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Abstract: Zebrafish (Danio rerio) have emerged as a valuable model organism for inves-
tigating musculoskeletal development and the pathophysiology of associated diseases.
Key genes and biological processes in zebrafish that closely mirror those in humans, rapid
development, and transparent embryos make zebrafish ideal for the in vivo studies of
bone and muscle formation, as well as the molecular mechanisms underlying muscu-
loskeletal disorders. This review focuses on the utility of zebrafish in modeling various
musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and
osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.
These models have provided significant insights into the molecular pathways involved
in these diseases, helping to identify the key genetic and biochemical factors that con-
tribute to their progression. These findings have also advanced our understanding of
disease mechanisms and facilitated the development of potential therapeutic strategies for
musculoskeletal disorders.

Keywords: zebrafish; bone; musculoskeletal disorders; aging

1. Introduction
The zebrafish (Danio rerio) is a member of the largest and most diverse group of bony

fish known, Teleostei. Teleosts account for the majority of modern fish species and are char-
acterized by features such as a mobile jaw, symmetrical tails, and lightweight, flexible scales,
all of which have contributed to their evolutionary success [1]. Like other teleosts, zebrafish
possess an endoskeleton inherited from a common ancestor shared with mammals [1]. This
evolutionary association provides important similarities in skeletal development, making
zebrafish a valuable model for studying bone biology and the related genetic mechanisms.
Indeed, the zebrafish has gained prominence as a model organism in developmental biol-
ogy for several reasons, primarily its genetic and physiological similarities to humans [2].
Approximately 70% of human genes have functional orthologues in zebrafish, and many
of these genes are associated with human diseases, making zebrafish an excellent system
for studying a wide range of biological processes, including those involved in human
pathologies [3,4]. Zebrafish embryos are transparent, and this characteristic allows for the
real-time and non-invasive imaging of developing tissues and organs, including bone and
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muscle, from the earliest stages of development [5–7]. Additionally, the external fertiliza-
tion and rapid development in zebrafish allow one to observe the crucial developmental
stages within days, significantly accelerating the data acquisition compared to other animal
models like mice [8–10]. The zebrafish skeletal system undergoes ossification through both
intramembranous and endochondral pathways, reflecting the bone formation processes
observed in mammals [11,12]. Similarly, zebrafish skeletal muscle development shares key
regulatory pathways with humans, making this model particularly suited for studying
musculoskeletal development and the related disorders [12].

Bone–muscle interaction occurs through multiple mechanisms, including mechanical
forces generated by muscle contractions that directly stimulate bone formation, as well as
biochemical signaling pathways involving molecules such as myokines (muscle-derived sig-
naling proteins) and osteokines (bone-derived signaling factors) [13–16]. These molecules
help coordinate the adaptive responses in bone and muscle in relation to physical activity
or injury [17–19]. Mechanical loading during muscle contraction stimulates osteoblast activ-
ity, promoting bone growth and strengthening [20–22]. Conversely, bone-secreted factors
influence muscle function and regeneration. This relationship is particularly important in
understanding musculoskeletal disorders, where dysfunction in one tissue often negatively
impacts the other. For instance, in diseases like osteoporosis and muscular dystrophy, the
integrity of both muscle and bone is compromised, leading to progressive degeneration
and reduced functional capacity [23–25]. Zebrafish models allow researchers to dissect
these interactions in real time, providing key insights into the molecular mechanisms
driving bone and muscle diseases and identifying the potential therapeutic targets aimed
at restoring or enhancing muscle–bone communication. However, there are still relatively
few studies on bone–muscle crosstalk, highlighting the need for further research to fully
understand the mechanisms underlying this interaction [26].

2. Zebrafish as a Model for Musculoskeletal Disorders
The zebrafish is an invaluable model for studying both muscle and bone, offering a

dynamic platform to explore the genetic and environmental factors contributing to mus-
culoskeletal pathologies. Musculoskeletal disorders, such as muscular dystrophies and
osteopathies, lead to severe disability [27,28]. Zebrafish offer a unique opportunity to
model such diseases due to their genetic tractability and the ability to perform large-scale
mutagenesis screens and CRISPR-Cas9 gene editing [29–31]. Moreover, the external devel-
opment and transparency of zebrafish allow researchers to perform real-time fluorescence
imaging during skeletal development. Indeed, zebrafish transparency enables the in vivo
tracking of bone cell differentiation using transgenic lines expressing fluorescent mark-
ers [32]. The transparency in the early developmental stages supports the live imaging of
organ formation, while advanced imaging techniques extend the study of musculoskeletal
processes into adulthood [32]. The key protein domains involved in chain recognition and
protein binding are highly conserved between zebrafish and humans. Zebrafish bone cells,
gene expression, and remodeling processes resemble those of mammals, allowing insights
into bone turnover [33].

Additionally, zebrafish offer a robust toolkit for rapid and precise genome editing,
enhancing their utility in modeling complex diseases. Collaborative efforts within the
research community have contributed to the sharing of mutant lines and the associated
phenotypic data. The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is a
centralized repository platform for the exchange of genetic, genomic, and phenotypic
information [34]. Additionally, resources such as the Zebrafish International Resource
Center (ZIRC) and the European Zebrafish Resource Center (EZRC) provide access to
zebrafish strains, including wildtype and mutant, and reagents such as zebrafish-specific

http://zfin.org
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antibodies [33,35]. Several studies have used zebrafish models to identify the key molecular
pathways in musculoskeletal diseases, highlighting the potential therapeutic targets.

2.1. Bone Disorders

Bone is a unique tissue in vertebrates, providing internal structural support [36].
Across vertebrate species, skeletal structures, such as the skull, vertebrae, and appendages,
share remarkable similarities. Fossil studies reveal that these structures originated from
homologous bones, which have been conserved and modified throughout evolution in fish,
amphibians, reptiles, and mammals [37]. These evolutionary relationships highlight the
shared developmental and genetic pathways governing bone formation, making vertebrate
models invaluable for studying skeletal biology and its associated disorders. Both teleosts
and mammals have key skeletal tissues (bone and cartilage) and cell types (chondrob-
lasts, chondrocytes, osteoblasts, osteocytes, osteoclasts) [12,38]. Teleosts and mammals
exhibit many genetically conserved traits, including similarities in skeletal elements, ossi-
fication processes, and bone matrix components. Moreover, genetic studies have shown
that similarities between human and zebrafish skeletons extend to their underlying molec-
ular mechanisms [39]. Bone formation in zebrafish occurs through a process similar to
humans, involving osteoblast differentiation and the deposition of a mineralized matrix.
Bone formation begins with mesenchymal stem cells (MSCs), which can undergo two
primary ossification processes: intramembranous (direct MSC to osteoblast differentiation)
or endochondral (involving a cartilage template) [40] (Figure 1).
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Figure 1. General overview of the zebrafish adult skeleton. Endochondral and intramembranous
bones are indicated in blue and red, respectively. Figure created using BioRender.com and adapted
from Le Pabic et al., 2022 [41].

Though zebrafish have a simplified initial skeletal pattern, this basic framework is
conserved across vertebrates, with adaptations reflecting aquatic or terrestrial habitats [42].
The main components of the zebrafish skeleton are as follows: (i) the craniofacial skeleton,
which includes the parietal bones, jaw bones, and opercles (the bones covering the gills)
and (ii) the axial skeleton, consisting of the vertebral column, ribs, intermuscular bones,
and the unpaired dorsal, anal, and caudal fins [1,43]. Zebrafish reach sexual maturity at
approximately 90 days, at which point they have a standard length (SL)—measured from
the snout (front of the head) to the last caudal vertebra—of 1.5 to 2.0 cm. Zebrafish continue
to grow throughout their lives, with an increase in skeletal volume, reaching a body length
of 3 to 4 cm [43]. They typically live for around 3 years but can occasionally reach 5 years
old [44]. Zebrafish can regenerate several organs, including the bony caudal fin, which
regrows within two weeks post-amputation. Additionally, they absorb drugs from water,
making zebrafish ideal for drug screening and testing compounds’ effects on bone regener-
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ation, particularly through standardized caudal fin assays [45,46]. The regeneration process
involves the formation of a blastema, where cells proliferate and differentiate through the
sequential expression of osteoblast markers [47,48]. It has been demonstrated that two
Runx2 paralogs, runx2a and runx2b, regulate early bone formation alongside twist genes that
influence craniofacial development and skeletal differentiation [12,49–51]. Additionally,
zebrafish collagen I closely mirrors the human collagen structure, making zebrafish an ef-
fective model for studying bone biology [52]. Importantly, teleost fish possess cycloid scales
that contain calcified tissue composed of osteoblasts, osteoclasts, and bone matrix proteins.
It is well known that bone remodeling involves a tightly coordinated process in which bone
resorption by osteoclasts is closely coupled with bone formation by osteoblasts [53–55].
Additionally, signaling molecules involved in cell-to-cell communication, such as recep-
tor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG), are
produced by osteoblasts [56]. In particular, osteoblasts secrete RANKL, which attaches to
the RANK receptor on the surface of osteoclasts, promoting bone resorption. Conversely,
OPG is released by osteoblasts as a decoy receptor for RANKL, preventing RANKL from
binding to RANK, thereby inhibiting bone resorption. Thus, the RANK–RANKL–OPG
pathway plays a crucial role in regulating osteoclastogenesis mediated by osteoblasts [57].
In contrast, semaphorin 4D is expressed on osteoclasts, and its binding to the Plexin-B1
receptor on osteoblasts results in the suppression of bone formation [57]. These molecules
act as positive and negative regulators of osteoclast development and function, respec-
tively [56,57]. Thus, zebrafish can be used to generate disease models of osteoporosis [58,59].
In humans, recessive loss-of-function mutations in the LRP5 gene, a co-receptor in the Wnt
signaling pathway, lead to osteoporosis-pseudoglioma syndrome [60]. Furthermore, sev-
eral genome-wide association studies (GWASs) have identified LRP5 as a key risk locus
for osteoporosis-related traits. Recent studies have shown that first-generation (F0) mosaic
mutant zebrafish generated by CRISPR-Cas9 mutagenesis, often referred to as “crispants”,
can effectively replicate the phenotype of germline knockout (KO) models. The crispant
model has been compared with a stable lrp5 knockout zebrafish model to demonstrate the
suitability of crispants for the functional validation of osteoporosis candidate genes [59].
Zebrafish mutants with defects in bone development, such as runx2b mutants, exhibit
skeletal dysplasia that mimics human bone diseases, increasing the model’s utility for
studying osteopathies. Notably, zebrafish have also been instrumental in exploring the role
of the genes involved in bone resorption, such as rankl, opg, and semaphorin 4D, which
are essential for the balance between osteoblast and osteoclast activity [12]. These genes
are critical in understanding diseases like osteoporosis, where excessive bone resorption
occurs. Using a zebrafish model and examining the scales, Kitamura et al. discovered that
both dynamic and static acceleration at 3.0 × g led to a reduction in the RANKL/OPG ratio
and to an increase in osteoblast-specific functional mRNA, such as alkaline phosphatase.
In contrast, static acceleration resulted in an increase, while dynamic acceleration caused a
decrease in osteoclast-specific mRNA, like cathepsin K. Additionally, static acceleration
enhanced the expression of semaphorin 4D mRNA, whereas dynamic acceleration showed
no significant effect. The findings of this study suggest that osteoclasts exert dominant
control over bone metabolism through semaphorin 4D expression, which is stimulated
by static acceleration at 3.0 × g [61]. This finding indicates that mechanical acceleration
influences bone metabolism by modulating the balance between osteoclastogenic and
osteoblastogenic signals, thereby promoting osteoblast activity. Furthermore, CRISPR-Cas9
methods have facilitated the creation of heritable disease models in zebrafish, enabling
significant insights into the genetic pathways relevant to human health, despite some chal-
lenges posed by genome duplication [62]. Numerous zebrafish mutants for osteogenesis
imperfecta (OI) have been developed, including the Chi/+ model with a dominant type
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III OI mutation and the p3h1−/− model mimicking recessive type VIII OI, generated via
ENU mutagenesis and CRISPR-Cas9, respectively [63]. Recently, bone structure, cellular
and molecular patterns, and matrix assembly were examined in two zebrafish models
of osteogenesis imperfecta (OI) using the caudal fin as a model system. This is the first
direct comparison of two OI models with different molecular defects: the Chi/+ model,
with a collagen defect causing dominant OI, and the p3h1−/− model, with an enzyme
deficiency leading to recessive OI [64]. Moreover, Debaenst S. et al. evaluated a semi-high
throughput zebrafish platform for the rapid in vivo testing of the candidate genes linked
to heritable fragile bone disorders (FBDs) [65]. Using CRISPR-Cas9, six genes related to
OI and four associated with bone mineral density were targeted. High indel efficiency
(88%) in CRISPR-Cas9-induced F0 mosaic (crispant) zebrafish showed successful gene
knockouts, with skeletal characteristics assessed at multiple developmental stages using
microscopy, staining, and micro-CT [65]. Larval crispants showed variable osteoblast and
mineralization changes, while adults displayed more consistent skeletal abnormalities,
including vertebral fractures [65]. Overall, this approach demonstrates that zebrafish
crispant screening is a feasible and effective tool for evaluating the genes involved in
FBDs. Moreover, due to their predisposition to develop scoliosis and their high genetic
similarity to humans, zebrafish are increasingly utilized as a model organism for studying
scoliosis in the fields of biomedicine [66]. The use of this model is also supported by the
fact that the mechanical forces generated during swimming are applied to the spine in a
manner similar to that observed in humans, unlike quadrupedal models such as mice and
rats [67–69]. Thus, zebrafish scoliosis models have been effectively developed using both
N-ethyl-N-nitrosourea (ENU) mutagenesis and reverse genetic techniques. In particular,
zebrafish mutant models for genes such as dstyk, col8a1a, tbx6, myadm, col1a1a, col1a2,
col1a1b, myhz2, col2a1a, meox1, and stat3 have been developed to resemble congenital
scoliosis [66]. The zebrafish model (Table 1) thus provides valuable insights into conserved
genetic pathways that may have broader implications for advancing our understanding of
bone disorders and enhancing regenerative medicine techniques in vertebrates.

Table 1. Selected zebrafish models and their applications in bone diseases and disorders.

Zebrafish Model Applications Ref

LRP5 mutant or crispant Osteoporosis [59]

runx2b mutants Bone development [70]

Chihuahua (Chi/+) Osteogenesis imperfecta [63,64]

p3h1−/− model Osteogenesis imperfecta [63,70]

CRTAP mutant Osteogenesis imperfecta [71]

fkbp10a mutant Bone fragility [72]

aldh7a1, daam2, esr1 and sost crispant Osteoporosis [65]

creb3l1 ifitm5 mbtps2 sec24d serpinf1 and sparc crispant Osteogenesis imperfecta [65]

dstyk mutant Scoliosis [73]

col8a1a mutant Scoliosis [74]

tbx6 mutant Scoliosis [75]

myadm mutant Scoliosis [76]

col2a1a mutant Scoliosis [76]

stat3 mutant Scoliosis [77]
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2.2. Muscle Disorders

In humans, muscle disorders and myopathies can be broadly divided into inherited
and acquired [78,79]. Typically, these disorders present symptoms such as loss of strength,
muscle weakness, disability, and in some cases, deformity, depending on the severity and
progression of the disease. The diagnostic workup—including clinical evaluation, blood
testing, immunohistochemistry, and sometimes muscle biopsy—is mandatory for correct
treatment and prognosis [80]. Muscular dystrophies are inherited myogenic disorders
that can be divided into more than 30 subgroups [81]. The most common muscular
dystrophy is Duchenne muscular dystrophy (DMD), occurring in approximately 1 in every
5000 male births [82]. This progressive muscle alteration is characterized by delayed motor
development in infancy, leading to the loss of mobility by the end of the first decade, and
ultimately causing respiratory or cardiac failure in early adulthood. DMD is caused by
mutations in the dystrophin gene, located on chromosome Xp21 [83]. Dystrophin plays a
major role in maintaining fiber integrity by transmitting muscle force and protecting the
sarcolemma from mechanical stress. Additionally, dystrophin regulates muscle satellite
stem cell division [84,85]. Indeed, patients with DMD have striated muscles that lack the
rod-like protein, dystrophin, which is due to inherited or spontaneous mutations in the
X-linked dystrophin gene [86]. In skeletal muscles, dystrophin is found at the inner surface
of the sarcolemma, where its NH2 terminus binds to actin, while its COOH terminus
connects to the transmembrane protein, β-dystroglycan [86]. Dystrophin plays a crucial
role in stabilizing the cell membrane against the mechanical forces generated during
muscle contraction [86]. DMD and other forms of muscle degeneration can be modeled
in zebrafish by targeting specific muscle-related genes. In particular, among preclinical
disease model organisms such as Drosophila melanogaster, Caenorhabditis elegans, or zebrafish,
only zebrafish share the fundamental morphology, physiology, and genomics found in all
vertebrates. The zebrafish dystrophin orthologue encodes a protein with a high degree
of homology to human dystrophin at both the NH2 and COOH termini [87]. In 2003,
Bassett et al. demonstrated that zebrafish mutants (“sapje”) could be used to investigate
the pathogenesis of human muscular dystrophy [88]. The study highlighted that sapje
mutants exhibited a phenotype due to the failure of embryonic muscle end attachments.
Specifically, sapje mutant larvae exhibit muscle degeneration as early as 3 days post-
fertilization [89]. Thus, dystrophic zebrafish strains, such as sapje and sapje-like, have been
employed to screen over 1000 FDA-approved drugs and bioactive compounds, leading
to the identification of several promising therapeutic candidates for DMD [87,88,90–92].
Interestingly, Widrick et al. conducted a thorough evaluation of the validity of using
4–7 days post-fertilization (dpf) sapje larvae as a model for the muscle dysfunction seen
in DMD [93]. Zebrafish mutants with locomotor defects can be used as valuable models
for identifying the potential therapeutic implications for human diseases, since zebrafish
muscles show contractile and metabolic properties that are remarkably similar to those of
human skeletal muscle [94]. Neuromuscular electrical stimulation (NMES), particularly
endurance stimulation, has beneficial effects on muscle structure and function in zebrafish,
suggesting that endurance physical activity may be valuable in DMD patients [95]. Mutant
zebrafish are also used as models in relation to other muscular diseases, such as Becker
muscular dystrophy [87,96], congenital muscular dystrophy caused by mutations in the
human laminin α2 (LAMA2) gene [97], X-linked myotubular myopathy [98], Centronuclear
Myopathies [99], and Myotonic Dystrophy Type I [100,101], among others [102]. These
studies demonstrate that Danio rerio is not only a feasible model for studying muscular
diseases, but its use is also a relatively easy way to monitor live systems for real-time
observation [103].
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The zebrafish model (Table 2) can be instrumental in finding the underlying causes of
acquired myopathies and potentially preventing them. Muscular disorders can be caused
by the iatrogenic effects of medications (i.e., statin-induced myopathy) [104]. Some studies
have shown changes in muscle cytoskeleton structure in zebrafish embryos, including
the dysregulation of PPAR gene expression and changes in the extracellular matrix when
exposed to statins [105,106]. Similarly, exposure to fibrates has been shown to result
in alterations in muscular fibers and neuromuscular junctions (119). Furthermore, the
drug, Ezetimibe, seems to lower creatine kinase levels in zebrafish larvae [107]. However,
differential diagnosis between acquired myopathies, late-onset genetic myopathies, and
age-related sarcopenia may be challenging [108].

Table 2. Selected zebrafish models and their applications in muscle diseases and disorders.

Zebrafish Model Applications Ref

sapje Duchenne muscular dystrophy [88–90,93,109]

sapje-like Duchenne muscular dystrophy [87]

candyfloss (lama2 mutant) Congenital muscular dystrophy [97]

Tg(ACTA1 D286G-eGFP) Nemaline myopathy [110]

softy (lamb2mutant) Muscular dystrophy lamb2 mutation [111]

mtm1 morpholin Myotubular myopathy [98,112]

dmd morpholin Duchenne muscular dystrophy [113]

col6a1 morpholin Ullrich congenital muscular dystrophy; Bethlem myopathy [114]

dysf morpholino Myoshi myopathy; limb–girdle muscular dystrophy [91,115]

fkrp morpholino Multiple forms of dystroglycanopathy [116–118]

ryr1b mutant Multiple forms of congenital myopathy [119]

In this field, zebrafish models can be considered useful tools in biomedical research
and, in particular, in muscle diseases such as sarcopenia [120]. Researchers developed
Electrical Impedance Myography (EIM) to study the muscle atrophy in Danio rerio models,
a method that is also used in humans, with a robust correlation to histological-based
morphometric analysis [121]. Additionally, Rutkove et al. suggest that EIM in zebrafish
may be a new feasible tool to study other skeletal neuromuscular disorders [122]. Zebrafish
can serve as a model for secondary sarcopenia, such as vitamin E deficiency-related muscle
wasting. In fact, it has been highlighted that chronic exposure to low vitamin E levels leads
to oxidative damage that is associated with amino acid and purine metabolic pathway
dysfunction in 55-day-old zebrafish [123]. A study by Yun-Yi et al. focused on sarcopenic
obese zebrafish (SOB), induced by a high-fat diet. A higher expression of the atrophy-related
markers, Atrogin-1 and muscle RING-finger protein-1, was found in SOB zebrafish, with a
significant decrease in the skeletal muscle mass and exercise capacity [124]. On the other
hand, exercise interventions have been shown to counteract sarcopenia, not only in humans
but also in zebrafish models, further confirming their utility in translational medicine. For
instance, aerobic exercise has been found to improve the muscle function and quality in
D-galactose-induced sarcopenic zebrafish by modulating the miR-128/IGF-1 pathway and
enhancing mitochondrial homeostasis [125]. Additionally, a study found that 8 weeks of
exercise helped counteract sarcopenia by improving the key cellular processes. Specifically,
the exercise restored balance in the AMPK/SIRT1/PGC-1α pathway (important for energy
production), reduced the levels of the inflammatory enzyme, 15-PGDH, and boosted the
formation of new mitochondria, which are crucial for muscle energy and health [126].
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3. Muscle–Bone Crosstalk
Muscle and bone are two distinct yet closely interconnected tissues that work together

to allow movement as well as to maintain structural integrity and homeostasis throughout
the body. The communication between these tissues, known as muscle–bone crosstalk, is
essential during both the developmental stages and throughout life, influencing growth,
repair, and adaptation in response to various stimuli such as physical activity, injury, or
disease [127]. This crosstalk is mediated by a complex interplay of biochemical signaling
molecules, mechanical forces, and metabolic pathways, making it crucial for the mainte-
nance of overall musculoskeletal health [127]. During development, muscle and bone need
to grow and adapt in a coordinated manner to ensure proper biomechanical function. Bone
provides a scaffold that supports the attachment of muscles, while muscle activity generates
the mechanical forces necessary for bone formation and remodeling [128–130]. In addition,
mechanical forces, such as those generated during muscle contractions, play a critical role
in shaping bone architecture by stimulating osteoblasts [131–133]. This process, known as
mechanotransduction, is essential for bone strength, density, and overall skeletal integrity.
Mechanical loading, which refers to the physical forces exerted on tissues during activities
such as movement, muscle contraction, and weight bearing, influences the musculoskeletal
health in zebrafish, as it does in other vertebrates [134–136]. In zebrafish, these forces are
primarily generated during swimming, a natural form of locomotion involving constant
muscle contraction and relaxation. This activity produces mechanical stimuli that are
essential for the normal development, maintenance, and homeostasis of both muscle and
bone tissues [137,138]. Studies in zebrafish have shown that swimming activity directly
influences the growth and structural integrity of bones [139]. When zebrafish engage in
regular swimming, the mechanical forces produced by muscle contractions are transmitted
to the bones through the tendons, triggering a cascade of molecular signals within bone
cells, such as osteoblasts [33,140]. Mechanotransduction pathways allow bones to sense me-
chanical stimuli and convert them into biochemical signals, which then activate the genes
and pathways responsible for bone formation and strength [141]. The mechanical forces
generated by muscle activity induce stress on bones, which respond by reinforcing their
structure to accommodate the increased demand [128,135]. One of the key outcomes of this
process is the regulation of bone density and architecture, ensuring that bones adapt to the
mechanical demands placed on them by muscle activity [14,135]. It has been demonstrated
that zebrafish subjected to exercise show an increased bone mass and a greater degree of
bone mineralization compared to the control group [139] (Figure 2).

In humans, enhanced physical activity and higher levels of bone mineralization are
also positively associated with improved bone quality [142]. The findings from these
zebrafish exercise experiments offer valuable insights into the intricate mechanisms un-
derlying the mechanical sensitivity of bone, as well as the pathways involved in bone
formation and mineralization, which ultimately influence bone quality. Conversely, when
the mechanical loading is reduced—such as when zebrafish exhibit muscle dysfunction or
impaired swimming ability due to genetic mutations or experimental conditions—bone de-
velopment becomes significantly altered [139]. Reduced or absent muscle contractions lead
to a lack of the mechanical stimuli that are critical for healthy bone formation. This results
in impaired bone growth, reduced bone mass, and changes in bone architecture, which re-
semble conditions like osteopenia or osteoporosis in humans [135,143,144]. These findings
highlight the mechanical aspect of muscle–bone crosstalk, where a decrease in muscle activ-
ity directly impacts bone health, demonstrating the interdependence of these tissues. This
mechanical crosstalk is not limited to bone development but also plays a fundamental role
in muscle growth and maintenance. In turn, bones provide the structural framework that
muscles rely on to generate force and movement, emphasizing the bidirectional relation-
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ship between these systems in maintaining overall musculoskeletal health [145,146]. This
reciprocal relationship ensures that both tissues develop in harmony and adapt to changing
physical demands over time. In zebrafish, these mechanical forces are particularly crucial
during early development, when swimming behavior begins as soon as the larvae develop
functional muscles and the skeletal system [137,147,148]. This early mechanical loading is
a pivotal factor behind the proper maturation of the musculoskeletal system. Even a few
disruptions in swimming activity during these critical stages of development can lead to
long-term alterations in both muscle strength and bone structure. For example, mutations
in genes that affect muscle function, such as those causing muscular dystrophy in zebrafish
models, not only lead to muscle weakness but also induce negative effects on bone health,
providing clear evidence of the mechanical link between the two systems [149]. Moreover,
zebrafish models have been used to explore how specific molecular pathways mediate
mechanotransduction in bone [150,151]. In addition, the myotendinous junction (MTJ)
plays a key role in muscle–bone interaction by enabling force transmission during muscle
contraction [152,153]. Recent advancements in MTJ research have highlighted its molecular
and structural components, essential for tissue integrity [154,155]. Given its potential in
studying musculoskeletal diseases, zebrafish models, with their genetic tractability and
developmental transparency, are ideal for investigating the MTJ and muscle–bone interac-
tions. Using the zebrafish model, the dynamic and complex spatial-temporal nature of MTJ
morphogenesis has been highlighted. Specifically, the attachment of fast-twitch myofibers
to the MTJ is linked to the formation of novel microenvironments [156]. This process
involves the upregulation of focal adhesion kinase (Fak) and β-dystroglycan, alongside
the downregulation of the extracellular matrix protein, fibronectin (Fn). The degradation
of Fn creates a distinct microenvironment near slow-twitch fibers but not fast-twitch ones.
Interestingly, Fak, laminin, Fn, and β-dystroglycan also accumulate at the MTJ in mutants
lacking slow-twitch fibers [156]. In addition, deleting the MTJ marker gene, col22a1, in
zebrafish has been shown to result in MTJ dysfunction with varying severity and distinct
phenotypes. Most individuals survive to adulthood without obvious muscle defects, while
others display severe motor impairments and die before metamorphosis. Despite this, all
mutants exhibit muscle weakness caused by inefficient force transmission, which disrupts
locomotion-related functions. Thus, this study positions COL22A1 as a candidate gene
for the myopathies linked to defective force transmission and emphasizes the phenotypic
heterogeneity of the condition [157].

Muscle atrophy or dysfunction, which results in decreased mechanical loading, can
lead to conditions such as osteopenia or osteoporosis, where the bone mass and strength
are reduced [21,158]. On the biochemical level, muscle and bone communicate via sig-
naling molecules known as myokines (produced by muscles) and osteokines (produced
by bones) [15,22]. These molecules act as mediators in muscle–bone crosstalk, regulating
various cellular processes in both tissues [16]. For instance, myokines like myostatin play
a key role in inhibiting muscle growth and have been shown to negatively impact bone
formation as well [15,127]. Conversely, osteocalcin, a hormone secreted by osteoblasts in
bones, has been implicated in regulating muscle function and metabolism [159,160]. The
maintenance of muscle mass depends on the balance between anabolic (protein synthesis)
and catabolic (muscle breakdown) events. Mera et al. found that osteocalcin signaling
in muscle fibers promotes protein synthesis [161]. Other anabolic hormones activate the
PI3K/Akt/mTOR pathway to stimulate protein synthesis and muscle hypertrophy [162].
Thus, osteocalcin is necessary and sufficient to stimulate Akt phosphorylation in muscle
during exercise, promoting protein synthesis in mouse myotubes through the activation
of the mTOR pathway [161]. The balance and regulation of these signaling pathways are
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essential for coordinating muscle and bone growth and repair, especially during periods of
physical activity or following injury [163].
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Zebrafish may provide an excellent model system for studying muscle–bone crosstalk.
They are amenable to genetic manipulation, enabling scientists to create models of muscu-
loskeletal diseases by mutating or knocking out the specific genes involved in muscle or
bone functions [164–166]. Different levels and timing of Hedgehog (Hh) signaling specify
three different cell types in the zebrafish myotome. Two of these cell types, the medial
fast-twitch fibers (MFFs) and the slow-twitch muscle pioneers (MPs), are defined by the
expression of the genes, eng1a, eng1b, and eng2a, and depend on the highest levels of Hh
signaling for their maturation. Indeed, Maurya et al. identified in the zebrafish myotome
a minimal eng2a element sufficient to drive the reporter expression specifically in MPs
and MFFs by binding both Gli2a, a key Hh signaling mediator, and pSmads, which are
activated by bone morphogenetic protein (BMP) signaling [167]. In addition, the authors
demonstrated a negative correlation between pSmad accumulation in the nucleus and
eng2a expression. They found that the nuclear accumulation of pSmad negatively affects
the expression of eng, while preventing this accumulation allows for the activation of
eng2a, regardless of the level of Hh signaling. Additionally, maximal Hh signaling depletes
nuclear pSmads [167]. Therefore, these findings suggest that the eng2a promoter integrates
both repressive BMP signals and activates Hh signals to restrict the gene expression to
MPs and MFFs. In addition, this study suggests a novel interaction between Smads and
truncated Gli proteins, highlighting a new mechanism of crosstalk between the BMP and
Hh pathways.

Moreover, zebrafish have the ability to regenerate both muscle and bone tissues after
injury, providing further insights into the molecular mechanisms that drive the repair
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processes in these tissues [168]. Mammals typically have a limited ability to regenerate,
mainly confined to specific organs such as the liver and fetal skin [169,170]. In contrast, other
vertebrates such as salamanders, lizards, and teleost fish possess the ability to regenerate a
wide range of body parts [171]. The regenerative capacity of the musculoskeletal system
differs among vertebrates; for example, humans can repair muscle and bone after injury
and recover full function, as long as there is no significant loss of tissue [168]. Studying
the processes of regeneration in various vertebrates is key to understanding which traits
have evolved or been lost over time. Furthermore, zebrafish models of clinically relevant
muscle and skeletal injuries mirror mammalian regeneration. Indeed, following muscle
damage, zebrafish quiescent stem cells, called satellite cells, are activated, and proliferate,
differentiate, and fuse to create new myofibers [168]. In the case of bone fractures, the
healing process occurs in stages, starting with hematoma formation and inflammation,
fibrocartilage callus formation, bony callus development, and finally remodeling [172,173].
These zebrafish models are ideal for testing gene therapies or pharmacological treatments
aimed at addressing conditions such as muscle tears and fractures.

4. Aging and the Musculoskeletal System
Life expectancies are rising significantly, and by 2030, one in six people globally

will be 60 years or older. By 2050, the number of people aged 60 and above will have
doubled, while the population aged 80 and over will have tripled. The association between
telomeres and aging is underscored by the fact that genetic disorders leading to telomerase
deficiency are linked to premature aging [174]. This relationship has primarily been studied
in mice, which have long telomeres [175,176]. However, zebrafish have recently emerged
as a powerful and complementary model for exploring telomere biology. They exhibit
human-like short telomeres that progressively shorten with age [177]. The comprehensive
characterization of their well-conserved molecular and cellular physiology makes zebrafish
an excellent model for unraveling the complex relationship between telomere shortening,
tissue regeneration, aging, and disease [177]. Studies have shown that telomeres in the
muscles of wildtype zebrafish shorten with age, eventually reaching the length typical of
mutants lacking telomerase, an enzyme that normally helps maintain telomere length [178].
In addition, telomere shortening in the gut and muscles of zebrafish has been shown to
drive the systemic aging process [178].

Aging is a key risk factor for many diseases, including sarcopenia, a condition marked
by the gradual loss of skeletal muscle mass, strength, and function, which results in func-
tional decline, frailty, and a higher risk of mortality [179]. As a result, an increase in cases
of sarcopenia and related deaths is anticipated in the coming years. While the precise
mechanisms underlying sarcopenia are not yet fully understood, the condition is known
to involve changes in muscle structure and function, diminished regenerative capacity,
oxidative stress, inflammation, and mitochondrial dysfunction [180]. Therefore, utilizing
enhanced and diverse animal models is crucial for achieving a thorough understanding
of sarcopenia’s pathogenesis. Although rodents are the most commonly used models for
sarcopenia research, alternative models like Drosophila and C. elegans have been applied
due to their lower cost and shorter lifespans. However, it is important to recognize that
these models differ significantly from human skeletal muscle [181]. In this context, the
zebrafish presents itself as a novel and promising model to explore. The zebrafish has been
recognized as a versatile animal model for the study of aging-related diseases [182]. A
convenient aspect that makes the zebrafish a valuable model organism for aging research is
its relatively long lifespan (a maximum of at least five years), which increases its represen-
tativeness of the lifespan of mammals [44]. Furthermore, zebrafish models have relatively
low costs of maintenance, are amenable to genetic manipulation, and have high growth
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rates, which facilitate the rapid obtainment of large populations for demographic stud-
ies [44]. Interestingly, Danio rerio is a fundamental model to study the physiopathological
consequences of aging like telomere malfunction [183].

In addition, hundreds of milligrams of skeletal muscle can be obtained from a single
zebrafish individual [44]. The zebrafish has been used to study frailty and sarcopenia,
revealing the aging-related alterations in the growth and differentiation of skeletal mus-
cle [94,120,149,184,185]. Age-related sarcopenia is a muscle disorder linked to an imbalance
between protein synthesis and breakdown, but also to impaired mitochondrial permeability
and biogenesis [126]. Due to their swimming abilities, zebrafish are a good model to test
the effects of aerobic exercise on skeletal muscle fitness in sarcopenic animals [125]. They
can also be used for the electrophysiology measurements of the ion channels involved in
muscle excitability [186] and to study skeletal muscle senescence [187]. The zebrafish is
an emerging animal model of osteoarthritis [188]. The zebrafish has been used to study
the impact of Efemp1 (EGF-containing fibulin extracellular matrix protein 1, a protein of
the extracellular matrix that is upregulated in the blood, urine, and bones of osteoarthritic
patients) in osteoarthritis [189]. As senescence plays a key role in the development and
progression of various aging-related diseases and frailty, there has been growing interest
in mechanistic research and the search for compounds that target senescent cells, known
as senolytics [190]. Mammalian models are typically used to test senolytics and gather
functional and toxicity data at the organ and system level, but these approaches are costly
and time consuming. Zebrafish, which share significant genetic homology with humans
in genes linked to aging and disease, offer an alternative model that can be genetically
modified with relative ease. A transgenic zebrafish line expressing the senescence marker,
p21, fused to GFP has been generated. In these animals, the number of cells with p21-GFP
fluorescence increases with natural aging and upon exposure to ionizing radiation, an effect
that was decreased with senolytics [191].

5. Zebrafish and Therapeutic Strategies
Zebrafish have become extensively used for exploring the potential new therapeutic

approaches for both common and rare bone and muscle diseases, including muscular dys-
trophy, osteoporosis, and osteogenesis imperfecta (OI) [192]. Zebrafish larvae can absorb
molecules through their mouth and gills, enabling the screening of compounds dissolved
in the water to treat multiple samples. Malformations, such as embryo coagulation, the
absence of somite formation, non-detachment of the tail, and lack of a heartbeat, can be
quickly identified using bright-field microscopy [193]. More recently, new and faster meth-
ods for drug screening have been developed, utilizing juvenile and adult zebrafish. By
the time that juveniles reach 1 cm in length, they have acquired most adult morphological
and physiological features and can still be housed in 24-well plates, which require small
volumes, thus enabling cost-effective and reasonably high-throughput screening. This
method has been used to investigate the role of NF-κB signaling during osteoblast dedif-
ferentiation and has revealed an unexpected function of NF-kB signaling in maintaining
the differentiated state of osteoblasts [194]. Zebrafish are able to regenerate the skeletal
tissues after amputation of the tail fin or removal of elasmoid scales [195]. Since the fins
and scales are translucent and easily imaged, they allow the detailed visualization of cells
and their calcified matrix using standard fluorescent microscopes. Thus, the process of
fracture repair can be monitored in real time at a cellular level using transgenic lines or
by labeling bone formation with tetracycline and Calcein to perform histomorphometric
analysis [196,197]. Another study employed a semi-automated imaging strategy using
Calcein-stained larvae exposed to a small-compound library, which led to the identification
of six catabolic and two anabolic compounds that affect notochord mineralization [198]. Fin
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regeneration assays have proven effective for evaluating bioactive compounds, as shown
by experiments using regenerating fins treated with glucocorticoids. This treatment led to
a reduction in bone formation, along with a decrease in both the number of osteoblasts and
subsequent bone deposition, as well as reduced osteoclast recruitment in these fins [199].
Zebrafish models of osteoporosis have been used to screen for drugs that enhance osteoblast
activity or inhibit osteoclast-mediated bone resorption. According to what we observe in
mammals, glucocorticoid-induced osteoporosis increases the risk of fracture. Moreover,
zebrafish vertebrae in a glucocorticoid-induced osteoporosis (GIOP) model were used to
test prednisolone-reduced bone mineral density (BMD), while alendronate alone improved
bone hardness and elasticity. Sequential treatment with both drugs restored BMD to healthy
levels and maintained the vertebral structure. These results suggest that alendronate, par-
ticularly when administered after prednisolone, effectively counteracts GIOP-related bone
deterioration in zebrafish [200]. Wang et al. investigated the role of adenosine in osteo-
porosis and oxidative stress using zebrafish models, demonstrating its capacity to enhance
cell proliferation and increase alkaline phosphatase activity. The PI3K/Akt pathway was
identified as the key mechanism mediating adenosine’s effects, highlighting its potential
as a therapeutic agent for osteoporosis management [201]. Using the zebrafish model, it
has been demonstrated that pinoresinol treatment resulted in enhanced bone mineraliza-
tion and corrected cartilage malformations and spinal curvature, improving swimming
abilities [202]. Zebrafish have been used to test new osteo-active compounds in osteo-
porosis [58] and also for the CRISPR-based screening of the genes potentially involved
in osteoporosis and the screening of osteogenic compounds [59]. Small-molecule screens
in zebrafish have identified compounds that promote bone formation or prevent mus-
cle degeneration. Indeed, zebrafish have been used to test bone regeneration induced
with hydroxyapatite nanoparticles [203]. Further studies have evaluated the potential of
chito-oligosaccharides (COS) to stimulate osteoblast differentiation and offer protection
against osteoporosis, using both mouse MSCs and zebrafish models. In zebrafish, COS
supports bone repair and mineralization, mitigates osteoclastic activity, and improves the
calcium-to-phosphorus ratio, demonstrating protective effects in dexamethasone-induced
osteoporosis. These findings suggest that COS may act through the MMP3–Osteopontin–
MAPK signaling pathway, highlighting its potential as an osteoporosis treatment [204–206].
Therefore, the use of zebrafish as models for testing the toxicity of osteoporosis drugs
is widely adopted [42,207,208]. Recently, a study highlighted and formulated zein nano
coop composites containing chimeric antioxidants-ascorbic acid, luteolin, resveratrol, and
coenzyme Q (AZN), as a promising treatment for osteoporosis, demonstrating its ability
to promote bone regeneration without toxicity across various stages of zebrafish devel-
opment [209]. AZN treatment in zebrafish larvae improves bone formation, enhances
calcium and phosphorus deposition, and reduces osteoclast activity, indicating its poten-
tial to counteract osteoporosis. These findings highlight AZN’s therapeutic promise for
bone health and support the need for further research into its clinical applications [209].
Recent advancements in human genomic and transcriptomic data have identified poten-
tial osteo-anabolic factors. A new screening pipeline using genetically tractable zebrafish
offers a cost-effective, high-throughput alternative to the traditional models [58]. After
identifying the candidate genes and drug targets from human genetic studies, the pipeline
involves two experimental approaches that can be conducted concurrently to generate
pre-clinical data validating these targets [58]. Genome editing, such as CRISPR-Cas9, al-
lows for loss-of-function studies in transgenic zebrafish to assess the impact of specific
genes on skeletal development and mineralization, while also testing for potential adverse
effects on other tissues or organs. This method enables the creation of hundreds of mosaic
zebrafish mutants in just 3–4 weeks, which is challenging to achieve with other systems
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like cultured chondrocytes or osteoblasts [58]. Furthermore, CRISPR-Cas9 enables the
study of specific human disease mutations in zebrafish, as long as they occur in conserved
coding regions [210,211]. These zebrafish can develop into adults, with germline mutations
identified, allowing for more in-depth studies of the mature skeleton.

Similarly, muscle dystrophy models have been employed to test compounds that
improve muscle strength and function. Phosphodiesterase (PDE) inhibitors are compounds
that have shown promise in improving the muscle function in dystrophin-deficient ze-
brafish [109]. Aminophylline, a nonspecific PDE inhibitor, and sildenafil citrate, a PDE5
inhibitor, were among six compounds that improved the muscle morphology, increased the
vascularization, and prolonged the survival of dystrophin-null larvae [212]. The positive
effects of aminophylline on rescuing dystrophin-deficient sapje larvae were later confirmed
by an independent group using an unbiased screen of the ENZO FDA Approved Drug
library [92]. To further explore this class of drugs, five additional PDE inhibitors were tested
in dystrophic zebrafish. Among them, ibudilast, rolipram, and dipyridamole improved
the dystrophic phenotype in 4-day-old sapje larvae, though they were not as effective as
aminophylline or sildenafil [91]. In contrast, the PDE3 inhibitors, enoximone and milrinone,
showed no therapeutic benefit [91]. Moreover, targeting muscle–bone crosstalk offers a
novel therapeutic approach. By focusing on pathways that simultaneously affect both
muscle and bone health, such as myostatin inhibitors or WNT activators, it may be possible
to develop therapies that address both muscle and bone degeneration in diseases like
osteoporosis and muscular dystrophy.

6. Limitations of the Zebrafish Model
While the zebrafish model offers numerous advantages for studying musculoskeletal

disorders, it is essential to acknowledge its inherent limitations to provide a balanced and
comprehensive perspective. One significant limitation arises from the fundamental differ-
ences in environmental pressures between terrestrial and aquatic life. Teleosts experience
gravity differently than terrestrial vertebrates due to the higher density of water compared
to air, which reduces its direct effects [213]. Instead, gravity acts indirectly through hydro-
static pressure [213]. Consequently, the teleost skeleton primarily adapts to the mechanical
forces from movement (e.g., swimming, feeding) rather than the gravitational load [213].
However, gravity can be manipulated experimentally to study its impact on the teleost
bone structure [214]. The physicochemical characteristics of laboratory water conditions
may vary significantly from those in natural environments [2]. In particular, laboratory
environments do not replicate the constant gravitational and mechanical forces experienced
in terrestrial conditions. This discrepancy may affect the translational applicability of
zebrafish findings to human musculoskeletal disorders, where such forces play a critical
role in the development and function of bones and muscles. Additionally, the specific
biological differences between zebrafish and humans can present challenges. Zebrafish
myogenesis displays unique characteristics, highlighted by the unexpected distributions of
the key muscle cytoskeletal proteins, such as actin, myosin, desmin, α-actinin, troponin,
and titin, which contribute to the distinct aspects of muscle formation and organization in
this model [215]. Furthermore, in the context of muscular dystrophies, the zebrafish model
lacks the utrophin gene, which plays a compensatory role in humans [216]. As a result,
zebrafish with Duchenne muscular dystrophy exhibit a more rapid disease progression.
While this accelerated timeline can be advantageous for experimental purposes, it may
not fully capture the complexities of disease progression in humans. Thus, recognizing
and addressing these challenges will enhance the utility of zebrafish as a complementary
model in translational research. In addition, when selecting an animal model, it is crucial
to adhere to general guidelines to ensure reliable and reproducible results. This principle is
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particularly relevant for zebrafish, where specific considerations must be addressed. The
presence of gene polyploidy has been documented and requires careful verification. The
zebrafish genome underwent an additional duplication event after the divergence of the
fish and mammalian lineages, resulting in cases where zebrafish can exhibit polyploidy
for certain genes [217,218]. Numerous zebrafish mutants have been generated and ge-
netically isolated through the traditional diploid genetic screens. This process suggests
that many of the duplicated genes have either lost their functionality or have undergone
subfunctionalization [219]. Importantly, as with all animal models, the genetic background
must be homogenized through crossbreeding to minimize the variability. The significant
genetic variability both between and within zebrafish strains can influence phenotypes,
potentially affecting the experimental outcomes. If not carefully managed, this high level of
germ-line variation and population substructure in this widely used model organism could
introduce confounding factors, complicating the efforts to translate the findings to human
diseases [220]. Furthermore, the cell type lineage under investigation may not be directly
comparable to that in other models or systems, so it is essential to thoroughly identify the
cell lineage involved in the study to ensure accurate and interpretable results, avoiding the
potential errors caused by the differences in cell types across different models [221].

7. Conclusions
Despite these limitations and the need for careful evaluation of the model used, ze-

brafish have proven to be invaluable for advancing our understanding of the developmental
processes underlying musculoskeletal disorders. Their genetic tractability, coupled with
the ability to visualize dynamic processes in vivo, makes zebrafish an ideal model for
studying the intricate interplay between muscle and bone. The muscle–bone crosstalk
observed in zebrafish mirrors that of humans, as many of the molecular pathways and
mechanisms regulating these interactions are conserved across species. This similarity
allows zebrafish to serve as a powerful platform for identifying the potential therapeutic
targets and testing new treatments in a cost-effective and efficient manner. By studying
zebrafish, researchers can rapidly evaluate the impact of genetic modifications or drug
compounds on musculoskeletal systems, bridging the gap between basic research and
clinical applications. Future research leveraging the zebrafish system will likely uncover
additional pathways involved in muscle–bone communication, offering new therapeutic
opportunities to benefit patients suffering from musculoskeletal disorders.
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