final marking of G(S, I, pg) for Example 6.

steps of the derivation: o9 = {x < b}, ca(e) = ca(a) =1, dy = 2, the leftmost
ancestor-path becomes closed, and hyperarcs h and g are disabled, because they
are not compatible with {x < b}. Next, a factoring step on literals ~P(b, f(b))
and = P(z,y){x < b} closes also the ancestor-path with leaf —P(b, f(b)), and
o3 = {z «— by «— f(b)} with d3 = 3. At this point, however, nothing else
can be done, and the strateqy backtracks. First, it undoes the factoring step, so
that dy = 2, 04 = 09 = {x <« b}, and the ancestor-path with leaf =P (b, f(b))
1s reopened. Then, it undoes the extension step of hyperarc a, so that ds = 1
o5 =01 = ¢, c5(a) = —1, and hyperarcs h and g are enabled again. After this,
the strategy fires hyperarc h, so that o6 = {x <« k}, cg(h) = 1, the ancestor-
path terminating with Q(k) is closed, a is disabled and dg = 6. The next step
is a factoring inference that merges =P (k, k) with =P(x,y)os = —~P(k,y), so
that o7 = {x « k,y < k}, the ancestor-path terminating with =P (k, k) is also
closed and d; = 7. The deriwation ends with the extension step of hyperarc g
that closes the rightmost ancestor-path. The picture on the right in Figure 4
shows the final marking, where the closed tableau is made of the arcs marked

1.

1) L(z,a) V L(z,b) V =L(z,y); (C2) Lz, f(z)) v
ﬂ;(a); (Ca) ~L(z,a)V =P(x,b); (C5) Plx,y)V

Example 7 Let S = {(C
)V
M(a); (C7) M(b); (vo) ~L(c,a)}, where a, b and ¢

—P(z,2); (C3) =L(x,b
~M(y) vV L(z,y); (Cs)

24

are constants, with I = Iypr and g = —L(c,a). Figure 5 shows the marking
produced by the following steps, where variables have been renamed only when
necessary to keep things simple:

(1) hyperarc e0 with ¢,

(2) hyperarc el (clause Cy) with {x «— c},

(3) hyperarc €2 (clause C3) with {x «— c},

(4) hyperarc e3 (variant of clause C5) with {x — c,w «— a},

(5) hyperarc e4 (clause Cg) with the substitution unchanged,

(6) closure of the third leaf of 3 (L(z,w){x «— c,w «— a} = L(c,a)) by
ME-reduction with ¢o = —L(c,a).

At this point, the subtableau with root —=P(z,a){x «— ¢, w < a} is closed, and
the lemma P(c,a) V L(c,a) is folded-up: this is represented by the marking
{P(c,a)} for the node with label ~L(c,a) (which happens to be g). The third
leaf of el can be extended in a few ways: assume that the strategy applies
clause Cy and fires arc €5 in Figure 5 with substitution {x «— c,w «— a,y «—
f(c)}. Then, the second leaf of €5 (=P(z,z){x «— c,w «— a,y «— f(c)} =
—P(c,z)) can be closed by an ME-reduction step with the folded-up literal
{P(c,a)} from lemma P(c,a)V L(c,a), yielding the final substitution {x «—
c,w — a,y «— f(¢),z «— a}. In Figure 5 hyperarcs marked 1 and closed
ancestor-paths identify the closed tableau, while hyperarcs with null marking
(e6 with a variant of clause Cy and €7 with a variant of clause C5) show some
alternatives. Other alternatives (e.g., under closed nodes) are not displayed
for simplicity.
Goadl
N
-L(c,a) {P(c.a)}

L(xm &7 POXOY0)
closed -M(y0)

L(x,b) L(x,y) L(x0,y0)

&2 S
L(x,b) €6

closed Pxa) L(xLa) L(xib -*LyD Lox00) -P(x.2)
clc;sed closed
/ A
P(x,w) -M(w) L(x,w)
closed 1 closed
e4
M(a)
closed

Fig. 5. Final marking of part of G(S,I,¢g) for Example 7.

25

4 Analysis of tableau-based subgoal-reduction strategies

4.1 Bounded search spaces

In order to finitize and compare search spaces, we define bounded search spaces,
meaning the portion of the search space within a certain bound. Thus, we need
to find a quantity that can be bounded. We resort to ancestor-paths, because
they are finite, even if the analytic search-graph is infinite, as they are defined
by taking a vertex in the graph and “looking back” from that vertex:

Definition 4.1 (length of ancestor-path) Given an analytic marked sear-
ch-graph G = (V, E, vy, l,0,¢,b,sl), for all ancestor-paths P € AP(G), the
length of P in G is defined as

%) ifdJae F, ae, P, cla)=—1,
leng(P) = / (a)
| {a | a€E, ae.P} | otherwise.

The length is infinite, if a hyperarc in the ancestor-path has negative marking
because of backtracking. Thus, infinite length captures the fact that hyper-
arcs below one undone by backtracking are excluded from consideration in the
current state of the search. If the hyperarc failed naturally, either it has no
descendants, or all its descendants already have negative marking; if the hy-
perarc failed unnaturally, its descendants have null marking but are ignored.
If an undone hyperarc is re-considered by the strategy, its marking becomes
positive and the length of the relevant ancestor-paths will be finite again.

Since tableau-based strategies work by generating and discarding interpreta-
tions, we define bounded search spaces as multisets of partial interpretations.
They are multisets, because a sequence of literals may label multiple ancestor-
paths:

Definition 4.2 (bounded search space) Given an analytic marked search-
graph G = (V, E, vy, 1, 0,b, ¢, sl), for all j > 0, the bounded search space within
length j is the multiset of sequences of literals

space(G,j) = > mulg(l,j)-T

T'eSeq(Lite)
where a multiset s written as a polynomaial, with the multiplicities as co-

efficients, and mulg(I',j) = {P | P € AP(G), labelg(P) = T, b(P) =
open, 0 <leng(P) < j}|.

26

Thus, space(G, j) contains all sequences of literals labelling open ancestor-
paths within length j. It is safe to let I" range in Seq(Litg), because mulg(T, j)
= 0 for all j, if there is no P € AP(G) such that labelg(P) =T. If ¢(e) = 1
for all e €. P, labelg(P) is a branch in the current tableau. For a sufficiently
deep j, space(@G, j) includes the open branches of the current tableau, and
all their possible continuations down to depth j, as well as the branches of
all other possible tableaux, whose hyperarcs are currently disabled, because
other steps have been selected, but could become enabled again upon back-
tracking. Ancestor-paths that have been already successfully closed or undone
by backtracking are excluded, because they are not part of the search space
to be considered under the current marking.

Intuitively, while G represents the present and G the present and past of
the search, space(Gj, j) represents its present and future? within distance j.
The “future” means the unexplored space of all future possibilities, which is
infinite in general. In order to capture it finitely, we define bounded search
spaces, and consider the succession {space(G;, j)}jo.

4.2 Analysis of the impact of derivation steps on the bounded search spaces

We begin our analysis by studying how the cardinality of the bounded search
spaces varies with the inference steps of a derivation®. As a preliminary re-
mark, we note that AP(G;) = AP(G,41) for all stages ¢ of a derivation, since
no step modifies the structure of the analytic marked search-graph. The first
theorem shows that a closure makes the bounded search spaces smaller for all
bounds deep enough to include the ancestor-path being closed. This matches
the intuition that a closure represents a partial success that leaves a smaller
search space for consideration:

Theorem 1 If (S;; Xi;d;) Fr(Sit1; Xiv1;div1) is a closure step, then ¥j >
0, [space(Git1,)| < |space(Gy,j)|, and In > 0, Vj > n, |space(Git1,)| <
|space(Gi, j)I.

Proof: let P* be the ancestor-path being closed, with leng, (P*) = n, and 6 the
substitution applied with the closure. First we show that the application of the
substitution does not affect the cardinalities of the bounded search spaces, so
that we need to consider only the effect of the closure. Let P be any ancestor-
path such that b;(P) = b;41(P) = open, and let labelg,(P) = I'. If ' # T'0,
i.e., labelg,(P) # labelg,,, (P), the multiplicity of I decreases by one, and that
of I'f increases also by one, so that altogether there is no change. The only

2 Note however that space(G;, j) does not count closed ancestor-paths, whereas Gj
includes them.
3 Here and in the following cardinality means multiset cardinality.

27

effect of the step is to close and exclude from the bounded search spaces deep
enough to contain them (i.e., for all 7 > n) all P’s such that P >, P*. Thus,
the thesis holds. O

On the other hand, when a closure is undone upon backtracking, the reduction
of the bounded search spaces that it had caused is also undone:

Theorem 2 If (S;; X;;d;) Fr(Sit1; Xiv1; div1) is a backtracking step undoing
a closure, then ¥j > 0, |space(Giy1,7)| > |space(Gi,)| and In > 0, Vj >
n, |space(Git1,j)| > [space(Gy, j)|.

Proof: by the same reasoning of the proof of Theorem 1 applied in the opposite
direction. O

Theorems 1 and 2 cover mgu atomic closure, and hence MFE-reduction, in-
cluding steps that apply a folded-up lemma, and factoring. We consider next
extension with link condition, either weak or strong:

Theorem 3 Let (S;; Xi;d;) Fr(Siv1; Xit1; div1) be an extension with link con-
dition and e the executed hyperarc.

(1) Ifeis executed for the first time, then¥j > 0, |space(Gii1,7)| < |space(G;,
M, and 3n> 0, ¥j > n, |space(Giar,)| < |space(Gs,)]

(2) Otherwise, Vj > 0, |space(Giy1,7)| > |space(Gy, 5)|, where equality holds
if e is extension by a unit clause.

Proof: let P = (v,...,v) be the ancestor-path being extended and P* =
(vo, . . ., v, ") the ancestor-path being closed. Thus, root(e) = v,v" € children(e)
and e €. P*. Let leng,(P) = n — 1 and leng,(P*) = n.

In Case 1, we have ¢;(e) = 0 and ¢;41(e) = 1. This change of marking has no
effect on the bounded search spaces, and the thesis follows from the proof of
Theorem 1 for the closure.

In Case 2, the strategy re-considers e after having executed it and undone
it at previous stages. Thus, it is ¢;(¢) = —1 and c¢;41(e) = 1. Let A =
{Q|Q € AP(Gi)) N e €. QN (Va €. Q a # e = ¢i(a) # —1)}. Re-
call that c¢;y1(a) = ¢i(a) for all a # e. A is the set of all and only the
ancestor-paths @) such that leng, (Q) = oo precisely because ¢;(e) = —1. Since
citi1(e) =1, leng,,,(Q) # oo and the ancestor-paths in A get reinstated. Let
B={Q | Qe AP(G)N Q >, PPN Vae.Qa#e= c¢la) #—-1)}. B
contains the relevant ancestor-paths that get closed by closing P*. Whether
for A or B, it is irrelevant to consider a) such that ¢;11(a) = ¢;(a) = —1
for some a €. @), a # e, because such a @ is excluded from both space(G;,)
and space(G,41, j) regardless of e. Since e €. P*, () >, P* implies e €, Q,
and B C A. If e is an extension with a unit clause, e = (v;v’), B = A and
Vi >0, |space(Giy1,7)| = |space(Gy, j)|. If e is an extension with a non-unit

28

clause, e = (v;uq,...,ug), v = u,, for some m, 1 < m < k, B C A, and
it cannot be B = A, because A — B contains at least the ancestor-paths in
the form (vg,...,v,u;), for 1 <i # m < k. Then Vj < n, |space(Git1,])| =
|space(Gy, j)|, and Vj > n, |space(Git1,7)| > |space(G;, 7). a

This theorem shows that when an extension with link condition is applied for
the first time, the extension itself is neutral, and the overall effect is that of the
associated closure (Case 1). On the other hand (Case 2), if an extension with
a non-unit clause, that was formerly undone by backtracking, is executed, the
bounded search spaces may grow, as ancestor-paths that had been excluded
are included again. Thus, an extension with link condition does not necessarily
enlarge or reduce the bounded search spaces. However, we find that such a
result can be obtained for undoing an extension with link condition, because all
ancestor-paths that are re-opened, by undoing the closure, get infinite distance
and therefore remain excluded:

Theorem 4 If (S;; Xi; d;) Fr(Siv1; Xiv1;div1) undoes an extension step with
link condition, then ¥j > 0, |space(Giy1,7)| < |space(G;, j)| and, if the clause
of the extension step is not a unit clause, In > 0, Vj > n, |space(G,i1,7)| <
|space(Gi, j)|-

Proof: let e be the undone hyperarc, P = (v, ..., v) the ancestor-path whose
extension is being undone, and P* = (vy,...,v,v') the ancestor-path whose
closure is being undone. Thus, root(e) = v, v’ € children(e) and e €, P*. Let
leng,(P) =n — 1 and leng,(P*) = n.

We have ¢;(e) = 1 and ¢;11(e) = —1. Let A = {Q | Q@ € AP(G;) N e &,
QN (Va €. Qa+#e= ci(a)# —1)}. Recall that ¢;11(a) = ¢;(a) for all a # e.
A is the set of all and only the ancestor-paths @ such that leng,(Q) # oo
and leng,,,(Q) = oo, precisely because ¢;y1(e) = —1. Let B = {Q | Q €
APGH)N Q >, PPN (Va €. Q a # e = c¢ia) # —1)}. B contains the
relevant ancestor-paths that get reopened by reopening P*. Whether for A
or B, it is irrelevant to consider a @ such that ¢;;1(a) = ¢;(a) = —1 for
some a €. (), a # e, because such a @ is excluded from both space(G;, j)
and space(G,y1,j) regardless of e. Since e €. P*, () >, P* implies e €, Q,
and B C A. If e is an extension with a unit clause, e = (v;v’), B = A and
Vi >0, |space(Giy1,7)| = |space(Gy, j)|. If e is an extension with a non-unit
clause, e = (v;uy,...,ug), v = u,y for some m, 1 < m < k, B C A, and
it cannot be B = A, because A — B contains at least the ancestor-paths in
the form (vg,...,v,u;), for 1 < i # m < k. Then Vj > 0, |space(Gy1,7)| <
|space(G;, j)| and V5 > n, |space(Gii1,j)| < |space(Gi, 7). O

Theorems 1, 2 and 3 imply that the bounded search spaces of a tableau-based
strategy are non-monotonic during a derivation, because of backtracking. This
result is mitigated by the fact that when undoing a step that combines exten-

29

sion and closure, the bounded search spaces do not grow and some become
smaller, because the reduction due to undoing the extension dominates over
the growth due to undoing the closure (Theorem 4). Thus, undoing closures
(e.g., ME-reduction) appears “more serious” than undoing extensions with
closure (e.g., ME-extension). Informally, one can think of extension steps as
developing the subgoal reduction, while closure steps are those that “wrap up”
the proof by propagating constraints through unification. When the strategy
extends a branch while closing one of its children, the closure is a consequence
of a restriction on extension (the link condition), and the main content of the
step is still a subgoal reduction. Then, intuitively, the failure of a closure could
be more serious because it would represent the failure of a more advanced at-
tempt to complete the proof. In the next section we apply these results to
measure the impact of reqularity and lemmatization by folding-up.

5 Comparison of tableau-based strategies

We compare the bounded search spaces of a strategy with pruning by regu-
larity, and lemmatization by folding-up, respectively, with those of one with-
out these features. Let C; = (I,%;) and Cy = ([,3,) be two strategies
with the same inference system I (either Ip4p = {wExt, aClo} or Iypr =
{sExt,aClo} or Iypr = {sExt,aClo, fClo}), and fair search plans ¥; and
Y. In the following, (S; X}; d}) and (S; X?; d?) denote the states of the deriva-
tions by C; and C,, respectively, applied to the same input problem S =
T U{¢o}, and G} and G? their associated analytic marked search-graphs, re-

spectively. Since the two strategies have the same inference system, G} = G2.

5.1 Regularity

An ancestor-path P in marked search-graph G is irregular if labelg(P) is
(see Definitions 2.12 and 3.9). Let ¥; and X, differ only in one respect: ¥y
features the regularity check, whereas ¥; does not (see Definition 2.13). Let
r be the first stage of the derivations where an irregularity arises. That is,
the two strategies execute the same steps up to stage r. At stage » — 1, both
strategies execute a step, either a closure or an extension with link condition,
that applies some substitution ¢ and closes some ancestor-path P, in such a
way that some other ancestor-path P* becomes irregular, so that X! = X2 is
irregular. Then, ¥; ignores the irregularity and proceeds as usual, whereas Y
undoes the step made to go from X2 | to X2. If that step was a closure, either
there is a different closure step, with a different substitution, that allows X9
to close P, or else Y5 will have to backtrack the latest extension step with link
condition that contributed to determining labelgz(P). If the step from X2 ; to

30

X2 that closed P was an extension with link condition, then that is precisely
the latest extension step that contributed to determining labelg: (P). Either
case, the following theorem applies:

Theorem 5 If the reqularity check induces o to backtrack an extension step
with link condition at stage m, and neither 3, nor Xy backtrack past stage m
for the rest of the derivation (i.e., for no k > m, d =m), then 3 k > m and
dn >0 such that Vi >k, Yj > n, |space(G%,)| < |space(G}, 7)].

Proof: let the undone extension be that of ancestor-path P’ = (vg,...,v)
with hyperarc e closing ancestor-path P = (v, ...,v,v"). Thus, root(e) = v,
v' € children(e) and e €. P. Let leng,(P") =n — 1 and leng, (P) = n.

At stage m, 35 undoes e, so that ¢,,11(e) = —1 and lenngH(Q) = 00, for all
such that e €, @), including P itself. This reduces the bounded search spaces
according to Theorem 4. On the other hand, ¥; executes some other inference
step, closing some other ancestor-path ()’, hence all @) such that @ >, ¢,
which may reduce the bounded search spaces according to Theorems 1 (if the
step is a closure) or 3 (if the step is an extension with link condition). If the
step executed by ¥; does not reduce the bounded search spaces, the thesis
holds with £ = m + 1. If it does, we need to compare the reductions. We
distinguish two cases:

(1) If e €. @', it means that ¥; has executed a step in the portion of search
space that Yy excluded by backtracking. Although @', and all the @
such that @ >, @', are still open in G2 ,,, they have infinite distance.
Therefore, the ancestor-paths excluded by C; are excluded also by Cs,
but not vice versa, so that Vj > n, |space(G2,7)| < |space(G},7)| for
k=m+1.

(2) If e &, @, it means that ¥; has executed a step in some other part of
the search space. Thus, at stage m + 1, the bounded search spaces of the
two strategies, for bounds large enough to include both P and ', are
uncomparable, because those of C, exclude all () such that e €. @), and
those of C; exclude all @) such that ¢ >, Q'. However, since ¥; and X
make the same choices, except for irregularity, X closes)" at some stage
m + I: then Vj > n, |space(G%,7)| < |space(Gh,7)| for k=m +1+ 1.

The hypothesis that neither strategy backtracks past stage m means that >,
will never undo the backtracking step that undid the generation of an irregular
ancestor-path, and ¥; will never undo e and the step closing (). Under this
hypothesis, if ¥; never succeeds in closing the irregular ancestor-path, the
difference between the bounded search spaces at stage k will persist for all
1 > k. Assume that ¥; eventually closes the irregular ancestor-path, which
may as well happen since closed irregular tableaux do exist. If this process
takes x steps, Yy executes other x steps, and closes at least x other ancestor-
paths, since [satisfies a link condition. Thus, ¥s maintains the advantage it

31

had at stage k at all subsequent stages. O

If the search plans have a depth-first branch-selection function (see Defini-
tion 2.9), the difference between the two strategies appears immediately at
stage m + 1:

Theorem 6 Assume that X1 and X5 have a depth-first branch-selection func-
tion. If the reqularity check induces ¥ to backtrack an extension step with link
condition at stage m, and neither ¥, nor ¥ backtrack past stage m for the
rest of the derivation (i.e., for no k > m, dy = m), then 3 n > 0 such that
Vi >m, Vj >n, |space(G?,j)| < |space(GY}, j)].

Proof: since the selection of branches is depth-first, at stage m, X closes a @’
such that e €. @', so that Case 1 in the proof of Theorem 5 applies. a

5.2 Lemmatization by folding-up

Here we consider C; = (I,%;) and Cy = ([,3,) with ¥; and X, identical,
except that ¥y applies folding-up, whereas ¥; does not. Thus, they make the
same choices, except when X5 closes an ancestor-path by a folded-up lemma.
As it is usually done in implementations, we assume that 5 does not generate
by folding-up a lemma that is subsumed by a unit clause in 7', and gives lemma
application lower priority than standard ME-reduction or mgu atomic closure.

Theorem 7 If ¥y closes an ancestor-path by applying a folded-up lemma at
stage m, and neither X1 nor Yo backtrack past stage m for the rest of the
derivation (i.e., fornok >m, dy =m), then 3 k > m and I n > 0, such that
Vi >k, Vj >n, |space(G?,j)| < |space(GY}, 7))

Proof:let P* = (v, ...,v), with leng: (P*) = lengz (P*) = n, be the ancestor-
path closed by ¥, at stage m, by applying a folded-up lemma. This closes all
ancestor-paths P such that P >, P*, and reduces the bounded search spaces
for C,, according to Theorem 1. At stage m, ¥, executes an inference, closing
some ancestor-path P’, hence all P such that P >, P’, and possibly reducing
the bounded search spaces for Cy, according to Theorem 1 (closure step) or 3
(extension step). If there is no reduction of bounded search spaces for Cy, the
thesis holds with £ = m+1. Otherwise, we need to compare the two reductions.
First, we observe that P’ # P*. If 3, closes P’ by a closure step, then it must
be P’ # P*, because otherwise also Y5 would close it by a closure step without
involving a lemma, since X5 gives standard closure higher priority than lemma
application. If 3; closes P’ by an extension with link condition, then either
¥ extends P* and P’ >, P*, or ¥; extends some other ancestor-path, and,
in either case, it is P’ # P*. Then, we distinguish two cases:

32

(1) If P* <, P, it means that ¥; has extended v, the leaf of P*. By closing
P* by folding-up, ¥, has closed also P’ and all P such that P >, P’
On the other hand, we show that there is some P >, P* that is closed
in G2, but still open in G}, ;. Indeed, assume that v can be extended
in more than one way, e.g., by two hyperarcs e; and e; and > has fired
e1: at least all ancestor-paths P such that e, €. P are open in G} 4 but
closed in G2%,,. Assume that v can be extended in only one way, e.g.,

by executing an e with root(e) = v and children(e) = {us, ..., u,}. Say
that X, has fired e and closed u; (i.e., P" = (vg,...,v,u;)): all ancestor-
paths with leaves us, ..., u, are open in G}, but closed in G2, ;. Note

that it cannot be children(e) = {u;}, because that would mean that v is
extended by a unit clause in T" that subsumes the lemma applied by s,
and in such a case ¥ would not have generated the lemma. Therefore,
the ancestor-paths excluded by C; are excluded also by Cs, but not vice
versa, so that Vj > n, |space(G%,j)| < |space(G4, 7)| for k =m + 1.

(2) If P* £, P', it means that ¥; has executed a step (either extension or
closure) in some other part of the search space. Thus, at stage m + 1, the
bounded search spaces of the two strategies, for bounds large enough to
include both P* and P’, are uncomparable, because those of Csy exclude
all P such that P >, P*, and those of C; exclude all P such that P >, P’.
However, since ¥; and ¥, make the same choices, except for folding-up,
Y, closes P’ at some stage m + [, possibly after [applications of lemmas.
Then, Vj > n, |space(G%,j)| < |space(Gh, j)| for k =m + 1+ 1.

The hypothesis that neither strategy backtracks past stage m means that >,
will never undo the closing of P* by the folded-up lemma, and ¥; will never
undo the step closing P’. Since ¥ is fair, and lemmatization does not change
the power of the inference system, ¥; will close eventually P*. However, ¥
will do so by closing a whole sub-tableau with root v. Assume that this process
takes x steps. While ¥; closes this subtableau below v, ¥, executes other x
steps, closing at least x other ancestor-paths, since I satisfies a link condition.
Thus, Y» maintains the advantage it had at stage k at all subsequent stages.
O

Note how it makes no difference whether the applied lemma is a unit or non-
unit lemma, because the essence of lemmatization by folding-up is precisely
to restrict the usage of non-unit lemmas in such a way that they apply like
unit lemmas.

Theorem 8 Assume that 31 and X9 have a depth-first branch-selection func-
tion. If 39 closes an ancestor-path by applying a folded-up lemma at stage
m, and neither X1 nor Yo backtrack past stage m for the rest of the deriva-
tion (i.e., for no k > m, dy = m), then 3 n > 0 such that Vi > m, Yj >
n, |space(G2,)| < |space(GY,)]

33

Proof: since the selection of branches is depth-first, at stage m, ¥, closes a P’
such that P’ >, P*, so that Case 1 in the proof of Theorem 7 applies. O

Theorems 7 and 8 compare the bounded search spaces of the two strategies
at the same stage. This formulation is advantageous, because the theorems
apply regardless of whether the derivations terminate. If they do terminate,
the comparison of the bounded search spaces at the same stage ¢ makes sense
as long as both strategies are running, that is, for ¢ < h, if the strategy that
terminates first does so at stage h. The following example shows an instance
of the behavior analyzed in Theorem 7 in case of terminating derivations:

Example 8 Let I = Iy pr and S = {P(z)V-Q(z), Q(a)vVC,Q(b)VD, R(a,a)V
O,-P(y)V-Q(2)V-R(y, 2), ...}, where a and b are constants, C', D and O are
disjunctions of literals, and @q is ~P(y)V-Q(z)V-R(y, z). Figure 6 shows the
markings induced by the two strategies C; = (I, %) and Cy = (I,%,). Both

oal : oal {Q(a)}
e : e
-Q(2) Ry
-P(y) - =P(y) -Q(2) -R(y.2)
! closed
h % [
o) o IQ(sae)d o IR(;;) : P losed
Z%ged -0(x) open clo clo écl((;ged Q(fx) clo
L G1.0)
P Q@)
Q@ - T I closed
closed !

Fig. 6. The markings of G(S,1,y¢) for C; (on the left) and Cs (on the right) in
Example 8.

strategies C1 and Cy start by firing hyperarcs e, h, and f, in this order, clos-
ing the two leftmost ancestor-paths, and generating the marking substitution
o1 ={y <« x,x < a}. This corresponds to steps 1, 2 and 3 in both derivations.
Then, both strategies explore subgraph G1 to solve the subgoals in C. Assume
no lemmaizing occurs, so that C; and Cq execute the same steps and find the
same closed tableau for —=Q(z)o; = ~Q(a). Say this takes ny steps, so that we
are at stage 3 + ny. Since this stage, the two strategies behave differently.

Upon closing the tableau for =Q(x)oy = =Q(a), Cq has folded-up lemma Q(a),
so that sl(vy) = {Q(a)} (we assume for simplicity that the tableau gets closed
without ME-reductions, so that the lemma is a unit lemma). At stage 3+ nq,
Cy closes the ancestor-path ending with —=Q(z) by using lemma Q(a), yield-
ing marking substitution oo = {y «— x,x «— a,z < a}. This excludes from the

34

bounded search spaces ' and G2, g and G4 (of course, they are in G(S, I, po):
they are omitted in the right half of Figure 6 only to save space). Then, Cy
executes hyperarc | and traverses G3 to solve the subgoals in O and build a
closed tableau for —R(y,z)oy = —R(a,a). Assuming this takes ng steps, Cy
terminates successfully at stage hy = nq +ns +5 (ny steps in G1, ng steps in
G3, and 5 steps for e, h, f, application of the lemma, and).

Let us now consider Cy. At stage 3+ny, C; fires f', reaching the same marking
substitution oy = {y < x,x < a,z < a}. Then, it searches G2 to solve again
the subgoals in C' and generate a closed tableau for =Q(z)os = —Q(a). Assume
this takes ny steps. Finally, it fires | and traverses G3 to build a closed tableau
for =R(y, z)oa = —R(a,a) exactly like Cy. Thus, Cy terminates successfully
at stage hy = ny +ny +n3 + 5 (ny steps in G1, ny steps in G2, n3 steps in
G3, and 5 steps fore, h, f, f', andl).

The stage m of Theorem 7 is 3+mny: for all stages i, such that 34+mny, < i < hy,
the bounded search spaces of Cq are strictly smaller than those of Cy, because
they do not include anything below —=Q(z) (i.e., f' and G2, g and G4), whereas
those of C; do.

The reduction of the bounded search spaces is not guaranteed to occur for all
derivations: it occurs for those derivations where the application of folding-
up is not undone by backtracking. This is an hypothesis on the derivation,
not on the strategy: backtracking does not happen, but it is not disallowed. If
backtracking undoes the application of the lemma, the behavior of C, collapses
on that of Cy, since the two strategies are otherwise identical:

Example 9 Let us modify Example 8 by replacing clause R(a,a) V O with
clause R(a,b)vVO: S = {P(z)V-Q(x),Q(a)VC,Q(b)V D, R(a,b)vVO,~P(y)V
—Q(2)V-R(y,2),...}. After applying the lemma and generating marking sub-
stitution oy = {y «— x,x «— a,z < a}, as in Example 8, Cy finds that R(a,b)
and = R(y, z)oa = = R(a,a) do not unify. Thus, Cy undoes the application of
the lemma and behaves like Cy: fire f', close a tableau in G2, fail, backtrack,
execute g, yielding marking substitution o3 = {y «— x,x «— a,z <« b}, visit
subgraph G4, to find a closed tableau for =Q(z)o3 = =Q(b), fire l, and traverse
G3 to close a tableau for —=R(y, z)os = —R(a,b).

6 Completing the picture: resolution-based subgoal-reduction

It is well-known that there exists a close correspondence between linear resolu-
tion (Kowalski and Kuehner, 1971) and model elimination with chains (Love-
land, 1969), on one hand, and tableaux, on the other (Baumgartner and Fur-
bach, 1993). The goal clauses of linear resolution and the chains of model
elimination can be read as a special form of tableaux representation, where
one branch at a time is represented. The boxed literals in ordered linear resolu-

35

tion (Chang and Lee, 1973), or the A-literals in model elimination, are exactly
the literals from the branch represented by the clause, or chain. Symmetrically,
these strategies can be simulated by a special kind of tableaux, called ferns in
(Baumgartner and Furbach, 1993), where closed branches are omitted, leaves
are labelled by B-literals (or plain literals) and inner nodes are labelled by
A-literals (or boxed literals). The interested reader can find in (Baumgartner
and Furbach, 1993) a full treatment.

The purpose of this section is not to pursue the above correspondence, e.g., by
studying the analytic marked search-graphs for ferns. If we were to take this
route, the result would be to have analytic marked search-graphs for tableaux,
with linear resolution and model elimination on chains as special cases, on
one hand, and synthetic marked search-graphs for ordering-based strategies
(Bonacina and Hsiang, 1998b) on the other hand, with no connection. The
purpose of this section is to use linear resolution to bridge to some extent
the separation between synthetic and analytic marked search-graphs, and also
illustrate their differences. Thus, we view linear resolution as a method that
works by generating clauses — like ordering-based strategies — and therefore
has a search space made of clauses, represented by a synthetic search-graph.
However, only clauses that belong to linear deductions are admitted, and
depth-first search and backtracking are represented in the same way as for
tableaux-based strategies, as we shall see in the rest of the section.

6.1 Linear resolution

Given a theorem-proving problem S = TU{¢y }, linear-resolution strategies are
subgoal-reduction strategies, that search for a linear refutation of S starting
from . The basic rules to build linear refutations are binary resolution and
factoring, applied to triples (S; p; A), where S is a set of clauses, ¢ is the goal
clause and A the set of its goal ancestors:

Input Resolution (iRes)

(SU{Y}; ¢ A)
(SU{v}:¢s AU{p})

Ancestor Resolution (aRes)

(S50 AU{Y})
(S; ¢ AU{Y, ¢})

where, for both rules, ¢’ = (¢ \ {F})U (¢ \ {L}))o for literals L € ¢, F €1
and mgu o such that Lo = = Fo;

36

Factoring (fact)
(S5 ¢; A)
(595 AU {e})
where ¢' = (¢ \ {L'})o for literals L, L’ € ¢ and mgu o such that Lo = L'o.

Thus, the inference system for linear-resolution strategies is I r = {iRes, aRes,
fact}. We assume, however, that all factors of clauses in S are added to S,
and S is inter-reduced with respect to tautology deletion, subsumption and
clausal simplification, during pre-processing.

The considerations on depth-first search made for tableaux apply to linear
resolution as well: a search plan other than depth-first would involve generating
and keeping many proof attempts (i.e., many linear deductions), and typical
strategies employ depth-first search, building explicitly one linear deduction
at a time:

Definition 6.1 (LR-derivation) Given a theorem-proving problem S = TU

{¢o0}, an LR-derivation is a sequence (S; vo; Ao) Frp - (Si0is Ai) Frpp - - - such
that Ag = 0, and Vi > 0, ;41 and A; 1 are generated from (S;pi; A;) by ap-

plying a rule in I g.

Definition 6.2 (LR-refutation) A finite LR-derivation (S;po; Ao) Fr,p - - -
(S; ¢r; Ax) is an LR-refutation if ¢, = O.

IR is refutationally complete (e.g., Chang and Lee, 1973) since, whenever
S =T U{yy} is unsatisfiable, and T is satisfiable, there exists a refutation of
S by Ipgr. If ¢; has neither input-resolvents nor ancestor-resolvents nor factors,
the strategy backtracks (natural failure):

Definition 6.3 (LR-derivation with backtracking) Given a theorem-pro-
ving problem S = T U{yo}, an LR-derivation with backtracking is a sequence
(S;00; Ao;do) Frpp - - (Ss0i A di) by - ooy such that Ag = 0, do = 0, and
Vi > 0:

e ;.11 and A1 are generated from (S;¢i; A;) by applying a rule in Ip g, and
dig1 =1+ 1,
® 0T Yit1 = Pd;—1; A1 = Adi—l and diy1 = d; — 1.

Under iterative deepening, backtracking also occurs for unnatural failure:

Definition 6.4 (LR-derivation with iterative deepening) Given a theo-
rem-proving problem S =T U{po}, a deduction evaluation function h, an ini-
tial limit k* > 0, and an increment m > 0 for the limit, an LR-derivation with
backtracking and iterative deepening on h is a sequence (S; o; Ao; do; ko) F1, 5
Sy Aiydis ki) Frpg -, such that Ag =10, do =0, ko = k*, and Vi > 0:

37

o if h((Ai; i) < ki and at least a rule of ILg applies to v;: @iy1 and Ay
are generated from (S;¢;; A;) by applying a rule in Ipg, diyy =i+ 1 and
k’i+1 = ki;

e otherwise: Y1 = Pa,—1, Aix1 = Ag;—1, diy1 = di — 1, and
k)i+1 =]{Zi, Zfdz— 1 %O, ki+1 :k:i—i—m, Zfdz— 1=0.

If p; is a tautology, or is subsumed by a clause in S or A;, the strategy
also backtracks. Unlike ordering-based strategies, where subsumption and tau-
tology deletion are contraction rules that contracts a set of clauses and be-
long to the inference system, in linear resolution they represent conditions
for backtracking implemented by the search plan. Let Statespr stand for
P(Lo) x Lo x P(Lg) x IN x IN:

Definition 6.5 (LR-search plan) A depth-first search plan with iterative
deepening and literal-selection function is a tuple ¥ = (h,k*, m, &, (, &, w),
where:

e h:Lg — IN, k* > 0, and m > 0, are, respectively, the evaluation function,
the initial limit, and the increment of the limit, for iterative deepening;

o & :Statespr — Lite is the literal-selection function: & ((S;¢; A;d; k)) =
L€ yp;

e (:Statesprx Litg — I gU{backtrack} is the rule-selection function, which
decides whether to backtrack, and returns an applicable rule r € I g other-
wise:

backtrack if ¢ is a tautology,

or ¢ is subsumed by a Y € SU A,
C((S; 05 Asds k), L) = or no rule of ILr applies to L,
or h((A;9)) =k,

T where r € I r applies to L, otherwise.

o &: Statespr X Litg X I,p — Leg X Litg is the premise-selection function:

(¢, F) wherey € S,F € 1, L and —F unify,
if r = iRes;

(¥, F) where ¢ € A, F € v, L and —F unify,

E((S; 5 Ay ds k), Lyr) = if r = aRes;

(L, L") where L' € p, L and L' unify,

if r = fact;

(L, 1) otherwise.

38

e w: Statespr — Bool is the termination-detection function:

true if g =0,
o((Sip Asdiy) =4 ¢ T

false otherwise.

Typical literal selection functions select the leftmost (or rightmost) literal.

Definition 6.6 (LR-strategy) A linear-resolution strategy is a pair Cpr =
(ILr,2), where ¥ is a depth-first search plan with iterative deepening and
literal-selection function.

Definition 6.7 (LR-derivation generated by a strategy) Given a prob-
lem S =TU{po} and an LR-strategy Crr = (ILr,), with ¥ = (h, k*,m, &, C,
&, w), the LR~derivation generated by Cpgr from S = T'U{pg} is the sequence
(S5 w05 Ao; dos ko) Fepp - - (S50 Ay dis ki) Foyp - - - such that Ay = 0, dy = 0,
ko =k*, and ¥i > 0: if w((S; vi; Ais dis ki) = false, and & ((S; pi; Ai; dis ky))
= L, then

o if (((S;pi;Aidiski), L) = r € Ipg, piv1 and A;11 are generated from
(S; @i; A;) by applying v to L and the clause or literal selected by &, divq =
1+ 1, and ki = ky;

o if C((S; i Aisdis ki), L) = backtrack, @iy1 = @a,—1, Aiy1 = Ag—1, dip1 =
dz' — 1, and ki—i—l = ki; Zfdz —1 7é 0, kz‘-}-l = kz +m, Zfdz —1=0.

A search plan is fair if all the derivations that it generates are:

Definition 6.8 A derivation (S;¢o0; Ao)Feyy---(S;wis Ai) ey - .- is fair if
and only if Yi > 0, for all non-tautological ¢ that can be generated from
(S5 pis Ai) by a rule in I, there exists a j such that ¢; subsumes p.

Since IR is refutationally complete, an LR-strategy is complete if its search
plan is fair.

6.2 Synthetic marked search-graphs for linear resolution

Given a theorem-proving problem, the search space for an LR-strategy will
contain all linear deductions by resolution from that problem. Since linear
deductions are made of clauses, it will be a hypergraph with vertices labelled
by clauses:

Definition 6.9 (synthetic search-graph) A synthetic search-graph is a hy-
pergraph (V, E,1), where V is the set of vertices, E is the set of hyperarcs, and
[:V — Lg is a vertex-labelling function from vertices to clauses.

39

Definition 6.10 (induced synthetic search-graph) Given a theorem-pro-
ving problem S = T U {po}, the synthetic search-graph induced by I, g for
S with input goal ¢g, denoted SG(S,ILr, o), is the synthetic search-graph
(V,E,l), such that v and E are the smallest sets satisfying the following prop-
erties:

o Forallp €S, Jv eV such that l(v) = p;

o For all vi,vy € V such that l(v1) = @1, l(v2) = s, and ¥ is a binary
resolvent of 1 and s, if

(1) either o1 €T (p1 is a goal clause) and oo € S (P2 is an input clause),

(2) or p1,02 €T (both are goal clauses) and vq is ancestor of vy,
then Ju € V and Je € E such that l(u) = ¢ and e = (vy, v9;u);

o Forallv € V such that l(v) = ¢ € T, if ¢ is a factor of p, then Ju € V
and Je € E such that l(u) = ¢ and e = (v;u).

Thus, SG(S, ILr, o) contains all linear deductions from S with ¢y as top
clause. Hyperarcs (v, w;u) represent binary resolution steps, where goal resol-
vent [(u) is generated from goal parent [(v) and side clause [(w) (either input
clause or ancestor). Hyperarcs (v;u) represent factoring steps, where factor
l(u) is generated from goal parent [(v).

The marking of synthetic search-graphs for linear resolution will feature a
hyperarc-marking function c, defined as in Definition 3.6, and with the same
interpretation: c(e) = 1, if e was executed, c(e) = —1, if e was executed and
undone, and ¢(e) = 0 otherwise. On the other hand, the path-marking function
of Definition 3.5 is replaced by:

Definition 6.11 (vertex-marking function) Given a synthetic search-gra-
ph (V, E,l), a vertex-marking function is a function ¢:V — Z.

The marking of vertices is interpreted as follows: clauses in the current proof
attempt (i.e., the linear deduction currently pursued) have positive marking;
goal clauses that failed have negative marking; goal clauses that have not been
reached have null marking. Furthermore, this marking identifies the current
goal clause as the one with the mazimum marking. Hence, for a vertex v, ¢(v) =
m+ 1, if [(v) was generated, is active and has m active goal ancestors; ¢(v) =
—1, if [(v) was generated and failed (either naturally or unnaturally), or was
deleted; g(v) = 0 otherwise. If I(v) failed naturally, either v has no children,
or all its children have negative marking as well. If it failed unnaturally, its
children have marking 0, since they have not been reached.

Definition 6.12 (synthetic marking) Given a synthetic search-graph (V, E,
[), a synthetic marking is a pair (q,c), where q is a vertez-marking function
and c is a hyperarc-marking function.

Definition 6.13 (synthetic marked search-graph) A synthetic marked

40

search-graph is a tuple (V, E, 1, q, c), where (V, E 1) is a synthetic search-graph,
and (g, c) is a synthetic marking.

Since hyperarcs represent clause generation, a hyperarc is enabled if its premises
are present:

Definition 6.14 (enabled hyperarc) Given a synthetic marked search-gra-
ph G = (V,E l,q,c), a hyperarc (v,w;u) € E or (v;u) € E is enabled, if
q(v) > 0 and q(w) > 0, or q(v) > 0, respectively.

Definition 6.15 (synthetic marked search-graphs: induced succession)
Let S = T U {po} be a theorem-proving problem, Crp =< Ipg, % > an
LR-strategy, and SG(S,ILr,p0) = (V,E,l) the synthetic search-graph in-
duced by Ipg for S with input goal @o. The derivation generated by Cpg
from S =T U {pp} induces the succession of synthetic marked search-graphs
{(V, E,1,q;,¢)}is0 defined as follows. Initially, for all x € V, qo(z) = 1 if
l(z) € S, qo(x) = 0 otherwise; and for all a € E, co(a) = 0. Then, for all
stages © > 0:

(1) If ¥ selects an enabled hyperarc e = (v, w;u) or e = (v;u):

¢(v)+1ifx=u, 1 ifa=e,
Git1(z) = civi(a) =
¢i(x) otherwise, ¢i(a) otherwise.

(2) If ¥ backtracks, undoing e = (v, w;u) or e = (v;u),

-1 ifr=u, -1 ifa=ce,
Giv1(T) = . ciyi(a) = .
qi(x) otherwise, ¢i(a) otherwise.

Each state (S;; ¢;; Ai;d;) of a derivation has its associated synthetic marked
search-graph SG; = (V, E,l, q;, ¢;), and for i > 0 the current goal ; is the ver-
tex with maximum marking in SG;. Then, if the strategy performs a subgoal-
reduction at stage i, p;1 is generated and ¢;11(@;41) is the maximum mark-
ing in SG;;1 (Case 1). If the strategy backtracks because ¢; was deleted or
failed (Case 2), @;11 = @q4,—1 (i-e., the goal parent of ¢;), gi+1(¢;) = —1 and
¢i+1(@it1) is the maximum marking in SG;y1.

Definition 6.16 (active search space) Given a synthetic marked search-
graph SG = (V,E,l,q,c), the active search space is the synthetic marked
search-graph SGT = (VT EYI* ¢, cT), where VT ={x | x € V| q(x) > 0},
Et={ala€E, cla) >0}, and I, q",ct are the appropriate restrictions of
l,g,cto V' and E.

Definition 6.17 (visited search space) Given a synthetic marked search-
graph SG = (V,E,l,q,c), the visited search space is the synthetic marked

41

search-graph SG* = (V*, E*I*,q*,c*), where V* = {x | z € V| q(z) # 0},
E*={a|a€E, ca)#0}, and I*,q*,c* are the appropriate restrictions of
l,q,c toV* and E*.

Example 10 Let S = {P(a); ~P(z)V=Q(y)V-L(z,y); Q(f(2))V-Q(2); Q(b);
~DW)V Lia, f(y)); D@)V Ly, £(2)} and go = ~P(x) V ~Q(y) V ~L{z,).
Figure 7 shows the part of SG(S, IR, po) with non-zero marking after a suc-
cessful derivation. The negative marking of —L(a,b) and its incoming arc in-

Pat Por-QuorLiy) ' Q@@ Q) T b orLiaf) T D or LG0)
2
Q) or -L(ay)
-1 3
L(@b) Q@) or -L(af() -
Laf(b) *
D(b) °
1
Lofe) ©
1
,
0

Fig. 7. The visited portion of SG(S, IR, ¢o) for Example 10.

dicates that the strateqy tried that proof attempt and then backtracked.

Thus, the framework of Sections 2 and 3 is extended to linear resolution.
Then, one can apply to LR-strategies the notion of bounded search spaces of
clauses as defined in (Bonacina and Hsiang, 1998b), to analyze, for instance,
the pruning effect of tautology deletion and subsumption.

6.3 Comparison of analytic and synthetic marked search-graphs

The basic difference between analytic and synthetic search-graphs is right in
the meaning of vertices and hyperarcs. In analytic search-graphs, vertices are
labelled by literals, and hyperarcs have the form e = (v;uy,...,ux), which
denotes extension of [(v) with {(uy), ..., {(u). In synthetic search-graphs, ver-
tices are labelled by clauses, and hyperarcs have the form e = (vq, ..., v,;u),
which denotes generation of I(u) from [(vy),...,l(v,). Synthetic hyperarcs
represent synthesis of objects from existing ones (e.g., clauses from clauses),

42

while analytic hyperarcs represent decomposition of goals into subgoals (e.g.,
clauses into literals). Accordingly, the synthetic search-graph has no root, or,
all input clauses can be considered as roots, in the sense that they do not have
parents. The analytic search-graph has a root that marks the beginning of the
decomposition.

In terms of marking, the first difference is that the marking of a synthetic
search-graph needs no substitution, since unifiers are applied to clauses (e.g.,
recall Examples 3 and 4). Second, synthetic marked search-graphs have a
vertex-marking function, whereas analytic marked search-graphs have a path-
marking function. Third, a synthetic hyperarc is enabled if the premises of the
generation it represents are available; an analytic hyperarc is enabled if the
extension it represents applies. Fourth, analytic hyperarcs form ancestor-paths
that represent interpretations, while synthetic hyperarcs form ancestor-graphs
(Bonacina and Hsiang, 1998b) that represent proofs of generated clauses. All
these differences reflect the fact that synthetic strategies work by generating
clauses, while analytic ones work by surveying interpretations.

On the other hand, active search space, visited search space and backtracking
(the latter for linear resolution, not ordering-based strategies), are modelled
uniformly in both synthetic and analytic graphs. Finiteness, of ancestor-paths
in analytic marked search-graphs, and ancestor-graphs in synthetic marked
search-graphs, is used in both contexts to introduce a measurable quantity in
infinite search graphs: the length of an ancestor-path, and the distance of a
vertex from the input along an ancestor-graph. In either kind of marked search-
graph, the measurable quantity allows us to define bounded search spaces, as
multisets of clauses (in the synthetic case) and multisets of partial interpreta-
tions (in the analytic case) within the given bound. The multiplicity of a clause
@ in space(G, j) is the number of ancestor-graphs of ¢ within distance j from
the input. This is coherent with the fact that ordering-based strategies search
for a refutation by searching for a proof of the empty clause. The multiplicity
of a partial interpretation I' in space(G, j) is the number of open ancestor-
paths with label I" within distance j from the input. This is coherent with
the fact that tableau-based strategies search for a refutation by eliminating
candidate models.

6.4 Comparison of the synthetic marked search-graphs for subgoal-reduction
with those for ordering-based strategies

Search graphs for linear resolution and ordering-based strategies have in com-
mon the basic interpretation of vertices and hyperarcs: vertices are labelled
by clauses and hyperarcs represent generative inferences. A first simple dif-
ference is that synthetic search-graphs for ordering-based strategies feature

43

a hyperarc-labelling function (see (Bonacina and Hsiang, 1998b)), that label
hyperarcs with the name of the applied inference rule, because ordering-based
strategies often have multiple inference rules (e.g., resolution and paramodula-
tion). This is unnecessary in the synthetic search-graphs for linear resolution,
since the only inference rules are binary resolution and factoring, that can
be distinguished on the basis of arity. Analytic search-graphs do not have
hyperarc-labelling function either, because all hyperarcs represent instances
of the same extension rule.

The handling of contraction is quite different. As already mentioned, in or-
dering-based strategies rules such as subsumption and tautology deletion are
proper inference rules that contract the existing set of clauses, whereas in linear
resolution strategies they apply only to the current goal and their application
is merely a case for backtracking. Furthermore, ordering-based strategies fea-
ture not only contraction rules that delete clauses, but also contraction rules
that replace clauses by clauses, such as simplification by equations. Therefore,
for ordering-based strategies, the representation of contraction involves both
structure and marking of the search-graph: the generation of clauses by con-
traction is represented by hyperarcs, while deletions are represented by the
marking.

The interpretation of the marking of vertices has both analogies and differ-
ences. For ordering-based strategies, a positive marking means that the clause
was generated and kept, a negative one, that it was generated and deleted
by contraction. For linear-resolution strategies, a positive marking means that
the clause was generated and is part of a linear proof attempt being pursued,
a negative one, that it was generated but failed. Contracted clauses have a
negative marking in both markings, but for linear resolution, the representa-
tion of contraction is subsumed by that of failure and backtracking. For both,
non-zero marking corresponds to the visited search space.

The two models differ in the treatment of variants: in the marked search-
graph of ordering-based strategies all variants of a clause are associated to
the same vertex, whereas in that of synthetic subgoal-reduction strategies,
different variants are associated to different vertices. The explanation lies in
the difference in nature of the strategies. In an ordering-based strategy, if a
clause @, variant of an existing clause ¢’, is generated, ¢ is subsumed. Not only
v and ¢ are logically equivalent, but multisets SU{¢} and SU{¢, ¢’} contain
implicitly the same proof attempts, so that ¢ and ¢’ are equivalent also from
the proof search point of view. In linear resolution, if a goal ¢, variant of an
ancestor goal ¢, is generated, ¢ is subsumed and the strategy backtracks to
its predecessor, which is different than the predecessor of ¢’. Even if ¢ and ¢’
are logically equivalent, the linear deductions rooted in ¢ and ¢ are different
in general.

44

In other words, the history of generated clauses is relevant to the proof search
of subgoal-reduction strategies, whereas it is irrelevant for ordering-based
strategies, where it matters only for proof reconstruction® . The reason is that
ordering-based strategies generate many proof attempts implicitly, and do not
restrict the search by the shape of the proof, so that the structure of the proof
attempts is ignored during the search. On the other hand, subgoal-reduction
strategies generate proof attempt(s) explicitly, and linear-resolution strategies
admit only linear ones, so that their structure is part of the state of the search.

7 Related work
7.1 AND-OR graphs

AND-OR graphs have been used traditionally to represent the search space of
subgoal-reduction strategies, especially in Horn logic. They have been used also
as data structures in the implementation of specific systems (e.g., Konev and
Jebelean, 2000). The following example shows AND-OR graph and marked
search-graph for a given set of clauses:

Example 11 Assume S = {-PVQ,PV-R,-UV—-RVQ,PV-B,-PV-Q}
with o = =PV —Q. Figure 8 shows the AND-OR graph (with hyperarcs
representing AND-arcs) and G(S, 1, ¢o).

Goal

A
TN AT,

Fig. 8. AND-OR graph (on the left) and analytic search-graph G(S,1,¢q) (on the
right).

AND-OR graphs are also analytic, because AND-arcs represent decomposi-
tion, and have rigid variables, because the literals of a clause are spread
over different branches. Accordingly, substitutions cannot be applied prior
to the search. However, AND-OR graphs have been traditionally used for
SLD-resolution: in Horn logic, linear resolution lends itself to be interpreted

4 When O is generated, the ordering-based strategy uses the history of clauses to
extract the proof, i.e., the ancestor-tree of O, from the record of generated clauses.

45

in terms of problem decomposition, because there is no need for ancestor-
resolution and factoring, hence no need for vertices labelled by resolvents.
Figure 9 shows SG(S, ILg, ¢o) for the problem of Example 11: one can see

-Por-Q

-PorQ
-Uor-RorQ

-Bor-Q -Por-Uor-R

-P
Fig. 9. Synthetic search-graph of linear resolution for Example 11.

how resolvents in the synthetic search graph correspond to frontiers in the
analytic search-graph or in the AND-OR graph.

Marked search-graphs capture more features than AND-OR graphs, thanks
to the idea of distinguishing what belongs to the static search space, and
is represented by the graph, and what belongs to the search process, and is
represented by the dynamic marking. The list includes first-order features (e.g.,
ME-reduction, factoring, ancestor-resolution), explicit closure of branches, link
conditions (e.g., see Examples 2 and 5), lemmatization by folding-up (e.g., see
Example 7), and backtracking, that in AND-OR graphs is left to the manual
simulation by the reader. In our approach, backtracking is represented in a
uniform way, regardless of its cause, in both synthetic and analytic search-
graphs (e.g., see Examples 6 and 10).

7.2 State space

Search in theorem proving can be described at different abstraction levels. If
we apply the classical Al notion of state space to the search problem given by a
theorem-proving problem S = T'U{p}, and a tableau inference system I, the
result is a tree, ® with nodes labelled by states (e.g., (S, X, d)), and an arc from
node (S, X, d) tonode (S, X', d'), if there is an inference (S, X, d) (S, X', d').
If we omit the auxiliary components S and d, we get a tree with nodes labelled
by tableaux, success nodes labelled by closed tableaux, and the root labelled by
the initial tableau X, . Similarly, for I g, one gets a tree with nodes labelled by
pairs (A; ¢), representing linear deductions. If all possible choices of initial goal
are considered, the outcome is a forest. Applied to ordering-based strategies,

5 A state may be reached in more than one way, so that the state space is a graph,
but it can be represented as a tree by allowing different nodes to have the same
label.

46

this model yields trees with nodes labelled by multisets of clauses. Such trees,
termed I-trees to emphasize that their structure depends on the inference
system, were used in (Bonacina and Hsiang, 1995) to develop a notion of
target-oriented fairness for completion-based strategies.

Trees of proof attempts were used for subgoal-reduction strategies by several
authors. In the framework of (Plaisted and Zhu, 1997), model elimination
was modelled by using a forest with nodes labelled by chains. The study of
static lemmatization in (Fuchs, 2000) refers to a tree with nodes labelled by
ME-tableaux. The same model was adopted to describe many features and re-
finements of tableaux in (Letz and Stenz, 2001b). The purpose of these studies
and the nature of their results are different from ours. For instance, the tree
of tableaux is used in (Letz and Stenz, 2001b) to define refinements, to show
that certain features are incompatible with others, to establish completeness
theorems, or simulation results. The latter are essentially results of relative
complezity, with proof length, e.g., some measure of tableau size, as the im-
plicit complexity measure. The analysis consists in showing that for every
closed tableau built by using a certain feature there exists a closed tableau
generated using another feature, and one can be mapped (e.g., polynomially)
into the other. Thus, they are ultimately proof-theoretic results on proof exis-
tence. The emphasis is on proof and proof length, not search space and search
space size. On the other hand, our purpose was to study the evolution of the
search space during the derivation, and capture the effect of refinements on
search space size.

A disadvantage of the state space approach is that if a tableau becomes an
atomic label, the actions of the strategy can be observed at most indirectly as
“moves” from state to state, with much less detail than that offered by marked
search-graphs. The same is true for ordering-based strategies, since the label of
a node in an I-tree is a whole multiset of clauses. We emphasize that marked
search-graphs and I-trees, or trees of tableaux, are complementary, because
they represent different levels of abstraction. Furthermore, we took care of
relating them: since a node of an [-tree is a state of a possible derivation, the
notions of succession of marked search-graphs induced by a derivation, and
of marked search-graph associated to a state (see Definitions 3.11 and 6.15 in
this paper, Definition 3.7 in (Bonacina and Hsiang, 1998b), and Definitions
4.4 and 4.5 in (Bonacina, 1999a)) connect marked search-graphs and I-trees.

The above description of I-tree assumes depth-first search (DFS), because a
state contains one tableau. If I were coupled with a breadth-first or best-first
search plan (BFS), a state would contain a set of tableaux, and a node of the
I-tree would be labelled by a set of tableaux. For linear resolution, we obtain
an I-tree with nodes labelled by linear deductions under DFS, by sets of linear
deductions under BFS. This dependency is characteristic of subgoal-reduction
strategies: the I-tree of ordering-based strategies has nodes labelled by mul-

47

tisets of clauses, regardless of whether the search plan selects clauses by DFS
or BFS. This difference is due to the fact that the state (multiset of clauses)
of an ordering-based strategy contains implicitly the proof attempts that the
strategy is developing, whereas the state of a subgoal-reduction strategy “is”
the current proof attempt, or the current set of proof attempts, based on DFS

vs. BFS.

The fact that the notion of state depends on the choice of search plan may
be considered another disadvantage of the state-space model for subgoal-
reduction strategies. In the marked search-graph approach, for both tableau-
based and linear-resolution strategies, generalization to BFS can be done by
replacing the induced marking with a set of markings, one per proof-attempt
(one per tableau, e.g., Example 4, or one per linear deduction). This is rel-
evant to study strategies that generate explicitly multiple tableaux by best-
first search and apply tableau subsumption to prune them (Baumgartner and
Briining, 1997). Such strategies are described as expanding and contracting
sets of tableaux, much like ordering-based strategies. Thus, one may also resort
to analyze them on a synthetic marked search-graph with nodes labelled by
(encodings of) tableaux, or on the I-tree of tableaux. It is fair to say, however,
that methods generating explicitly multiple tableaux are mostly of theoretical
interest, and modelling failure caching (e.g., Astrachan and Stickel, 1992; Letz
et al., 1994; Bonacina and Hsiang, 1998a), or failure substitutions (Letz and
Stenz, 2001b) is expected to be more relevant to the practice.

Trees of states and graphs of formulae are not the only formalisms for the
search space of proof procedures. Another alternative is the tree of recursive
calls of the procedure. This scheme, however, can be used only in decidable
cases, in propositional (e.g., for the Davis-Putnam-Logeman-Loveland pro-
cedure in (Zhang et al., 1996)) or modal logics (e.g., Donini and Massacci,
2000b). Table 1 summarizes this discussion.

Classes of Closure State space: Search space:
strategies I-tree Synthetic MSG | Analytic MSG
Clausal normal Set Tree of tableaux MSG of literals
form tableaux of with arcs N.A. with arcs for
(Irap, Inpr) | tableaux for moves extensions
Linear resolu- Set of Tree of pairs MSG of goal AND-OR
tion strategies goal (A; @) with arcs | clauses with arcs graph
(ILR) clauses for moves for generations
Ordering- Set Tree of multisets | MSG of clauses
based of of clauses with with arcs for N.A.
strategies clauses arcs for moves generations
Table 1

Models of the search space: MSG stands for marked search-graph.

48

7.8 Proof confluence and hybrid strategies

The above remark on DFS vs. BFS in the definition of the I-tree is bet-
ter understood in terms of proof confluence. A strategy is proof confluent if
it is never the case that committing to an inference step prevents it from
finding a proof. For proof confluent strategies, the derivation generated by
the search plan is a path in the I-tree: the strategy can go down one path
with no need of backtracking. If a strategy is not proof confluent, it goes
down one path of the I-tree, backtracks and tries another one, so that a
derivation corresponds to a subtree of the I-tree, because also the steps un-
done by backtracking are included. Fair ordering-based strategies are trivially
proof confluent, because they accumulate generated data without ever undoing
steps. Analytic subgoal-reduction strategies with link condition, whether weak
or strong, and depth-first search, are not proof confluent. Analytic subgoal-
reduction strategies without link condition are trivially proof confluent but
not practical, as already discussed in Section 2.3. Similarly trivially proof con-
fluent, but unpractical, would be synthetic subgoal-reduction strategies and
analytic subgoal-reduction strategies with link condition and a breadth-first
search plan.

Since breadth-first search is not practical, the problem of designing proof-
confluent, analytic, subgoal-reduction strategies with weak link condition and
depth-first search has been investigated by several authors (e.g., Billon, 1996;
Bierwald and Kaufl, 1997; Baumgartner, 1998; Baumgartner et al., 1999; Beck-
ert, 2003; Giese, 2001; van Eijck, 2001). The disconnection method (Billon,
1996) and hypertableaur (Baumgartner, 1998; Stolzenburg, 1999) achieve proof
confluence by two modifications. On one hand, they restrict extension in such
a way that variables in the tableau get renamed but not properly instantiated:
e.g., hyperestension® extends branch I' with P, V...V P, V=N V...V 2N, if
" contains positive literals L1, ..., L,,, such that L;,c = N;o and L;oc = L; for
1 < ¢ < m, where the latter condition means that L;o is a variant of L;. On
the other hand, they enrich the inference system with link inferences: roughly
speaking, a binary link (Lee and Plaisted, 1992; Billon, 1996) is similar to a
binary resolution step where the instances of the parents are added instead of
the resolvent; a hyperlink (Lee and Plaisted, 1992) resembles a hyperresolution
step (without polarity requirement on the electrons), where the instance of the
nucleus (Lee and Plaisted, 1992) or the instances of the electrons (Baumgart-
ner, 1998; Stolzenburg, 1999) are added instead of the hyperresolvent 7.

6 Hyperextension satisfies the weak link condition, but not the strong one, because
it does not require that one of the L;’s is the leaf of T'.

" In (Lee and Plaisted, 1992), all literals in the nucleus are linked; in (Baumgartner,
1998; Stolzenburg, 1999), all negative literals.

49

These two moves are complementary: the strategy adds instances to S (by
the link inferences), in place of instantiating the tableau, in order to avoid
backtracking to undo instantiations in the tableau. Since S is expanded, con-
traction rules become desirable, but only unit subsumption, clausal simplifi-
cation, variant subsumption and tautology deletion are admissible, because
proper subsumption would remove all instances. The implementation of the
disconnection method in (Letz and Stenz, 2001a) attaches instances to the
tableau instead of adding them to .S; it still avoids backtracking, because the
substitutions are not applied to the whole tableau, but only locally to the
attached instances. This variant requires to test for ground closure instead of
using mgu atomic closure: all variables in the tableau are replaced by a new
constant, and the procedure checks if every branch has a pair of complemen-
tary literals. The ground closure test reminds one of the hyperlinking method
(Lee and Plaisted, 1992), that interleaves instance generation by hyperlink-
ing with testing for propositional contradiction by DPLL (the Davis-Putnam-
Logeman-Loveland procedure, e.g., (Chang and Lee, 1973)) after replacing all
variables in the clauses by a new constant. A different approach was presented
in (Giese, 2001; van Eijck, 2001). It simulates breadth-first search, i.e., devel-
oping all proof attempts, while keeping in memory only one, by generating a
tableau decorated with sets of constraints. Specialized data structures for this
purpose were presented in (Giese, 2001).

The resulting methods interleave model generation® (e.g., by hyperexten-
sion) with instance generation (e.g., by hyperlinking). They can be consid-
ered hybrids between subgoal-reduction and instance-based strategies, such as
the above mentioned hyperlinking method, its successor Ordered Semantic
HyperLinking (OSHL) (Plaisted and Zhu, 2000), or (Ganzinger and Korovin,
2003). In OSHL, DPLL is no longer merely a test for contradiction, but a
model generator applied at the ground level, so that the survey of interpre-
tations is represented by the semantic tree built implicitly by the splitting
rule of DPLL. In all three approaches — disconnection method, hypertableaux
and OSHL — the model-generation part controls the instance-generation part
in such a way that it generates instances that close the selected branch in
the tableau or semantic tree. This development of hybrid strategies draws on
an intrinsic similarity between analytic subgoal-reduction and instance-based
strategies: both work by generating instances, rather than consequences like
ordering-based strategies. The fact that instantiations are part of the marking
for analytic strategies (e.g., Examples 3 and 4) is an evidence of this similarity.
Table 2 summarizes this discussion.

8 Model elimination, from a refutational point of view.

20

Search || Proof | Deriva- | Back- Proof Admit- Used
plan conflu- tion track- | attempts ted in prac-
ent ing proof tice
Ordering- any yes path of no many any yes
based I-tree implicit
Synthetic BFS yes path of no many linear no
subgoal- I-tree explicit | (s. linked)
reduction DFS no subtree yes one [inear yes
(ILr) of I-tree explicit | (s. linked)
Analytic
subgoal-red. any yes path of no one any no
no link cond. I-tree explicit
Analytic BFS yes path of no many linked no
subgoal-red. I-tree explicit
w. link cond. DFS no subtree yes one linked yes
(InreT, ITAB) of I-tree explicit
Hybrid (e.g. path of one weakly
hyper- any yes I-tree no explicit linked yes
tableaux)
Table 2

Summary of strategies: “linked” refers to a proof built respecting a link condition,
and “s. linked” stands for “strongly linked.”

8 Discussion

Much research in theorem proving consists in defining rules or control mecha-
nisms that can counter the explosion of the search space. Analyzing formally
the impact of these features is very challenging, because the search space of
first-order theorem proving is infinite in general. A proper notion of “size” is
not defined, and since pruning mechanisms cannot turn in general an infinite
search space into a finite one, it is problematic to compare infinite graphs and
say that one is “smaller” than the other.

Our approach consists in building appropriate notions of bounded search spaces,
that are finite and can be compared in a well-founded ordering. (Bonacina
and Hsiang, 1998b) compared ordering-based strategies of different contrac-
tion power. (Bonacina, 1999a) compared distributed-search contraction-based
strategies with their sequential bases. In this paper we compared tableau-based
strategies with and without reqularity check and lemmatization by folding-up.
The main difference in terms of the analysis is that the bounded search spaces
of ordering-based strategies are monotonic, whereas those of tableau-based
subgoal-reduction strategies are not. This depends on properties of proof con-
fluence and redundancy. Fair ordering-based strategies are proof confluent, and
their contraction mechanisms satisfy the property “once redundant, always re-
dundant” (Bonacina and Dershowitz, 2005): if something becomes redundant,
it remains redundant for the rest of the derivation. Thus, considering that ex-
pansion steps visit the search space, and therefore do not modify the bounded
search spaces, while contraction steps contract them by removing redundan-
cies, it follows that the bounded search spaces are essentially monotonic. On

o1

the other hand, analytic subgoal-reduction strategies, with link condition and
depth-first search, are neither proof confluent, nor have a notion of persistent
redundancy. It follows that bounded search spaces oscillate non-monotonically,
and the analytic results that one can obtain are intrinsically weaker.

Since lack of proof confluence is problematic, a main direction for future
work is to model and analyze the proof-confluent hybrid strategies of Sec-
tion 7.3 to measure their potential advantage with respect to plain subgoal-
reduction strategies. This may entail modelling pure instance-based strategies
as well. Other topics include analyzing and comparing other refinements of
ME-tableaux, clause normal form tableaux, and tableaux in general also be-
yond clause normal form (e.g., Baumgartner and Furbach, 1998; Letz and
Stenz, 2001b; Haehnle, 2001). A feature that reduces the bounded search
spaces for all bounds j > n may not help if there are proofs within smaller
distance, i.e., if some space(G, i) for i < n contains a proof. Indeed, refine-
ments of strategies may not help if the problem is too easy. If we knew that
i is the smallest bound such that space(G, 1) contains a proof, we could work
with space(G, i) only, but knowing ¢ amounts to having a proof already, so
that the difficulty of searching for one has disappeared. However, a possible
direction for future work is to aim at relative results, namely assume a per-
fect strategy that will find a proof by searching only in space(G, i), where i
remains a parameter, and seek results on the behavior of concrete strategies
relative to this oracle.

Acknowledgements Part of this work was done while the author was with
the Department of Computer Science of The University of lowa. In addition
to support from the Department, College and University, the author acknowl-
edges support from the National Science Foundation with grants CCR-94-
08667, CCR-97-01508, and EIA-97-29807, and from the College of Liberal
Arts and Sciences with a Dean Scholar Award. The author thanks Alessandro
Armando of the Dipartimento di Informatica, Sistemistica e Telematica, of
the Universita degli Studi di Genova, where part of this work was done in the
summer of 2001, and the referees for their constructive and helpful comments.

References

Andrews, P. B., 1981. Theorem proving via general matings. J. ACM 28 (2),
193-214.

Armando, A., Ranise, S., Rusinowitch, M., 2003. A rewriting approach to
satisfiability procedures. Information and Computation 183 (2), 140-164.
Astrachan, O. L., Loveland, D. W., 1997. The use of lemmas in the model

elimination procedure. J. Autom. Reason. 19 (1), 117-141.

52

Astrachan, O. L., Stickel, M. E., 1992. Caching and lemmaizing in model elim-
ination theorem provers. In: Kapur, D. (Ed.), Proc. of CADE-11. Vol. 607 of
LNAL Springer, pp. 224-238, full version: Tech. Rep. 513, SRI International,
Dec. 1991.

Baaz, M., Fermiiller, C., Leitsch, A., 1994. A non-elementary speed-up in proof
length by structural clause form transformation. In: Proc. of LICS-94. IEEE
Press, pp. 213-219.

Baumgartner, P.; 1998. Hyper tableaux — the next generation. In: de Swart,
H. (Ed.), Proc. of TABLEAUX-98. Vol. 1397 of LNAI. Springer, pp. 60-76.

Baumgartner, P., Briining, S., 1997. A disjunctive positive refinement of model
elimination and its application to subsumption deletion. J. Autom. Reason.
19, 205-262.

Baumgartner, P., Eisinger, N., Furbach, U., 1999. A confluent connection cal-
culus. In: Ganzinger, H. (Ed.), Proc. of the 16th CADE. Vol. 1632 of LNAI
Springer, pp. 329-343.

Baumgartner, P., Furbach, U.; 1993. Consolution as a framework for compar-
ing calculi. J. Symbolic Comput. 16 (5), 445-477.

Baumgartner, P., Furbach, U., 1994. Model elimination without contraposi-
tives and its application to PTTP. J. Autom. Reason. 13, 339-359.

Baumgartner, P., Furbach, U., 1998. Variants of clausal tableaux. In: Bibel,
W., Schmitt, P. H. (Eds.), Automated Deduction - A Basis for Applications.
Vol. I: Foundations - Calculi and Methods. Kluwer Academic Publishers,
Ch. 3, pp. 73-102.

Beckert, B., 2003. Depth-first proof search without backtracking for free-
variable clausal tableaux. J. Symbolic Comput. 36 (1-2), 117-138.

Bibel, W., 1981. On matrices with connections. J. ACM 28, 633—-645.

Bierwald, C., Kaufl, T., 1997. Tableau prover Tatzelwurm: hyper-links and
UR-resolution. In: Bonacina, M. P., Furbach, U. (Eds.), Proc. of FTP-1997.
No. 97-50 in Tech. Rep. of RISC. Johannes Kepler Universitéat, pp. 22-28.

Billon, J.-P., 1996. The disconnection method. In: Miglioli, P., Moscato, U.,
Mundici, D., Ornaghi, M. (Eds.), Proc. of TABLEAUX-96. Vol. 1071 of
LNAI Springer, pp. 110-126.

Bonacina, M. P.; 1999a. A model and a first analysis of distributed-search
contraction-based strategies. Annals of Mathematics and Artificial Intelli-
gence 27 (1-4), 149-199.

Bonacina, M. P., 1999b. A taxonomy of theorem-proving strategies. In:
Wooldridge, M. J., Veloso, M. (Eds.), Artificial Intelligence Today. Vol. 1600
of LNAI. Springer, pp. 43-84.

Bonacina, M. P., Dershowitz, N., 2005. Abstract canonical inference. ACM
Transactions on Computational Logic to appear.

Bonacina, M. P.; Hsiang, J., 1995. Towards a foundation of completion proce-
dures as semidecision procedures. Theoretical Computer Science 146, 199—
242.

Bonacina, M. P., Hsiang, J., 1998a. On semantic resolution with lemmaizing
and contraction and a formal treatment of caching. New Generation Com-

23

puting 16 (2), 163-200.

Bonacina, M. P., Hsiang, J., 1998b. On the modelling of search in theorem
proving — towards a theory of strategy analysis. Information and Computa-
tion 147, 171-208.

Chang, C.-L., Lee, R. C.-T., 1973. Symbolic Logic and Mechanical Theorem
Proving. Academic Press.

Comon-Lundh, H., Courtier, V., 2003. New decidability results for fragments
of first-order logic and application to cryptographic protocols. In: Nieuwen-
huis, R. (Ed.), Proc. of RTA-14. Vol. 2706 of LNAI. Springer, pp. 148-164.

Donini, F. M., Massacci, F., 2000a. Design and results of TANCS-2000 non—
classical (modal) systems comparison. In: Dyckhoff, R. (Ed.), Proc. of
TABLEAUX-2000. Vol. 1847 of LNAI. Springer, pp. 52-56.

Donini, F. M., Massacci, F., 2000b. EXPtime tableaux for ALC. Artificial
Intelligence 124 (1), 87-138.

Eder, E., 1992. Relative Complexities of First-order Calculi. Artificial Intelli-
gence. Vieweg, Wiesbaden.

Fermiiller, C., Leitsch, A., 1998. Decision procedures and model-building in
equational clause logic. J. IGPL 6 (1), 17-41.

Fermiiller, C., Leitsch, A., Hustadt, U., Tammet, T., 2001. Resolution decision
procedures. In: Robinson, A., Voronkov, A. (Eds.), Handbook of Automated
Reasoning. Vol. 2. North Holland, Ch. 25, pp. 1793-1849.

Fermiiller, C., Leitsch, A., Tammet, T., Zamov, N., 1993. Resolution Methods
for the Decision Problem. LNAI 679. Springer.

Fleisig, S., Loveland, D. W., Smiley, A., Yarmush, D., 1974. An implementa-
tion of the model elimination proof procedure. J. ACM 21, 124-139.

Fuchs, M., 2000. Controlled use of clausal lemmas in connection tableau cal-
culi. J. Symbolic Comput. 29 (2), 299-342.

Ganzinger, H., Korovin, K., 2003. New directions in instantiation-based the-
orem proving. In: Proc. of LICS 2003. IEEE Computer Society Press, pp.
55-64.

Giese, M., 2001. Incremental closure of free-variable tableaux. In: Gore, R. P.,
Leitsch, A., Nipkow, T. (Eds.), Proc. of the First IJCAR. Vol. 2083 of LNAI.
Springer, pp. 545-560.

Goller, C., Letz, R., Mayr, K., Schumann, J., 1994. SETHEO v3.2: recent
developments. In: Bundy, A. (Ed.), Proc. of the 12th CADE. Vol. 814 of
LNAI Springer, pp. 778-782.

Haehnle, R., 2001. Tableaux and related methods. In: Robinson, A., Voronkov,
A. (Eds.), Handbook of Automated Reasoning. Elsevier Science Publishers
B. V., Ch. 3, pp. 100-178.

Konev, B., Jebelean, T., 2000. Using meta-variables for natural deduction in
THEOREMA. In: Kerber, M., Kohlhase, M. (Eds.), Proc. of Calculemus-
2000. A. K. Peters.

Korf, R. E., 1985. Depth-first iterative deepening: an optimal admissible tree
search. Artificial Intelligence 27 (1), 97-109.

Kowalski, R., 1969. Search strategies for theorem proving. In: Meltzer, B.,

o4

Michie, D. (Eds.), Machine Intelligence. Vol. 5. Edinburgh University Press,
pp. 181-201.

Kowalski, R., Kuehner, D., 1971. Linear resolution with selection function.
Artificial Intelligence 2, 227-260.

Lee, S.-J., Plaisted, D. A., 1992. Eliminating duplication with the hyperlinking
strategy. J. Autom. Reason. 9, 25-42.

Leitsch, A., 1997. The Resolution Calculus. Springer.

Letz, R., July 1993. First-order calculi and proof procedures for automated de-
duction. Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt, Ger-
many.

Letz, R., 1998. Clausal tableaux. In: Bibel, W., Schmitt, P. H. (Eds.), Auto-
mated Deduction - A Basis for Applications. Vol. I: Foundations - Calculi
and Methods. Kluwer Academic Publishers, Ch. 2, pp. 43-72.

Letz, R., Mayr, K., Goller, C., 1994. Controlled integration of the cut rule into
connection tableau calculi. J. Autom. Reason. 13 (3), 297-338.

Letz, R., Schumann, J., Bayerl, S., Bibel, W., 1992. SETHEO: a high perfor-
mance theorem prover. J. Autom. Reason. 8 (2), 183-212.

Letz, R., Stenz, G., 2001a. DCTP — a disconnection calculus theorem prover.
In: Gore, R. P., Leitsch, A., Nipkow, T. (Eds.), Proc. of the First IJCAR.
Vol. 2083 of LNAI. Springer, pp. 381-385.

Letz, R., Stenz, G., 2001b. Model elimination and connection tableau pro-
cedures. In: Robinson, A., Voronkov, A. (Eds.), Handbook of Automated
Reasoning. Elsevier Science Publishers B. V., Ch. 28, pp. 2015-2114.

Loveland, D. W., 1969. A simplified format for the model elimination proce-
dure. J. ACM 16 (3), 349-363.

Loveland, D. W., 1972. A unifying view of some linear Herbrand procedures.
J. ACM 19 (2), 366-384.

Loveland, D. W., 1978. Automated Theorem Proving: A Logical Basis. North-
Holland.

McCune, W. W., 1994. Otter 3.0 reference manual and guide. Tech. Rep.
94/6, Mathematics and Computer Science Division, Argonne National Lab-
oratory.

Pelletier, F. J., Sutcliffe, G., Suttner, C. B., 2002. The development of CASC.
AT Communications 15 (2-3), 79-90.

Peltier, N., 2003. A resolution-based model-building algorithm for a fragment
of OCCINZ. In: Dahn, I., Vigneron, L. (Eds.), Proc. of FTP-2003. No.
DSCI-11710/03 in Technical Reports. Universidad Politécnica de Valencia,
pp- 91-103.

Plaisted, D. A., 1990. A sequent-style model elimination strategy and a posi-
tive refinement. J. of Autom. Reason. 6 (4), 389-402.

Plaisted, D. A., Zhu, Y., 1997. The Efficiency of Theorem Proving Strategies.
Friedr. Vieweg & Sohns.

Plaisted, D. A., Zhu, Y., 2000. Ordered semantic hyper linking. J. Autom.
Reason. 25, 167-217.

Schumann, J., 1994. Delta: a bottom-up pre-processor for top-down theorem

25

provers. In: Bundy, A. (Ed.), Proc. of the 12th CADE. Vol. 814 of LNAIL
Springer, pp. 774-777.

Schumann, J., 2001. Automated Theorem Proving in Software Engineering.
Springer.

Shostak, R. E., 1976. Refutation graphs. Artificial Intelligence 7, 51-64.

Smullyan, R. M., 1995. First-Order Logic. Dover, (Republication of Vol. 43,
Ergebnisse der Mathematik und ihrer Grenzgebiete Series, Springer, 1968).

Stickel, M. E., 1992. A Prolog technology theorem prover: new exposition and
implementation in Prolog. Theoretical Computer Science 104, 109-128.

Stolzenburg, F., 1999. Loop-detection in hypertableaux by powerful model
generation. J. Universal Computer Science 5 (3), 135-155.

van Eijck, J., 2001. Model generation from constrained free variable tableaux.
In: Gore, R. P., Leitsch, A., Nipkow, T. (Eds.), Short papers presented at
the First IJCAR. No. DII 11/2001 in Technical Reports. Universita di Siena,
pp. 160-169.

Wallace, K., Wrightson, G., 1995. Regressive merging in model elimination
tableau-based theorem provers. J. IGPL 3 (6), 921-937.

Winskel, G., 1994. The Formal Semantics of Programming Languages. Foun-
dations of Computing Series. MIT Press.

Zhang, H., Bonacina, M. P., Hsiang, J., 1996. PSATO: a distributed proposi-
tional prover and its application to quasigroup problems. J. Symbolic Com-
put. 21, 543-560.

26

