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Abstract l-lactate is a catabolite from the anaerobic 
metabolism of glucose, which plays a paramount role 
as a signaling molecule in various steps of the  cell 
survival. Its activity, as a master tuner of many mech-
anisms underlying the aging process, for example in 
the skin, is still presumptive, however its crucial posi-
tion in the complex cross-talk between mitochondria 
and the process of cell survival, should suggest that 
l-lactate may be not a simple waste product but a fine 
regulator of the aging/survival machinery, probably 
via mito-hormesis. Actually, emerging evidence is 
highlighting that ROS are crucial in the signaling of 
skin health, including mechanisms underlying wound 
repair, renewal and aging. The ROS, including super-
oxide anion, hydrogen peroxide, and nitric oxide, 
play both beneficial and detrimental roles depend-
ing upon their levels and cellular microenvironment. 

Physiological ROS levels are essential for cutane-
ous health and the  wound repair process. Aberrant 
redox signaling activity drives chronic skin disease 
in elderly. On the contrary, impaired redox modula-
tion, due to enhanced ROS generation and/or reduced 
levels of antioxidant defense, suppresses wound heal-
ing via promoting lymphatic/vascular endothelial cell 
apoptosis and death. This review tries to elucidate 
this issue.
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Introduction: l‑lactate as a signaling molecule

l-lactate, is known also as l-lactic acid, i.e., an 
α-hydroxyl acid and is a ubiquitous molecule com-
ing from the reduction of l-pyruvate into l-lactate by 
the l-lactate dehydrogenase (LDH, E.C. 1.1.1.27), to 
produce NAD + from NADH in the Embden–Mey-
erhof–Parnas’s pathway. l-lactate is commonly con-
sidered an apparent useless byproduct of glycolysis 
(Rogatzki et  al. 2015). Actually, since many years, 
l-lactate has been mistakenly described as simply a 
toxic remnant of the anaerobic metabolism, despite 
recent evidence would suggest a crucial role for l-lac-
tate in the cell biology (Ratter et al. 2018; Philp et al. 
2005; Brooks 2020; Manosalva et al. 2022).

This l-enantiomer can be formed even under aer-
obic conditions with a specific signaling function 
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(Brooks 2020; Baltazar et  al. 2020; Tauffenberger 
et  al. 2019). As outlined in this overview, l-lactate 
serves as a master regulator of many complex path-
ways regulating crucial cell functions. Its ability to 
exert fundamental signaling functions, sets l-lactate 
within the major crucial pathways of cell survival 
(Lee 2021).

However, despite its crucial role in many steps 
of the metabolic check-point leading to cell survival 
and differentiation, a relatively scant literature exists 
about l-lactate as an on/off switcher of major intra-
cellular pathways, involved in aging and survival of 
skin. A survey on Pubmed/Medline with the MESH 
term “lactate AND aging AND signaling” retrieved 
283 releases, yet only 11 if the term “skin” is added. 
Despite the wide use of l-lactate in many cosmetic 
formulations, the role of this molecule in regulating 
skin function and skin senescence is yet far to be fully 
accomplished (Huang et al. 2020).

The modulating activity of l-lactate is closely 
linked with its ability to work as a signaling factor 
in crucial steps of the cell machinery. Usually, the 
evolution has selected small, ubiquitous and pleio-
tropic molecules to act as signaling molecules, for 
example reactive oxygen species (ROS) (D’Autréaux 
and Toledano 2007), nitric oxide (NO) (Tuteja et al. 
2004), adenosine from ATP (Eltzschig 2013), carbon 
monoxide (Mann 2010) and so forth. In particular, 
carbon monoxide (CO) is an endogenously derived 
gas formed from the breakdown of haeme by the 
enzyme haeme oxygenase 1 (HO-1). Although long 
considered an insignificant and potentially toxic waste 
product of haeme catabolism, CO is now recognized 
as a key signaling molecule that regulates numerous 
metabolic functions including the many cytoprotec-
tive, antioxidant, and anti-inflammatory abilities 
(Durante et al. 2006; Kim et al. 2006).

l‑lactate role in the aging process and the role 
of mitochondria

In recent years, despite the role of l-lactate has been 
widely associated, as a biomarker, with the noxious 
activity of stressors, xenobiotics and endogenous 
toxicants (Seheult et al. 2017; Schmidt and Karlson-
Stiber 2008; Manojlović and Erčulj 2019), evidence 
was reported about a surprising beneficial activity of 

this α-hydroxyl acid. For example, l-lactate protects 
skin fibroblasts from mitochondria aging-related dys-
function, via a process known as “mito-hormesis” 
(Zelenka et al. 2015).

Mito-hormesis (Barzegari et  al. 2022; Bárcena 
et  al. 2018; Bordon 2021) is a modulating process, 
involving mitochondria and the mitochondria-associ-
ated membrane (MAM) system (van Vliet and Ago-
stinis 2018; van Vliet et  al. 2014), where a “mild” 
stress induction can lead to a persistent cellular adap-
tation to stressors. This adaptation enables the cell to 
prevent damage, enhance its survival response and 
activate rejuvenation and/or biogenesis processes, in 
order to protect the cell from apoptosis and mitochon-
dria from dysfunction.

As a matter of fact, mitochondria may reduce the 
impact of reactive oxygen species (ROS)-mediated 
damage by uncoupling the oxidative phosphorylation 
via the uncoupling protein-1 but also by modulating 
the level of ROS as signaling molecules by means of 
the mito-hormesis (Atayik and Çakatay 2022). The 
role of l-lactate in this process is yet under investiga-
tion. Mito-hormesis can be considered as an adaptive 
stress response via a kind of mito-nuclear signaling, 
acting in order to enhance cell survival and stress 
resistance, for example by inducing the release of fac-
tors such as fibroblast growth factor 21 (FGF21) and 
growth and differentiation factor 15 (GDF15), two 
fundamental stress-triggered mitokines (Klaus and 
Ost 2020), to cite l-lactate role in the skin.

If l-lactate has a beneficial role on cell survival via 
a mito-hormetic mechanism, then it should lead to a 
fundamental modulation of the ROS signaling. In this 
context, l-lactate regulation of the stress response, 
and hence of cell survival and differentiation, appears 
particularly intriguing also to elucidate the aging pro-
cess, if l-lactate is at the same time a waste product 
and a major signaling molecule.

More generally, it is tempting to speculate that one 
of the major roles of highly ubiquitous and largely 
pleiotropic molecules, such as CO and l-lactate, usu-
ally coming from the complex metabolic network of 
signaling and enzymatic pathways, is to be widely 
used as fine regulators. Therefore, as occurring with 
ROS, ATP, adenosine, calcium ions and so on, l-lac-
tate too, should be re-interpreted as a signaling mol-
ecule with fundamental modulatory actions (Coggan 
et al. 2022; Veloz Castillo et al. 2021).
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During the aging process, l-lactate exerts funda-
mental actions in the brain, as it has been recently 
considered also a biomarker of brain senescence, 
where the ratio LDH isoenzymes A/B may be altered, 
though controversial opinions yet remain (Ross 
et al. 2010; Datta and Chakrabarti 2018). In a recent 
mitochondrial theory of aging, dating back to sev-
eral years, mitochondria dysfunction and damage in 
the mitochondrial DNA (mtDNA), are collectively 
included in the causative panoply of factors leading to 
the aging process of cells and tissues (Harman 1972; 
Larsson 2010). This might elucidate the possible role 
of l-lactate in the subsequent impairment of mito-
chondria activity, leading the cell to switch mainly 
towards aerobic mode of fermentation, so regulating 
fundamental pathways in the survival machinery.

Prematurely aged mice with mutated mtDNA, 
have mitochondria shifting aerobic metabolism to a 
glycolytic pathway (Ross et  al. 2010). The intrinsic 
meaning of this mechanism is still under investiga-
tion, yet it involves l-lactate, and suggests a role for 
this molecule as a master regulator of mitochondria 
biology (Ross et  al. 2010). As a matter of fact, the 
role of mitochondria in aging has been widely con-
firmed in the most recent literature (Sun et al. 2016; 
Srivastava 2017; Jang et  al. 2018). In this perspec-
tive, l-lactate may be a leading factor in the adjusting 
of mitochondria physiology (Van Hall 2000; Levas-
seur et  al. 2006). Interestingly, recent data reported 
that an intermittent treatment of skin fibroblasts with 
l-lactate induced a mild inhibition of the mitochon-
drial aerobic process via the respiratory chain (mito-
hormesis), causing production of hydrogen peroxide, 
phosphorylation of AMPK and activation of the mito-
chondria biogenesis via PGC-1α, so activating the 
cellular endowment of survival genes and enzymes 
and finally acting as a skin protective factor (Ross 
et  al. 2010). Hydrogen peroxide is involved in the 
intracellular signaling of ROS, acting as a mediator of 
several physiological processes such as cell differenti-
ation and proliferation, cellular metabolism, survival, 
and immune response (Di Marzo et al. 2018).

This evidence should suggest that moderate levels 
of l-lactate, for example during muscular exercise, 
may have beneficial effects, allowing to consider 
l-lactate as a signaling molecule in the complex role 
exerted by mitochondria in the aging process, using 
sustained, moderate exercise (Musci et  al. 2019; 
Merry and Ristow 2016).

However, the role of l-lactate in muscles might 
include a much wider complex of signaling factors 
and pathways, which encourages researchers to define 
its task in a more systemic landscape than the sim-
plest biochemical machinery associated with mito-
chondria. Past reports, showing a beneficial action of 
topical l-lactate on skin biology, might have a possi-
ble elucidation by the most recent research in the field 
(Smith 1996; Tran et al. 2014; Huang et al. 2020).

l-lactate may be closely related to aging as, in ani-
mal models, the level of this glycolytic byproduct rap-
idly increases in the senescent phenotype (Datta and 
Chakrabarti 2018; Wallace et al. 2020).

Senescent cells exhibit higher glycolytic activity 
and lactate production than youngest cells, alongside 
with an enhanced expression of lactate dehydroge-
nase A as well as increases in tricarboxylic acid cycle 
activity and mitochondrial respiration. The latter 
is likely due to the reduced expression of pyruvate 
dehydrogenase kinases (PDHKs) in senescent cells, 
which may lead to increased activity of the pyruvate 
dehydrogenase complex (Stabenow et al. 2022).

At least in murine models, the circadian rhythms 
of lactate in aged C57BL/6N male mice (19 months) 
appear slightly phase-advanced respect to younger 
animals, affecting the metabolic activity of the pre-
frontal cortex in the brain (7  months). A possible 
reason can be hypothesized by observing the reduc-
tion in GLUT-1 receptors alongside with the aging 
process (Wallace et al. 2020). If aging modulates the 
systemic involvement of l-lactate in the individual’s 
metabolic homeostasis, then l-lactate should have a 
fundamental role even in the human physiology.

Actually, circadian rhythms of l-lactate were 
reported also in humans, particularly during physical 
exercise (Forsyth and Reilly 2004; Reilly and Water-
house 2009), and furthermore recent evidence sug-
gests that a cross talk between metabolism and cir-
cadian rhythms can be described (Reinke and Asher 
2019).

At a cellular level, where cells should have their 
own circadian oscillators, an interplay dynamic 
between circadian clocks and the mammalian target 
of rapamycin (mTOR) pathway was reported (Guer-
rero-Morín and Santillán 2020). This perspective sug-
gests that the role of l-lactate as a master regulator of 
aging must be much more systemic that expected.

So far, the linkage between l-lactate, aging and 
redox modulation, is overshadowed by a huge crowd 
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of molecular participants in the highly complex 
milieu describing the fundamental role of mitochon-
dria in the cell survival. This might explain why 
scientific literature is particularly scant in gathering 
reports showing the role of l-lactate, not exclusively 
as a catabolite, despite some recent reports on the 
topic of l-lactate as a signaling molecule (Table  1). 
In this review we attempt to elucidate the role of 
l-lactate as a signaling and regulatory molecule in 
the aging process, focusing particularly on the senes-
cence process of the skin.

Insights about l‑lactate as a signaling 
and modulatory molecule

Role of ROS

Skin aging, health and disease are closely intertwined 
with mitochondria biology (Sreedhar et  al. 2020). 
As the epidermis is a highly self-renewing tissue, 
the role of mitochondria may be therefore crucial 
(Zhang et  al. 2018; Stout and Birch-Machin 2019). 
Furthermore, in this context, ROS play also a modu-
latory role in differentiating numerous cell lineages 
via downstream pathways such as C/EBP, β-catenin 
and Notch, even promoting differentiation in murine 
embryonic stem cells and the induction of both pluri-
potent stem cells and multipotent stem cells of epi-
thelial origin (Lisowski et  al. 2018). In conditional 
knock out mice, for the expression of the mitochon-
dria transcription factor A (TFAM), some authors 
reported a high mortality rate caused by the absence 
of a correct functionality in the epithelial barrier and 
primary keratinocytes from these laboratory animals 
were unable to differentiate in vitro (Hamanaka et al. 
2013). Actually, TFAM is involved in leading the rep-
lication of mitochondrial DNA and those cells lack-
ing TFAM have impaired oxidative phosphorylation 
and ROS production (Hamanaka et  al. 2013). This 
perspective strongly suggests that ROS are crucial in 
the signaling of skin health, including mechanisms 
underlying wound repair, renewal and aging. The 
outstanding role of ROS, as signaling molecules for 
skin health and aging, should be therefore reappraised 
(Ndiaye et al. 2014; Dunnill et al. 2017; Gauron et al. 
2013).

ROS are major contributors in skin renewal, stem 
cell biology and keratinocyte differentiation. Along-
side with ROS, it is presumable that l-lactate might 
play a role in skin aging and skin renewal, not so 
differentially from the signaling function exerted by 
ROS.

In this perspective, the relationship between ROS 
and l-lactate should be better highlighted.

A recent paper by Tauffenberger et al. reported that 
l-lactate, as well as l-pyruvate, is able to activate a 
stress response mechanism by eliciting a hormetic 
response of ROS, so activating the Nrf2/Keap1/ARE 
system and the unfolded protein response (UPR) 
(Tauffenberger et  al. 2019). The question one might 
raise is whether l-lactate would act as a mild stressor, 
such as plant flavonoids, phytochemicals and other 
xenobiotics, for example, or if this catabolite has a 
much higher importance, in the cell economy.

Certainly, as l-lactate is the major product of gly-
colysis, its role cannot be compared to the occasional 
beneficial activity of a xenobiotic, due to hormetic 
mechanisms. Interestingly, aryl hydrocarbon recep-
tors (AhRs), which act as transcription factors, modu-
late the genetic expression of several enzymes gener-
ating uridine monophosphate, alongside with LDHA, 
therefore controlling l-lactate production (Lafita-
Navarro et al. 2020). The close relationship of xeno-
biotic biology via AhRs and l-lactate levels is sugges-
tive for a signaling role of l-lactate in the oxidative 
stress response.

Impaired redox modulation of signaling pathways 
is a leading causative factor of cellular senescence.

Role of other factors: autophagy and apoptosis

It is now well established that a subtle balancing of 
mitochondria activity via signaling molecules such 
as ROS and the fine regulation of biochemical path-
ways leading to the control of cell survival, is the 
main mechanism causing aging. Probably, aging is 
not merely an end-oriented process but the breakage 
of minute intracellular equilibria, which then may 
lead to an irreversible development and pathophysiol-
ogy (Liguori et al. 2018; Kruk et al. 2019; Kitada and 
Koya 2021). The role of l-lactate in autophagy, for 
example, can provide further insights about its abil-
ity to modulate important signaling pathways in cell 
biology. It is well known that LDH-B and LDH-A 
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Table 1  Skin aging and the role of l-lactate as a signalling molecule

BDNF brain-derived neurotropic factor, HIF-1α hypoxia inducible factor 1-alpha, IFN-γ interferon gamma, PHD prolyl hydroxylase, 
ROS reactive oxygen species, ⇑ activation (promotion), ⇓ inhibition (reduction), ⟺ modulation

Type of study Evidence reported Action Role as signaling molecule References

In vitro rat skin fibroblasts Activity and expression of 
AMPK, master regulation 
of stress response

Mitochondria biogenesis
l-lactate  intermittency 

protection of mitochondrial 
dysfunction

Skin aging and senes-
cence (via PGC-1α and 
autophagy)

⇑
⇑
⇑
⇓

l-lactate  elicits ROS as 
signaling molecules via 
mitohormesis

Zelenka et al. (2015)

Review HIF-1α stabilization
Promotion of IFN-γ and 

immune regulation

⇑
⇑

l-lactate  in HIF-1α/PHD via 
ROS

Lee (2021)

Review Promotion of brain function 
in aging

⇑ l-lactate  interacts with 
GPR81/HCA1

l-lactate  signaling via ROS

Mosienko et al. (2015), Cai 
et al. (2022)

HaCaT cells (keratinocytes) l-lactate  from Lactobacilli 
action on senescent wound 
healing

l-lactate  from Lactobacilli 
action on keratinocytes 
migration

l-lactate  from Lactobacilli 
action on keratinocytes 
replication

l-lactate  from Lactobacilli 
action on inflammation

⇑
⇑
⇑
⇓

l-lactate  as signaling mol-
ecule in immunity

Brandi et al. (2020)

Review Histone lactylation in gene 
expression. A ’lactate 
clock’ of endogenous 
origin in M1 macrophages 
challenged with microbes 
turns on gene expression to 
promote homeostasis

⟺ l-lactate  as signaling mol-
ecule in lactylation

Zhang et al. (2019)

Observational study Epidermal and dermal firm-
ness and thickness

Lines and wrinkles

⇑
⇓

l-lactate  as a signaling mol-
ecule in ROS biology

Smith (1996)

Review Maintenance of long term 
potentiation in neurons 
from astrocyte-derived  
l-lactate

Brain plasticity and synap-
togenesis

Adaptation of brain caused 
by exercise

⇑
⇑
⇑

l-lactate  as a signaling factor 
in neuronal activity

Huang et al. (2021)

Review l-lactate  as a signaling mol-
ecule in regulating exercise

⇑ l-lactate  as a signaling mol-
ecule in ROS biology

Nalbandian and Takeda (2016)

Review Brain plasticity and synap-
togenesis

Adaptation of brain caused 
by exercise

⇑
⇑

l-lactate  as signaling mol-
ecule likewise BDNF

Müller et al. (2020)

Review l-lactate  in metabolic regula-
tion

⟺ l-lactate   as a signaling mol-
ecule in ROS biology

Pellerin et al. (2022), Wu et al. 
(2022)
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isoenzymes control autophagy (Brisson et  al. 2016; 
Das et al. 2019).

Autophagy is a fundamental process to main-
tain longevity (Barbosa et  al. 2019) and recent data 
reported that l-lactate regulates autophagy, via the 
ERK1/2/m-TOR/p-70S6K pathway (Nikooie et  al. 
2021). Even this role in autophagy might have a hor-
metic cause, as the same l-lactate has an inhibitory 
action on autophagy when cells have lost their stress 
responsivity, such as in tumors (Matsuo et al. 2019). 
Again, in this perspective, l-lactate should exert a 
fundamental regulatory activity even on apoptosis 
(Go et  al. 2021). At least on HepG2 cell lines, the 
increase in the extracellular lactate-to-pyruvate ratio 
has the ability to reduce the cytosol NADH/NAD+ 
redox state and inhibiting stress-induced apoptosis 
(Go et  al. 2021). Moreover, high extracellular l-lac-
tate inhibits the intrinsic apoptotic pathway by reduc-
ing the activation of JNK and Bax (Go et al. 2021).

The effect on the apoptotic pathway is of the 
utmost importance for aging, as reported by past 
reports regarding skin senescence (Haake et al. 1998; 
Zhang and Herman 2002; Tower 2015), but it is more 
presumably autophagy that mainly controls the pro-
cess of skin aging (Eckhart et al. 2019). In this per-
spective, it is tempting to speculate if l-lactate might 
have a role in skin protection or repair, due to its 
modulatory activity on these mechanisms.

l-lactate in skin aging

First intriguing evidence is that l-lactate is able to 
stimulate both the expression of CD44 and hyaluro-
nan in H8 27 human dermal fibroblasts (Stern et  al. 
2002). The authors reported that the Warburg-like 
effect, leading to an increase in l-lactate, was prob-
ably the consequence of a blood and oxygen reduc-
tion in a wound repair mechanism. As a matter of 
fact, the incubation of H8 27 human fibroblasts with 
l-lactate enhanced the expression of the hyaluronan 
receptor CD44 and the production of hyaluronic acid 
(Stern et  al. 2002). During wound repair, l-lactate 
accumulates and l-lactate itself works as an inducer 
of ROS to promote dermal fibroblasts growth, via the 
requirement of iron and hydrogen peroxide (Wagner 
et al. 2004). Moreover, it is well known that aging has 
a detrimental effect on skin fibroblasts, both reduc-
ing their growth and altering the expression of a wide 
plethora of collagen, metallothionein, interleukin, 

caspase and sirtuin genes (Lago and Puzzi 2019). 
Therefore, l-lactate may even exhibit an anti-aging 
role (Tran et al. 2014). Finally, l-lactate promotes the 
shift from the mitochondrial oxidative phosphoryla-
tion (OXPHOS) to glycolysis via HIF-1α and stabi-
lizes the activity of the same hypoxic factor HIF-1α, 
probably in order to support the signaling function of 
ROS in human fibroblasts (Kozlov et al. 2020).

The relationship between ROS, mitochondria and 
l-lactate is of utmost importance for the cell survival, 
involving glucose metabolism as a switching control 
(Liemburg-Apers et  al. 2015). A possible vicious 
cycle ROS-glycolysis may lead to cell death when 
ROS signaling is impaired (Liemburg-Apers et  al. 
2015).

ROS signaling is ruled by  H2O2, (Forman et  al. 
2010) and hydrogen peroxide is crucial for a complex 
network of such biochemical hubs linking cell metab-
olism with the aging process (Roger et al. 2020). So, 
cellular aging may be the puzzling resultant of a com-
plex interplay between ROS and l-lactate, via  H2O2 
scavenging enzymes such as peroxiredoxins (Roger 
et al. 2020).

The mechanisms of skin aging have been thor-
oughly reviewed (Jenkins 2002; Kohl et  al. 2011; 
Zhang and Duan 2018). A key mechanism of skin 
aging is the induction of ROS and metalloproteinases 
(Kohl et  al. 2011). These components are the major 
alarming signals of tissue and cell damage and a pow-
erful biomarker of critically illness circumstances.

A close relationship between metalloproteinase-9 
(MMP9) and tissue inhibitor of matrix metallopro-
teinase-1 (TIMP1) with l-lactate in plasma of criti-
cally ill patients, has been recently reported (Duda 
et al. 2020). Aging involves a thorough remodeling of 
tissues making the skin and matrix metalloproteinases 
are fundamental actors in the complex turnover of the 
extracellular matrix (ECM) and of cell composition in 
the connective tissue (Freitas-Rodríguez et al. 2017). 
It is presumable that l-lactate might exert a major 
activity in this complex scenario. Furthermore, in an 
effort to elucidate which kind of functional relation-
ship l-lactate engages with the complex intracellular 
milieu of factors regulating ROS signaling and aging, 
where glucose metabolism might be the major key.
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Role of glucose

A past paper by Park et al. highlighted the evidence 
that a sustained hyperglycemic state, such as occur-
ring during type 2 diabetes, induces an impaired skin 
barrier state, probably because skin homeostasis is 
delayed (Park et  al. 2011). High glucose induces 
alterations in sirtuins, causing also a rapid aging 
in endothelial cells via forkhead transcription fac-
tors (FOXO) and p300 regulated pathway (Mortuza 
et al. 2013). Actually, in diabetic animals, endothelia 
showed signs of senescence, senescence associated 
β-gal (SA-β-gal) expression, reduction in sirtuins 
1–7 and in FOXO1 DNA binding ability (Mortuza 
et al. 2013). If excess of glucose is a leading factor of 
senescence induction (Liu et  al. 2020a; Zhang et  al. 
2017; Danby 2010; Yin et al. 2021), particularly for 
mesenchymal stem cells (Yin et  al. 2021), the role 
of l-lactate in the regulation of a glycemic-induced 
senescent phenotype should be particularly inter-
esting. In type 2 diabetic patients, with a chronical 
hyperglycemic state, (Brouwers et  al. 2015; Adels-
mayr et  al. 2012), l-lactate is a leading biomarker, 
so it is presumable that l-lactate should play a role 
as a regulator in the glycemic impact of the stress 
response.

Two different of fundamental routes are to be put 
in the spotlight to further elucidate the involvement of 
l-lactate in the aging process of the skin: (a) the role 
of l-lactate in bioenergetics and mitochondria biol-
ogy; (b) the role of l-lactate in stem cell commitment 
in the skin and mesenchymal differentiation. Both 
functions are intertwined with ROS biology.

l‑lactate in skin physiology

l-lactate and skin biology during aging: the immune 
mircoenvironment

Due to the fundamental role of l-lactate in the mito-
chondria-ROS signaling, and therefore in the aging 
process, skin differentiation should be affected by 
l-lactate turnover and metabolism. Actually, l-lactate 
participates in the complex milieu of skin cellular 
components by interacting with the interplay stro-
mal cells-immune cells, for example by switching off 
the pro-inflammatory immune response and promot-
ing tissue renewal and repair (Selleri et al. 2016; He 

et al. 2019). Human stromal cells from mesenchymal 
origin (MSCs) release l-lactate and induce a lactate-
mediated reprogramming in dendritic cells, i.e., 
MSCs produce large amounts of l-lactate and cause 
the differentiation of monocytes to M2-macrophages, 
so acting as an immunomodulant molecule (Selleri 
et  al. 2016). The role of M2-macrophages in aging 
and skin biology is intriguing, because these anti-
inflammatory phenotypes are typically skewed from 
precursors in tissue repair mechanisms, which encom-
pass the involvement of Th2 cytokines mediating an 
M2 programming of monocyte-to-dendritic cells and 
moreover of apoptotic events, then contributing in tis-
sue renewal (Kim and Nair 2019). It is possible that 
l-lactate works as a switcher in the M1/M2 skewing 
process, to ensure the ability of monocyte to polar-
ize, as this ability is reduced in advanced senescent 
phenotypes (Mahbub et al. 2012). The existence of an 
M2-milieu in the innate immunity of skin, promotes 
cell differentiation and survival. It is well known that 
MSCs have a multi-lineage differentiating pattern, 
in order to improve wound healing, but also recent 
data reported that MSCs are joined to M2-skewed 
macrophages and by the co-occurrence of a hypoxic 
microenvironment (Lee et al. 2016).

Role of hypoxia and staminality

Aging in the skin can be caused by the loss of the 
hypoxia-inducible factor 1 alpha (HIF-1α) (Rezvani 
et al. 2011). In normal human diploid BJ fibroblasts, 
l-lactate promotes the role of HIF-1α in shifting 
mitochondria oxidative phosphorylation to glycolysis 
(Kozlov et al. 2020). HIF-1α is a leading regulator of 
glycolysis and is able to promote the expression of 
several genes involved in glucose uptake and metabo-
lism, such as pyruvate dehydrogenase kinase (PDK, 
isozymes 1–3) and pyruvate kinase muscle isozyme 
2 PKM2 (Prigione et  al. 2014). Usually, HIF-1α is 
rapidly degraded following its genetic translation in 
normoxic conditions but l-lactate has the ability to 
stabilize HIF-1α in the cell, prolonging its action and 
therefore contribution in reducing the impact of the 
aging process. This ability, as observed in BJ human 
fibroblasts is promoted by l-lactate via a ROS signal-
ing (Kozlov et  al. 2020). Stabilizing HIF-1α in der-
mal fibroblasts leads to the enhancement of PDK1 
and PKM2 proteins, whereas PDK1 and LDHA are 
particularly increased in hypoxic conditions (Kozlov 



716 Biogerontology (2023) 24:709–726

1 3
Vol:. (1234567890)

et al. 2020). The glycolytic shift is not only a switch-
ing on/off on aerobic/anaerobic metabolism but 
relates mitochondria function and l-lactate to cell 
replication and stem cell biology. In this perspec-
tive, it is interesting to observe that c-myc promotes 
a state of high energy supply, fundamental for stem 
cell generation, in which further components such 
as the estrogen related receptor alpha (ERRα) and 
its major cofactor, peroxisome proliferator-activator 
receptor gamma coactivator 1-beta (PGC1-β), are 
also involved (Prieto et  al. 2018; Kida et  al. 2015). 
Furthermore, in early somatic cell reprogramming, 
a fundamental role is exerted by the snail family of 
transcriptional repressor (SNAIL1), which has a 
role in the epithelial-to-mesenchymal (EMT) tran-
sition (Unternaehrer et  al. 2014). l-lactate increase 
the expression of c-myc and SNAIL in dermal fibro-
blasts, so showing the crucial role of this catabolite 
as a signaling molecule in stem cell reprogramming 
(Kozlov et al. 2020).

The relationship between aging and MSCs has 
been recently reviewed (Liu et  al. 2020a, b, c). In 
aged and senescent MSCs a down-regulation in 
the expression of C–C motif chemokine receptor 7 
(CCR7), stromal cell-derived factor 1 (SDF-1) and 
its receptor chemokine receptor type 4 (CXCR4), 
and also of tumor necrosis factor receptor (TNFR) 
and IFN-γ receptor (IFNGR), have been observed 
(Liu et  al. 2020a, b, c). Furthermore, an age-related 
decline in the gene expression of the runt-related 
transcription factor 2 (Runx2), the core binding factor 
α1 (CBFA1), and distal-less homeobox  5 (DIx5) as 
well as osteocalcin and collagen, has been reported, 
alongside with an increase in pro-adipogenetic com-
ponents such as peroxisome proliferator-activated 
receptor-γ (PPAR-γ) and adipocyte fatty acid-binding 
protein (aP2) (Jiang et al. 2008). A close relationship 
between Runx2 and HIF-1α occurs to promote angio-
genic signals (Kwon et al. 2011). l-lactate, by stabi-
lizing HIF-1α even in normoxic conditions, promote 
vascular endothelial growth factor (VEGF) produc-
tion (Song et al. 2018). In this perspective, therefore, 
l-lactate may contribute in dermal vascularization, 
which is a major issue in skin aging. An age-related 
decrease in dermal vascularization, might be due to 
impairment in VEGF signaling via the delta-like 
ligand 4 (Dll4) and Jagged-1 (Jag-1) (Gunin et  al. 
2014).

Aging in skin can be considered a degenerating 
process starting from the increasing difficulty of mito-
chondria to ensure cells with the ability of promote 
survival process, stressors scavenging and stem cell/
differentiation interplays at a balanced level. Figure 1 
shows the possible relationship between l-lactate and 
mitochondria biology to elucidate the role of l-lactate 
in the aging process. The central core of this complex 
task is the ability of l-lactate to join metabolism and 
bioenergetic with the oscillating ability of mitochon-
dria to regulate the cell fate. ROS are continuously to 
be adjusted to work as signaling molecules, whereas 
any excess must be buffered in order to prevent mito-
chondria stress and the impairment in their biogenesis 
and turnover. Further research should elucidate the 
role of l-lactate in this perspective.

l‑lactate, ROS and mitochondria: role in skin 
aging

l-lactate and mitochondria

During aging, the role of mitochondria in skin physi-
ology is particularly crucial (Stout and Birch-Machin 
2019; Sreedhar et al. 2020). Many authors agree with 
the idea that aging involves immunity in a process 
known as “inflammaging” (Franceschi et  al. 2007). 
Mitochondria are a sort of “powerhouses” of immu-
nity, as mitochondrial DNA (mtDNA) may act as a 
danger-associated molecular pattern (DAMP) and 
the same outer membrane of these organelles act as 
a bench for signaling components such as RIG-1 and 
MAVS and can activate also NLRP3 (inflammasome) 
(Mills et  al. 2017). Circulating mtDNA correlates 
with increased Body Mass Index (BMI) and aging 
(Padilla-Sánchez et  al. 2020) and has been since 
years considered a major biomarker of inflammation 
and cancer (Yu 2012). A mitochondrial functional 
biomarker is therefore associated with the presence 
of mitochondria genomes in the cell. Actually, the 
mitochondrial DNA copy number (mt-DNA CN), an 
evaluation of the number of the organelle genomes 
per cell, is used as a functional biomarker associ-
ated with aging-related disorders (Longchamps et al. 
2020). Furthermore, during aging mitochondria DNA 
mutations cumulate and respiratory function declines 
(Wei et  al. 2009). Mitochondria functionality is so 
crucial for skin health during aging that some authors 
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suggested very recently an artificial mitochondria 
transfer/transplant (AMT/T) to promote renewal of 
senescent skin cells, even revitalizing them (Balcázar 
et al. 2020).

The relationship between l-lactate and “mito-
chondria health” may be closely related to aging pro-
cesses. Some cognitive and neurological disorders 
links mtDNA alterations with increase in circulating 
l-lactate (Valiente-Pallejà et  al. 2020; Hanisch et  al. 
2006). The importance of l-lactate for mitochondria 
bioenergetics has emerged very recently; for example, 
Young and colleagues showed that l-lactate can sup-
port fueling mouse mitochondria energetics, in liver, 

heart and muscle, via mitochondrial LDH, further 
participating in ROS generation and in the production 
of  H2O2 to an extent comparable to pyruvate (Young 
et al. 2020). If l-lactate is fundamental for mitochon-
dria, the “shuttle hypothesis” formulated by Brooks 
some years ago may suggest that l-lactate is used also 
as a signaling molecule to connect bioenergetics with 
cellular turnover (Brooks 2009). This hypothesis may 
find a confirmation as l-lactate oxidized in mitochon-
dria exceeds of 10–40% the oxidation of pyruvate for 
bioenergetics (Brooks 2009).

The role of l-lactate in mitochondria biology 
is fundamental at least because the metabolism of 

Fig. 1  A schematic representation of l-lactate activity within 
the pathogenesis of premature/extrinsic skin aging. In the 
center of the cartoon is simplified the complex balance on 
ROS production by mitochondria, in order to assess ROS as 
signaling molecules. This mechanism allows mitochondria 
biogenesis, uncoupled events, mitokinesis and mitochondria 
fission/fusion, via the PGC-1α but l-lactate is also able to use 
oxidized lipids to trigger the Nrf2/keap1/ARE via mitohor-
metic mechanism. The activity by l-lactate on HIF-1α allows 
to bring together two quite opposite but interplaying pathways, 

i.e. the Nrf2/Keap1/ARE pathway with HO-1 and the MAPK/
NF-κB pathway. Aging in the skin is exemplified by events 
within squares red lined squares, whereas events reverting the 
aging process and promoting survival and renewal are green 
lined squares. l-lactate is indicated as “l” within a green cir-
cle (if promoting or triggering), pale yellow if regulating, red if 
inhibiting. DAMP damage associated molecular pattern, HO-1 
heme oxygenase-1, NF-kB nuclear factor kappa‐B, NLR family 
pyrin domain containing 3, PAMP pathogen associated molec-
ular pattern



718 Biogerontology (2023) 24:709–726

1 3
Vol:. (1234567890)

l-lactate occurs in mitochondria (Chen et  al. 2016; 
Glancy et  al. 2021). Moreover, the relationship 
between mitochondria and aging dates back to the 
sixties and is certainly a major issue to elucidate the 
possible role of l-lactate and mitochondria in skin 
aging (Rockstein and Brandt 1963; Sun et al. 2016). 
The majority of studies on the relationship between 
mitochondria dysfunction and mtDNA mutations 
leading to the aged phenotype have been obtained 
by the so called “mitochondrial mutator mouse”, a 
knock out laboratory animal a mutated D257A gene, 
a proofreading deficient form of the polymerase 
POLGg, acting on mtDNA.

In these mice the gene encoded by the nucleus is 
the only mtDNA polymerase, which, as mutated at 
the position 257, lacks of the proofreading ability. 
Mice with one or two copies of this mutated gene, 
accumulated a huge deal of deficient mitochondria 
and show an accelerated senescent phenotype respect 
to wild type (Kujoth et  al. 2005; Trifunovic et  al. 
2004). So far, the relationship between aging, mito-
chondria and l-lactate, has been particularly high-
lighted in molecular neuroscience (Datta and Chakra-
barti 2018) but it can be speculatively suggested that 
a major role of l-lactate in modulating and regulating 
mitochondria-addressed aging may be retrieved from 
many other tissue and organ models, such as skin, 
where the dynamics of mitochondria and their intra-
cellular connections is fundamental (Mellem et  al. 
2017). In mitochondria biogenesis the transcription 
co-activator factor peroxisome proliferator-activated 
receptor-gamma coactivator-1 alpha (PGC-1α), is a 
master tuner of bioenergetics (Liang and Ward 2006). 
As a matter of fact, PGC-1α controls also l-lactate 
metabolism, for example by increasing the expression 
of MCT1, more than MCT2 and MCT4 in the skeletal 
muscle (Benton et al. 2008) and controlling the whole 
availability of l-lactate in the tissue (Summermatter 
et al. 2013). The administration of l-lactate increases 
the expression of PGC-1α, by inducing an enhance-
ment in PGC-1α mRNA transcripts, and at the same 
time increases also pyruvate dehydrogenase kinase 4 
(PDK4) and the mitochondrial uncoupling protein 3 
(UCP3) gene expression (Kitaoka et al. 2016).

It is widely known that UCP3 should protect mito-
chondria from aging and also from inflammaging 
and fat-induced damage, via ROS as signaling mol-
ecules. Some authors, using C57Bl6 mice overex-
pressing skeletal muscle UCP3 (UCP3Tg), reported 

that 4-hydroxynonenal (4-HNE), an α-β unsaturated 
hydroxy-alchenal from lipidic peroxidation, dampens 
the age-related increase in ROS, due to the increased 
state IV of oxidative respiration from mitochondria 
by the UCP3 overexpression (Nabben et  al. 2008). 
It is intriguing that 4-HNE is the major byproduct 
by oxygen-ozone treatment, which has been recently 
used even to improve the anti-inflammatory therapy 
against COVID-19 (Chirumbolo et  al. 2021). The 
relationship between PGC-1α and ROS in particularly 
intriguing during the biogenesis of new mitochondria 
and mitophagy, where PGC-1α buffers the excess of 
ROS by eliciting the production of anti-oxidant scav-
enging enzymes (Baldelli et al. 2014). Mitochondria 
biogenesis and mitophagy are fundamental processes 
in counteracting aging (Wei et  al. 2021; Bakula and 
Scheibye-Knudsen 2020; Chen et  al. 2020). In this 
perspective, l-lactate may even have a crucial role.

The dynamin related protein 1 (DRP1), which 
regulates mitochondria biogenesis and mitophagy, 
i.e., mitochondrial and peroxisome fission, regulates 
also endoplasmic reticulum-generated droplets in the 
adipose tissue, so correlating the correct lipid stor-
age in adipocytes with the mitochondrial survival (Li 
et al. 2020). Recent data on lung cancer cell models, 
reported that DRP1 promotes l-lactate utilization 
and suppresses oxidative stress from ROS (Hu et al. 
2020). Targeting DRP1 allows to reducing the expres-
sion of heart shock proteins (hsp90) and increasing 
the ROS-mediated cleavage of hsp90, a mechanism 
that in turn will inhibit the MAPK and PI3K-medi-
ated pathways, the ability of cell to use l-lactate and 
subsequently the ROS-mediated cell death (li et  al. 
2020).

Mitochondria fusion and fission are remarkable 
mechanisms in the development of the aging process, 
in which l-lactate would play a role (Liu et al. 2020a, 
b, c). Mitofusin-2, a protein of the outer membrane 
involved in mitochondria fusion, when deficient might 
regulate an adaptive response involving the increase 
in PGC-1α and in the transcription factor TFAM, to 
prevent mtDNA depletion (Kawalec et al. 2015). The 
bulk of evidence relating l-lactate with mitochondria 
and ROS strongly suggests that l-lactate, therefore, is 
intertwined with mitochondria turn over and probably 
with the molecular mechanisms leading to aging.
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Mitochondria, l-lactate and aged skin

The role of mitochondria in skin aging has been 
recently reviewed (Stout and Birch-Machin 2019; 
Hudson et  al. 2016). Noteworthy, mitochondrial 
metabolism is a leading process for keratinocyte dif-
ferentiation. Deletion of TFAM at the level of basal 
cells of epidermis causes a loss in ROS signaling 
(reduction in the mitochondria production of ROS) 
and therefore an impairment in epidermal differen-
tiation and also hair growth (Hamanaka and Chan-
del 2013). ROS are fundamental elements of tissue 
renewal and differentiation in the skin, including 
dermal compartments and adipose tissue (Rigotti and 
Chirumbolo 2019). Therefore, if ROS controls many 
fundamental aspects of skin biology, l-lactate, which 
is intertwined with the mitochondria-ROS signaling 
machinery, is of the utmost interest for skin differen-
tiation and aging.

If mitochondria play an utmost role in skin differ-
entiation, their involvement in aged skin should be 
particularly crucial.

Aged skin shows marked deterioration in mito-
chondria structure, cristae numbers, mtDNA copy 
number and mutations and defects in mitochondria 
biogenesis, fission and fusion, a process observed 
in many other epithelial tissues (Schneider et  al. 
2020). Recent reports showed that ubiquinol (reduced 
coenzyme Q10) has a powerful anti-aging effect 
on human dermal fibroblasts (Marcheggiani et  al. 
2021) and is a metabolic resuscitator in post-car-
diac arrest (Holmberg et  al. 2021). The production 
od ROS is fundamental for propagating both Notch 
and β-catenin, signals that are very strategic for 
epidermis differentiation and hair follicle develop-
ment (Marcheggiani et  al. 2021). Genetic defects in 
Coenzyme  Q10  (CoQ10) biosynthetic pathway may 
affect l-lactate regulation, as the  CoQ10  deficiency, 
which may be caused by a homozygous stop variant 
in COQ9 c.730C > T, pArg244*, should lead to neo-
natal lactic acidosis, general development delay and 
intractable seizures (Duncan et al. 2009).

As noted earlier, l-lactate protects skin fibro-
blasts via mito-hormesis (Zelenka et al. 2015). Pre-
vious literature has reported that l-lactate treatment 
upregulates the production of ROS as signaling mol-
ecules (Hashimoto et al. 2007), activates mitochon-
drial biogenesis via PGC-1α (Roland et  al. 2014; 
Lezi et  al. 2013) and stabilizes HIF-1α (Sonveaux 

et  al. 2012). During aging, skin undergoes a com-
plex plethora of biochemical and structural changes. 
For example, the role of  NAD+-dependent deacety-
lases, known as sirtuins (SIRT 1–7), is fundamental 
to comprehend skin aging, particularly for photoag-
ing, and the involvement of mitochondria biology 
(Su et al. 2020). Sirtuins 3 (SIRT3), 4 (SIRT4) and 
5 (SIRT5), which are localized in mitochondria, 
are implicated in aging, besides to oxidative stress 
response and caloric restrictions  (Gambini et  al. 
2011). Particularly for SIRT3 and SIRT4, their role 
is crucial for keratinocyte differentiation and wound 
repair (Su et  al. 2020). Particularly for SIRT3, 
recent studies have reported that this deacetylase is 
a shield against aging and mitochondrial meltdown 
(Kincaid and Bossy-Wetzel 2013). Recent data 
reported that SIRT3 controls cell proliferation and 
glucose uptake overexpression (Cui et  al. 2015). 
The majority of evidence regarding the role of sir-
tuins in the interplay cell metabolism-cell survival 
and proliferation/differentiation come from cancer 
studies (Gaál and Csernoch 2020), but SIRT3 is 
downregulated in lung idiopathic pneumonia with 
fibrosis (Rehan et al. 2021), where l-lactate is par-
ticularly elevated (Kottmann et al. 2012). It is pos-
sible to speculate that l-lactate is an alarming signal 
of a downregulation or impairment in the correct 
mitochondrial function and ROS availability as 
signaling molecules.

l-lactate, which is a molecular and metabolic 
starter to produce ROS as signaling molecules, 
is able to induce collagen synthesis and VEGF in 
endothelial cells (Zieker et  al. 2009). Its action of 
collagen has been investigated in the past, when 
some authors discovered that l-lactate is one of 
the most powerful activator of collagen formation. 
By investigating L-929 fibroblasts Comstock and 
Udenfriend (1970) provided evidence confirmed by 
others with myofibroblasts and acetaldehyde, that 
l-lactate caused a significant (p < 0.02) enhance-
ment in intracellular proline pool and collagen syn-
thesis (Savolainen et al. 1984).

A fundamental role of l-lactate in reverting the 
aging process and promote the survival machin-
ery of genes leading to tissue renewal, might 
be exerted on HO-1. This fundamentally occurs 
because HO-1, particularly skeletal HO-1, controls 
aerobic capacity, i.e. that the deletion in mice of 
the muscle-specific HO-1, in the transgenic mouse 
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Tam-Cre-HSA-Hmox1fl/fl, changes the rate type 
IIA to type IIB muscle fibers, alongside with an 
overall disruption of mitochondria (Alves de Souza 
et al. 2021).

The induction of HO-1 under oxidative stress is 
mainly activated by the transcription factor nuclear 
factor erythroid 2-related factor 2 (Nrf2), which is 
regulated by the mitogen-activated protein kinase 
(MAPK), phosphoinositide 3-kinase (PI3k)/Akt, 
and protein kinase C (PKC) signaling pathways 
(Feng et al. 2017).

Conclusions

Aging in the skin is a major process where the 
activity of l-lactate as a signaling molecule might 
provide biomedical research with heuristically valid 
insights, particularly about the role of this metabo-
lite in lowering senescence in the skin and to eluci-
date further the mechanisms underlying skin aging.

In this review we have fundamentally highlighted 
that:

• l-lactate is a major signaling molecule able to 
interact with mitochondria biogenesis and turn-
over and tune the ability of cells to respond to 
stressors;

• The fundamental way by which l-lactate works 
as a signaling molecule involve mechanisms 
known as “mito-hormesis”

• Despite its nature of apparently useless byprod-
uct, l-lactate plays fundamental roles in signal-
ing of brain development related with exercise 
and in immune regulation;

• Its role in skin rejuvenation and aging control 
can be supported by the survival machinery led 
by mitochondrial biogenesis.

The role of l-lactate should be included in the 
wider role of small molecules working as signal-
ing compounds, able to finely regulate cell sur-
vival, cycle and development. In this sense, the 
importance to deepen the activity and the biological 
meaning of this glycolysis byproduct is paramount.
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