
Graphs, Geometry, and Learning
Representations

Navigating the Non-Euclidean Landscape in Computer
Vision and Beyond

Geri Skenderi

Supervisor: Prof. Marco Cristani

Department of Computer Science
University of Verona

This dissertation is submitted for the degree of
Doctor of Philosophy

June 2024





Acknowledgements

I have so many people to thank for putting me in the position to write this thesis and it is truly
challenging to include all of them on this page. First and foremost, I would like to thank my
supervisor, Prof. Marco Cristani for his support during my PhD at the University of Verona.
His trust in me and the scientific freedom he allowed were decisive factors in all my work
so far. Most importantly, he changed my life by convincing me to pursue a PhD. As of this
writing, I cannot imagine myself doing anything else, and for this, I will be grateful forever.

I would also like to express my deepest gratitude to Luigi Capogrosso, with whom I
shared many ideas and late nights working in the lab. Along with him, I want to acknowledge
all of my labmates during this PhD: Andrea Avogaro, Andrea Toaiari, Christian Joppi,
Federico Cunico, Federico Girella, and Francesco Taioli. I was fortunate to have you all
as colleagues; your questions and desire to learn pushed me to keep working hard. Most
importantly, you were great friends and created an outstanding working environment.

I am very grateful to Prof. Jiliang Tang, who warmly welcomed me into his lab at
Michigan State University and showed me new problems and possibilities. Many thanks
to all of my friends at the MSU Data Science and Engineering lab, especially Haoyu Han,
Harry Shomer, and Jay Revolisnky, for the ideas and discussions we shared.

During this PhD, I was blessed to work with some great people that I have not mentioned
so far and whom I would like to acknowledge: Alessio Del Bue, Alessio Sampieri, Guido
Maria D’Amely di Melendugno, Fabio Galasso, Francesco Giuliari, Francesco Setti, Franco
Fummi, Marco Godi, Matteo Denitto, Simone Melzi, and Yiming Wang. Thank you for
letting me be your coauthor and teaching me many things.

A big thank you goes to my closest friends during these past four years: Carlotta Nardin,
Emanuel Shushku, Kristi Pina, Luigi Marroccoli, Marco Stridi, and Mattia Badano. Sharing
my time and experiences with you is always fun and keeps me in check with reality.

Last but not least, I would like to express my heartfelt gratitude to my parents for their
unwavering encouragement and support. Without you, I would have never been able to do
anything I have done so far.

I dedicate all of my work to my little brother, Kristian Skenderi. Being your big brother
is my favorite thing in the world. Thank you.





Abstract

Artificial Intelligence (AI) requires machines capable of learning and generalizing from data
without being explicitly programmed to do so, giving rise to the field of Machine Learning
(ML). ML systems follow an inductive process where they learn to make predictions from
data, guided by an objective function that defines correct or incorrect choices. This thesis
deals with aspects of the subfield of Deep Learning (DL) through Neural Networks (NNs),
encompassing the philosophy of emulating the human brain’s computational processes.

Most modern NNs excel in solving problems associated with data living in grids with
Euclidean properties, such as images, text, and waveforms. However, non-Euclidean data
is ubiquitous. A general representative of such data are graphs, i.e., data structures where
pairwise relationships between entities, called nodes, are modeled through their connectivity,
given by edges. Social networks, molecules, road networks, human-body poses, and 3D point
clouds are common examples of data that can be represented through the structure of a graph.
To maximize the effectiveness of NNs on data such as graphs, it is imperative to leverage the
inherent geometric properties of the given structure. Moreover, geometry can serve as a tool
not only to properly understand the input data but also to alter the latent representations space
of NNs, giving rise to different desirable properties that can be useful for particular tasks.

This thesis bifurcates into two main paths within the realm of Geometric Deep Learning.
The first path explores the application of DL to graph-structured data to solve challenging
problems in Computer Vision. The second path delves into the utilization of geometric
constraints to shape latent space representations, showcasing how altering latent geometry
can give rise to unique and superior solutions in various contexts like Graph Self-Supervised
Learning and Multi-Task Learning.

In summary, this thesis navigates the intersection of DL, graphs, and geometry, offering
new solutions that enhance the capabilities of NNs in handling non-Euclidean data structures
and learning representations that go beyond the commonly assumed Euclidean latent space.
Insights from our research reveal both the potential and challenges that lie beyond intuitive
geometry and how we can enable ML systems to effectively learn and generalize to a broader
range of data types and tasks.





Table of contents

List of figures xi

List of tables xv

1 Introduction 1
1.1 Deep Learning on structured data . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Machine and Deep Learning . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Learning on structured data . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Geometric Deep Learning . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis outline and contributions . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 General outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Learning on graphs for 3D Computer Vision . . . . . . . . . . . . 7
1.2.3 Graph representation learning via hyperbolic self-predictive tasks . 10
1.2.4 Learning new auxiliary tasks from the representation geometry . . . 11

2 Background 13
2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Geometric Deep Learning Blueprint . . . . . . . . . . . . . . . . . . . 18
2.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Learning on graphs for 3D Computer Vision 27
3.1 Object Localization in Partial Scenes . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 (Directed) Spatial Commonsense Graph . . . . . . . . . . . . . . . 33
3.1.4 SCG Object Localiser (SCG-OL) . . . . . . . . . . . . . . . . . . 34
3.1.5 D-SCG Object Localiser (D-SCG-OL) . . . . . . . . . . . . . . . . 36
3.1.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



viii Table of contents

3.2 Human Pose Forecasting in Industrial Scenarios . . . . . . . . . . . . . . . 53
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 The CHICO dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Chapter takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Graph-level Representation Learning with Joint-Embedding Predictive Archi-
tectures 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Self-Supervised Graph Representation Learning . . . . . . . . . . . 72
4.2.2 Joint-Embedding Predictive Architectures . . . . . . . . . . . . . . 73

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Spatial Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Subgraph Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Context and Target Encoding . . . . . . . . . . . . . . . . . . . . . 76
4.3.4 Latent Target Prediction . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Downstream performance . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3 Exploring the Graph-JEPA latent space . . . . . . . . . . . . . . . 81
4.4.4 Additional insights and ablation studies . . . . . . . . . . . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Data-driven Auxiliary Learning via Latent Geometric Disentanglement 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 MTL and auxiliary learning . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Learning disentangled representations . . . . . . . . . . . . . . . . 90
5.2.3 Relationship between MTL and disentanglement . . . . . . . . . . 91

5.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 The principal task-based oracle . . . . . . . . . . . . . . . . . . . . 95
5.4.2 Auxiliary task discovery . . . . . . . . . . . . . . . . . . . . . . . 96



Table of contents ix

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.3 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 105
6.1 Overview of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References 109





List of figures

2.1 Representative transformations of the letter "M" in the hyperbolic plane, (a)
rotation around point p and (b) translation while keeping the ideal points
p and q fixed. In (a), the rotation is achieved through two inversions about
clines (generalized lines) L1 and L2, intersecting at p and forming right
angles with the unit circle. The hyperbolic translation in (b) is generated
by two inversions about non-intersecting clines L1 and L2, meeting the unit
circle at right angles. Any point z in D moves away from p and towards q
along the unique cline passing through the three points p,q, and z. Figure
taken from [104], full credit is due to the author. . . . . . . . . . . . . . . . 18

3.1 Given a set of objects (indicated in the green disks) in a partially known
scene, we aim at estimating the position of a target object (indicated in
the orange disk). We treat this localization problem as an edge prediction
problem by constructing a novel scene graph representation, the Spatial Com-
monsense Graph (SCG), that contains both the spatial knowledge extracted
from the reconstructed scene, i.e., the proximity (black edges) and the com-
monsense knowledge represented by a set of relevant concepts (indicated in
the pink disks) connected by relationships, e.g. UsedFor (orange edges) and
AtLocation (blue edges). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Complete overview of our two proposed solutions, with their corresponding
graph formalization the localization architecture: SCG(a) and D-SCG(b). . 31



xii List of figures

3.3 Overview of the differences between the attention mechanism of [217] (a),
used in SCG [80], and the one employed in D-SCG Object Localiser, based
on ReLA [276] with an added ScaleNorm and reprojection (highlighted in the
red dashed box)(b). The new attention mechanism contains more parameters,
thus producing more expressive representations, and learns sparse weights
with reduced training and inference time thanks to the ReLU activation
function. Moreover, we utilize two different normalization layers to stabilize
the network’s training, given the positively unbounded attention coefficients. 38

3.4 The proposed dataset with (a) the complete scene from the ScanNet dataset,
and (b) our reconstructed partial scene overlaid with the Spatial Graph. . . . 41

3.5 Average number of different types of nodes among the SCGs in the train and
test split of the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 The proposed dataset with (a) the complete scene from the ScanNet dataset,
and (b) our reconstructed partial scene overlaid with the Spatial Graph. . . . 45

3.7 Qualitative results obtained with D-SCG-OL. The partially known scene is
colored with a yellow background, while the unknown scene is indicated
with grey. The colored circles indicate the object nodes present in the D-SCG.
The red star indicates the GT position of the target object, while the cyan
diamond indicates the predicted positions. The network is able to correctly
predict the position of a sink in (a) and a chair in (b). In the failure case of (c),
the network correctly identified the direction of the window but overestimated
the distance from the visible objects. . . . . . . . . . . . . . . . . . . . . . 46

3.8 Feature propagation at different layers of our GNN that are directed by our
attention module. The cyan node indicates the target object, the green nodes
represent the scene nodes, and the pink nodes represent the concept nodes.
The black edges indicate the sharing of information between two nodes in
the direction indicated by the arrows. For ease of visualization, we show
edges with a mean attention weight over the heads that are superior to 0.2%,
and only display concept nodes that are connected via these types of edges. 51

3.9 Attention weights for messages that are propagated to the target node are
indicated in Fig. 3.8. The network learns to propagate information from
different nodes by leveraging different attention heads. The first and last
layer of the network propagates information from most of the neighboring
nodes, while the intermediate layers focus on a few specific nodes. . . . . . 51



List of figures xiii

3.10 A collision example from our CHICO dataset. On the top row, some frames
of the Lightweight pick and place action captured by one of the three cameras.
On the bottom row are the operator and robot skeletons. The forecasting
model takes an observation sequence (in yellow, here pictured for the right
wrist only) and performs a prediction (cyan), which is compared with the
ground truth (green). In frame 395, it is easy to see the robot hitting the
operator, who is retracting, as is evident in frame 421. Note how the predic-
tions by SeS-GCN follow closely the GT, except during the collision. Due to
the impact at collision time, the abrupt change of the arm motion produces
uncertain predictions, which become extremely difficult to forecast, as shown
by the irregular predicted trajectory. . . . . . . . . . . . . . . . . . . . . . 53

3.11 Average MPJPE distribution for all actions in CHICOon different joints for
(a) short-term (0.40 s) and (b) long-term (1.00 s) predictions. The radius of
the blob gives the spatial error with the same scale of the skeleton. . . . . . 66

4.1 Illustration of the SSL approaches discussed in this paper: (a) Joint-Embedding
(Contrastive) Architectures learn to create similar embeddings for inputs x
and y that are compatible with each other and dissimilar embeddings oth-
erwise. This compatibility is implemented in practice by creating different
views of the input data. (b) Generative Architectures reconstruct a signal y
from an input signal x by conditioning the decoder network on additional
(potentially latent) variables z. (c) Joint-Embedding Predictive Architectures
act as a bridge: They utilize a predictor network that processes the context x
and is conditioned on additional (potentially latent) variables to predict the
embedding of the target y in latent space. . . . . . . . . . . . . . . . . . . 70

4.2 A complete overview of Graph-JEPA. We first extract non-overlapping sub-
graphs (patches) (a.), perform a 1-hop neighborhood expansion (b.), and
encode the subgraphs with a GNN (c.). After the subgraph encoding, one
is randomly picked as the context and m others as the targets (d.), and they
are fed into their respective encoders (e.). The embeddings generated from
the target encoder are used to produce the target subgraphs’ coordinates
ψy. Finally, the predictor network is tasked with directly predicting the
coordinates ψ̂y for each target subgraph based on the context embedding
and the positional embedding of each target subgraph (f.). A regression loss
acts as the energy function D between the predicted and target coordinates.
Note that the extracted subgraphs in (a.) and (b.) are meant for illustrative
purposes only. The number of nodes in each subgraph can vary. . . . . . . 75



xiv List of figures

4.3 3D t-SNE[238] of the latent representations used to train the linear classifier
on the DD dataset. The change in the curvature of the embedding using the
Graph-JEPA objective (b.) is noticeable. Best viewed in color. . . . . . . . 83

5.1 Detaux involves two steps: 1) First, we use weakly supervised disentan-
glement to isolate the structural features specific to the principal task in
one subspace (red rectangle at the top of the image). 2) Next, we identify
the subspace with the most disentangled factor of variation related to the
principal task, and through a clustering module, we obtain new labels (blue
rectangle in the bottom left part of the image). These can be used to create a
new classification task that can be combined with the principal task in any
MTL model (bottom right part of the image). . . . . . . . . . . . . . . . . 88

5.2 3D visualization (via PCA) of the discovered auxiliary task in the entangled
autoencoder feature space (a) and the most disentangled subspace (b) on
FACES. Learning a disentangled representation leads to a subspace that
separates the data into two major groups, which correspond to the labels of
the new auxiliary task. Instead, using only a reconstruction loss leads to an
entangled representation from which it is not beneficial to extract auxiliary
tasks. Different colors mean different clusters found by HDBSCAN, which
are subsequently projected by PCA in 3 dimensions. Best viewed in color. . 101

5.3 An example of latent interpolation in the disentangled subspaces on the
FACES dataset. The columns represent a pair of images sampled from
the dataset, while the rows represent the chosen number of disentangled
subspaces k. The first and last columns hold the real images, the second and
second-to-last represent their corresponding reconstructions, and the three
middle columns (i.e., columns 3,4,5) represent an interpolation from the left
image to the right, with each row being a disentangled subspace. The first
row (Sα ) contains the principal task, i.e., emotion recognition. One can
notice how only the eyes and mouth, related to smiling and being happy are
altered, while the rest of the face remains almost identical. In the second row,
we can see a candidate auxiliary task, where the gender of the subject seems
to change and display different traits. These traits are indeed diverse from
the ones dealing with the change in emotion, isolated in the first subspace,
showing how we can extract orthogonal auxiliary tasks. . . . . . . . . . . . 102



List of tables

3.1 Methods comparison for object localization in partial scenes. mPPE: mean
Predicted Proximity Error. mSLE: mean Successful Localisation Error. LSR:
Localisation Success Rate. SG: Spatial Graph. SCG: Spatial Commonsense
Graph. D-SG: Directed Spatial Graph. D-SCG: Directed Spatial Com-
monsense Graph. The first part of the table follows the 2-stage approach,
which first predicts the pairwise distances and then localizes the object via
multilateration. The last part consists of methods that directly predict the
final position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Impacts of different ConceptNet relationships with the proposed D-SCG-OL.
LSR: Localisation Success Rate. . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Impacts of different attention modules for the object localisation task with
our D-SCG-OL. LSR: Localisation Success Rate. . . . . . . . . . . . . . . 49

3.4 Impact of different numbers of message passing layers in our D-SCG-OL.
LSR: Localisation Success Rate. . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Comparison of object localization performance in the 3D environment instead
of on the 2D floor plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Comparison between the state-of-the-art datasets and the proposed CHICO;
unk stands for “unknown”. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 MPJPE error (millimeters) for long-range predictions (25 frames) on Hu-
man3.6M [111] and numbers of parameters. Best figures overall are reported
in bold, while underlined figures represent the best in each block. The
proposed model has comparable or less parameters than the GCN-based
baselines [108, 216, 224] and it outperforms the best of them [224] by 2.6%. 63



xvi List of tables

3.8 MPJPE error in mm for short-term (400 msec, 10 frames) and long-term
(1000 msec, 25 frames) predictions of 3D joint positions on Human3.6M.
The proposed model achieves competitive performance with the SoA [170],
while adopting 1.72% of its parameters and running ∼4 times faster, cf.
Table 3.10. Results are discussed in Sec. 3.2.5. . . . . . . . . . . . . . . . 65

3.9 MPJPE error in mm for short-term (400 msec, 10 frames) and long-term
(1000 msec, 25 frames) prediction of 3D joint positions on CHICOdataset.
The average error is 7.9% lower than the other models in the short-term and
2.4% lower in the long-term prediction. See Sec. 3.2.5 for a discussion. . . 66

3.10 Evaluation of collision detection performance achieved by competing pose
forecasting techniques, with indication of inference run time. See discussion
in Sec. 3.2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Values of Graph-JEPA specific hyperparameters for the experiments on the
TUD datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Performance of different graph SSL techniques on various TUD bench-
mark datasets, ordered by pretraining type: contrastive, generative, and
self-predictive. F-GIN is an end-to-end supervised GIN and serves as a ref-
erence for the performance values. The results of the competitors are taken
as the best values from [94, 230, 231]. "-" indicates missing values from the
literature. The best results are reported in boldface, and the second best are
underlined. For the sake of completeness, we also report the training and eval-
uation results of GraphMAE on the DD, REDDIT-M5, and ZINC datasets in
italics, along with the results of a node-level self-predictive method (BGRL),
which does not originally report results on graph-level tasks. . . . . . . . . 81

4.3 Classification accuracy on the synthetic EXP dataset [1], which contains 600
pairs of non-isomorphic graphs that are indistinguishable by the 1-WL test.
Note that the competitor models are all trained with end-to-end supervision.
The best result is reported in boldface, and the second best is underlined.
Performances for all competitor models are taken from [98]. . . . . . . . . 82

4.4 Comparison of Graph-JEPA performance for different distance functions.
The optimization for Poincaré embeddings in higher dimensions is problem-
atic, as shown by the NaN loss on the IMDB-B dataset. LD stands for Lower
Dimension, where we use a smaller embedding size. . . . . . . . . . . . . 82

4.5 Total training time and model parameters of MVGRL, GraphMAE, and
Graph-JEPA for pretraining (single run) based on the optimal configuration
for downstream performance. OOM stands for Out-Of-Memory. . . . . . . 83



List of tables xvii

4.6 Performance when parametrizing the context and target encoders through
MLPs vs using the proposed Transformer encoders. . . . . . . . . . . . . . 84

4.7 (a) Performance when using node-level vs patch-level RWSEs. (b) Perfor-
mance when extracting subgraphs with METIS vs. using random subgraphs. 85

5.1 Classification accuracy on the FACES, CIFAR-10, SVHN, and Cars datasets.
(*) indicates that the results are the ones reported in the original paper.
Boldface indicates the best results, underlined text indicates the models that
outperform STL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99





Chapter 1

Introduction

"Machine intelligence is the last
invention that humanity will ever need
to make."

Nick Bostrom

1.1 Deep Learning on structured data

1.1.1 Machine and Deep Learning

In the quest for Artificial Intelligence (AI), the ability of a computer program to learn
and generalize from previous experience without being explicitly programmed to do so is
paramount. Machine Learning (ML) is the scientific discipline that studies this problem. ML
systems rely on a computational model mimicking how information manifests in the world,
as documented by some data. The data is therefore used to fit the model, i.e., learn a set of
parameters that ultimately lead to inducing decision rules, allowing the ML program to make
predictions. In practice, this often entails figuring out concentrations in probability mass or
density in the joint distribution of the data observations. Machine learning approaches are
conventionally categorized into three broad groups, each aligning with a learning paradigm
that is based on the available feedback for the learning system:

• Supervised learning: In this scenario, the system receives example inputs and their
desired outputs, in terms of (X ,Y ) pairs, where X is an input random variable and Y
is a label that we wish to predict given X . The objective is for the system to discern
a general rule that effectively maps inputs to corresponding outputs, and learning is
guided directly by how far the predictions deviate from the ground truth Y .



2 Introduction

• Unsupervised learning: This approach involves a learning objective that does not rely
on labels. The algorithm is left to uncover patterns and structures within its input
autonomously, i.e., we only have X at our disposal. Unsupervised learning serves both
as an independent goal, to discover hidden patterns in data, and as a means to an end,
facilitating feature learning.

• Reinforcement learning: In reinforcement learning, an agent engages with a dynamic
environment, striving to achieve a predefined goal (e.g., driving a vehicle or playing a
game). Throughout its exploration of the problem space, the program receives feedback
akin to rewards, which it seeks to maximize.

While each algorithm possesses distinct advantages and limitations, no single algorithm
universally addresses all problems. We will focus on the first two, which are the most popular
and well-known approaches. Reinforcement learning, on the other hand, deals with tasks
that have to do with exploring and interacting with physical space and is often more helpful
in robotics.

In the past, ML practitioners have primarily depended on manually crafting representa-
tions, leveraging human insights into the problem. In this thesis, we will be concerned with a
particular paradigm of ML known as Deep Learning (DL), which belongs within the broader
context of representation learning [21]. DL belongs to a class of learning models that are
based on "connectionism", stacking layers of computational units that are interconnected and
share information to unravel and interpret hierarchical structures within the input data [135].
The goal behind the driving force of DL models, (Artificial) Neural Networks (NNs), is to try
and loosely emulate computation as performed in the human brain, which can be considered
the most intelligent connectionist machine in existence [45].

NNs are inspired by synapses and impulse responses found in our neurons. The base
computing unit consists of several learnable weights (parameters) associated with every
input feature, called a layer. The combined value of the processed information of the layer
passes through an activation function that determines the behavior of the output value(s). By
stacking several of these layers and using non-linear activation functions, we obtain what is
known as a Deep Neural Network. Please note that unless explicitly mentioned, from this
point forward we will use NN as an acronym for these Deep Neural Networks. The output
of the NN is a prediction of the label Y in the supervised setting or a prediction over X in
the unsupervised setting, depending on the objective (clustering, self-supervised learning,
etc.). This process is referred to as forward propagation. Given this output and a scalar loss
function that quantifies how much the output deviates from what we consider ideal, we can
train NNs via an optimization process that renders this loss as small as possible. In practice,



1.1 Deep Learning on structured data 3

this is done through the gradient of the loss function by relying on the well-known Stochastic
Gradient Descent algorithm. This process is known as backpropagation [275]. NNs have two
properties, among many others, that have made them the most successful models in modern
ML:

1. They are universal function approximators [93]. Given some data, a neural network
can represent a wide variety of functions or even the data-generating process if it learns
appropriate weights. This makes NNs scale exceptionally well with the amount of
data;

2. By transforming the input features between the input and output layers, NNs are
capable of learning new representations of the data to best solve the task. This means
that at each layer, the network learns new features that can facilitate the process of
fulfilling the demand of the loss function.

The points presented above are the main reasons behind the modern approach for success-
fully training these models, which consists of collecting a large amount of data and training
an architecture with a large number of weights (parameters). Despite the wide adoption
and success they have seen over recent years, NNs still face numerous shortcomings. Of
particular interest in this thesis is the fact that by assumption, most architectures are designed
to work with data that is represented on a "grid" of numbers. Perfect examples of such data
are images, text, and waveforms. This representation facilitates computational operations,
and thus, a direct approach is to extend our intuitive, three-dimensional understanding stem-
ming from Euclidean Geometry to the data and representation space. From a computational
perspective, this geometry boasts numerous advantages, such as the efficient computation of
distances or inner products. At the same time, the linearity inherent in Euclidean space offers
a wide array of mathematical tools that can be directly applied without any hassle, such as
Linear Algebra and elementary Probability Theory.

Most importantly, reasoning in Euclidean terms closely aligns with our intuition and
understanding of structure. Thus, most of the success of NNs has come by assuming that the
input data has a Euclidean structure and similar assumptions have also been made regarding
the learned representations. For example, images are represented in a two-dimensional grid,
which readily allows for the implementation of a convolution operation with a NN [136]. The
learned representations are often assumed to live in a vector space such that two vectors with
small Euclidean distance represent two (semantically) similar images [137]. In the following
subsection, we will intuitively understand why these assumptions are suboptimal for data
with explicit structure, like graphs, and why they can fail to capture implicit structure, such
as hierarchy and separability.



4 Introduction

1.1.2 Learning on structured data

So far, the words "structured data" have appeared often, but there has not yet been a proper
characterization. One possible way to formalize this concept, which is also used in this
thesis, will be described in the following chapters. As a general idea, we can refer to the
concept of structure provided by [16], where the authors describe the necessity of "structured
computations" to learn on data that embodies a broad concept of relationships among elements
constituting a data instance. Even though one might think that data represented in grids has
simplistic structure, that is often not the case. For example, images, text, or sounds are often
assumed to live in a lower dimensional manifold embedded in the high dimensional data space
[22]. This naturally implies that the data has to contain some structure that we can exploit to
represent changes in the high-dimensional data space onto the lower-dimensional manifold.
Therefore, it is up to us to define what the structure should be, implicitly in these cases. To
provide some intuitive examples, a Convolutional layer processes a local group of pixels
in an image [136], assuming independence w.r.t. distant entities, in a translation-invariant
fashion, implying that the result of the convolutions should remain relevant across different
localities in the image. On the contrary, Recurrent layers are adopted for sequence or text
data to favor temporal dependency. More precisely, their inputs and hidden representations,
forming the entities, are related through the dependence of one step’s hidden state to both the
current input and its previous hidden state [209].

Such architectural designs favor what is known as inductive bias, meaning that the
learning process is biased into learning a particular function. Architectures such as CNNs or
RNNs that are equipped with such biases have led to groundbreaking performance in many
different domains. Nevertheless, popular NNs are, by default, not adequately equipped to
deal with data whose structure is explicit. This is a massive problem because such data are not
only widespread in the real world but also provide a way to frame certain problems naturally
[212, 241]. A general way to represent structured data is graphs, i.e., data structures where
two or more entities, called nodes, are connected together through edges. This representation
principle allows much flexibility since the nodes can have discrete or continuous features
attached to them, thereby creating a graph signal, the edges can be directed or undirected,
and many more [165]. Social networks, molecules, road networks, and human-body poses
are very common examples of data that can all be represented through this idea of an abstract
structure representing pairwise connectivity, i.e., the graph.

Given their widespread application, Deep Learning on graphs has witnessed a large
amount of interest in recent years [258]. From the scientific DL community, the primary
reason for this surge in research interest is that if one tries to adapt a vanilla NN to graphs
naively, the performance is subpar. The reason for this is that the structure of the input data



1.1 Deep Learning on structured data 5

is unknown to the base model of computation. For example, consider again the case of
graphs. A function that operates on this data structure should be invariant with respect to
node ordering because a graph assumes (typically) no order while also understanding that
some nodes are connected with each other and not with others. Additionally, phenomena that
can easily represented through graphs, such as 3D scene layouts or molecules, might require
additional properties, such as equivariance or invariance to rotations and an understanding
of hierarchy. Therefore, the main research questions that arise are how we can design
architectures with implicit inductive biases to aid learning on structured data and how we
can use these architectures and modify their properties in different applicative scenarios. In
the following section, we will introduce the general idea behind a blueprint that reveals how
we can perform Deep Learning on graphs and structured data by relying on a very powerful
mathematical framework.

1.1.3 Geometric Deep Learning

All of the examples provided so far provide subtle hints toward a tool that can be used to
formalize this elusive structure and allow for the creation of proper priors to enable high-
performance learning on non-Euclidean data. That tool is geometry. This is a somewhat
natural choice since, as suggested initially in the main body of work supporting this view
[29], geometry seen under the lens of Felix Klein’s Erlangen program is the study of objects
and functions that remain unchanged under a class of allowable transformations [104]. Sec.
2 shows how geometry can be effectively embedded in NNs to create what is known as the
Geometric Deep Learning blueprint. The general idea of this approach is to learn structured
data representation through DL by first defining a set of inductive biases that will lead to
symmetry or invariance to a chosen property. For example, Graph Neural Networks [211]
generalize the notion of convolution to the graph domain by considering adjacent nodes based
on the given graph structure instead of the grid surrounding a pixel [125]. This operation
is performed so that the signal of each node is updated as a function of its neighbors in
a message-passing fashion [76]. Thus, if a permutation invariant aggregation function is
applied to the graph signal learned in this manner, altering the node order will not change the
output of the function approximated by the neural network.

As mentioned earlier, it is possible to formalize these concepts, and we shall do so
later, based on the Geometric Deep Learning blueprint presented in [29]. It is essential to
understand that additional geometric properties can be stacked together when designing a
NN. Looking at Graph Convolutional Networks again, one can consider the case where the
local message passing is performed on features that are invariant to linear transformations.
In this case, the approximated function would be invariant to both linear transformations



6 Introduction

and node ordering, allowing for a very flexible way of modeling abstract reasoning in space.
Furthermore, this property can be extended to heterogeneous graphs with different signals
in a straightforward way, enabling powerful multimodal fusion. This is precisely how we
propose solving object localization in partial 3D scenes [80, 79], as detailed later in Sec. 3.

Geometric properties can also be extended to the latent representations that a NN learns.
This is a very active field of research that has brought about various influential papers in
recent years [71, 218], with continued research interests in representation learning [173] and
graph representation learning, in particular [164, 196, 279]. In practice, it is frequently the
case that latent representations are assumed to live within a Euclidean space. The primary
rationale behind this selection is convenience. Euclidean space is a normed vector space
with a well-known metric induced by the Euclidean (L2) norm, it has explicit and efficient
formulas for the calculation of distance and inner product, and most importantly serves as
an intuitive extension of our visually comprehensible 3D space. Nevertheless, it is not the
optimal choice of geometry for all cases. It has been shown that non-Euclidean geometries
can be highly beneficial in providing additional structure to the latent space so that it better
serves specific tasks, such as representing hierarchical and tree-like structures [71]. Finally,
in specific scenarios, it is helpful to think about the representation space using a higher-level
construct that comes up often in the context of non-Euclidean geometries, i.e., manifolds.
Manifolds are, of course, a topological concept rather than a purely geometric one, and they
play a central role in representation learning due to the manifold hypothesis [22]. As with
any topological space, they can be endowed with a geometry, and if we think of the latent
space in this way, we can use various tools from differential geometry to generalize some
very useful concepts, such as the Cartesian structure of the Euclidean plane [179, 69]. In this
thesis, we will explore two different cases of geometric manipulations of the latent space:
one in the case of graph self-supervised learning [223], where hyperbolic constraints are
placed in the latent representations, and the other employing a metric space formalization
and orthogonality constraints on data manifolds for auxiliary multi-task learning [222].

1.2 Thesis outline and contributions

1.2.1 General outline

As indicated in the final paragraph of the previous section, this thesis comprises two forking
paths that focus on the rapidly evolving field of Geometric Deep Learning, the subfield of
DL that focuses on developing algorithms and models for data by exploiting or enforcing
geometric inductive biases:



1.2 Thesis outline and contributions 7

1. The first is the use of graphs and DL to solve prominent problems in 3D Computer
Vision (CV), a particular domain that is of great applicative interest. The reason for
this adaptation, as will be motivated in the following subsections, is that some of these
problems can be naturally framed using a graph representation. We will also see that
by treating these problems as graph learning problems, we can improve performance,
efficiency, and also easily include additional priors.

2. The second is using geometrical constraints on the learned latent representation space.
We will show how altering the geometry of this latent space proves beneficial in specific
contexts and also how it offers a flexible framework to that can be adapted to seemingly
different end goals, such as Multi-Task Learning or Graph Self-Supervised Learning.
While all of these topics fall under the umbrella term of Geometric Deep Learning,
they are diverse and present various specific challenges.

While the first part focuses on building the optimal graph representation for the problem
and the applications, the second forking path focuses more on theoretical aspects of Geometric
Deep Learning, dealing with the geometry of latent representations learned from NNs and
architectural priors. In summary, this thesis navigates the intersection of DL, graphs, and
geometry, offering novel solutions that enhance the capabilities of NNs in handling non-
Euclidean data structures and learning representations that go beyond the commonly assumed
Euclidean latent space. We will discuss how the ability to learn non-Euclidean data structures,
namely graphs, can significantly benefit 3D Computer Vision. Furthermore, we will also
show that the geometry of the learned representations of a neural network can significantly
affect the learning outcome. This difference can be used creatively, for example, to search
for new tasks directly in a learned latent space or to efficiently learn graph-level vector
representations with hyperbolic constraints. Insights from our research reveal how much
potential and challenges are beyond the realm of intuitive geometry and how we can enable
ML systems to effectively learn and generalize to a broader range of data types and tasks.
The idea of geometry as a critical aspect of model learning systems will allow for applying
these methods to a broader range of tasks in the future and also lead to novel theoretical
connections with the scientific disciplines of physics, where geometry and symmetry play a
crucial role.

1.2.2 Learning on graphs for 3D Computer Vision

This subsection will broadly explain the CV tasks we propose to tackle by relying on a
graph formulation coupled with Graph Neural Networks (GNNs). CV can be defined at a
high level as an interdisciplinary field that deals with how computers can be made to gain a



8 Introduction

high-level understanding of digital visual information. Several CV problems can be framed
using graphs, especially for 3D data. This thesis will explore the following two problems:

Object localization in partially observed 3D scenes. The localization of unobserved
objects given a partial observation of a scene is a fundamental task humans often solve in
their everyday lives. The problem can be formalized as the inference of the position of
an arbitrary object in an unknown area of a scene based only on a partial observation, i.e.,
only a partial part of the 3D point cloud of a scene is made available. Intuitively, in such
scenarios, the most important thing is the ability to reason abstractly over the scene and the
objects it contains, without relying much on observations but more so on commonsense.
For example, if a human is asked to find the oven, they would most likely look for it in the
kitchen, even if they have never observed that particular kitchen or house. To abstractly
reason on the observed data, we propose two scene graph representations [80, 79], containing
heterogeneous nodes and edges that embed the commonsense knowledge together with the
spatial proximity of objects as measured in the partial 3D scan of the scene. The underlying
intuition is that commonsense knowledge extracted from an external knowledge base is not
specific to any observed visual scene and thus allows for better generalization at the cost
of a coarser localization. Our graph representations are first defined by a spatial graph that
is fully connected, with nodes representing the known objects and edges representing the
proximity. Then, this spatial representation is further expanded by adding and connecting
nodes representing concepts through relevant commonsense relationships extracted from a
large knowledge graph named ConceptNet[226].

Based on the above problem formulations, we present two different solutions that rely on
different levels of geometric constraints. The first is a two-stage solution [80], which imposes
two geometrical constraints. First, we predict the pairwise proximity between the target
object node, having an unknown position, and each known object node through a Graph
Neural Network (GNN), formulating the task as an edge regression problem. As such, the
estimated function is invariant to both node ordering and linear transformations, which allows
it to generalize easily to scenes with similar content. We then use a Localization Module
to compute the target’s position based on the pairwise distances. The localization module
uses a simplex optimization procedure [24] to estimate the position as the intersection of the
circular areas defined by all pairwise object distances. This second geometrical constraint
also makes our model agnostic to the coordinate system.

We will then show it is possible to obtain even better results with more relaxed con-
straints regarding the spatial geometry [79], For this purpose, we change the scene graph
representation into a directed graph where the proximity edges have relative directional



1.2 Thesis outline and contributions 9

positions. This means the approximated functions will be invariant to translations but not
rotations. The novel scene graph formulation leads to a more straightforward loss calculation
and training procedure, which benefits the encoding of both the geometrical information
and commonsense attributes, resulting in better target localization. Moreover, we improve
the GNN model by proposing the use of a new attention module that adapts Rectified Lin-
ear Attention (ReLA). This approach allows the GNN to dynamically sparsify the graph,
maintain high expressive power, and remain efficient in terms of training. Through extensive
experiments, we demonstrate that our new method achieves a large increase in accuracy with
an 8x speed-up in both training and inference, given the end-to-end training. Our proposed
approaches provide state-of-the-art results in object localization in partially observed 3D
scenes, beating various baselines by a large margin. Finally, given the attention-based model
[240] of our best-performing solution, we can get insights into the importance of different
parts of the graph signal.

3D Human Pose forecasting. Consider an Industry 4.0 scenario where collaborative robots
(cobots) and humans share the same workspace and perform actions concurrently. While
there is a clear advantage in increased productivity due to the minimization of idle time,
there are also risks of contact and clashes between humans and cobots. Thus, to seamlessly
and efficiently interact with human co-workers, cobots need to make decisions on the fly by
anticipating the pose trajectories of their human co-workers and predicting future collisions.
The 3D human pose can naturally be represented as a graph by encoding the body kinematics,
with all joints at all observed frames being the nodes while the edges connect joints in space
and time. Therefore, we propose a novel graph-based solution called Separable-Sparse Graph
Convolutional Neural Network (SeS-GCN) for human pose forecasting [210]. We design
SeS-GCN with performance and efficiency in mind by bringing together three main modeling
principles for the first time: depthwise-separable graph convolutions, space-time separable
graph adjacency matrices, and sparse graph adjacency matrices. In SeS-GCN, separable
stands for limiting the interplay of joints with others (space) at different frames (time) and per
channel (depth-wise). For the first time, sparsity is achieved by a teacher-student framework.

The reduced interaction and sparsity result in considerably fewer parameters than a
standard GCN (4x less), making our model lightweight, fast, and, most importantly, accurate.
To validate the impact of such a model in a real industrial scenario, we also introduce the very
first benchmark for human-robot collaboration (HRC), Cobots, and Humans in Industrial
COllaboration (CHICO). CHICO includes multi-view videos, 3D poses, and trajectories of
the joints of 20 human operators in close collaboration with a KUKA LBR iiwa robotic arm,
within a shared workspace. When tested on CHICO, the proposed SeS-GCN outperforms all



10 Introduction

baselines with an impressive run time of 2.3ms. Both contributions serve as a stepping stone
to cobot awareness in the future, which is instrumental for HRC in industrial applications.
Moreover, our proposed solution demonstrates, in line with previous literature [225], that
spatiotemporal processing through GNNs is rendered extremely simple and leads to improved
representational power for data such as the 3D human pose. Our promising graph-based
solution and novel benchmark led to this work being accepted at the European Conference
on Computer Vision 2022.

1.2.3 Graph representation learning via hyperbolic self-predictive tasks

In this part of the thesis, we will look at research insights on dealing with both non-Euclidean
data and latent representations on graphs in the context of Self-Supervised Learning (SSL).
Most NNs on graphs are usually trained by using ground-truth labels. The growing amount of
graph data in fields such as bioinformatics, chemoinformatics, and social networks has made
manual labeling laborious, sparking significant interest in unsupervised graph representation
learning. One particular learning technique in this domain is SSL [261]. In SSL, alternative
forms of supervision are created stemming from the input signal [155]. This process is then
typically followed by invariance-based or generative-based pretraining. Invariance-based
approaches optimize the model to produce comparable embeddings for different views of the
input signal. On the other hand, generative-based pretraining methods typically remove or
corrupt portions of the input and predict them in data space. Inspired by the recently proposed
Joint-Embedding Predictive Architecture (JEPA) [51], we propose Graph-JEPA, the first
JEPA for the graph domain, to learn graph-level representations by bridging contrastive and
generative models. Joint-Embedding Predictive Architectures are an extremely recent design
for SSL. The idea is similar to both generative and contrastive approaches, yet JEPAs are
non-generative since they do not directly predict in data space but in the latent representation
space. These models can, therefore, be understood as a way to capture abstract dependencies
between views of the input signal. However, the graph domain presents us with additional
challenges, namely view extraction, designing a latent prediction task that is optimal for
graph-level concepts, and learning expressive representations.

In response to these questions, we equip Graph-JEPA with a specific masked modeling
objective. The input graph is first divided into several subgraphs, and then the latent repre-
sentation of randomly chosen target subgraphs is predicted given a context subgraph. The
subgraph representations are consequently pooled to create a graph-level representation that
can be used for downstream tasks. Thus, Graph-JEPA consists of two encoder networks
that receive the context and target subgraphs, respectively and produce the corresponding
representations. Notably, these encoders can be different GNNs and don’t need to share



1.2 Thesis outline and contributions 11

weights. A predictor module outputs a prediction of the latent representation of the target
given the context. Graph-JEPA does not require any negative samples or data augmentation,
and by operating in the latent space, it avoids the pitfalls associated with overfitting in
generative models. Given that the nature of graph-level concepts is often assumed to be
hierarchical [268, 185], we conjecture that the typical latent reconstruction objective using
the distance in a Euclidean space is suboptimal for downstream performance. To this end,
we design a prediction objective that starts by expressing the target subgraph encoding as a
high-dimensional description of the hyperbolic angle. The predictor module is then tasked
with predicting the target’s location in the 2D unit hyperbola. This prediction is compared
with the target coordinates obtained by using the aforementioned hyperbolic angle. Graph-
JEPA outperforms popular contrastive and generative graph-level SSL methods on different
datasets while maintaining efficiency and ease of training. Our experiments show that Graph-
JEPA can run up to 1.45x faster than recent generative methods. Finally, we empirically
demonstrate Graph-JEPA’s ability to learn highly expressive graph representations, showing
it almost perfectly distinguishes pairs of non-isomorphic graphs that are indistinguishable
from common GNNs.

1.2.4 Learning new auxiliary tasks from the representation geometry

Finally, we will explore the connections between latent geometrical constraints and auxiliary
learning with NNs. Human learning is often considered to be a combination of processes,
such as high-level acquired skills and evolutionary encoded physical perception, that are used
together and can be transferred from one problem to another. Inspired by this, Multi-Task
Learning (MTL) [36] represents a machine learning paradigm where multiple tasks are
learned together to improve the generalization capabilities of a model. A specific form of
this learning approach is auxiliary learning [149], which has garnered considerable interest
in recent years. In particular, auxiliary learning is a specific type of MTL, where auxiliary
tasks are intentionally crafted to boost the performance of a known principal task. As of
now, auxiliary tasks are usually either manually defined or found through procedures based
on meta-learning [153, 188], a complex learning technique that requires a prior definition
of the hierarchy of the auxiliary tasks. Both approaches are pretty inefficient in terms of
manual labor and computation, respectively. We tackle this difficult problem by proposing
Detaux, a strategy that discovers unrelated auxiliary classification tasks through latent
space disentanglement. Given a collection of input data, such as a set of labeled images,
a disentanglement procedure should output a representation where the different generative
factors that produce the variations observed in the data are separated. Our idea is to work in
a specific geometric factorization of the representation space, namely a product manifold,



12 Introduction

to unveil auxiliary tasks for the given principal task. The product manifold represents a
disentangled (factorized) latent space such that each submanifold that composes the product
manifold corresponds to specific variations in the data.

One can also consider a finite-dimensional normed vector space and factorize it into
vector subspaces (such spaces are indeed a particular case of a manifold). Therefore, using
Euclidean subspaces can be considered a special (yet efficient) case of the disentanglement
framework. Our method starts by first forcing the variation corresponding to the principal task
labels in one submanifold. Then, we automatically identify the most disentangled subspace
that is not that of the principal task. Finally, we generate a new auxiliary task and its labels
via a clustering module to enable seamless integration with the primary task in any MTL
model. The geometry imposed upon the latent space guarantees that the discovered task is
unrelated (orthogonal) to the principal task, which has shown to be quite effective in previous
literature [249, 282, 197, 114, 281, 151]. Moreover, our proposed approach is agnostic to
the choice of the MTL model, given that the latter acts directly on the primary and auxiliary
labels. Therefore, the proposed method is fully automatic and offers great flexibility in terms
of modeling and design choices, which can depend on several factors such as performance,
efficiency, scalability, and resource constraints. Our experimental validation shows that three
different MTL models offer improved performance with Detaux and that the disentangled
representation is a key factor for data-driven auxiliary task discovery.

The rest of this thesis is organized as follows: the following chapter will provide the
necessary background on geometry, show how it connects with the Geometric Deep Learning
blueprint, and finally present how this blueprint is realized in the case of Graph Neural
Networks. Afterward, the aforementioned research projects will be presented in depth in the
same order as presented above: Chapter 3 will deal with our proposed uses of GNNs in CV,
chapter 4 will present Graph-JEPA, and Chapter 5 will discuss Detaux. Each chapter will
contain any additional background or technicalities necessary in order to make this document
as self-contained as possible. Finally, Chapter 6 will delve into an analysis of our research,
its possible industrial impact, future work, and a few opinions on the intersection of Graphs,
Geometry, and Learning Representations.



Chapter 2

Background

Most of the material presented in this chapter is presented in additional detail by [104] and
[29]. The overall goal of this chapter is to present the concept of geometry as a modern
mathematical object, initially ideated by Felix Klein in the Erlangen program. By having a
deeper understanding of what geometry actually is, we shall explore how this definition can be
coupled with DL to create invariant or equivariant NNs with respect to a particular geometry.
Finally, we will explore how this way of defining priors for a learning system ties into Graph
Neural Networks and their permutation invariance properties. Ideally, the reader should
complete the chapter knowing the formalization of a geometry and how to reason in terms of
invariances, how these concepts can be used in DL through the Geometric Deep Learning
Blueprint, and how Graph Neural Networks can be seen as having a geometric inductive bias.
The reader can additionally consult [163] and [5] for supplementary information regarding the
characterization of groups and geometries, with a particular focus on hyperbolic geometry.

2.1 Geometry

The fascination of humans with shapes, their properties, and how to construct them is as
old as recorded history. The pyramids of Egypt, the aqueducts of Rome, and the Great
Wall are just a few examples of how humans used shapes to understand and give form
to desired physical attributes. Scientifically speaking, this renders geometry one of the
earliest branches of mathematics, along with the creation of numbers and basic algebraic
manipulations. Geometry finds its cornerstone in Euclid’s Elements, a seminal text [220].
Following the classical (yet unprecedented) Greek mathematical method, Euclid proceeds
by using a rigorous logical approach, proving every definition based on his five postulates.
Euclid’s Elements held its status as the definitive geometry text for over two millennia,
celebrated for its brilliance in logical reasoning and overall scientific impact. However, one



14 Background

of Euclid’s five postulates, i.e., the parallel postulate, became a focal point of intense debate,
eventually paving the way for the development of non-Euclidean geometries. The discovery
and establishment of non-Euclidean geometries was due to contributions from many great
mathematicians such as Gauss, Bolyai, Lobachevsky, and Poincaré, while the impact of these
mathematical constructs arguably reached its peak in science when Albert Einstein used them
to establish his theory of relativity.

After non-Euclidean geometry became an accepted and established concept, various
mathematicians argued about how geometry was constructed and what it truly meant. The
most important contribution in this sphere, which we will also rely on, was from Felix Klein,
who approached the subject in a unique way that led to a general and intuitive understanding.
While Euclid and most of his successors employed an additive method and approached
geometry by establishing fundamental axioms and subsequently constructing a sequence
of results based on prior ones, Klein adopted a subtractive approach. Klein started with
a space, or more broadly, a set of possible figures, and then defined a set of permissible
transformations for that space. He then eliminated concepts that did not retain their identity
under these transformations. According to Klein, the essence of geometry lied in examining
objects and functions that remain invariant amidst allowable transformations, i.e., geometry
is the study of symmetry.

We will finally formalize this idea. Before getting there, we first have to be familiar
with the concept of a group. A group is an algebraic object and it is defined with regard
to an operation. In the context of geometry, it is more valuable and practical to consider a
collection of transformations that act on some set.

Definition 2.1.1. (Group of transformations): A collection G of transformations of a set A,
i.e., a collection of bijective functions with A as domain and codomain, is called a group of
transformations if it satisfies the following axioms:

1. Closure: If T,S ∈ G, then we have T ◦S ∈ G.

2. Associativity: If R,S,T ∈ G, then (R◦S)◦T = R◦ (S◦T ).

3. Identity: G contains an identity transformation T : A → A such that ∀a ∈ A, T (a) = a

4. Inverse: If T ∈ G , then there exists an element denoted by T−1 ∈ G, such that
∀a ∈ A, T−1(T (a)) = a.

If the composition of transformations in G is also commutative, i.e., ∀T,S ∈ G, T ◦S =

S◦T , the group is called Abelian. As mentioned earlier, readers who are not familiar with
group theory might be somewhat puzzled by the above definition, as a group is usually



2.1 Geometry 15

defined by considering a set A and an operation ⊗ : A×A → A, such that the group is the
tuple (A,⊗). The axioms are then defined similarly. In our case, we can consider each
transformation as a valid group operation. Then, the group consisting of all transformations
that can be composed together defines G. Our choice of notation is because we wish to
consider the group structure on transformations of a given space A. There are many reasons
why we want to rely upon this algebraic structure, but the main ones are the last two group
axioms, which indirectly encapsulate a general idea of symmetry. The high-level intuition is
that if we have a group of transformations, we can define elements of A that are unchanged
by them and also define "equivalent" structures due to the existence of the inverse axiom (the
correct word for this equivalence would be isomorphic). Without further ado, we can now
define geometry as formalized by Klein.

Definition 2.1.2. (Geometry): Let S be any set, and G a group of transformations on S. The
pair (S,G) is called a geometry. A figure in the geometry is any subset A ⊆ S. An element of
S is called a point in the geometry. Two figures A and B are called congruent, denoted A ∼= B,
if there exists T ∈ G such that T (A) = B.

The above definition shows how Klein’s approach starts with a collection of elements (S)
and then defines a group of " admissible " transformations for those elements. This definition
might seem puzzling at first. How is this abstract idea of the group of transformations related
to shapes and what we are used to calling geometry? The best way to illustrate the utility of
this definition is through some examples. In the final part of this section, we will explore
two concrete realizations of this definition: Euclidean and Hyperbolic geometry. At this
point, it is crucial to first state two additional definitions that will be the cornerstones behind
geometric priors in DL.

Definition 2.1.3. (Invariant Set): A collection D of figures in a geometry (S,G) is called an
invariant set if, for any figure A ∈ D and any transformation T ∈ G, T (A) ∈ D. D is called
minimally invariant if no proper subset of it is also an invariant set.

The invariant set is an important concept since it formalizes the idea that, given a
particular geometry, there exists a collection of figures that always has closure. Intuitively,
this collection preserves their structure in the given geometry. Having this collection of
figures, we can define the most crucial concept for Geometric Deep Learning:

Definition 2.1.4. (Invariant and equivariant functions): A function f defined on an invariant
set D is called an invariant function if f (B) = f (T (B)) for any figure B ∈ D and any
transformation T ∈ G. The function is called equivariant if f (T (B)) = T ( f (B)).



16 Background

To frame the above definition in simple words, the output of an invariant function is
unaffected by transformations, while the output of an equivariant function is the same as
applying the transformation after the mapping. These two types of function are what we
will later try to approximate using NNs, giving rise to the name Geometric Deep Learning.
Armed with the above definitions, we can now state a powerful theorem that reveals how we
can easily construct minimally invariant sets, which is extremely helpful when reasoning
upon the geometric inductive biases we would like to insert into our NN architectures.

Theorem 2.1.5. An invariant set D of figures in a geometry (S,G) is minimally invariant if
and only if any two figures in D are congruent.

Proof. First, assume D is a minimally invariant set in the geometry (S,G), and let A,B ∈ S
be arbitrary figures in D. We wish to show that any two figures in this set are congruent. Let
us start by constructing a new set of figures, the one consisting of A and all transformations
of A. In particular, define A = {T (A) | T ∈ G}. Notice that for any T ∈ G, T (A) ∈ D due to
D being invariant. This implies that A ⊆ D. Furthermore, due to the group structure of G,
A is also an invariant set. In particular, if C ∈ A , then C = T0(A) for some T0 ∈ G. Thus,
we have T (C) = T (T0(A)) = T ◦T0(A), for any transformation T that we want to apply to C.
Since T ◦T0 ∈ G by the group axioms, we have T ◦T0(A) ∈ A . Therefore, A ⊆ D and A is
an invariant set. Since D is minimally invariant, A = D by Def. 2.1.3. This means that the
figure B ∈ D is also in A, i.e., A ∼= B, as desired.

The other direction follows a straightforward contradiction. Let D be an invariant set
such that any two figures in D are congruent. We wish to show that D is minimally invariant.
Suppose that D is not minimally invariant. By Def. 2.1.3, a proper subset D′ ⊂ D exists
and is minimally invariant. Consider an arbitrary figure A such that A ∈ D and A ∈ D′. The
minimal invariance of D′ implies that there exists another arbitrary figure B ∈ D and B /∈ D′.
If this is the case, given the congruence of any two figures in D, there exists a transformation
T ∈ G such that B = T (A). But this implies that there exists a transformation T such that
T (A) /∈ D′, which in turn implies that D′ is not an invariant set. By contradiction, D must be
minimally invariant, as desired.

The theorem presented above presents a convenient way of discovering minimally in-
variant sets: If A is a figure in (S,G), then D = {T (A) | T ∈ G} is a minimally invariant set.
Therefore, the transformations of a geometry define congruences and minimally invariant
sets, upon which we can learn symmetries of the data. In simpler words, if we consider all
the possible and admissible transformations of a figure in a geometry, we can then reason
about exciting properties such as invariance and equivariance that we can potentially learn.
This is the principal idea behind Geometric Deep Learning, which we will explore in depth



2.1 Geometry 17

in the following section. To provide the reader with a clear idea of all the material discussed
so far, let us look at two of the most popular models of geometry in terms of Def. 2.1.2, given
that they will also frequently be mentioned later in this thesis.

Euclidean geometry. Possibly the most well-known and commonly used in practice,
Euclidean geometry is the geometry (C,E), where E consists of all general transformations of
the form T (z) = az+b, with a,b ∈C being constants and |a|= 1 (| · | refers to the modulus of
complex numbers). It is quite straightforward to show that this collection of transformations
forms a group. Essentially, the group E includes rotations and translations but not dilations.
Therefore, a straightforward way to understand Euclidean geometry is thinking of figures
and transformations that preserve the Euclidean distance (∀z1,z2 ∈ C : d(z1,z2) = |z1 − z2|).
This is indeed not the case for dilation, so it is not considered admissible in this geometry.

Hyperbolic geometry. Hyperbolic geometry is one of the most popular models of non-
Euclidean geometry. It has many different models; only one will be depicted here to provide
a general idea. These different models of hyperbolic geometry are "equivalent" in that they
describe the same space in different coordinates, meaning that each can be transformed
into the other. Before explaining the Poincaré disk model of hyperbolic geometry, we
have to describe Möbius transformations, which are the transformations used to define
hyperbolic geometries. Consider the function defined on C+ (the extended complex plane)
by T (z) = az+b/cz+d where a,b,c and d are complex constants. This function is called a
Möbius (or fractional linear) transformation if ad −bc ̸= 0. The complex number ad −bc
and is denoted as Det(T ). The Poincaré disk model for hyperbolic geometry is the pair
(D,H) where D consists of all points z ∈ C such that |z|< 1, and H consists of all Möbius
transformations T for which T (D) =D. The set D is called the hyperbolic plane. This model
describes hyperbolic geometry as the set of all points bounded by the unit disk (i.e., the
open unit disk), where the transformation group maps D onto itself. The defining feature
of hyperbolic geometry is that given a point z0 and a hyperbolic line L not through z0, two
distinct hyperbolic lines exist through z0 that are parallel to L. This differs from Euclidean
geometry’s parallel postulate, where only one parallel line can exist.

A great many things can be said about hyperbolic geometry, such as how the transforma-
tions are defined through hyperbolic reflections or that hyperbolic geometry is the geometry
of negative Gaussian curvature, but that is beyond the scope of this thesis. Geometry in
curved spaces is somewhat important for the work discussed in Chap. 5, but more so are
the topological spaces where these symmetries operate, which we will detail when the time
comes. We refer the reader to [5, 163] for a detailed introduction to hyperbolic geometry.



18 Background

Fig. 2.1 Representative transformations of the letter "M" in the hyperbolic plane, (a) rotation
around point p and (b) translation while keeping the ideal points p and q fixed. In (a),
the rotation is achieved through two inversions about clines (generalized lines) L1 and L2,
intersecting at p and forming right angles with the unit circle. The hyperbolic translation in
(b) is generated by two inversions about non-intersecting clines L1 and L2, meeting the unit
circle at right angles. Any point z in D moves away from p and towards q along the unique
cline passing through the three points p,q, and z. Figure taken from [104], full credit is due
to the author.

A helpful illustration of hyperbolic transformations is provided in Fig. 2.1 to provide some
intuition into the planar Poincaré disk. There are two key features of this geometry that we
will use in Chap. 4. The first is that lines in hyperbolic geometry are geodesics, i.e., the
shortest path between two points in (D,H) is along the hyperbolic segment between them.
This means that the proximity of the points in this hyperbolic line can serve as a notion
of distance in hyperbolic space, similar to how we visualize the Euclidean distance in the
Euclidean plane. The second is that hyperbolic space grows exponentially, not polynomially
like Euclidean space, rendering it optimal for embedding hierarchical structures [152, 8]. To
provide a simple and intuitive explanation, consider how the number of nodes in a binary
tree also grows exponentially with its depth. Note that the concepts we have described so far
have concentrated on planar geometry but can be generalized to higher dimensions.

2.2 The Geometric Deep Learning Blueprint

In this section, we summarise the construction of geometric priors according to [29], which
we will then use to derive, as a particular case, NNs on graphs. These are the most important



2.2 The Geometric Deep Learning Blueprint 19

learning architectures for this thesis. After going through the rest of the background, the
reader will have a better understanding as to how we can embed geometric priors into NNs
and why these lead to better performance in various tasks we can obtain better results when
applying them to different 3D Computer Vision problems (Chap. 3). Later, we will show
that hyperbolic constraints on the representation latent space can work together with the
geometric priors in the data space and provide helpful inductive biases for learning on graphs
(Chap. 4).

Geometric Deep Learning is fundamentally built upon three principles. Furthermore, as
we will detail later, we can extend geometric priors into a NN model by forcing particular
structures on the latent space directly. Let us first define our setup in a general way. We wish
to approximate a function f acting on some signal through a NN parametrization, such that
the approximation fθ will produce optimal representations (regarding the training objective),
where θ denotes the parameters (weights and biases) of the NN. We will follow [29]and
adopt the notation X(Ω,C) to define C-valued signals on the domain Ω. As a simple example,
square RGB images can be considered 3-valued signals X defined on Ω = Zn ×Zn (i.e., a
signal x : Ω → R3). Furthermore, we will assume we prior have knowledge of a symmetry
group G that acts on the domain. The main goal behind Geometric Deep Learning is to
provide a way of designing NNs that approximate f while satisfying the geometric priors
provided by G, meaning that such architectures have strong inductive biases. By knowing
the symmetry group G, we can use the concepts introduced in Theorem 2.1.5 and Def. 2.1.4
to understand how the function class we wish to learn must be restricted.

The main principles behind Geometric Deep Learning are symmetry, geometric stability,
and scale separation. As mentioned before, symmetry is the most important aspect of
the study of geometry. In our setup, it refers to the ability of the learning architecture to
understand invariants in the data. Intuitively, this implies that the approximated function fθ

should respect and be aware of the symmetries that are present in the domain, as specified
by G. The main idea behind geometric stability, on the other hand, is to express global
symmetries in an approximated way through local symmetries, such that fθ is stable to
small deformations in the signals and is thus able to understand symmetries on a smaller
scale. Therefore, we can intuitively understand geometric stability as the ability of the NN
to operate at a local scale. An excellent example of why this is necessary can be seen in
videos, where several objects might be moving in a different direction. In subsequent frames,
the resulting scene will contain approximately the same semantic information, yet no global
translation can be used to explain the change from one frame to another. This property is
particularly important for learning tasks where the domain Ω can change, as is the case for
graphs. Finally, scale separation refers to the ability to preserve essential characteristics of



20 Background

the signal when transferring it onto a coarser version of the domain. The intuition behind
this principle is related to the current representation learning process of neural networks.
Given that we often assume the learned representations to be dense vectors in a vector space,
we would like these dense vectors to maintain the information that was initially processed
locally. A simple way of interpreting the previous statement is that pooling-like operations do
not cause issues like representation collapse. By combining these concepts, it is possible to
describe a general blueprint for learning stable representations of high-dimensional data. The
general idea behind the blueprint is as follows: First, we learn representations locally in a way
that respects the symmetries in the data. Then, by relying on appropriate pooling operations,
we can represent the whole domain with a single vector representation, or skip this step to
predict at the local level. At this point, we are ready to dive into a formal description of the
Geometric Deep Learning blueprint.

The first building block will be defining a family of linear equivariant functions, which
enable the construction of rich and stable features by composition with appropriate non-linear
maps. Linearity here is specified with regards to group G, i.e., if we have a transformation
T ∈ G, then T (αx+βx′) = α(T (x))+β (T (x′)) for any scalars α,β ∈ R and signals x,x′ ∈
X(Ω,C). Then, we can state the following proposition:

Proposition 2.2.1. If B : X(Ω,C)→ X(Ω,C′) is a G-equivariant layer (according to Def.
2.1.4) and σ : C′ →C′′ is an arbitrary (non-linear) elementwise map, such that (σ(x))(u) =
σ(x(u)), then the composition U = (σ ◦B) : X(Ω,C)→ X(Ω,C′′) is also G-equivariant.

Proof. This statement can be verified using the definition of the definition of (left) group
action. If we have a group G acting on Ω, we automatically obtain a (left) action of
G on the space X(Ω), defined as (g.x)(u) = x(g−1u),u ∈ Ω and g ∈ G. Supposing the
group action is already defined to act on x, from the group action definition, we get that
g.U(x) =U(g−1x) = σ(B(g−1x)). On the other hand, given the equivariance of B, we can
write U(g.x) = σ(B(g.x)) = σ(g.B(x)) = σ(B(g−1x)). Therefore, g.U(x) =U(g.x), i.e., U
is G-equivariant, as desired.

This simple property allows us to define a very general family of G-invariants, by
composing U with a mathematical construct known as the group average. A natural question
that arises is whether any G-invariant function can be approximated at arbitrary precision
by such a model, for appropriate choices of B and σ . While this is beyond the scope and
purpose of this thesis, results from the literature have shown that it is possible to adapt the
standard Universal Approximation Theorems from unstructured vector inputs to show that
shallow "geometric" networks are also universal approximators, by properly generalizing the



2.2 The Geometric Deep Learning Blueprint 21

group average to a general non-linear invariant. Such proofs have been demonstrated, for
example, for the Deep Sets model [272].

We are now ready to satisfy the property of geometric deformation stability. For this
purpose, we will consider an alternative representation, which considers localized equivariant
maps. Assuming that Ω is further equipped with a distance metric d, the equivariant map
U defined above is localized if (Ux)(u) depends only on the values of x(v) for Nu =

{v | d(u,v)≤ r}, for some small radius r. It is worth noting that meaningful metrics can be
defined on grids, graphs, manifolds, and even groups. The set Nu is called the receptive field,
a term that was rendered very famous by CNNs. A single layer of a local equivariant map
U cannot approximate functions with long-range interactions. However, a composition of
several local equivariant maps Ui ◦Ui−1 ◦ . . .◦U1 increases the receptive field. The receptive
field is further increased by interleaving downsampling operators that coarsen the domain
(again assuming a metric structure). This renders the NN able to process information locally
and be stable to deformations in the signal or domain if the receptive field is defined correctly.
This final aspect of coarsening is what also ensures us of scale separation.

In summary, with knowledge of the geometry of the input domain and the underlying
symmetry group, we need three fundamental building blocks for optimal geometric priors:
(i) a local equivariant map, (ii) a global invariant map, and (iii) a coarsening operator. These
building blocks are able to construct powerful NNs with prescribed invariance and stability
properties by a combination that the authors in [29] refer to as the Geometric Deep Learning
Blueprint. Let Ω and Ω′ be domains, G a symmetry group over Ω, and let Ω′ ⊆ Ω denote
the fact that Ω′ can be considered a compact version of Ω. The blueprint consists of the
following design principles:

1. Linear G-equivariant layer B : X(Ω,C)→ X(Ω′,C′) satisfying B(g.x) = g.B(x) for all
g ∈ G and x ∈ X(Ω,C).

2. Nonlinearity σ : C′ →C′ applied element-wise as (σ(x))(u) = σ(x(u)).

3. Local pooling layer (coarsening) P : X(Ω,C)→ X(Ω′,C), such that Ω′ ⊆ Ω

4. G-invariant layer (global pooling) A : X(Ω,C)→ Y satisfying A(g.x) = A(x) for all
g ∈ G and x ∈ X(Ω,C)

Using these blocks allows constructing G-invariant functions f : X(Ω,C) → Y of the
form f = A ◦σJ ◦BJ ◦PJ−1 ◦ . . . ◦P1 ◦σ1 ◦B1 where the blocks are selected such that the
output space of each block matches the input space of the next one. Different blocks may
exploit different choices of symmetry groups G. The function composition defined above
allows us to (informally ) read the Geometric Deep Learning Blueprint as the following



22 Background

process: "First, operate the local level in a given domain by considering a neighborhood of
signals as specified by a metric d. Then apply an element-wise nonlinearity and optionally
coarse the domain. Finally, summarize all the signals by using an invariant global pooling
operation".

We will now see how this blueprint enables a powerful way of learning over graphs, this
thesis’s most critical data domain. A higher level description of why the particular form of
Graph Convolutional Networks satisfies the symmetries in the graph domain will also be
presented by simply looking at the model equations and understanding their equivariance
and invariance properties. To conclude this section, it is for the reader to understand that
the geometric properties of many popular neural networks that operate on grids, such as
the famous translational invariance of CNNs, can be explained using the Geometric Deep
Learning Blueprint.

2.3 Graph Neural Networks

At this point, it is finally time to provide a formal definition for graph-structured data. A
graph G can be defined as G = (V,E) where V = {v1 . . .vN} is the set of nodes, with a
cardinality |V |= N, and E = {e1 . . .eM} is the set of edges, with a cardinality |E|= M. It is
common for graphs to have node features, i.e., attributes associated with each node X ∈RN×d .
The set of edges can also have features, i.e., each connection between nodes is associated
with a feature vector that provides information about the connection E ∈RM×d . What makes
graphs special is their explicit structure given by the connection of nodes through edges.
This structure is usually represented through an adjacency matrix A ∈ RN×N , where Ai j ̸= 0
indicates that nodes vi and v j are connected with a weight Ai j, Ai j = 0 otherwise. In the case
of unweighted connections, we discretize the adjacency matrix such that A ∈ {0,1}N×N . We
will focus on this latter case, but it is straightforward to generalize the operations to weighted
graphs.

Graphs are prevalent in various scientific disciplines, ranging from sociology to chemistry,
given their ability to serve as models for systems of relations and interactions. They are
therefore very important in the field of machine learning, considering this wide range of
applications. Given the structure provided by A, graphs inherently embody a fundamental
invariance characterized by the group of permutations. This simply means that what we learn
on a graph structure should be invariant to the ordering of the nodes, since the order does not
alter the structure of the graph. In terms of what we have discussed so far, we would like to
approximate functions on a graph such that they are invariant to node permutations, i.e., the
function approximator (neural network) understands this geometry of the data.



2.3 Graph Neural Networks 23

In summary, for two isomorphic graphs1, the outcomes of these functions are identical.
Functions such as these yield a global or graph-level output. In practice, however, it is
frequently the case that we seek to operate on a node-by-node basis. For instance, we might
seek to apply a function to update the features of each node, such that we get back a latent
vector representation of the nodes. Fortunately, the Geometric Deep Learning Blueprint
provides us with a direct way of tackling both scenarios. To operate at the node (local) level,
we skip the global pooling step, otherwise, if we wish to operate at the graph (global) level,
we utilize it.

Formally, let us consider Ω =G as the domain and X(G,Rd) as the d-dimensional node
signals. The symmetry we wish to consider is given by the permutation group G = Σn, whose
elements are all the possible orderings of the set of node indices {1, . . . ,n}. Under this
setting, and given the relationship between A and X (applying a permutation matrix P to the
node features X automatically implies applying it to A’s rows and columns), we can state
that the form of the invariant ( f ) and equivariant (F) functions we are looking for is:

f (PX ,PAPT ) = f (X ,A) (2.1)

F(PX ,PAPT ) = PF(X ,A) (2.2)

The Geometric Deep Learning Blueprint supports functions that exhibit locality, meaning
that the output for a node u should be directly influenced by its neighboring nodes in the
graph. We can explicitly formalize this constraint in the model construction by updating the
information of each node based on its immediate neighbors. The 1-hop neighborhood of a
node u is defined as Nu = {v|(u,v) ∈ E or (v,u) ∈ E}. The neighborhood features can then
be defined as XNu = {{xv|v ∈ Nu}}. The double parentheses indicate that X is a multiset
since it is possible to have identical node features. Operating on 1-hop neighborhoods aligns
perfectly with the locality aspect by defining the receptive field over graphs using the shortest
path distance between nodes based on edges in E. The recipe stemming from the blueprint for
constructing permutation equivariant functions on graphs is to specify a local function φ that
operates over the features of a node and its neighborhood, φ(xu,XNu). Then, a permutation
equivariant function F can be constructed by applying φ to every node’s neighborhood in
isolation:

F(X ,A) =

 φ(x1,XN1)
...

φ(xn,XNn)

 ,∀x ∈ X (2.3)

1In the context of graphs, we can understand the isomorphic property in simple terms as it being satisfied
when two different graphs have the same number of nodes, edges, and same edge connectivity



24 Background

Naturally, the permutation equivariance of F depends on φ ’s output being independent of the
ordering of the nodes in Nu, because we don’t have a canonical ordering of the neighbors
on a graph. Thus, if φ is permutation invariant, this property is satisfied. In practice, this
requirement can be easily satisfied by defining a neural network that operates at the node level
and an aggregation function

⊕
that is permutation invariant and acts on each neighborhood

as defined in Eq. 2.3. At this point, the construction of f becomes trivial. All we need to
obtain a graph-level representation is to use a permutation invariant global pooling operator
α (e.g., mean, sum, min, max) and define f = α ◦F in the previous section and obtain a
unique vector representing G.

Readers familiar with graph theory will notice that this construction looks similar to some
very well-known algorithms, such as Label Propagation or the Weisfeiler-Lehman test. Both
of these algorithms are message-passing algorithms, which is precisely what Graph Neural
Networks are! A concrete view of Graph Neural Networks as message-passing machines is
given by the following equation:

x(k)i = θ
(k)

x(k−1)
i ,

⊕
j∈Ni

φ
(k)
(

x(k−1)
i ,x(k−1)

j ,e ji

) , (2.4)

where x(k)i denotes node features of node xi in layer k, e ji denotes (optional) edge features
from node j to node i,

⊕
denotes a differentiable permutation invariant function, (e.g., sum,

mean or max), and φ ,θ denote differentiable functions such as MLPs. It is clear to see that
the composition of φ with

⊕
in the above equation leads us to F(X ,A). We will conclude the

background by showing how this operation can be understood as a generalized convolution
in irregular domains, and prove under this formulation that it can lead to equivariant and
invariant functions learned on graphs. The message passing operation above can be expressed
in matrix form as the Graph Convolution operation by:

Xk = AXk−1
Θ, (2.5)

where Θ represents the weights of the neural network(s). This is of course, a simplified and
general representation, which can be modified in different ways. Common examples include
learnable adjacency matrices; we would denote the adjacency matrix by Ak. Another famous
alternative is the Graph Convolutional Network[125], which modifies the shift operator for
additional numerical stability by performing a symmetric normalization of the adjacency
matrix via Ã = D̂−1/2ÂD̂−1/2, where Â = A+ I denotes the adjacency matrix with added self-
loops, and D̂ii = ∑ j=0 Âi j the diagonal degree matrix. Note that any elementwise nonlinearity



2.3 Graph Neural Networks 25

is also excluded, as we have already shown that it does not affect the equivariance property
in Prop. 2.2.1. It is simple to show that this function is permutation equivariant, and can be
rendered permutation invariant via composition with a global pooling operation.

Proposition 2.3.1. A Graph Convolution layer as defined in Eq. 2.5 is permutation equivari-
ant.

Proof. Let us write the convolution operation as Fθ (X ,A) = AXΘ, where the particular X
depends on the layer number. Consider a permutation P ∈ Σn being applied to the signal.
Then Fθ (PX ,PAPT ) = PAPT PXΘ = PAXΘ = P(AXΘ) = PFθ (X ,A), as desired, due to the
orthogonality of permutation matrices and the associativity of matrix multiplication.

Given the above proposition, the following is a straightforward conclusion:

Proposition 2.3.2. The composition of a Graph Convolution layer as defined in Eq. 2.5 with
a permutation invariant (aggregation) function α is permutation invariant.

Proof. To remain in line with the material presented so far, let us define the new operation
as fθ (X ,A) = α ◦Fθ (X ,A). Consider applying a permutation P ∈ Σn to the signal. Then
fθ (PX ,PAPT ) = α ◦Fθ (PX ,PAPT ) = α ◦PFθ (X ,A) = α ◦Fθ (X ,A) = fθ (X ,A), as desired,
due to the equivariance of Fθ (X ,A) and the assumed invariance of α .

Armed with this knowledge, it is possible to design powerful representation learning
algorithms that respect any assumed symmetries of the graph data domain. In the rest of
this thesis, we will see how we can use Graph Neural Networks for node, edge, and graph-
level predictions, showing they improve task performance and asserting the importance of
geometric inductive biases in Computer Vision and Deep Learning. The following chapter
will show how this construction we have derived and additional geometric concepts can be
powerful tools to solve complex 3D Computer Vision problems.





Chapter 3

Learning on graphs for 3D Computer
Vision

3.1 Object Localization in Partial Scenes

3.1.1 Introduction

The localization of unobserved objects given a partial observation of a scene is a fundamental
task that humans solve often in their everyday lives as shown in Fig. 3.10. Such a task is
useful for many automation applications, including domotics for assisting visually impaired
humans in finding everyday items [62], visual search for embodied agents [15], and layout
proposal for interior design [162]. Given the importance of the problem, this chapter will
detail how our contributions [80, 79] formally study object localization from a CV standpoint.
We formalize the problem as the inference of the position of an arbitrary object in an unknown
area of a scene based only on a partial (3D) observation of the scene.

Humans perform this localization task not only by using the partially observed environ-
ment but also by relying on the commonsense knowledge that is acquired during their lifetime.
For example, by knowing that pillows are often close to beds (a common spatial relationship)
and that chairs and beds are often used for resting (a common affordance relationship), one
could infer the whereabouts of pillows even if only a bed and a chair were observed. We,
therefore, venture into the same direction and ask whether it is possible to computationally
solve this task by injecting the commonsense knowledge within a scene graph representation
[129, 74, 247], so that a machine can also reasonably localize an object in the unseen part of
the scene, without reasoning explicitly on any visual or depth information.

In order to emulate this inference process, we propose a new scene graph representation,
the Spatial Commonsense Graph (SCG), having heterogeneous nodes and edges that embed



28 Learning on graphs for 3D Computer Vision

Fig. 3.1 Given a set of objects (indicated in the green disks) in a partially known scene,
we aim at estimating the position of a target object (indicated in the orange disk). We
treat this localization problem as an edge prediction problem by constructing a novel scene
graph representation, the Spatial Commonsense Graph (SCG), that contains both the spatial
knowledge extracted from the reconstructed scene, i.e., the proximity (black edges) and the
commonsense knowledge represented by a set of relevant concepts (indicated in the pink
disks) connected by relationships, e.g. UsedFor (orange edges) and AtLocation (blue edges).

the commonsense knowledge together with the spatial proximity of objects as measured in
the partial 3D scan of the scene. The underlying intuition is that commonsense knowledge
extracted from an external knowledge base is not specific to any observed visual scene and
thus allows for better generalization, but at the cost of a coarser localization. At the same
time, the objects’ arrangement in the known portion of the scene is helpful in providing better
pairwise object distances, strengthening the estimate of the target object’s position. The main
challenge here is devising a model that promotes generalization via commonsense and a
geometric understanding of the space while increasing the accuracy of the scene-specific
metrics.

The proposed scene graph, as shown in Fig. 3.2(a), is first defined by nodes represent-
ing the known objects in the scene that are fully connected through edges representing
the proximity, i.e. the spatial relationship between a pair of objects. We call this spatial
representation the Spatial Graph (SG) of the known partial 3D scan. Then, the SG is further
expanded into the SCG by adding and connecting nodes that represent concepts through
relevant commonsense relationships extracted from ConceptNet [226].



3.1 Object Localization in Partial Scenes 29

The SCG is instrumental in addressing the localization problem. To obtain strong
inductive biases, we first propose a two-stage solution, dubbed SCG Object Localiser (SCG-
OL). First, the model predicts the pairwise proximity between the target object node, having
an unknown position, and each known object node through our graph-based Proximity
Prediction Network (PPN) by formulating the task as an edge regression problem. We then
use our Localization Module to compute the position of the target based on the pairwise
distances (proximity). The localization module estimates the most probable position as the
intersection of the circular areas defined by all pairwise object distances. Note that by only
using distances between pairs of objects, our model does not depend on the scene’s reference
frame, thus being considered agnostic to the coordinate system. Thus, our method is invariant
with respect to ordering the scene objects and commonsense entities (Permutation group)
and linear transformations of the scene (Euclidean group).

As an extension of the Spatial Commonsense Graph, we also propose a directed formu-
lation dubbed D-SCG, where the proximity edges are represented with directional relative
positions (Fig. 3.2(b)). Thus, the model maintains only translational invariance. This dif-
ference in the graph formulation allows us to regress and estimate the target position in an
end-to-end manner, which is not possible with SCG. Intuitively, in this way, we are able to
stand in a middle ground between data-driven approximation and strong geometric priors.
The novel scene graph formulation also leads to a more straightforward loss calculation
and training procedure, which benefits the encoding of both the geometrical information
regarding the arrangement of the objects in the observed part of the room and commonsense
attributes that define what they are commonly used for or where they are commonly located,
resulting in a better target localization both in 2D and 3D. Given that this extension is
more data-dependent, we propose to employ a new attention module in the GNN that is
adapted from the Rectified Linear Attention (ReLA) [276] for its high expressive power that
encourages the sparsity of attention weights, while being stable and efficient in terms of
training. With extensive experiments, we demonstrate that D-SCG Object Localiser improves
performance and achieves an increase of with an 8x speed-up in both training and inference
compared to SCG-OL. Furthermore, this solution is able to generalize better to the 3D
domain, largely due to the end-to-end training procedure.

In order to empirically validate our proposed approaches, we introduce a new dataset
built from partial reconstructions of real-world indoor scenes using RGB-D sequences from
ScanNet [48]. The dataset is constructed in order to reflect different completeness levels
of the reconstructed scenes. We define the evaluation protocol, focusing primarily on the
Localisation Success Rate (LSR), a performance measure that quantifies the localization
accuracy. To summarise, our core contributions are the following:



30 Learning on graphs for 3D Computer Vision

• We identify the novel task of object localization in partial scenes and propose two
graph-based solutions. We make a new dataset and evaluation protocol available and
show that our methods achieve the best performance compared to other approaches in
the literature.

• We propose a new heterogeneous scene graph, the Spatial Commonsense Graph
(SCG), for effective integration between the commonsense knowledge and the spatial
scene, using attention-based message passing for the graph updates to prioritize the
assimilation of knowledge relevant to the task. We also extend SCG by proposing a
directed graph formulation, D-SCG, which allows for end-to-end training.

• We propose two different localization approaches that makes use of the graph-based
problem formulations. The first, SCG Object Localiser, is a two-staged localization
solution agnostic to scene coordinates. The distances between the unseen object and
all known objects are first estimated and then used for the localization implemented
via circular intersections. This estimation procedure provides robust geometric priors
in terms of reasoning over the objects (permutation invariance of the graph neural
network) and in terms of spatial awareness (invariance to linear transformations).
Based on D-SCG, we also propose D-SCG Object Localiser, where we show that
it is possible to construct a data-driven, end-to-end solution. Finally, we propose a
sparse graph attention mechanism for D-SCG-OL, which proves beneficial in terms of
efficiency and performance.

3.1.2 Related work

Scene graph modeling and inference. Scene graphs were initially used to describe images
of scenes based on the elements they contained and how they were connected. The work
of [117] showed that for certain applications, e.g. Image Retrieval, the abstraction of higher-
level image concepts improved the results compared to using the standard pixel space.
Since then, scene graphs have been successfully used in many other tasks such as image
captioning [264, 265, 83] and visual question answering [215, 139]. Recently, the use of
scene graphs has also been extended to the 3D domain, providing an efficient solution for 3D
scene description. The 3D scene graph can vary from a simple representation of a scene and
its content, in which the objects are nodes, and the spatial relationships between objects are
the graph’s edges [74, 247, 257]; to a more complex hierarchical structure that describes the
scene at different levels: from the image level with description about the scene from only a
certain point of view, moving up to a higher level description of objects, rooms and finally



3.1 Object Localization in Partial Scenes 31

(a) The Spatial Commonsense Graph (SCG) is constructed from the known scene by enriching the
Scene Graph (SG) with concept relationships, resulting in edges of three types: UsedFor (orange
edges), AtLocation (blue edges) and Proximity (black edges). The Proximity edges represent pairwise
distances between objects. The SCG is then fed into the Proximity Prediction Network (PPN), which
performs message passing with attention to update the node features while taking commonsense into
consideration. The PPN then concatenates the node features of the target node and one of the scene
object nodes and passes it through an MLP to predict the pairwise distance. The localization module
then uses the predicted pairwise distances to estimate the target object’s position within the area where
most distances overlap.

(b) The Directed Spatial Commonsense Graph (D-SCG) is constructed in an identical manner, with the
key difference that the Proximity edges represent pairwise displacement vectors (i.e., the difference in
position). The D-SCG is then fed into the D-SCG Object Localiser that first performs message passing
with a sparse attention module to update the node features. These features are then concatenated to
the node features of the target node and one of the scene object nodes (at a time) and passed through
an MLP to predict the relative position. The final position is then given by the average of all the
predicted pairwise relative positions (mean pooling).

Fig. 3.2 Complete overview of our two proposed solutions, with their corresponding graph
formalization the localization architecture: SCG(a) and D-SCG(b).

buildings [6]. The work of [284] uses a scene graph to augment 3D indoor scenes with new
objects matching their surroundings using a message passing approach. A relatively similar
task is indoor scene synthesis [251], in which the goal is to generate a new scene layout
using a relation graph encoding objects as nodes and spatial/semantic relationships between
objects as edges. A graph convolutional generative model synthesizes novel relation graphs
and, thus, new layouts. In [55, 162] the authors use a 3D scene graph to describe the object



32 Learning on graphs for 3D Computer Vision

arrangement, then modify the scene graph and generate a new scene. Like these works, we
use an underlying scene representation, but unlike them, we embed commonsense knowledge
into the scene graph. This way, our approach can better generalize to unseen rooms with
unseen object arrangements by leveraging prior semantic knowledge.

Datasets for Object Localisation. Datasets existing in the literature related to scene
graphs are not suited for this type of object localization task. For instance, Scene Synthesis
datasets [252] do not have enough variability in the scene structure, as all environments
represented are of identical shape and similar size. Moreover, the scenes mostly contain the
same set of objects. These characteristics lead to datasets that do not reflect the real world and
cannot be used to train models to be deployed in real indoor environments. Another major
limitation of existing datasets is their assumption that the entire layout of the room is known
and that the objects lie within the boundaries of the observed part of the scene [251, 146],
which is atypical. In robotic applications like Visual Search [255, 78, 38], the robot only has
partial information about the environment that gets updated during navigation. In general,
the searched object has to be found in the unexplored part of the scene, yet to be discovered.
Our work is based on partially observed scenes and performs localization without navigation.

Commonsense Knowledge in Neural Networks. Commonsense reasoning focuses on
imitating the high-level reasoning employed by humans when solving tasks. Typically, we
do not only use the information directly related to the task but also rely on knowledge
gained through prior experience. The field of Natural Language Processing, [63] makes use
of ConceptNet [226] to create richer, contextualized sentence embeddings with the BERT
architecture [54]. In [12], the authors utilize the knowledge graph Freebase (now Google
Knowledge Graph) to enrich textual representations in a knowledge-based question answer-
ing system. In computer vision, [142] exploits commonsense knowledge using Dynamic
Memory Networks for Visual Question Answering (VQA), stating it helps the network to
reason beyond the image contents. In the scene graph generation task, [84] exploits the
ConceptNet [226] knowledge graph to refine object and phrase features to improve the
generalization of the model. The authors state that the knowledge surrounding the subject of
interest also benefits the inference of objects related to it, helping the model to generalize
better and generate meaningful scene graphs. In this work, we exploit commonsense knowl-
edge to enrich a spatial scene representation used for predicting proximity among pairs of
objects in a scene context.



3.1 Object Localization in Partial Scenes 33

3.1.3 (Directed) Spatial Commonsense Graph

The main idea behind our works in object localization [80, 79] is to embed commonsense
and geometric knowledge into a scene graph extracted from a partial scan of an area. The
scene graphs are then used as problem instances and fed as data to a NN that localizes the
object. In this section, we will present the two graph abstractions upon which the NNs are
trained: SCG and D-SCG.

Spatial Commonsense Graph (SCG) As illustrated in Fig. 3.2(a), we construct the SCG
with nodes that are i) object nodes, including all the observed objects in the partially known
environment and any target unseen object to be localized, or ii) concept nodes that are
retrieved from ConceptNet [226]. Each SCG is constructed on top of a Spatial Graph (SG)
composed of object nodes that are fully connected. Each object node is further connected to
concept nodes via the corresponding semantic relationships. The edges of SCG are of three
heterogeneous types:

• Proximity relates the pairwise distances between all the object nodes given the partial
3D scan;

• AtLocation is retrieved from ConceptNet, indicating which environment the objects
are often located in;

• UsedFor is retrieved from ConceptNet, describing the common use of the objects.

The proximity edges connect all the objects nodes of the SCG in a fully connected manner,
while the semantic AtLocation and UsedFor edges connect each object node with its related
concept nodes that are queried from ConceptNet (e.g. bed AtLocation apartment or bed
UsedFor resting). The two semantic edge types provide useful hints on how objects can be
clustered in the physical space, thus benefitting the position inference of indoor objects.

Formally, the SCG is an undirected graph composed by a set of nodes H = {hi| i ∈
(0,N]}, where N = No + Nc is the total number of nodes in SCG with No the number
of the object nodes and Nc the number of the concept nodes, and hi ∈ R300. Each 300-
dimensional vector expresses the node’s corresponding word embedding in ConceptNet
NumberBatch [227]. The edges are defined by the set E = {ei j| i, j ∈ (0,N], i ̸= j}, where
ei j is the edge between node i and node j, and ei j ∈ R4. Note that in this formulation, we
do not allow for self-loops, as they have little geometric and commonsense meaning for the
problem. In practice, we also have an edge signal, represented by a 4-dimensional feature
vector whose first three elements indicate the previously explained edge type in a one-hot
manner. In contrast, the last element is a scalar, indicating the pairwise distance between two



34 Learning on graphs for 3D Computer Vision

scene objects. Note that the distance is only measurable on the observed part of the 3D scan
(i.e., between known object nodes). Otherwise, we initialise the distance value to −1 when
the edges are AtLocation, UsedFor, or proximity edges involving the unknown target object
node.

Directed Spatial Commonsense Graph (D-SCG) The directed formulation is very similar
to the previous one, i.e., the node set of D-SCG is identical to before. The key difference is
that the graph becomes directed by altering the edge signal, which becomes a 6-dimensional
feature vector, i.e., ei j ∈ R6, whose first three elements indicate the edge type in a one-hot
manner, the fourth element indicates whether a proximity relation involves the target node,
while the last two elements indicate the relative position di j = [∆xi j,∆yi j] between node i and
node j, in Cartesian coordinates such that ∆xi j = x j − xi and ∆yi j = y j − yi. This definition
differs from the SCG, where edges were represented by 4-dimensional vectors representing
the one-hot encoded edge class and only the distance between the objects connected by the
edge. With this formulation, we can achieve a more data-driven approximation by training
in an end-to-end manner. As detailed later in Sec. 3.1.5, this contribution is particularly
important for performance improvements in object localization and computational efficiency.
Given that the relative positions are only measurable among object nodes in the observed part
of the 3D scan, we initialize the relative positions to [0,0] when the edges are AtLocation,
UsedFor, or Proximity edges involving the unknown target object node.

3.1.4 SCG Object Localiser (SCG-OL)

First, we describe the two-stage solution used to address the task of localizing the arbitrary
unobserved target object using the SCG. In the first stage, we propose a Proximity Prediction
Network (PPN) on top of the SCG. PPN aims to predict the pairwise distances between the
unseen target object and the objects in the partially known scene. In the second stage, our
localization module takes as input the set of pairwise distances, and it outputs the position of
the target object based on a probabilistic circular intersection. This solution is, therefore, the
one with the most geometric constraints.

Proximity Prediction Network The goal of the PPN is to predict all the pairwise distances
between the unseen object and the observed scene objects. We utilize a variant of the Graph
Transformer [217] and update the nodes iteratively by doing message passing with attention
[243]. Note that this process is a particular instantiation of the general framework presented
in Eq.2.4. The procedure is applied between all edge types, allowing for effective fusion
between commonsense and geometric knowledge.



3.1 Object Localization in Partial Scenes 35

The input to the network is the set of node features H and the output is a new set of
node features H

′
= {h′i| i ∈ (0,N]}, with h′i ∈ RD. Each node i in the graph is updated by

aggregating the features of its neighboring nodes Ni via two rounds of message passing. The
resulting h′i forms a contextual representation of its neighborhood.

At each round of message passing, we first learn the attention coefficient αi j using the
scaled dot-product attention mechanism [240], conditioned on each edge feature ei, j from
node j to node i, and on both nodes’ features, hi and h j. This allows the network to understand
how important each neighbor is for the node representation’s update as follows:

v j =Wvh j +bv, (3.1)

ĥi = ∑
j∈Ni

αi j(v j + ei, j), (3.2)

where Wv,bv represent respectively the weight matrix and bias used to calculate the value
vector v for the attention mechanism. The updated node features h′i are then given by:

h̃i = (1−βi)ĥi +βi(Wrhi +br) (3.3)

h′i = ReLU(LayerNorm(h̃i)), (3.4)

where βi is the output of a gated residual connection [217], which prevents all the nodes
from converging into oversmoothed features, Wr,br represent the weight matrix and bias
respectively used in the linear transformation of hi. Essentially, the above equations present a
learned convex combination of the pre and post attended features, followed by normalization
and non-linearity.

After message passing, we obtain the set of final node embeddings H ∗ = {h∗i | i ∈ (0,N]},
with h∗i ∈ R2D = (hi||h′i), where (·||·) represents the concatenation operation. In this way,
the final representation of each node contains both the original object embedding and the
aggregated embedding of its context in the scene. Finally, we form a novel set of features for
each edge between an observed node i and the target node t via concatenation as h∗it = (h∗i ||h∗t ).
h∗it is then used by a MLP to predict the pairwise distances d̂it between the target object node
t and the observed object node i.

SCG-OL loss To train our PPN, we compute the Mean Square Error (MSE) between the
predicted pairwise distances d̂it of the object node i and the target node t and the set of



36 Learning on graphs for 3D Computer Vision

ground-truth pairwise distances dit . The loss is expressed as:

LMSE(d̂,d) =
1

No −1

No−1

∑
i=1

(d̂it −dit)
2
. (3.5)

Note that the class of the target object can have multiple instances in the unknown part of the
scene, i.e., multiple ground-truth positions. Our method, as a localizer, uses the GT position
of the instance that is closest to the predicted position for the computation of the MSE loss.

Distances to position: Localisation module In the localization module, we solve the
problem of converting the set of predicted object-to-object distances to a single position p̂t in
the space that defines the position of the searched object in a bird’s eye view. The distances
d̂i,t predicted by the PPN, and the known objects positions pi, can be used to define a set
of circles of radius d̂i,t , centered in the positions pi. With perfect predictions, p̂t would be
obtained as the point of intersection of all the circles. In this case, we would need at least
three known object nodes to unambiguously define p̂t . For this reason, in this localization
module, we only consider instances with three or more known objects. Let us define p̂t as
the point in the space that minimizes the squared distance from all the circles:

p̂t = arg min
pt

No−1

∑
i

(∥pt − pi∥2 − d̂i,t)
2. (3.6)

While it is possible to obtain a closed form solution of Eq. 3.6 via Linear Least Squares [254],
this is not robust to noise in the measured distances, which is likely present in the PPN
predictions. An alternative is to minimize this problem by brute force: we first subdivide the
space into a grid and compute the sum of the residuals at each position. We then take the
position with the lowest value and use it as an initial guess for the Nelder-Mead’s simplex
algorithm [189] to obtain the final estimate.

3.1.5 D-SCG Object Localiser (D-SCG-OL)

The SCG-OL contains strong geometric priors in that it is invariant w.r.t the Euclidean and
Permutation groups. Nevertheless, these priors are enforced by the graph structure, so to
validate if we can utilize more correlations in the data, we now present an end-to-end solution
based on the directed formulation. In summary, the model first predicts the relative positions
of the unseen target object from the objects in the partially known scene. Then, the relative
positions are converted into absolute coordinates and mean pooling is applied to estimate the
final position. This approach is fully differentiable and requires no additional localization



3.1 Object Localization in Partial Scenes 37

module based on circular triangulation to predict the position of the target object, thus largely
improving our proposed method’s efficiency.

Model To predict the relative position of the unseen target node w.r.t. the visible scene
objects, we again use a stacked GNN architecture. For this model, our proposed GNN
replaces the attention mechanism in Graph Transformer [217] with a sparse attentional
message passing mechanism based on ReLA [276]. The idea behind this design choice
is that given that the graph is directed, the attention coefficients need not be symmetrical,
and therefore we need both sparsity and stronger couplings. The ReLU activation function
provides both, given that any negative weights are sparsified and neighbors can be given
unbounded positive weights. By doing so, the model can learn very strong correlations
present in the dataset. We further add a ScaleNorm and LayerNorm layer to stabilize the
training of the new module on our D-SCG. The node embeddings are updated iteratively by
utilizing the heterogeneous information of the edge type to allow effective fusion between the
commonsense knowledge and the metric measurements. We highlight the main differences
between the attention mechanism in [217] and ours in Fig. 3.3.

As with SCG-OL, the input to the network is the set of node features H and the output is
a new set of node features H

′
= {h′i| i ∈ (0,N]}, with h′i ∈ R300. Each node i in the graph is

updated by aggregating the features of its neighboring nodes Ni via four rounds of message
passing. The resulting h′i forms a contextual representation of its neighborhood.

At each round of the message passing, we learn an attention coefficient αi, j between
each pair of connected nodes using a graph-based and rectified version of the scaled dot-
product attention mechanism, conditioned on the node and edge features. Our GNN can
learn sparse and (positively) unbounded attention weights due to the usage of the activation
function ReLU, as proposed for the vanilla Transformer model by [276], thus allowing for
the understanding of arbitrary relationships between the different node types.

The network starts by performing an affine transformation of the relevant node and edge
features to calculate the corresponding query, key, value and edge vector that will be used to
compute the attention weights:

qi =Wqhi +bq, (3.7)

k j =Wkh j +bk, (3.8)

v j =Wvh j +bv, (3.9)

ei j =Weei j +be, (3.10)



38 Learning on graphs for 3D Computer Vision

Fig. 3.3 Overview of the differences between the attention mechanism of [217] (a), used in
SCG [80], and the one employed in D-SCG Object Localiser, based on ReLA [276] with an
added ScaleNorm and reprojection (highlighted in the red dashed box)(b). The new attention
mechanism contains more parameters, thus producing more expressive representations, and
learns sparse weights with reduced training and inference time thanks to the ReLU activation
function. Moreover, we utilize two different normalization layers to stabilize the network’s
training, given the positively unbounded attention coefficients.



3.1 Object Localization in Partial Scenes 39

where W and b represent, respectively, the learnable weight matrices and bias vectors for
each transformation.

The network then calculates the attention weight αi, j between two nodes i and j as:

αi j = ReLU(
⟨qi,k j + ei j⟩√

d
) (3.11)

where
√

d is a scaling term equal to the square root of the dimension of the projected features
k j. As seen in Eq.3.11, the use of the softmax is dropped since it involves aggregating
the scores for all the edges connected to each node, which implies many operations for
large graphs and slows down the training. Additionally, using ReLU allows for sparsity in
the attention weight matrix, which becomes very useful when analyzing how the network
prioritizes the exchange of information. As the attention weights that are calculated using
ReLU are not limited to the range (0,1), we use Layer Normalisation [? ] when calculating
the updated node features h′i, followed by a gated residual connection that prevents the node
features from converging into indistinguishable features as with SCG-OL:

h̃i = LayerNorm(hi + ⟨αi j,v j + ei j⟩) (3.12)

βi = Sigmoid(Wg(h̃i ||Wr1h̃i +br1 || h̃i − (Wr2h̃i −br2))) (3.13)

h′i = (1−βi)h̃i +βi(Wr3h̃i +br3), (3.14)

Differently from [276], we re-normalize and re-project these features similarly to the
original Transformer model. This practice has been empirically shown to stabilize and
improve the training of self-attentive neural networks [191].

h′i = ScaleNorm(Woh′i +bo), (3.15)

This step further increases the number of learnable parameters of our GNN, allowing for
better scaling and more expressive representations while not sacrificing efficiency thanks
to the sparse attention mechanism (described previously) and the Scale Normalisation in
Eq. 3.15. Our sparse graph attention module consists of this sequence of operations, which
we use for a total of four message passing rounds. Finally, we obtain the set of final node
embeddings H ∗ = {h∗i | i ∈ (0,N]}, with h∗i = (hi ||h′i). In this way, the final representation
of each node contains both the original object embedding and the aggregated embedding of
its context in the scene. The features of the the target node t and any node i connected to it
are concatenated h∗it = (h∗i ||h∗t ), and the relative position d̂it between the target object node t
and the observed object node i is predicted using a linear map. To obtain the final position,



40 Learning on graphs for 3D Computer Vision

we first convert the relative positions d̂it in absolute coordinates by summing to them the
positions pi = [xi,yi] of the observed object nodes and then take the mean of the absolute
positions as our predicted position p̂t .

Loss Similarly to the previous setup, we train our network with a strategy that considers
that multiple instances of the searched object can exist in the unobserved part of the scene.
Therefore, only the instance closest to the prediction is accounted for when calculating the
loss. By doing this, the network learns to correctly predict a specific position instead of
a point that minimizes the distance w.r.t. all the instances. For the loss, given that we are
effectively performing an edge regression task with a scalar target, we aim minimize the
squared L2 distance between the predicted position p̂t and the ground-truth position of the
target position pt as follows:

L2(p̂t , pt) = ∥p̂t − pt∥2
2. (3.16)

3.1.6 Experiments

Dataset

To validate the proposed models, we build a new dataset of partial 3D scenes using sequences
available in ScanNet [48]. ScanNet contains RGB-D sequences taken at a regular frequency
with an RGB-D camera. It provides the camera pose corresponding to each captured image
and the point-level annotations, i.e., class and instance id, for the complete Point Cloud Data
(PCD) of each reconstructed scene. The original acquisition frequency in ScanNet is very
high (30Hz), meaning that most images are similar with redundant information for the scene
reconstruction. We, therefore, use ScanNet_frames_25k, a subset provided in the ScanNet
benchmark1 with a frequency of about 1/100th of the initial one. We further divide the whole
RGB-D sequences of each scene into smaller sub-sequences to reconstruct the partial scenes.
We vary the length of the sub-sequences to reflect different levels of completeness of the
reconstructed scenes. For each sub-sequence, we integrate the RGB-D information with the
camera intrinsic and extrinsic parameters to reconstruct the PCD at the resolution of 5cm
using Open3D [283]. The annotation for each point in the partial PCD is obtained by looking
for the corresponding closest point in the complete PCD scene provided by ScanNet.

From each partially reconstructed scene, we extract the corresponding Spatial Graph with
its object nodes, i.e., the graph with only proximity edges (see Fig. 3.4 for an example). The
graph nodes contain the object information: e.g., the position, defined as the center of the

1http://kaldir.vc.in.tum.de/scannet_benchmark



3.1 Object Localization in Partial Scenes 41

(a) Complete scene (b) Partial scene

Fig. 3.4 The proposed dataset with (a) the complete scene from the ScanNet dataset, and (b)
our reconstructed partial scene overlaid with the Spatial Graph.

bounding box containing the object, and the object class. We consider the position of each
scene object as a 2D point (x,y) on the ground plane, as most objects in the indoor scenes of
ScanNet are located at a similar elevation. Each node is marked as observed if it represents
an object in the partially known scene or as unseen if it represents the object in the unknown
part of the scene, i.e., the target object to localize.

For the commonsense knowledge, we add the two semantic relationships AtLocation
and UsedFor, as well as the concepts (as nodes) that are linked by the relationships. We
extract the concepts from ConceptNet by querying each scene object using the two semantic
relationships. The query returns a set of related concepts together with their corresponding
weight w, indicating how “safe and credible” each related concept is to the query. We include
a concept to the SG only when it has a weight w > 1. Fig. 3.5 shows the average number of
nodes linked by different types in the (D)SCGs. On average, each (D)SCG contains about
5 times more concept nodes than the object nodes in the (D)SG, demonstrating that rich
commonsense knowledge is available. The outliers in the boxplot visualization are introduced
by uncommon room types with a large number of objects, e.g., libraries with several books.

Finally, we divide the dataset into training, validation, and testing sets. While we have
access to the ScanNet training and validation data (1201 and 312 scenes, respectively), we
do not have access to their test data. To address this, we use ScanNet’s validation sequences
as our testing set and randomly sample a subset of scenes from the training set for validation.
By splitting ScanNet’s sequences into partial reconstruction, we have 24896 partial scenes
with 19461 partial scenes for training and validation and 5435 partial scenes for testing, with
each partial scene having its corresponding (D)SCG.



42 Learning on graphs for 3D Computer Vision

Fig. 3.5 Average number of different types of nodes among the SCGs in the train and test
split of the dataset.

Experimental Comparisons

Having introduced the dataset, we can now delve into the in-depth empirical validation that
reveals the advantages of our method. First, we provide the implementation details, followed
by the metrics used for evaluation. Then, the main body of experiments is comprehensively
presented, followed by multiple ablation studies.

Implementation Details. We train our networks using the Adafactor optimiser [214]. The
network is trained for 100 epochs. The dimension of the first message passing projection is
set to D = 256 and 2D for the second round. Both use 4 attention heads. For localization
with SCG-OL, we ignore edges with a predicted distance of more than 5m, as such high
distance values are not trustworthy for localization. For localization with D-SCG-OL, we
augment the dataset by applying random rotations to the scene objects during training to
compensate for the lack of rotational invariance and allow for better generalization.

Evaluation Measures. We evaluate the performance in terms of both the proximity pre-
diction and target object localization. We quantify the localization performance by the
Localisation Success Rate (LSR), defined as the ratio of successful localizations over the
number of tests. A localization is considered successful if the predicted position of the target
object is close to a target instance within a predefined distance. Unless stated differently, the
distance threshold for a positive result is set to 1m. We consider LSR as the main evaluation



3.1 Object Localization in Partial Scenes 43

measure for our task. For the edge proximity prediction, we report the mean Predicted
Proximity Error (mPPE), which is the mean absolute error between the predicted distances
and the ground-truth pairwise distances between the target object and the objects in the
partially known scene. Finally, to quantify the localization accuracy among successful cases,
we report the mean Successful Localisation Error (mSLE), which is the mean absolute error
between the predicted target position and the ground-truth position among all successful
cases.

We compare performance on our new dataset against a set of baselines and state-of-the-art
methods for layout prediction. The different methods are evaluated on the localization in
2D (floor plane), given that the height at which an object is located in a room is often not
practically relevant. Additional results for 3D localization are reported in the ablation studies.
We summarise all the approaches implemented for the comparisons below.

• Heuristic baselines use the statistics of the training set, i.e., the mean, mode, and
median values of the pairwise distances between the target object and the scene objects,
as the predicted distance.

• MLP learns to predict pairwise distances between the target object and every other
observed object in the scene without considering the spatial or semantic context.
The input to this model is a pair of the target object and the observed object, each
represented by a one-hot vector indicating the class, passed to an MLP that predicts
pairwise distances.

• MLP with Commonsense learns to predict the pairwise distance between the target
object and every other observed object in the scene without considering the spatial
context. We first use GCN to propagate the ConceptNet information to object nodes,
and then the features are passed to an MLP that predicts pairwise distances.

• LayoutTransformer [88] uses the transformer’s self-attention to generate the 2D/3D
layout in an auto-regressive manner. We describe the observed objects as a sequence
of elements as in [88], where each element contains the object class and the position
(x,y). We then feed the target object’s class to generate its corresponding position
(x,y). For a fair comparison, we retrain the model on our training set.

• SCG-OL is part of our proposed method, described in Sec. 3.1.4, which exploits
SCG. Additional results are presented through a variant trained with learnable node
embeddings instead of initializing each node with the commonsense embedding coming
from ConceptNet’s Numberbatch.



44 Learning on graphs for 3D Computer Vision

Table 3.1 Methods comparison for object localization in partial scenes. mPPE: mean Pre-
dicted Proximity Error. mSLE: mean Successful Localisation Error. LSR: Localisation
Success Rate. SG: Spatial Graph. SCG: Spatial Commonsense Graph. D-SG: Directed
Spatial Graph. D-SCG: Directed Spatial Commonsense Graph. The first part of the table
follows the 2-stage approach, which first predicts the pairwise distances and then localizes
the object via multilateration. The last part consists of methods that directly predict the final
position.

Method Data type mPPE(m)↓ mSLE(m)↓ LSR ↑
Statistics-Mean Pairwise 1.167 0.63 0.140
Statistics-Mode Pairwise 1.471 0.63 0.149

Statistics-Median Pairwise 1.205 0.64 0.164
MLP Pairwise 1.165 0.62 0.143

MLP w/ Commonsense Pairwise 1.090 0.64 0.163
LayoutTransformer [88] List - 0.59 0.176
SCG-OL- Learned Emb SCG 0.974 0.61 0.234

SCG-OL SCG 0.965 0.61 0.238
Graphormer [267] D-SCG - 0.59 0.251

D-SCG-OL w/o Commonsense D-SG - 0.59 0.265
D-SCG-OL - Learned Emb D-SCG - 0.57 0.273

D-SCG-OL D-SCG - 0.55 0.297

• D-SCG-OL w\o Commonsense is a variant of our approach to test the capability of
the method when it is used without commonsense knowledge. The input is the D-SG,
composed only of the object nodes and proximity edges. The initial node features
are not pre-trained word embeddings but are learned via an embedding layer during
training.

• Graphormer[267] is an adaptation of Transformer models [240] to graph learning. It
uses different embedding strategies to add inductive bias related to the graph structure.
It then propagates features between nodes up to k-hop distances using the attention
mechanism. We adapted the method so that the node features are updated using the
Graphormer network, and then the target node features are used to regress the position
of the searched object.

• D-SCG-OLis part of our proposed method, described in Sec. 3.1.5, along with a
variant that is trained with learnable node embeddings, instead of initializing each node
with the commonsense embedding coming from ConceptNet’s Numberbatch.

Discussion Table 3.1 reports the localization performance measures in terms of mPPE,
LSR, and mSLE, of all compared methods evaluated on the dataset with partially recon-
structed scenes. We can initially observe that methods that rely only on pairwise inputs,



3.1 Object Localization in Partial Scenes 45

(a) (b)

Fig. 3.6 The proposed dataset with (a) the complete scene from the ScanNet dataset, and (b)
our reconstructed partial scene overlaid with the Spatial Graph.

e.g., statistics-based approaches or MLP, lead to worse performance compared to methods
that account for other objects present in the observed scene. Nevertheless, introducing
semantic reasoning on top of these methods seems to improve the performances, as shown
by MLP w/ Commonsense, with an improved LSR of 2% compared to the standard MLP.
LayoutTransformer directly predicts the 2D position of the target object by taking as input
the list of all the observed scene objects and using the target class as the last input token. It
can better encode the spatial context and outperforms the statistic-based and MLP baselines.
SCG-OL that uses the SCG with pairwise distances can improve on all metrics w.r.t. the
baseline methods, suggesting that a graph-based solution with added geometric and com-
monsense priors is an effective way of modeling the problem. In this scenario, the addition
of pretrained commonsense node embeddings is not extremely important, as shown by the
results of SCG-OL- Learned Emb.

When using the DSCG, Graphormer [267] performs best amongst the baselines but
fails to reach the same performances as our proposed approach. Graphormer proposes
to enhance the propagation of information by aggregating the information not only from
directly connected nodes but also from nodes up to a k-distance by creating new edges
between them, where the edge features are an inner product between all the edges along
the path. While this works fine on a homogeneous graph, the effect can be limited with
heterogeneous edge types since the structural information of our proposed heterogeneous
graph is not as meaningful as for structures such as molecular graphs, for which Graphormer
was proposed. The different versions of our proposed method D-SCG-OL are able to reach



46 Learning on graphs for 3D Computer Vision

Fig. 3.7 Qualitative results obtained with D-SCG-OL. The partially known scene is colored
with a yellow background, while the unknown scene is indicated with grey. The colored
circles indicate the object nodes present in the D-SCG. The red star indicates the GT position
of the target object, while the cyan diamond indicates the predicted positions. The network is
able to correctly predict the position of a sink in (a) and a chair in (b). In the failure case
of (c), the network correctly identified the direction of the window but overestimated the
distance from the visible objects.

the best performance. D-SCG-OL with learned embeddings has a 0.8% increase in the LSR
performance w.r.t. the GNN working only on the D-SG, revealing the usefulness of the
concept nodes, with a further increase of 2.4% when initializing the node embeddings of
the graph by using ConceptNet’s Numberbatch, showing that the commonsense information
introduced from ConceptNet is helpful for the localization task. Given that it is our best
performing method, ablation studies and results from this point forward will only consider
D-SCG-OL.

As previously mentioned in this section, we consider the LSR as the primary evaluation
metric. It is, therefore, useful to demonstrate and understand how the completeness (visually
known) level of the scene impacts the localization performance of D-SCG-OL. Fig. 3.6(a)
reports the mean absolute error (MAE) between the estimated position and the ground-truth
position compared to the scene completeness. Note that the MAE is calculated on all the test
cases, including both the successful and failed ones. For this reason, we use the MAE instead
of the already presented mSLE, as the mSLE is calculated only on successful cases and
does not vary much with the completeness of the scene. As a general trend, our model can
predict more accurately the position of the target object with increasing scene completeness.
Fig. 3.6(b) presents how the LSR varies for different localization thresholds as the scene gets
more complete. We report the LSR at four different threshold values, i.e., 0.5m, 1m, 2m, and
3m, where a larger threshold leads to a larger LSR value, as expected.



3.1 Object Localization in Partial Scenes 47

Qualitative results Fig. 3.7 shows the qualitative results obtained using our method
D-SCG-OL. Fig. 3.7(a) shows that the “sink” object class was successfully located near the
counter. Similarly, in Fig. 3.7(b), the position of the chair (target object) is correctly estimated
in a position that is coherent with other instances of chairs and tables in the observed part of
the room. Interestingly, Fig. 3.7(c) presents a failure case in which the method fails to locate
a window in an office setting. In this case, the network successfully identified the general
direction where the window should be located but overestimated its concrete placement with
respect to the visible objects. This error is plausible as the network does not effectively see
any objects that can help create an idea of the actual shape of the room.

Computational efficiency There are 20.5M parameters in D-SCG-OL, which is 3.4M
more than SCG-OL(17.1M). Nevertheless, D-SCG-OL takes 13h35m to fully train the model
for 200 epochs on a single Titan RTX, 8x faster than SCG-OL, which requires 108h40m.
This large difference is mostly due to the two-stage approach of SCG-OL, which includes
the non-differentiable localization module and the more expensive attention mechanism
calculations.

Ablation studies We further analyze D-SCG-OL to justify the usefulness of the common-
sense relationships and our new attentional message passing mechanism. We also investigate
the impact of increasing the number of message passing layers. To verify the applicability
in 3D, we also evaluate the localization performance of our method in comparison to the
state-of-the-art methods. Lastly, we provide an in-depth investigation of how the attention
weights evolve over the message passing when forming the node and edge representation.
Which commonsense relationship is more important? In order to better understand
the effects of using different commonsense relationships, we compare the performance of
D-SCG-OL against four variants where the D-SCG contains: i) only Proximity edges without
commonsense relationships, ii) Proximity edges with AtLocation edges, iii) Proximity edges
with UsedFor edges, and vi) Proximity edges with AtLocation and UsedFor edges. We report
the main Localisation Success Rate (LSR) measure for all variants, as well as the scene
average percentage of object nodes that are linked by 0, 1, or 2 types of semantic edges,
i.e. AtLocation and UsedFor edges. Table 3.2 shows that AtLocation is more effective than
UsedFor for localizing objects. This is reasonable since the AtLocation edge leads to mes-
sage passing among objects that are connected in the same location, containing information
more relevant to the localization task. However, the best performance is obtained when the
D-SCG rely on all types of edges which provides a higher connectivity among object nodes
to concept nodes. There are 80% object nodes linked to concept nodes by both AtLocation



48 Learning on graphs for 3D Computer Vision

Table 3.2 Impacts of different ConceptNet relationships with the proposed D-SCG-OL. LSR:
Localisation Success Rate.

Edge Types
Obj. linked by n semantic edges (%)

LSR ↑
0 1 2

Proximity 100 0 0 0.257
AtLocation, Proximity 8 92 0 0.292
UsedFor, Proximity 19 81 0 0.272

AtLocation, UsedFor, Proximity 8 12 80 0.297

and UsedFor edges, leading to a more effective knowledge fusion than when only one type
of semantic edge is used.

Which attention network is more effective? We examine the usefulness of the proposed
attention mechanism in D-SCG-OL compared to other, commonly used, attentional message
passing modules in the GNN literature. As most of these approaches do not support the use
of edge features, we modify the node features for this ablation study to include the positional
information to the node features. For a fair comparison, we remove the edge embedding
from D-SCG-OL. The set of attention networks we compare with is listed below:

• No attention [263] is the first baseline, where we use GraphSAGE without relying on
any attention module.

• GAT [243] adds an attention mechanism to the message passing procedure.

• GATv2 [27] is similar to GAT but improves the attention mechanism in terms of the
expressiveness and addresses the problem of "static attention" when using GATs for
message passing.

• HAN [253] defines multiple meta-paths that connect neighboring nodes either by
specific node or edge types. It employs attentional message passing sequentially by
first calculating the semantic-specific node embedding and then updating them by using
an attention mechanism [240]. With D-SCG we define three sets of meta neighbors,
i.e., the proximity neighbours, the AtLocation neighbors, and the UsedFor neighbors,
connected by the specific edges. We implement the message passing for each meta-path
using specialized GraphTransformer layers.

• GraphTransformer [217] is similar to ours, except that it does not accommodate
sparse attention and has less expressive power due to the smaller number of pa-
rameters. This module is essentially a porting of the scaled dot-product attention
mechanism [240] to GNNs.



3.1 Object Localization in Partial Scenes 49

Table 3.3 Impacts of different attention modules for the object localisation task with our
D-SCG-OL. LSR: Localisation Success Rate.

Graph Attention Type LSR ↑
No attention [263] 0.199

GAT [243] 0.179
GATv2 [27] 0.202
HAN [253] 0.137

GraphTransformer [217] 0.187
Ours - Only ReLA [276] 0.190

Ours 0.215

• Ours - Only ReLA [276] is our GNN with the original ReLA without the ScaleNorm
and final reprojection layer.

As shown in Table 3.3, different attention modules can produce results that vary greatly
in terms of LSR. Among all, HAN achieves the worst performance, showing that features are
better to be propagated simultaneously rather than sequentially. GAT and GraphTransformer
perform better than HAN, yet it is still worse than GraphSAGE, which uses no attention.
This is potentially due to the limitations of the standard attention mechanism when used
in GNNs [27]. GraphSAGE is a general inductive framework that leverages node feature
information at different depths and is proven to work well on large graphs. In general, the
attention module should be carefully designed in order to provide advantageous performance.
For example, GATv2 improves the localization performance by fixing the static attention
problem of the standard GAT.

Our ReLA-based attention model avoids the usage of a softmax as in the original Graph
Transfomer [217] achieves the best overall performance in terms of LSR. This substantial
improvement is contributed by the increased expressive power and the ability to reason on
sub-graphs during the message passing procedure. The usage of only ReLA, i.e., without
scale normalization and the successive projection, achieves a lower LSR compared to the
complete module, confirming the advantage brought by the proposed additional normalization
as the learned weights are positively unbounded.
How much does the number of message passing layers and the final node concatenation
contribute? We examine a set of variants of our D-SCG-OL with varying numbers of
message passing layers ranging from 1 to 5. Table 3.4 shows that using four message passing
(MP) layers leads to the best performance. When using a single MP layer, there is not
enough information regarding the context to be propagated to the nodes and this leads to
the worst performance. With more than two MP layers, the performance starts to increase,
saturating at four layers. With additional layers, we observe that the performance starts to



50 Learning on graphs for 3D Computer Vision

Table 3.4 Impact of different numbers of message passing layers in our D-SCG-OL. LSR:
Localisation Success Rate.

# Layers 1 2 3 4 5
LSR ↑ 0.180 0.257 0.283 0.297 0.285

Table 3.5 Comparison of object localization performance in the 3D environment instead of
on the 2D floor plane.

Method LSR ↑
LayoutTransformer [88] 0.158

SCG-OL [80] 0.048
D-SCG-OL 0.258

degrade. This might be due to the over-smoothing problem [39, 194], where after multiple
message passing rounds, the embeddings for different nodes are indistinguishable from
one another. Given the best layer number, we also validate the choice of concatenating the
original embedding to the aggregated contextual ones instead of using only the aggregated
features. Concatenation is more advantageous with an LSR of 0.29, while directly using the
aggregated node representation leads to an LSR of 0.28. We argue that this happens because
concatenation allows the network to still remember the initial representation, developing a
better understanding of the context after message passing.
Localising in 3D. We examine the network capability to localize the target object directly
in 3D scenes instead of on the 2D floor plane. We compare D-SCG-OL withSCG-OLby
making the appropriate modifications for 3D localization. Table 3.5 reports the localization
performance in the 3D scenes. We can observe that all three methods suffer a drop in terms of
LSR performance due to the increased difficulty level of the problem. SCG-OL experiences
the highest drop in performance, with an LSR score of only 0.05, down from its original score
of 0.24 when evaluated in the 2D domain. This decrease in performance can be attributed to
a difficulty in representing the object arrangement using only distances when an additional
dimension is considered. Utilizing a less abstract representation by using relative positions
between objects leads to much more accurate results. Despite the increased problem difficulty,
our proposed D-SCG-OL achieves the best LSR of 0.26, which is significantly higher than
the second-best method LayoutTransformer with a LSR of 0.15.

Attention Visualisation In Fig. 3.8 and Fig. 3.9, we show how the network prioritizes
the exchange of information when localizing a chair. Note that our network does not use
the softmax function when calculating the attention weights thus, they do not necessarily
sum to one. We normalize the weights for the visualization results. Fig. 3.8 shows the



3.1 Object Localization in Partial Scenes 51

(a) Layer 0 (b) Layer 1

(c) Layer 2 (b) Layer 3

cabinet

refridgerator

chair

chair

chair

chair table

chair

corner

desk

cabinet

refridgerator

chair

chair

chair

chair table

chair

corner

desk

cabinet

refridgerator

chair

chair

chair

chair table

chair

corner

desk

cabinet

refridgerator

chair

chair

chair

chair table

chair

corner

desk

Fig. 3.8 Feature propagation at different layers of our GNN that are directed by our attention
module. The cyan node indicates the target object, the green nodes represent the scene
nodes, and the pink nodes represent the concept nodes. The black edges indicate the sharing
of information between two nodes in the direction indicated by the arrows. For ease of
visualization, we show edges with a mean attention weight over the heads that are superior to
0.2%, and only display concept nodes that are connected via these types of edges.

Fig. 3.9 Attention weights for messages that are propagated to the target node are indicated
in Fig. 3.8. The network learns to propagate information from different nodes by leveraging
different attention heads. The first and last layer of the network propagates information from
most of the neighboring nodes, while the intermediate layers focus on a few specific nodes.

features propagated via message passing that are assigned a high weight by our attention
modules. The network learns to operate very differently depending on the layer, and most
of the attention weights are given to edges between object nodes. The network also learns
to attend differently to instances of the same object based on the scene geometry that is
described by the edge features. For instance, in the first layer, only two of the five chairs



52 Learning on graphs for 3D Computer Vision

nodes propagate their features with a high weight to the refrigerator. Incidentally, these nodes
represent the two chairs closest to the fridge. Fig. 3.9 shows the different heads’ attention
scores for messages that are propagated to the target node. We can see that each head focuses
on different nodes: some heads are giving high weights to specific nodes, e.g., head zero and
three of the second layer, while others balance the features from many nodes, e.g., head two
and three of the first layer. Lastly, we can see that most of the commonsense information is
propagated in the first and last layer of the GNN.

3.1.7 Conclusions

We addressed the new object localization problem given a partial 3D scan of a scene by
proposing a geometrically-inspired graph formulation. We proposed a novel scene graph
model, the (Directed) Spatial Commonsense Graph, by augmenting a spatial graph with rich
commonsense knowledge to improve the model’s inference. With such a graph formulation,
we first proposed a two-stage solution for unseen object localization. It initially predicts the
pairwise distances between the target node and the other object nodes using the graph-based
Proximity Prediction Network. Then, it estimates the target object’s position via circular
intersection. We also proposed a directed graph formulation, the D-SCG , to address the
same challenging problem. The spatial information regarding the arrangement of the object
is described via directional edges with relative position vectors instead of the scalar relative
distances as in the prior work. With the proposed D-SCG, we developed a new GNN-based
solution for object localization, D-SCG Object Localiser, that can directly estimate the
position of the target object by predicting its relative positions with respect to other objects
in the partially observed scene, leading to an efficient end-to-end trainable solution. Our
approach also features a new attention module, w.r.t to our previous approach, to further
improve the localization performance by using the ReLA attention. We thoroughly evaluated
our proposed method on the partial scene dataset and proved its superior performance in
terms of localization success rate against baselines and state-of-the-art methods. Finally,
we showed that our approach could be applied for 3D object localization with a marginal
performance drop, while the previous state-of-the-art method degrades dramatically due to
the increased localization difficulty.

Future work An immediate extension for future work is scaling our proposed approach
to larger outdoor scenarios and hierarchical structures such as buildings. Another research
avenue is to understand the role of the message passing architecture in the model and if it can
be substituted with more advanced flavors, such as those that do graph rewiring [90]. Finally,



3.2 Human Pose Forecasting in Industrial Scenarios 53

from a more applicative perspective, extending this method to robotic applications that can
utilize it for object navigation is essential.

Limitations Despite being state-of-the-art, the proposed localization pipeline does not
offer a complete solution to this challenging problem. Abstract reasoning over space is a
complicated task, and the obtained results reveal that more research is needed before we can
adapt object localization in partial scenes in a practical scenario.

Broader impacts Our dataset is built on top of ScanNet, featuring static indoor scenes
without the involvement of human subjects. The dataset and the proposed scene graph
formulation can facilitate and motivate further research towards visual and geometric scene
understanding.

3.2 Human Pose Forecasting in Industrial Scenarios

3.2.1 Introduction

Fig. 3.10 A collision example from our CHICO dataset. On the top row, some frames of the
Lightweight pick and place action captured by one of the three cameras. On the bottom row
are the operator and robot skeletons. The forecasting model takes an observation sequence
(in yellow, here pictured for the right wrist only) and performs a prediction (cyan), which is
compared with the ground truth (green). In frame 395, it is easy to see the robot hitting the
operator, who is retracting, as is evident in frame 421. Note how the predictions by SeS-GCN
follow closely the GT, except during the collision. Due to the impact at collision time, the
abrupt change of the arm motion produces uncertain predictions, which become extremely
difficult to forecast, as shown by the irregular predicted trajectory.



54 Learning on graphs for 3D Computer Vision

Collaborative robots (cobots) and modern Human-Robot Collaboration (HRC) depart
from the traditional separation of functions of industrial robots [127] because of the shared
workspace [112]. In this scenario, cobots and humans perform actions concurrently and
are likely to engage in physical contact. While there is a clear advantage in increased
productivity [206] (improved by as much as 85% [213]) due to the minimization of idle
times, there are challenges in the workplace safety [85]: it is not about whether there will be
contact, but rather about understanding its consequences [175].

The pioneering work of Shah et al. [213] has already shown that, in order to seamlessly
and efficiently interact with human co-workers, cobots need to abide by two collaborative
principles: (1) Making decisions on-the-fly, and (2) Considering the consequences of their
decision on their teammates. The first calls for promptly and accurately detecting human
motion in the workspace. The second principle implies that cobots need to anticipate the
pose trajectories of their human co-workers and predict future collisions.

Motivated by these problems, the first contribution of our work is a novel Separable-
Sparse Graph Convolutional Neural Network (SeS-GCN) for human pose forecasting. Pose
forecasting requires an understanding of the complex spatio-temporal joint dynamics of the
human body, and recent trends have highlighted the promises of modeling body kinematics
within a single GCN framework [47, 50, 144, 147, 171, 248, 280]. We have designed
SeS-GCN with performance and efficiency in mind by bringing together, for the first time,
three main modeling principles: depthwise-separable graph convolutions [131], space-time
separable graph adjacency matrices [224], and sparse graph adjacency matrices [216].
In SeS-GCN, separable stands for limiting the interplay of joints with others (space) at
different frames (time) and per channel (depth-wise). Within the GCN, different channels,
frames, and joints still interact by means of multi-hop messages. For the first time, sparsity
is achieved by a teacher-student framework. The reduced interaction and sparsity results
in comparable or fewer parameters than all GCN-based baselines [131, 224, 216], while
improving performance by at least 2.7%. Compared to the state-of-the-art (SoA) [170],
SeS-GCN is lightweight, using only 1.72% of the parameters, it is ∼4 times faster, and
remains competitive with just 1.5% larger error on Human 3.6M [111] when predicting 1s
in the future. The model is described in detail in Sec. 3.2.3, and experiments with ablation
studies are illustrated in Sec. 3.2.5.

We also introduce the very first benchmark of Cobots and Humans in Industrial COllab-
oration (CHICO, an excerpt in Fig. 3.10). CHICO includes multi-view videos, 3D poses
and trajectories of the joints of 20 human operators, in close collaboration with a robotic
arm KUKA LBR iiwa within a shared workspace. The dataset features 7 realistic industrial
actions, taken at a real industrial assembly line with a marker-less setup. The goal of CHICO



3.2 Human Pose Forecasting in Industrial Scenarios 55

is to endow cobots with perceptive awareness to enable human-cobot collaboration with
contact. Towards this frontier, CHICO proposes to benchmark two key tasks: human pose
forecasting and collision detection. Cobots currently detect collisions by mechanical-only
events (transmission of contact wrenches, control torques, sensitive skins). This ensures
safety but it harms the human-cobot interaction, because collisions break the motion of both,
which reduces productivity, and may be annoying to the human operator. CHICO features
240 1-minute video recordings, from which two separate sets of test sequences are selected:
one for estimating the accuracy in pose forecasting, so cobots may be aware of the next future
(1.0 sec); and one with 226 genuine collisions, so cobots may foresee them and possibly
re-plan. The dataset is detailed in Sec. 3.2.4, and experiments are illustrated in Sec. 3.2.5.

When tested on CHICO, the proposed SeS-GCN outperforms all baselines and reaches an
error of 85.3 mm (MPJPE) at 1.00 sec, with a negligible run time of 2.3 msec (as reported in
Table 3.10). Additionally, the forecast human motion is used to detect human-cobot collisions
by checking whether the predicted trajectory of the human body intersects that of the cobot.
This is also encouraging, as SeS-GCN allows to reach an F1-score of 0.64. Both aspects
contribute to a cobot awareness of the future, which is instrumental for HRC in industrial
applications.

3.2.2 Related Work

Human pose forecasting Human pose forecasting is a recent field that has some inter-
section with human action anticipation in computer vision [144] and HRC [57]. Previous
studies exploited Temporal Convolutional Networks (TCNs) [10, 75, 141, 200] and Recurrent
Neural Networks (RNNs) [68, 81, 113]. Both architectures are naturally suited to model the
temporal dimension. Recent works have expanded the range of available methods by using
Variational Auto-Encoders [32], specific and model-agnostic layers that implicitly model the
spatial structure of the human skeleton [4], or Transformer Networks [33].

Pose forecasting using Graph Convolutional Networks (GCN) Most recent research uses
GCNs [50, 147, 170, 224, 280]. In [170], the authors have mixed GCN for modeling the joint-
joint interaction with Transformer Networks [240] for the temporal patterns. Others [147,
224, 280] have adopted GCNs to model the space-time body kinematics, devising, in the
case of [50], hierarchical architectures to model coarse-to-fine body dynamics. We identify
three main research directions that have shown efficiency improvements in GCNs:

1. Space-time separable GCNs [224], which factorize the spatial joint-joint and temporal
patterns of the adjacency matrix;



56 Learning on graphs for 3D Computer Vision

Table 3.6 Comparison between the state-of-the-art datasets and the proposed CHICO; unk
stands for “unknown”.

Quantitative Details Rec.
Scene

Actions Type Tasks Markerless#
Classes

#
Subj.

Avg Rec.
Time

#
Joints FPS Aspect

Ratio
#

Sensors Industr. HRC Action
Recog.

Pose
Forec.

Coll.
Det.

Human3.6M [111] 15 11 100.49 s 32 25 normalized 15
mo-cap
studio ✓

AMASS [168] 11265 344 12.89 s variable variable original variable
mo-cap
studio ✓

3DPW [246] 47 7 28.33 s 18 60 original 18
outdoor
locations ✓

ExPI [86] 16 4 unk 18 25 original 88
mo-cap
studio ✓

CHI3D [66] 8 6 unk unk unk original 14
mo-cap
studio ✓

InHARD [49] 14 16 < 8 s 17 120 original 20
assembly

line ✓ ✓ ✓

CHICO(ours) 7 20 55 s 15 25 original 3
assembly

line ✓ ✓ ✓ ✓ ✓

2. Depth-wise separable graph convolutions [108], which have been explored by [11] in
the spectral domain;

3. Sparse GCNs [216], which iteratively prune the terms of the adjacency matrix of a
GCN. Notably, all three techniques also yield better performance than the plain GCN.

Here, for the first time, we bring together these three aspects into an end-to-end space-
time-depthwise-separable and sparse GCN. The three techniques are complementary to
improve both efficiency and performance, but their integration requires some structural
changes (e.g., adopting teacher-student architectures for sparsifying), as we describe in
Sec. 3.2.3.

Human Robot Collaboration (HRC) HRC is the study of collaborative processes where
human and robot agents work together to achieve shared goals [17, 37]. Computer vision
studies on HRC are mostly related to pose estimation [35, 73, 140] to locate the articulated
human body in the scene. In [40, 118, 187], methodologies for robot motion planning
and collision avoidance are proposed; their study perspective is opposite to ours, since
we focus on the human operator. In this regard, the works of [19, 46, 119, 150] model
the operators’ whereabouts through detection algorithms that approximate human shapes
using simple bounding boxes. Approaches that predict human motion during collaborative
tasks are in [235, 278] using RNNs and in [244] using Gaussian Processes (GPs). Other
work [132] models the upper body and the human right hand (which they call the Human End
Effector) by considering the robot-human handover phase. As a motion prediction engine,
DCT-RNN-GCN [170] is especially considered for the experimental comparisons, given the
GCN architecture of the model.



3.2 Human Pose Forecasting in Industrial Scenarios 57

Datasets for pose forecasting Human pose forecasting datasets cover a wide spectrum of
scenarios, see Table 3.6 for a comparative analysis. Human3.6M [111] considers everyday
actions such as conversing, eating, greeting, and smoking. Data were acquired using a
3D marker-based motion capture system composed of 10 high-speed infrared cameras.
AMASS [168] is a collection of 15 datasets where daily actions were captured by an optical
marker-based motion capture. Human3.6M and AMASS are standard benchmarks for human
pose forecasting, with some overlap in the type of actions they deal with. The 3DPW
dataset [246] focuses on outdoor actions captured with a moving camera and 17 Inertial
Measurement Units (IMU) embedded on a special suit for motion capturing [202]. The recent
ExPI dataset [86] contains 16 different dance actions performed by professional dancers for
a total of 115 sequences, and it is aimed at motion prediction. ExPI has been acquired with
68 synchronized and calibrated color cameras and a motion capture system with 20 mocap
cameras. Finally, the CHI3D dataset [66] reports 3D data taken from MOCAP systems to
study human interactions.

None of these datasets answer our research needs, i.e., a benchmark taken by a sparing,
energy-efficient markerless system focused on the industrial HRC scenario, where forecasting
may be really useful for anticipating collisions between humans and robots. In fact, the only
dataset relating to industrial applications is InHARD [49]. Therein, humans are asked to
perform an assembly task while wearing inertial sensors on each limb. The dataset is designed
for human action recognition, and it involves 16 individuals performing 13 different actions
each, for a total of 4800 action samples over more than 2 million frames. Despite showcasing
a collaborative robot, in this dataset the robot is mostly static, making it unsuitable for
collision forecasting.

3.2.3 Methodology

We build an accurate, memory-efficient, and fast GCN by bridging three diverse research
directions: i. Space-time separable adjacency matrices; ii. Depth-wise separable graph
convolutions; iii. Sparse adjacency matrices. This results in an all-separable and Sparse GCN
encoder for the human body kinematics, which we dub SeS-GCN, from which the future
frames are forecast by a Temporal Convolutional Network (TCN).

Background

Pose forecasting is formulated as observing the 3D coordinates xxxv,t of V joints across T
frames and predicting their location in the K future frames. For convenience of notation, we
gather the coordinates from all joints at frame t into the matrix Xt = [xxxv,t ]

V
v=1 ∈ R3×V . Then



58 Learning on graphs for 3D Computer Vision

we define the tensors Xin = [X1,X2...,XT ] and Xout = [XT+1,XT+2...,XT+K] that contain
all observed input and target frames, respectively. We consider a spatio-temporal graph
G= (V,E) to encode the body kinematics, with all joints at all observed frames as the node
set V = {vvvi,t}V,T

i=1,t=1, and edges (vvvi,t ,vvv j,s) ∈ E that connect joints i, j at frames t,s.

Graph Convolutional Networks (GCN) Remember that a GCN is a layered architecture
where:

X (l+1) = σ

(
A(l)X (l)W (l)

)
(3.17)

In this scenario, the input to a GCN layer l is the tensor X (l) ∈ RC(l)×V×T which maintains
the correspondence to the V body joints and the T observed frames, but increases the depth
of features to C(l) channels. X (1) = Xin is the input tensor at the first layer, with C(1) = 3
channels given by the 3D coordinates. A(l) ∈RV T×V T is the adjacency matrix relating pairs of
V T joints from all frames. Following most recent literature [50, 170, 216, 224], we learn the
adjacency matrix A(l) at each GCN layer, which is reported to help model longer interactions.
Finally, W (l) ∈ RC(l)×1×1 are the learnable weights of the graph convolutions. σ in our case
is defined as the PReLU activation function, which is a generalization of the famous ReLU
with a parametrized slope coefficient for negative values [96].

Separable & Sparse Graph Convolutional Networks (SeS-GCN)

We build SeS-GCN by integrating the three aforementioned modeling dimensions: i. separat-
ing spatial and temporal interaction terms in the adjacency matrix of a GCN; ii. separating
the graph convolutions depth-wise; iii. sparsifying the adjacency matrices of the GCN.

Separating space-time STS-GCN [224] has factored the adjacency matrix A(l) of the
GCN, at each layer l, into the product of two terms A(l)

s ∈ RV×V×T and A(l)
t ∈ RT×T×V ,

respectively responsible for the temporal-temporal and joint-joint relations. The GCN
formulation becomes:

X (l+1) = σ

(
A(l)

s A(l)
t X (l)W (l)

)
(3.18)

Eq. (3.18) bottlenecks the interplay of joints across different frames, implicitly placing more
emphasis on the interaction of joints on the same frame (A(l)

s ) and on the temporal pattern of
each joint (A(l)

t ). This reduces the memory footprint of a GCN by approximately 4x while
improving its performance (cf. Sec. 3.2.5). Note that this differs from alternating spatial and
temporal modules, as it is done in [270] and [23], respectively, for trajectory forecasting and
action recognition.



3.2 Human Pose Forecasting in Industrial Scenarios 59

Separating depth-wise Inspired by depth-wise convolutions [44, 108], the approach
in [131] has introduced depth-wise graph convolutions for image classification, followed
by [11], which resorted to a spectral formulation of depth-wise graph convolutions for graph
classification. Here, we consider depth-wise graph convolutions for pose forecasting. The
depth-wise formulation bottlenecks the interplay of space and time (operated by the adjacency
matrix A(l)) with the channels of the graph convolution W (l). The resulting all-separable
model, which we dub STS-DW-GCN, is formulated as such:

H (l) =γ

(
A(l)

s A(l)
t X (l)W (l)

DW

)
(3.19a)

X (l+1) = σ

(
H (l)W (l)

MLP

)
(3.19b)

Adding the depth-wise graph convolution splits the GCN of layer l into two terms. The
first, Eq. (3.19a), focuses on space-time interaction and limits the channel cross-talk by

the use of W (l)
DW ∈ R

C(l)
α

×1×1, with 1 ≤ α ≤C(l) setting the number of convolutional groups
(α =C(l) is the plain single-group depth-wise convolution). Eq. (3.19b) simply models the
intra-channel communication. This may be understood as a plain (MLP) 1D-convolution with
W (l)

MLP ∈ RC(l)×1×1 which re-maps features from C(l) to C(l+1). γ is the ReLU6 non-linear
activation function. Overall, this does not significantly reduce the number of parameters,
but it deepens the GCN without over-smoothing [195], which improves performance (see
Sec. 3.2.5 for details).

Sparsifying the GCN Sparsification has been used to improve the efficiency (memory and,
in some cases, runtime) of neural networks since the seminal pruning work of [133]. [216]
has sparsified GCNs for trajectory forecasting. This consists in learning masks M which
selectively erase certain parameters in the adjacency matrix of the GCN. Here we integrate
sparsification with the all-separable GCN design, which yields our proposed SeS-GCN for
human pose forecasting:

H (l) =γ

(
(M(l)

s ⊙A(l)
s )(M(l)

t ⊙A(l)
t )X (l)W (l)

DW

)
(3.20a)

X (l+1) = σ

(
H (l)W (l)

MLP

)
(3.20b)

⊙ is the element-wise product and M(l)
{s,t} are binary masks. Both at training and inference,

[216] generates masks, it uses those to zero certain coefficients of the adjacency matrix A, and
it adopts the resulting GCN for trajectory forecasting. By contrast, we adopt a teacher-student
framework during training. The teacher learns the masks, and the student only considers
the spared coefficients in A. At inference, our proposed SeS-GCN only consists of the



60 Learning on graphs for 3D Computer Vision

student, which simply adopts the learnt sparse As and At . Compared to [216], the approach
of SeS-GCN is more robust at training, it yields fewer model parameters at inference (∼30%
less for both As and At), and it reaches a better performance, as it is detailed in Sec. 3.2.5.

Decoder Forecasting

Given the encoded space-time representation by SeS-GCN, the future frames are then decoded
by using a Temporal Convolutional Network (TCN) [10, 75, 141, 224]. The TCN remaps
the temporal dimension to match the sought output number of predicted frames. We do not
consider this part for further development as it offers a great tradeoff in parameter efficiency
vs performance, and it is a consolidated practice in current approaches to pose forecasting.

3.2.4 The CHICO dataset

In this section, the CHICO dataset is detailed by describing the acquisition scenario and
devices, the cobot and the performed actions. We have rendered RGB videos, skeletons and
calibration parameters public in order to help facilitate future research on this topic. 2.

The scenario The dataset is registered in a smart-factory environment, with a single human
operator standing in front of a 0.9m×0.6m workbench and a cobot at its end (see Fig.3.10).
The human operator has some free space to turn towards some equipment and carry out
certain assembly, loading, and unloading actions [180]. In particular, light plastic pieces and
heavy tiles, a hammer, and abrasive sponges are available. A total of 20 human operators
have been hired for this study. They attended a course on how to operate with the cobot and
signed an informed consent form prior to the recordings.

The collaborative robot A 7 degrees-of-freedom Kuka LBR iiwa 14 R820 collaborates
with the human operator during the data acquisition process. Weighing in at 29.5kg and
with the ability to handle a payload up to 14kg, it is widely used in modern production lines.
More details on the cobot can be found in the supplementary material.

The acquisition setup The acquisition system is based on three RGB HD cameras pro-
viding three different viewpoints of the same workplace: two frontal-lateral and one rear
view. The frame rate is 25Hz. The videos were first checked for erroneous or spurious
frames, then we used Voxelpose [236] to extract the 3D human pose for each frame. Extrinsic
parameters of each camera are estimated w.r.t. the robot’s reference frame by means of a

2Code and dataset are available at: https://github.com/AlessioSam/CHICO-PoseForecasting.

https://github.com/AlessioSam/CHICO-PoseForecasting


3.2 Human Pose Forecasting in Industrial Scenarios 61

calibration chessboard of 1×1m, and temporal alignment is guaranteed by synchronization
of all the components with an Internet Time Server. In our environment, Voxelpose estimates
a joint positioning accuracy in terms of Mean Per Joint Position Error (MPJPE) of 24.99mm
using three cameras, which is enough for our purposes as an ideal compromise between the
portability of the system and accuracy. We confirm these numbers in two ways: the first
is by checking that human-cobot collisions were detected with 100% F1 score (we have
a collision when the minimum distance between the human limbs and the robotic links is
below a predefined threshold). Secondly, we show that the new CHICO dataset does not
suffer from a trivial zero velocity solution [172], i.e., results achieved by a zero velocity
model underperform the current SoA in equal proportion as for the large-scale established
Human3.6M.

Actions The 7 types of actions of CHICO are inspired by ordinary work sessions in an
HRC disassembly line as described in the review work of [105]. Each action is repeated
over a time interval of ∼1 minute on average. Each action is associated with a goal that the
human operator has to achieve by a given time limit, which requires them to move with a
certain velocity. Each action consists of repeated interactions with the robot (e.g., robot place,
human picks) which, due to the limited space, lead to some unconstrained collisions1 which
we label accordingly. Globally, from the 7 actions × 20 operators, we collect 226 different
collisions. In the following, each action is briefly described.

• Lightweight pick and place (Light P&P). The human operator is required to move
small objects of approximately 50 grams from a loading bay to a delivery location
within a given time slot. The bay and the delivery location are at the opposite sides of
the workbench. Meanwhile, the robot loads on of this bay so that the human operator
has to pass close to the robotic arm. In many cases, the distance between the limbs and
the robotic arm is a few centimeters.

• Heavyweight pick and place (Heavy P&P). The setup of this action is the same as
before, but the objects to be moved are floor tiles weighing 0.75kg. This means that
the actions have to be carried out with two hands.

• Surface polishing (Polishing). This action was inspired by [167], where the human
operator polishes the border of a 40 by 60cm tile with some abrasive sponge, and the
robot mimics a visual quality inspection.

1Unconstrained collisions is a term coming from [91], indicating a situation in which only the robot and
human are directly involved into the collision.



62 Learning on graphs for 3D Computer Vision

• Precision pick and place (Prec. P&P). The robot places four plastic pieces in the four
corners of a 30×30cm table in the center of the workbench, and the human has to
remove them and put them on a bay before the robot repeats the same unloading.

• Random pick and place (Rnd. P&P). Same as the previous action, except for the
plastic pieces, which were continuously placed by the robot randomly on the central
30×30cm table, and the human operator had to remove them.

• High shelf lifting (High lift). The goal was to pick light plastic pieces (50 grams each)
on a sideway bay filled by the robot, putting them on a shelf located at 1.70m, on the
opposite side of the workbench. Due to the geometry of the workspace, the arms of
the human operator were required to pass above or below the moving robotic arm. In
this way, close distances between the human arm and forearm and the robotic links
were realized.

• Hammering (Hammer). The operator hits a metallic tide with a hammer held by the
robot. In this case, the interest was to check how much the collision detection is robust
to an action where the human arm is colliding close to the robotic arm (that is, on the
metallic tile) without properly colliding with the robotic arm.

3.2.5 Experiments

Experiments on Human3.6M

We benchmark the proposed SeS-GCN model on the large and established Human3.6M [111].
In Sec. 3.2.5, we analyze the design choices corresponding to the models discussed in
Sec. 3.2.3, then we compare with the state-of-the-art in Sec. 3.2.5.

Human3.6M [111] is an established dataset for pose forecasting, consisting of 15 daily
life actions (e.g. Walking, Eating, Sitting Down). From the original skeleton of 32 joints, 22
are sampled as the task, representing the body kinematics. A total of 3.6 million poses are
captured at 25 fps. In line with the literature [170, 172, 50], subjects 1, 6, 7, 8, 9 are used for
for training, subject 11 for validation, and subject 5 for testing.

Metric The prediction error is quantified via the MPJPE error metric [111, 171], which con-
siders the displacement of the predicted 3D coordinates w.r.t. the ground truth, in millimeters,



3.2 Human Pose Forecasting in Industrial Scenarios 63

at a specific future frame t:

LMPJPE(x̂xx,xxx) =
1
V

V

∑
v=1

||x̂xxvt − xxxvt ||2. (3.21)

where x̂xx represents the predictions of the model for all v joints and xxx the corresponding
ground truth.

Modelling choices of SeS-GCN

We review and quantify the impact of the modeling choices of SeS-GCN:

Efficient GCN baselines In Table 3.7, we first validate the three difference modeling
approaches to efficient GCNs, namely space-time separable STS-GCN [224], depth-wise
separable graph convolutions DW-GCN [131], and Sparse-GCN [216]. STS-GCN yields the
lowest MPJPE error of 117.0 mm at a 1s forecasting horizon (2.4% better than DW-GCN,
4.8% better than Sparse-GCN) with the fewest parameters, 57.6k (ca. x4 less). We build,
therefore, on this approach.

Deeper GCNs. It is a long standing belief that Deep Neural Networks (DNN) owe their
performance to depth [97, 154, 259, 274]. However, deeper models require more parameters
and have a longer processing time. Additionally, deeper GCNs may suffer from over-
smoothing [195]. Seeking both better accuracy and efficiency, we consider three pathways
for improvement: (1) add GCN layers; (2) add MLP layers between layers of GCNs; (3)
adopt depth-wise graph convolutions, which also add MLP layers between GCN ones (cf.
Sec. 3.2.3). As shown in Table 3.7, there is a slight improvement in performance with 5

Table 3.7 MPJPE error (millimeters) for long-range predictions (25 frames) on Human3.6M
[111] and numbers of parameters. Best figures overall are reported in bold, while underlined
figures represent the best in each block. The proposed model has comparable or less
parameters than the GCN-based baselines [108, 216, 224] and it outperforms the best of
them [224] by 2.6%.

Depth MPJPE Parameters (K) DW-Separable ST-Separable Sparse w/ MLP layers Teacher-Student
GCN 4 123.2 222.7
DW-GCN [131] 4+4 119.8 223.2 ✓ ✓
STS-GCN2 [224] 4 117.0 57.6 ✓
Sparse-GCN [216] 4 122.7 257.9 ✓
STS-GCN 5 115.9 68.6 ✓
STS-GCN 6 116.1 79.9 ✓
STS-GCN w/ MLP 5+5 125.2 101.4 ✓ ✓
STS-DW-GCN 5+5 114.8 70.0 ✓ ✓ ✓
STS-DW-Sparse-GCN 5+5 115.7 122.4 ✓ ✓ ✓ ✓
SeS-GCN (proposed) 5+5 113.9 58.6 ✓ ✓ ✓ ✓ ✓



64 Learning on graphs for 3D Computer Vision

STS-GCN layers (MPJPE of 115.9 mm), but deeper models underperform. Adding MLP
layers between the GCN ones (depth of 5+5) also decreases performance (MPJPE of 125.2).
By contrast, adding depth by depth-wise separable graph convolutions (STS-DW-GCN of
depth 5+5) reduces the error to 114.8 mm. This may be explained by the virtues of the
increased depth in combination with the limiting cross-talk of joint-time channels, which
existing literature confirms [44, 131, 224]. We note that space-time and depth-wise channel
separability are complementary. Altogether, this performance is beyond the STS-GCN
performance (114.8 Vs. 117.0 mm), at a slight increase of the parameter count (70k Vs.
57.6k).

Sparsifying GCNs and the proposed SeS-GCN Finally, we target to improve efficiency
by model compression. Trends have reduced the size of models by reducing the parameter
precision [203], by pruning and sparsifying some of the parameters [182], or by constructing
teacher-student frameworks, whereby a smaller student model is paired with a larger teacher
to reach its same performance [101, 145]. Note that the last technique is the current go-
to choice in deploying very large networks such as Transformers [20]. We start off by
compressing the model with sparse adjacency matrices by the approach of Sparse-GCN [216].
They iteratively optimize the learned parameters and the masks to select some (the selection
occurs by a network branch, also at inference, cf. 3.2.3). As illustrated in Table 3.7, the
approach of [216] does not make a viable direction (STS-DW-Sparse-GCN), since the error
increases to 115.7 mm and the parameter count to 122.4k. Reminiscent of teacher-student
models, in the proposed SeS-GCN we first train a teacher STS-DW-GCN, then use its learned
parameters to sparsify the affinity matrices of a student STS-DW-GCN, which is then trained
from scratch. SeS-GCN achieves a competitive parameter count and the lowest MPJPE error
of 113.9 mm, being comparable with the current SoA [170] and using only 1.72% of its
parameters (58.6k Vs. 3.4M).

Comparison with the state-of-the-art (SoA) In Table 3.8, we evaluate the proposed
SeS-GCN against the three most recent techniques over a short time horizon (10 frames, 400
msec) and a long time horizon (25 frames, 1000 msec). The first, DCT-RNN-GCN [170], the
current SoA, uses DCT encoding, motion attention and RNNs and, differently from other
models, demands more frames as input (50 vs. 10). The other two, MSR-GCN [50] and
STS-GCN [224] adopt GCN-only frameworks, the former adopts a multi-scale approach, the
latter acts a separation between spatial and temporal encoding. Both on short- and long-term
predictions, at the 400 and 1000 msec horizons, the proposed SeS-GCN outperforms other



3.2 Human Pose Forecasting in Industrial Scenarios 65

techniques [224, 170] and it is within a 1.5% error w.r.t. the current SoA [170], while only
using 1.72% parameters and being ∼4 times faster than [170].

Table 3.8 MPJPE error in mm for short-term (400 msec, 10 frames) and long-term (1000 msec,
25 frames) predictions of 3D joint positions on Human3.6M. The proposed model achieves
competitive performance with the SoA [170], while adopting 1.72% of its parameters and
running ∼4 times faster, cf. Table 3.10. Results are discussed in Sec. 3.2.5.

Walking Eating Smoking Discussion Directions Greeting Phoning Posing
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [170] 39.8 58.1 36.2 75.5 36.4 69.5 65.4 119.8 56.5 106.5 78.1 138.8 49.2 105.0 75.8 178.2
MSR-GCN [50] 45.2 63.0 40.4 77.1 38.1 71.6 69.7 117.5 53.8 100.5 93.3 147.2 51.2 104.3 85.0 174.3

STS-GCN2 [224] 51.0 70.2 43.3 82.6 42.3 76.1 71.9 118.9 63.2 109.6 86.4 136.1 53.8 108.3 84.7 178.4
SeS-GCN (proposed) 48.8 67.3 41.7 78.1 40.8 73.7 70.6 116.7 60.3 106.9 83.8 137.2 52.6 106.7 82.6 173.5

Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [170] 73.9 134.2 56.0 115.9 72.0 143.6 51.5 115.9 54.9 108.2 86.3 146.9 41.9 64.9 58.3 112.1
MSR-GCN [50] 79.6 139.1 57.8 120.0 76.8 155.4 56.3 121.8 59.2 106.2 93.3 148.2 43.8 65.9 62.9 114.1

STS-GCN2 [224] 83.1 141.0 60.8 121.4 79.4 148.4 59.4 126.3 62.0 113.6 97.3 151.5 49.1 72.5 65.8 117.0
SeS-GCN (proposed) 82.2 139.1 59.9 117.5 78.1 146.0 57.7 121.2 58.5 107.5 94.0 147.7 48.3 70.8 64.0 113.9

Experiments on CHICO

We benchmark on CHICO the SoA and the proposed SeS-GCN model. The first part reports
results on the task of human pose forecasting, while Sec. 3.2.5 discusses collision detection.

Pose forecasting benchmark and evaluation protocol We create the train/validation/test
split by assigning 2 subjects to the validation (subjects 0 and 4), 4 to the test set (subjects 2, 3,
18 and 19), and the remaining 14 to the training set. For short-range prediction experiments,
abiding the setup of Human3.6M [111], we consider 10 frames as observation time and 10 or
25 frames as forecasting horizon. Differently from all reported techniques, DCT-RNN-GCN
requires 50 input frames. We adopt the same Mean Per Joint Position Error (MPJPE)[111] as
Human3.6M, in Eq. (3.21), which also defines the training loss for the evaluated techniques.
None of the motion sequences for pose forecasting contains collisions. In fact, the objective
is to train and test the “correct” collaborative human behavior, and not the human retractions
and the pauses due to the collisions7.

Comparative evaluation. In Table 3.9, we compare pose forecasting techniques from the
SoA and the proposed SeS-GCN. On the short-term predictions the best performance is that

7After the collisions, the robot stops for 1 seconds, during which the human operator usually stands still,
waiting for the robot to resume operations.



66 Learning on graphs for 3D Computer Vision

Table 3.9 MPJPE error in mm for short-term (400 msec, 10 frames) and long-term (1000
msec, 25 frames) prediction of 3D joint positions on CHICOdataset. The average error
is 7.9% lower than the other models in the short-term and 2.4% lower in the long-term
prediction. See Sec. 3.2.5 for a discussion.

Hammer High Lift Prec. P&P Rnd. P&P Polishing Heavy P&P Light P&P Average
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [170] 41.1 39.0 69.4 128.8 50.6 83.3 52.7 88.2 42.1 76.0 64.1 121.5 62.1 104.2 54.6 91.6
MSR-GCN [50] 41.6 39.7 67.8 130.2 50.2 81.3 53.4 90.3 41.1 73.2 62.7 118.2 61.5 101.9 54.1 90.7
STS-GCN [224] 46.6 52.1 64.2 116.4 48.3 79.5 52.0 87.9 42.1 73.9 60.6 106.5 57.2 95.2 53.0 87.4

SeS-GCN (proposed) 40.9 49.3 62.1 116.3 46.0 77.4 48.4 84.8 38.8 72.4 56.1 104.4 56.2 92.2 48.8 85.3

of SeS-GCN, reaching an MPJPE error of 48.8 mm, which is 7.9% better than the second best
STS-GCN [224]. On the longer-term predictions, the best performance (MPJPE error of 85.3
mm) is also detained by SeS-GCN, which is 2.4% better than the second best STS-GCN [224].
The proposed model outperforms all techniques on all actions except Hammer, a briefly
repeating action which may differ for single hits. We argue that DCT-RNN-GCN [170] may
get an advantage from using 50 input frames (all other methods use 10 frames)

For a graphical illustration, Fig. 3.11 shows a distribution of the error per joint calculated
over all the actions, for the horizons 400 (left) and 1000 msec (right). In both cases the error
gets larger as we get closer to the extrema of the kinematic skeleton, since those joints move
the most. The slightly larger error at the right hands (70.03 and 125.76 mm, respectively)
matches that subjects are right-handed (but some actions are operated with both hands). For
a sanity check of results, we have also evaluated the performance of a trivial zero velocity
model. [172] has found that keeping the last observed positions may be a surprisingly
strong (trivial) baseline. For CHICO, the zero velocity model scores an MPJPE of 110.6 at

Fig. 3.11 Average MPJPE distribution for all actions in CHICOon different joints for (a)
short-term (0.40 s) and (b) long-term (1.00 s) predictions. The radius of the blob gives the
spatial error with the same scale of the skeleton.



3.2 Human Pose Forecasting in Industrial Scenarios 67

25-frames, worse than the 85.3 mm score of SeS-GCN. This is in line with the large-scale
dataset Human3.6M [111], where the performance of the trivial model is 153.3 mm.

Collision detection evaluation protocol We consider a collision to occur when any body
limb of the subject gets too close to any part of the cobot, i.e. within a distance threshold, for
at least one frame. In particular, a collision refers to the proximity between the cobot and
the human in the forecast portion of the trajectory. The (Euclidean) distance threshold is set
to 13 cm. The motion of the cobot is scripted beforehand, thus known. The motion of the
human subjects in the next 1000 msec needs to be forecast, starting from the observation of
400 msec. The train/validation/test sets sample sequences of 10+25 frames with stride of 10.

Evaluation of collision detection. For the evaluation of collision, following [181], both
the cobot arm parts and the human body limbs are approximated by cylinders. The diameters
for the cobot are fixed to 8cm. Those of the body limbs are taken from a human atlas. In
Table 3.10, we report precision, recall and F1 scores for the detection of collisions on the
motion of 2 test subjects, which contains 21 collisions. The top performer in pose forecasting,
our proposed SeS-GCN, also yields the largest F1 score of 0.64. The lower performing
MSR-GCN [50] yields poor collision detection capabilities, with an F1 score of 0.31.

Table 3.10 Evaluation of collision detection performance achieved by competing pose fore-
casting techniques, with indication of inference run time. See discussion in Sec. 3.2.5.

Time Horizon (msec) 1000
Metrics Prec Recall F1 Inference Time (sec)
DCT-RNN-GCN [170] 0.63 0.58 0.56 9.1×10−3

MSR-GCN [50] 0.63 0.30 0.31 25.2×10−3

STS-GCN [224] 0.68 0.61 0.63 2.3×10−3

SeS-GCN (proposed) 0.84 0.54 0.64 2.3×10−3

3.2.6 Conclusions

Towards the goal of forecasting the human motion during human-robot collaboration in in-
dustrial (HRC) environments, we have proposed the novel SeS-GCN model, which integrates
three most recent modelling methodologies for accuracy and efficiency: space-time separable
GCNs, depth-wise separable graph convolutions and sparse GCNs. Also, we have contributed
a new CHICO dataset, acquired at real assembly line, the first providing a benchmark of the
two fundamental HRC tasks of human pose forecasting and collision detection. Featuring
an MPJPE error of 85.3 mm at 1 sec in the future with a negligible run time of 2.3 msec,



68 Learning on graphs for 3D Computer Vision

SeS-GCN and CHICO unleash great potential for perception algorithms and their application
in robotics.

3.3 Chapter takeaways

In this chapter, we explored how learning on graphs through geometric priors and learning
on 3D geometric data helps solve prominent CV problems. Both object localization (Sec.
3.1) and human pose forecasting (Sec. 3.2) have real and practical impact, especially when
considering robotics applications in industrial scenarios. On one hand, object localization in
partial scenes can provide useful prior knowledge for the purpose of navigation, making it
goal driven. On the other hand, as mentioned numerous times in the previous section, human
pose forecasting is very important in Industry 4.0 scenarios. Therefore, both of the proposed
works can facilitate the use of robotic assistants in manufacturing plants.

Nevertheless, both works presented in this section also have important scientific take-
aways. Firstly, following the large body of work in Geometric Deep Learning, we see that the
data efficiency of methods that rely on geometric priors is much higher than simply trying to
"blindly" learn everything in a data-driven way. This becomes evident in the performance
vs dataset size tradeoff between SCG and D-SCG in Sec. 3.1. Secondly, the methods we
propose based on graph neural networks seem to offer ways of speeding up computation that
are very intuitive to implement (sparsification, adjacency separation). Graph structures also
offer a way to abstract problems without having to always process the actual domain, which
in this case is visual. Unlike other alternatives such as 3D Convolutions, working with a
graph formulation is much more efficient and can generalize across datasets, given that it
ignores details related to scene volume or colors.

With the completion of this chapter, the subsequent sections will explore the second
forking path of the thesis. We will delve into fundamental aspects of learning techniques
based on geometry and introduce graph level self-supervised learning with geometric priors
in both data and latent spaces in Chap. 4, and then see how we can enhance generalization
performance for classification methods through automatic auxiliary task discovery in complex
topological spaces (manifolds) in Chap. 5.



Chapter 4

Graph-level Representation Learning
with Joint-Embedding Predictive
Architectures

4.1 Introduction

As mentioned numerous times in this thesis, graph data is ubiquitous in the real world due
to its ability to universally abstract various concepts and entities [166, 241]. To deal with
this widespread data structure, Graph Neural Networks (GNNs) [211, 125, 76, 242] have
established themselves as a staple solution. Nevertheless, most applications of GNNs usually
rely on ground-truth labels for training. The growing amount of graph data in fields such
as bioinformatics, chemoinformatics, and social networks makes manual labeling laborious,
sparking significant interest in unsupervised graph representation learning.

A particularly emergent area in this line of research is self-supervised learning (SSL). In
SSL, alternative forms of supervision are created stemming from the input signal. This pro-
cess is then typically followed by invariance-based or generative-based pretraining [155, 7].
Invariance-based approaches optimize the model to produce comparable embeddings for
different views of the input signal. A common paradigm associated with this procedure
is contrastive learning [233]. Typically, these alternative views are created by a data aug-
mentation procedure. The views are then passed through their respective encoder networks
(which may share weights), as shown in Fig. 4.1a. Finally, an energy function, usually
framed as a distance, acts on the latent embeddings. In the graph domain, several works
have applied contrastive learning by designing graph-specific augmentations [269], using
multi-view learning [94] and even adversarial learning [230]. Invariance-based pretraining



70 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

Fig. 4.1 Illustration of the SSL approaches discussed in this paper: (a) Joint-Embedding
(Contrastive) Architectures learn to create similar embeddings for inputs x and y that are
compatible with each other and dissimilar embeddings otherwise. This compatibility is
implemented in practice by creating different views of the input data. (b) Generative Archi-
tectures reconstruct a signal y from an input signal x by conditioning the decoder network on
additional (potentially latent) variables z. (c) Joint-Embedding Predictive Architectures act
as a bridge: They utilize a predictor network that processes the context x and is conditioned
on additional (potentially latent) variables to predict the embedding of the target y in latent
space.

is effective but comes with several drawbacks i.e., the necessity to augment the data and
process negative samples, which limits computational efficiency. In order to learn semantic
embeddings that are useful for downstream tasks, the augmentations must also be non-trivial.

Generative-based pretraining methods, on the other hand, typically remove or corrupt
portions of the input and predict them using an autoencoding procedure [245, 95] or rely on
autoregressive modeling [30, 110]. Fig. 4.1b depicts the typical instantiation of these meth-
ods: The input signal x is fed into an encoder network that constructs the latent representation,
and from it a decoder generates ŷ, the data corresponding to the target signal y. The energy
function is then applied in data space, often through a reconstruction error. Generative models
generally display strong overfitting tendencies [237] and can be non-trivial to train due to
issues such as mode collapse [3]. Moreover, the features they learn are not always useful for
downstream tasks [177]. An intuitive explanation of this problem is that generative models
have to estimate a data distribution that is usually quite complex, so the latent representations
must be directly descriptive of the whole data space [156]. This can become even more
problematic for graphs because they live in a non-Euclidean and inhomogenous data space.
Despite the aforementioned issues, masked autoencoding has recently shown promising
results also in the graph domain with appropriately designed models [107, 231].

Inspired by the innovative Joint-Embedding Predictive Architecture (JEPA) [134, 7], we
propose Graph-JEPA, a JEPA for the graph domain that can learn graph-level representations



4.1 Introduction 71

by bridging contrastive and generative models. As illustrated in Fig. 4.1c, a JEPA has two
encoder networks that receive the input signals and produce the corresponding representations.
The two encoders can potentially be different models and don’t need to share weights. A
predictor module outputs a prediction of the latent representation of one signal based on the
other, possibly conditioned on another variable. Graph-JEPA does not require any negative
samples or complex data augmentation, and by operating in the latent space avoids the pitfalls
associated with learning high-level details needed to fit the data distribution. However, the
graph domain presents several challenges needed to properly design such an architecture:
context and target extraction, designing a latent prediction task optimal for graph-level
concepts, and learning expressive representations. In response to these questions, we equip
Graph-JEPA with a specific masked modeling objective. The input graph is first divided into
several subgraphs, and then the latent representation of randomly chosen target subgraphs is
predicted given a context subgraph. The subgraph representations are consequently pooled
to create a graph-level representation that can be used for downstream tasks.

The nature of graph-level concepts is often assumed to be hierarchical [268]. We conjec-
ture that the typical latent reconstruction objective used in current JEPA formulations is not
enough to provide optimal downstream performance. To this end, we design a prediction
objective that starts by expressing the target subgraph encoding as a high-dimensional de-
scription of the hyperbolic angle. The predictor module is then tasked with predicting the
location of the target in the 2D unit hyperbola. This prediction is compared with the target
coordinates obtained by using the aforementioned hyperbolic angle. In this self-predictive
setting, we explain why the stop-gradient operation and a simple predictor parametrization
are useful to prevent representation collapse. To experimentally validate our approach, we
evaluate Graph-JEPA against established contrastive and generative graph-level SSL methods
across various graph datasets from different domains. Our proposed method demonstrates
superior performance, outperforming most competitors while maintaining efficiency and
ease of training. Notably, we observe from our experiments that Graph-JEPA can run up
to 2.5x faster than Graph-MAE [107] and 8x faster than MVGRL [94]. Finally, we empir-
ically demonstrate Graph-JEPA’s ability to learn highly expressive graph representations
by showing that a linear classifier trained on the learned representations almost perfectly
distinguishes pairs of non-isomorphic graphs that the 1-WL test cannot differentiate.



72 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

4.2 Related work

4.2.1 Self-Supervised Graph Representation Learning

Graph Neural Networks (GNNs)[256, 211, 125, 242] are now established solutions to differ-
ent graph machine learning problems such as node classification, link prediction, and graph
classification. Nevertheless, the cost of labeling graph data is quite high, given the immense
variability of graph types and the information they can represent. To alleviate this problem,
SSL on graphs has become a research frontier, where we can distinguish between two major
groups of methods[261, 155]:

Contrastive Methods. Contrastive learning methods usually minimize an energy function
[102, 89] between different views of the same data. InfoGraph [229] maximizes the mutual
information between the graph-level representation and the representations of substructures
at different scales. GraphCL [269] works similarly to distance-based contrastive methods
in the imaging domain. The authors first propose four types of graph augmentations and
then perform contrastive learning based on them. The work of [94] goes one step further
by contrasting structural views of graphs. They also show that a large number of views or
multiscale training does not seem to be beneficial, contrary to the image domain. Another
popular research direction for contrastive methods is learning graph augmentations and how
to leverage them efficiently [230, 116]. Contrastive learning methods typically require a
lot of memory due to data augmentation and negative samples. Graph-JEPA is much more
efficient than typical formulations of these architectures, given that it does not require any
augmentations or negative samples. Another major difference is that the prediction in latent
space in JEPAs is done through a separate predictor network rather than using the common
Siamese structure [28](Fig. 4.1a vs. 1c).

Generative Methods. The goal of generative models is to recover the data distribution, an
objective that is typically implemented through a reconstruction process. In the graph domain,
most generative architectures that are also used for SSL are extensions of Auto-Encoder (AE)
models [103] architectures. These models learn an embedding from the input data and then
use a reconstruction objective with (optional) regularization to learn the data distribution.
Kipf and Welling [126] extended the framework of AEs and VAEs [124] to graphs by using
a GNN as an encoder and the reconstruction of the adjacency matrix as the training objective.
However, the results on downstream tasks with embeddings learned in this way are often
unsatisfactory compared with contrastive learning methods, a tendency also observed in
other domains [155]. A recent and promising direction is masked autoencoding (MAE)



4.2 Related work 73

[95], which has proved to be a very successful framework for the image and text domains.
GraphMAE [107] is an instantiation of MAEs in the graph domain, where the node attributes
are perturbed and then reconstructed, providing a paradigm shift from the structure learning
objective of GAEs. S2GAE [231] is one of the latest GAEs, which focuses on reconstructing
the topological structure but adds several auxiliary objectives and additional designs. Our
architecture differs from generative models in that it learns to predict directly in the latent
space, thereby bypassing the necessity of remembering and overfitting high-level details that
help maximize the data evidence (Fig. 4.1b vs. 1c).

4.2.2 Joint-Embedding Predictive Architectures

Joint-Embedding Predictive Architectures [134] are a recently proposed design for SSL. The
idea is similar to both generative and contrastive approaches, yet JEPAs are non-generative
since they cannot directly predict y from x, as shown in Fig. 4.1c. The energy of a JEPA
is given by the prediction error in the embedding space, not the input space. These models
can intuitively be understood as a way to capture abstract dependencies between x and
y, potentially given another latent variable z. It is worth noting that the different models
comprising the architecture may differ in terms of structure and parameters. An in-depth
explanation of Joint-Embedding Predictive Architectures and their connections to human
representation learning is provided by LeCun [134]. Some works acknowledged that latent
self-predictive architectures were effective [82, 43] even before JEPAs effectively became
synonymous with this concept. Inspired by these trends, a number of related works have tried
to employ latent prediction objectives for graph SSL, showing advantages mostly compared
to contrastive learning. Thakoor et al. [232] perform latent self-prediction on augmented
views of a graph in a similar fashion to BYOL [82], while Zhang et al. [277] rely on ideas
from Canonical Correlation Analysis to frame a learning objective that preserves feature
invariance and forces decorrelation when necessary. The work of Lee et al. [138] presents a
model that learns latent positive examples through a k-NN and clustering procedure in the
transductive setting, while Xie et al. [260] combine instance-level reconstruction (generative
pretraining) and feature-level invariance (latent prediction). Given that these models learn
using a latent self-predictive objective, similar to ours, we will refer to them also using the
term self-predictive in the rest of the paper. Unlike previously proposed methods, Graph-
JEPA operates exclusively in the latent space and implements a novel training task without
the need for data augmentation. At the current state of the art, the JEPA framework has been
implemented for images [7], video[14, 13], and audio [64]. We propose the first architecture
implementing the modern JEPA principles for the graph domain and use it to learn graph-level
representations.



74 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

4.3 Method

A general overview. We consider graphs G defined as G = (V,E) where V = {v1 . . .vN} is
the set of nodes, with a cardinality |V |= N, and E = {e1 . . .eM} is the set of edges, with a
cardinality |E|= M. For simplicity of the exposition, we consider symmetric, unweighted
graphs, although our method can be generalized to weighted or directed graphs. In this
setting, G can be represented by an adjacency matrix A ∈ {0,1}N×N , with Ai j = 1 if nodes
vi and v j are connected and 0 otherwise. Fig. 4.2 provides the overview of the proposed
architecture. The high-level idea of Graph-JEPA is to divide the input graph into subgraphs
(patches) [98] and then predict the representation of a randomly chosen target subgraph from
the representation of a single context subgraph [7]. Again, we would like to stress that this
masked modeling objective is realized in latent space without needing negative (or positive)
samples. The subgraph representations are then pooled to create a vector representation for
the whole graph, i.e., a graph-level representation. Therefore, the learning procedure consists
of a sequence of operations: 1. Spatial Partitioning; 2. Subgraph Embedding; 3. Context and
Target Encoding; 4. Latent Target Prediction.

4.3.1 Spatial Partitioning

We base the initial part of our architecture on the recent work of [98], but similar ideas
consisting of graph partitioning have been proposed before for Graph SSL [115]. This step
consists of creating different subgraphs (patches), similar to how Vision Transformers (ViT)
[56] operate on images. We rely on the METIS [120] graph clustering algorithm, which
partitions a graph into a pre-defined, non-overlapping number of clusters p (Fig. 4.2a), such
that the number of within-cluster links is much higher than between-cluster links. Note
that having non-overlapping subgraphs can be problematic since edges can be lost in this
procedure, and it is possible to end up with empty "subgraphs". In order to maintain a
simple notion of locality in each subgraph and avoid completely empty subgraphs, a one-hop
neighborhood expansion1 of the nodes in each extracted subgraph is performed (Fig. 4.2b).

4.3.2 Subgraph Embedding

After partitioning the graph, we learn a representation for each subgraph through a GNN (Fig.
4.2c.). The specific choice of the GNN is arbitrary and depends on what properties one wishes
to induce in the representation. The learned node embeddings are mean pooled to create a

1Connecting all (not already present) adjacent nodes from the input graph with each node present in the
subgraph.



4.3 Method 75

2

1

4
6

5

3

8

9
0

7

2

1

4

6

5

3

8

9

0

7

G
N
N

P1

P5

P4

P3

P2

T
A
R
G
E
T

C
O
N
T
E
X
T

𝑍𝑦 

𝑧𝑥
2

1

a.

4

4
3

8

7

0

7

9

6

6

5 7

b. c. d. e.

P
R
E
D
I
C
T
O
R

𝑃𝐸

f.

𝐷( 𝜓𝑦, 𝜓𝑦)

𝜓𝑦

𝜓𝑦

Input graph

2

3

Fig. 4.2 A complete overview of Graph-JEPA. We first extract non-overlapping subgraphs
(patches) (a.), perform a 1-hop neighborhood expansion (b.), and encode the subgraphs with
a GNN (c.). After the subgraph encoding, one is randomly picked as the context and m
others as the targets (d.), and they are fed into their respective encoders (e.). The embeddings
generated from the target encoder are used to produce the target subgraphs’ coordinates ψy.
Finally, the predictor network is tasked with directly predicting the coordinates ψ̂y for each
target subgraph based on the context embedding and the positional embedding of each target
subgraph (f.). A regression loss acts as the energy function D between the predicted and
target coordinates. Note that the extracted subgraphs in (a.) and (b.) are meant for illustrative
purposes only. The number of nodes in each subgraph can vary.

vector representation for each subgraph: {h1...hp},h ∈ Rd . Given that these embeddings
will be used as context or target variables, providing additional information regarding the
subgraphs is key in order to guide the predictor network. Otherwise, the prediction task
might be too difficult. Thus, we propose to use a positional embedding for each subgraph,
which is implemented as the maximum Random Walk Structural Embedding (RWSE) of all
the nodes in that subgraph. In this way, the position is characterized consistently for each
patch. Formally, a RWSE [59] for a node v can be defined as:

Pv = (Mii,M2
ii, . . . ,M

k
ii) (4.1)

with Pv ∈ Rk, Mk = (D−1A)k the random-walk transition matrix of order k, and i is the index
of node v in the adjacency matrix. Therefore, Mk

ii encodes the probability of node v landing
to itself after a k-step random walk. Given a subgraph l, let Vl denote the set of nodes in l.



76 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

We define the subgraph RWSE as:

Pl = max
v∈Vl

Pv (4.2)

where the max operation is performed elementwise. A straightforward explanation of the
above definition is that the positional information of each subgraph is essentially contained in
the node with the highest degree2, which will act as an anchor reference when predicting the
target subgraphs’ latent representations. Intuitively, knowing Pl is useful for the prediction
task because the features present in the most representative node will have been diffused the
most (via the GNN) into the subgraph.

4.3.3 Context and Target Encoding

Given the subgraph representations and their respective positional embeddings, we frame the
Graph-JEPA prediction task in a similar manner to I-JEPA [7]. The goal of the network is
to predict the latent embeddings of randomly chosen target subgraphs, given one random
context subgraph. The prediction is conditioned on positional information regarding each
subgraph. At each training step, we choose one random subgraph as the context x and m
others as targets Y = {y1, . . . ,ym} (Fig. 4.2d). These subgraphs are processed by the context
and target encoders (Fig. 4.2e) which are parametrized by Transformer encoder blocks
(without self-attention for the context) where normalization is applied at first [262]. The
target encoder uses Hadamard self-attention [98], but other choices, such as the standard
self-attention mechanism [240] are perfectly viable. We can summarize this step as:

zx = Ec(x), Zy = Et(Y ), (4.3)

with zx ∈Rd and Zy ∈Rm×d . At this stage, we can use the predictor network to directly predict
Zy from zx. This is the typical formulation of JEPAs, also followed by the popular work of
Assran et al. [7]. We argue that learning how to organize concepts for abstract objects such as
graphs or networks directly in Euclidean space is suboptimal. In the following subsection, we
propose a simple trick to bypass this problem using the encoding and prediction mechanisms
in Graph-JEPA. A discussion in Section 4.4.3 will provide additional insights regarding this
topic.

2A more suitable term would be the in-degree, but there is no difference in the undirected case.



4.3 Method 77

4.3.4 Latent Target Prediction

Learning hierarchically consistent concepts [52] is considered a crucial aspect of human learn-
ing, especially during infancy and young age [207]. Networks in the real world often conform
to some concept of hierarchy [185], and this assumption is frequently used when learning
graph-level representations [268]. Thus, we conjecture that Graph-JEPA should operate in a
hyperbolic space, where learned embeddings implicitly organize hierarchical concepts[192?
]. This gives rise to another issue: commonly used hyperbolic (Poincaré) embeddings are
known to have several tradeoffs between dimensionality and performance[208, 87], which
severely limits the expressive ability of the model. Given that graphs can describe very
abstract concepts, high expressivity in terms of model parameters is preferred. In simple
words, we would ideally like to have a high-dimensional latent code that has a concept of
hyperbolicity built into it.

To achieve this, we think of the target embedding as a high-dimensional representation
of the hyperbolic angle, which allows us to describe each target patch through its position
in the 2D unit hyperbola. Formally, given a target patch l, its embedding Zy

l and positional
encoding Pl , we express the latent target as:

ψ
y
l =

 cosh(αy
l )

sinh(αy
l )

 , α
y
l =

1
N

d

∑
n=1

Zy
l
(n)
, (4.4)

where cosh(·) and sinh(·) are the hyperbolic cosine and sine functions. The predictor
module is then tasked with directly locating the target in the unit hyperbola, given the context
embedding and the target patch’s positional encoding:

ψ̂
y
l =W2(σ(W1(zx +Pl)+b1))+b2, (4.5)

where Wn and bn represent the n-th weight matrix and bias vector (i.e., n-th fully connected
layer), σ is an elementwise non-linear activation function, and ψ̂

y
l ∈ R2. This allows us to

frame the learning procedure as a regression problem, and the whole network can be trained
end-to-end (Fig. 4.2f). In practice, we use the smooth L1 loss as the distance function, as it
is less sensitive to outliers compared to the typical L2 loss [77]:

L(y, ŷ) =
1
N

N

∑
n=1

sn, sn =

0.5(yn − ŷn)
2/β , if |y− ŷ|< β

|y− ŷ|−0.5β , otherwise
(4.6)



78 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

Thus, we are effectively measuring how far away the context and target patches are in the
unit hyperbola of the plane, but the targets are actually described through a high dimensional
latent code (Eq. 4.4). We explicitly show the differences between this choice and using the
Euclidean or Hyperbolic distances as energy functions (in the latent space) in Section 4.4.3.
Our proposed pretraining objective forces the context encoder to understand the differences
in the hyperbolic angle between the target patches, which can be thought of as establishing
an implicit hierarchy between them.

Preventing representation collapse. JEPAs are based on a self-distillation procedure.
Therefore, they are by definition susceptible to representation collapse [7]. This is due to the
nature of the learning process, where both the context and target representations have to be
learned. We formalize this intuition with an example and argue why there is a need to adopt
two well-known training tricks that are prevalent in the literature to prevent representation
collapse: i) The stop-gradient operation on the target encoder followed by a momentum
update (using an Exponential Moving Average (EMA) of the context encoder weights)
[82, 43]; ii) a simpler parametrization of the predictor compared to the context and target
networks (in terms of parameters)[41, 9];

Let us simplify the problem through the following assumptions: i) The predictor network
is linear; ii) There is a one-to-one correspondence between context and target patches. (This
holds also in practice due to Eq. 4.5); iii) The self-predictive task is a least-squares problem
in a finite-dimensional vector space. Based on these assumptions, we can rewrite the context
features as X ∈Rn×d , the target coordinates as Y ∈Rn×2, and the weights of the linear model
as W ∈ Rd×2. The optimal weights of the predictor are given by solving:

argmin
W

∥XW −Y∥2 (4.7)

where ∥.∥ indicates the Frobenius norm. The (multivariate) OLS estimator can give the
solution to this problem by setting W to:

W = (XT X)−1XTY (4.8)

Plugging Eq. 4.8 into Eq. 4.7 and factorizing Y , the least squares solution leads to the error:∥∥(X(XT X)−1XT − In)Y
∥∥2

(4.9)

Thus, the optimality of a linear predictor is defined by the orthogonal projection of Y onto the
orthogonal complement of a subspace of Col(X). As is commonly understood, this translates



4.4 Experiments 79

to finding the linear combination of X that is closest, in terms of ∥·∥2, to Y . Similarly to what
was shown by Richemond et al. [205], we argue that this behavior unveils a key intuition:
The target encoder, which estimates Y must not share weights or be optimized via the same
optimizer as the context encoder. If that were the case, the easiest solution to Eq. 4.9 would be
learning a representation that is orthogonal to itself, i.e., the 0 vector, leading to representation
collapse. Using a well-parametrized EMA update is what allows us to bypass this problem.
In practice, even with the slower dynamics induced by the EMA procedure, it is possible
to immediately encounter a degenerate solution with a non-linear and highly expressive
network. For instance, consider a scenario where the target subgraphs are straightforward
and similar. In this case, if the predictor network is sufficiently powerful, it can predict the
target representations even without a well-learned context representation. Since the target
encoder weights are updated via the EMA procedure, the learned representations will tend
to be uninformative. Therefore, implementing the predictor network as a simpler and less
expressive network is crucial to achieving the desired training dynamics.

4.4 Experiments

The experimental section introduces the empirical evaluation of the Graph-JEPA model in
terms of downstream performance on different graph datasets and tasks, along with additional
studies on the latent space’s structure and the encoders’ parametrization. Furthermore, a
series of ablation studies are presented in order to elucidate the design choices behind
Graph-JEPA.

4.4.1 Experimental setting

We use the TUD datasets [183] as commonly done for graph-level SSL [230, 231]. We utilize
seven different graph-classification datasets: PROTEINS, MUTAG, DD, REDDIT-BINARY,
REDDIT-MULTI-5K, IMDB-BINARY, and IMDB-MULTI. We report the accuracy of ten-
fold cross-validation for all classification experiments over five runs (with different seeds).
It is worth noting that we retrain the Graph-JEPA model for each fold without ever having
access to the testing partition in both the pretraining and fine-tuning stages. We use the ZINC
dataset for graph regression and report the Mean Squared Error (MSE) over ten runs (with
different seeds), given that the testing partition is already separated. To produce the unique
graph-level representations, we feed all the subgraphs through the trained target encoder and
then use mean pooling, obtaining a single feature vector zG ∈ Rd that represents the whole
graph. This high-dimensional is then used to fit a linear model with L2 regularization for the



80 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

Table 4.1 Values of Graph-JEPA specific hyperparameters for the experiments on the TUD
datasets.

Hyperparameter PROTEINS MUTAG DD REDDIT-B REDDIT-M5 IMDB-B IMDB-M ZINC
# Subgraphs 32 32 32 128 128 32 32 32
# GNN Layers 2 2 3 2 2 2 2 2
# Encoder Blocks 4 4 4 4 4 4 4 4
Embedding size 512 512 512 512 512 512 512 512
RWSE size 20 15 30 40 40 15 15 20
# context - # target 1 - 2 1 - 3 1 - 4 1 - 4 1 - 4 1- 4 1- 4 1- 4

downstream task. Specifically, we employ Logistic Regression with L2 regularization on the
classification datasets and Ridge Regression for the ZINC dataset. For the datasets that do
not natively have node and edge features, we use a simple constant (0) initialization. The
subgraph embedding GNN (Figure 4.2c.) consists of the GIN operator with support for edge
features [109], often referred to as GINE. The neural network modules were trained using
the Adam optimizer [123] and implemented using PyTorch [199] and PyTorch-Geometric
[65], while the linear classifiers and cross-validation procedure were implemented through
the Scikit-Learn library [201]. All experiments were performed on Nvidia RTX 3090 GPUs.
Finally, 4.1 shows the JEPA-specific hyperparameters used for the following experiments.

4.4.2 Downstream performance

For the experiments on downstream performance, we follow Suresh et al. [230] and also
report the results of a fully supervised Graph Isomorphism Network (GIN) [263], denoted F-
GIN in Table 4.2. We compare Graph-JEPA against four contrastive methods, two generative
methods, and one latent self-predictive method [260] (which also regularizes through instance-
level reconstruction). As can be seen in Table 4.2, Graph-JEPA achieves competitive results
on all datasets, setting the state-of-the-art as a pretrained backbone on five different datasets
and coming second on one (out of eight total). Overall, our proposed framework learns
semantic embeddings that work well on different graphs, showing that Graph-JEPA can be
utilized as a general pretraining method for graph-level SSL. Notably, Graph-JEPA works
well for both classification and regression and performs better than a supervised GIN on
all classification datasets. We also provide results with BGRL [232], a node-level latent
self-predictive strategy. We train this model using the official code and hyperparameters
and then mean-pool the node representations for the downstream task. The results are
underwhelming compared to the models reporting graph-level performance, which is to
be expected considering that methods that also perform well on graph-level learning are
appropriately designed.



4.4 Experiments 81

Table 4.2 Performance of different graph SSL techniques on various TUD benchmark datasets,
ordered by pretraining type: contrastive, generative, and self-predictive. F-GIN is an end-
to-end supervised GIN and serves as a reference for the performance values. The results
of the competitors are taken as the best values from [94, 230, 231]. "-" indicates missing
values from the literature. The best results are reported in boldface, and the second best are
underlined. For the sake of completeness, we also report the training and evaluation results
of GraphMAE on the DD, REDDIT-M5, and ZINC datasets in italics, along with the results
of a node-level self-predictive method (BGRL), which does not originally report results on
graph-level tasks.

Model PROTEINS ↑ MUTAG ↑ DD ↑ REDDIT-B ↑ REDDIT-M5 ↑ IMDB-B ↑ IMDB-M ↑ ZINC ↓
F-GIN 72.39 ± 2.76 90.41 ± 4.61 74.87 ± 3.56 86.79 ± 2.04 53.28 ± 3.17 71.83 ± 1.93 48.46 ± 2.31 0.254 ± 0.005
InfoGraph [229] 72.57 ± 0.65 87.71 ± 1.77 75.23 ± 0.39 78.79 ± 2.14 51.11 ± 0.55 71.11 ± 0.88 48.66 ± 0.67 0.890 ± 0.017
GraphCL [269] 72.86 ± 1.01 88.29 ± 1.31 74.70 ± 0.70 82.63 ± 0.99 53.05 ± 0.40 70.80 ± 0.77 48.49 ± 0.63 0.627 ± 0.013
MVGRL [94] - - - 84.5 ± 0.6 - 74.2 ± 0.7 51.2 ± 0.5 -
AD-GCL-FIX [230] 73.59 ± 0.65 89.25 ± 1.45 74.49 ± 0.52 85.52 ± 0.79 53.00 ± 0.82 71.57 ± 1.01 49.04 ± 0.53 0.578 ± 0.012
AD-GCL-OPT [230] 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 85.52 ± 0.79 54.93 ± 0.43 72.33 ± 0.56 49.89 ± 0.66 0.544 ± 0.004
GraphMAE [107] 75.30 ± 0.39 88.19 ± 1.26 74.27 ± 1.07 88.01 ± 0.19 46.06 ± 3.44 75.52 ± 0.66 51.63 ± 0.52 0.935 ± 0.034
S2GAE [231] 76.37 ± 0.43 88.26 ± 0.76 - 87.83 ± 0.27 - 75.76 ± 0.62 51.79 ± 0.36 -
BGRL [232] 70.99 ± 3.86 74.99 ± 8.83 71.52 ± 2.97 50 ± 0 20 ± 0.1 0.5 ± 0 0.33 ± 0 1.2 ± 0.011
LaGraph [260] 75.2 ± 0.4 90.2 ± 1.1 78.1 ± 0.4 90.4 ± 0.8 56.4 ± 0.4 73.7 ± 0.9 - -
Graph-JEPA 75.67 ± 3.78 91.25 ± 5.75 78.64 ± 2.35 91.99 ± 1.59 56.73 ± 1.96 73.68 ± 3.24 50.69 ± 2.91 0.434 ± 0.014

We further explore the performance of our model on the synthetic EXP dataset [1],
compared to end-to-end supervised models. This experiment aims to empirically verify if
Graph-JEPA can learn highly expressive graph representations (in terms of the commonly
used WL hierarchy [184]) without relying on supervision. The results in Table 4.3 show
that our model is able to perform much better than commonly used GNNs. Given its local
and global exchange of information, this result is to be expected. Most importantly, Graph-
JEPA almost matches the flawless performance achieved by He et al. [98], who train fully
supervised.

4.4.3 Exploring the Graph-JEPA latent space

As discussed in Section 4.3.4, the choice of energy function greatly impacts the learned
representations. Given the latent prediction task of Graph-JEPA, we expect the latent
representations to display hyperbolicity. The predictor network approximates the location
on the unit hyperbola to best match the generated target coordinates (Eq. 4.6). Thus, the
network is actually trying to estimate a space that can be considered a particular section
of the hyperboloid model [204], where hyperbolas appear as geodesics. We are, therefore,
evaluating our energy in a restricted part of hyperbolic space. As mentioned before, we find
this task to offer great flexibility as it is straightforward to implement and it is computationally
efficient compared to the hyperbolic distance used to typically learn hyperbolic embeddings
in the Poincaré ball model [192]. Table 4.4 provides empirical evidence for our conjectures



82 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

Table 4.3 Classification accuracy on the synthetic EXP dataset [1], which contains 600
pairs of non-isomorphic graphs that are indistinguishable by the 1-WL test. Note that the
competitor models are all trained with end-to-end supervision. The best result is reported
in boldface, and the second best is underlined. Performances for all competitor models are
taken from [98].

Model Accuracy ↑
GCN [125] 51.90 ± 1.96
GatedGCN [26] 51.73 ± 1.65
GINE [263] 50.69 ± 1.39
GraphTransformer [58] 52.35 ± 2.32
Graph-MLP-Mixer [98] 100.00 ± 0.00
Graph-JEPA 98.77 ± 0.99

Table 4.4 Comparison of Graph-JEPA performance for different distance functions. The
optimization for Poincaré embeddings in higher dimensions is problematic, as shown by the
NaN loss on the IMDB-B dataset. LD stands for Lower Dimension, where we use a smaller
embedding size.

Distance function Ours Euclidean Hyperbolic Euclidean (LD) Hyperbolic (LD)
MUTAG 91.25 ± 5.75 87.04 ± 6.01 89.43 +- 5.67 86.63 ± 5.9 86.32 ± 5.52
REDDIT-M 56.73 ± 1.96 56.55 ± 1.94 56.19 +- 1.95 54.84 ± 1.6 55.07 ± 1.83
IMDB-B 73.68 ± 3.24 73.76 ± 3.46 NaN 72.5 ± 3.97 73.4 ± 4.07
ZINC 0.434 ± 0.01 0.471 ± 0.01 0.605 +- 0.01 0.952 ± 0.05 0.912 ± 0.04

regarding the suboptimality of Euclidean or Poincaré embeddings on 4 out of the 8 datasets
initially presented in Table 4.2, where we make sure to choose different graph types for
a fair comparison. The results reveal that learning the distance between patches in the
2D unit hyperbola provides a simple way to get the advantages of both embedding types.
Hyperbolic embeddings must be learned in lower dimensions due to stability issues [271],
while Euclidean ones do not properly reflect the dependencies between subgraphs and the
hierarchical nature of graph-level concepts. Our results suggest that the hyperbolic (Poincaré)
distance is generally a better choice than the Euclidean distance in lower dimensions, but
it is computationally unstable and expensive in high dimensions. The proposed approach
provides the best overall results. We provide a qualitative example of how the embedding
space is altered from our latent prediction objective in Fig. 4.3.

4.4.4 Additional insights and ablation studies

Model efficiency. In an attempt to characterize the efficiency of our proposed model, we
perform a simple experimental check. In Table 4.5, we compare the total training time needed



4.4 Experiments 83

Euclidean Objective Ours

b.a.

Fig. 4.3 3D t-SNE[238] of the latent representations used to train the linear classifier on the
DD dataset. The change in the curvature of the embedding using the Graph-JEPA objective
(b.) is noticeable. Best viewed in color.

Table 4.5 Total training time and model parameters of MVGRL, GraphMAE, and Graph-JEPA
for pretraining (single run) based on the optimal configuration for downstream performance.
OOM stands for Out-Of-Memory.

Dataset Model Num. parameters Training time
IMDB MVGRL 3674118 ∼ 7 min

GraphMAE 2257193 ∼ 1.5 min (1min 36sec)
Graph-JEPA 19219460 < 1min (56 sec)

REDDIT-M5 MVGRL 4198406 OOM
GraphMAE 2784555 ∼ 46 min
Graph-JEPA 19245060 ∼ 18 min



84 Graph-level Representation Learning with Joint-Embedding Predictive Architectures

Table 4.6 Performance when parametrizing the context and target encoders through MLPs vs
using the proposed Transformer encoders.

Dataset Transformer Encoders MLP Encoders
MUTAG 91.25 ± 5.75 90.5 ± 5.99
REDDIT-M5 56.73 ± 1.96 56.21 ± 2.29
IMDB-B 73.68 ± 3.24 74.26 ± 3.56
ZINC 0.434 ± 0.01 0.472 ± 0.01

for different Graph-SSL strategies to provide a representation that performs optimally on
the downstream task. We show results on the datasets with the largest graphs from Table
4.2: IMDB and REDDIT-M5. While the runtime is hardware-dependent, all experiments are
performed on the same machine. Graph-JEPA displays superior efficiency and promising
scaling behavior. The presented runtime is naturally dependent on the self-supervised scheme
used in each model, so we do not regard it as a definitive descriptor, but rather an indicator of
the potential of fully latent self-predictive models.

MLP parametrization. Table 4.6 contains the results of parametrizing the whole archi-
tecture, other than the initial GNN encoder, through MLPs. This translates to not using
the Attention mechanism at all. For this experiment, and also the following ablations, we
consider 4 out of the 8 datasets initially presented in Table 4.2, making sure to choose
different graph domains for a fair comparison. Graph-JEPA still manages to perform well,
showing the flexibility of our architecture, even though using the complete Transformer
encoders leads to better overall performance and less variance in the predictions.

Positional embedding. Following [98], it is possible to use the RWSE of the patches as
conditioning information. Formally, let B ∈ {0,1}p×N be the patch assignment matrix, such
that Bi j = 1 if v j ∈ pi. We can calculate a coarse patch adjacency matrix A′ = BBT ∈ Rp×p,
where each A′

i j contains the node overlap between pi and p j. The positional embedding can
then be calculated for each patch by simply using the RWSE described in Eq. 4.1 on A′. We
test Graph-JEPA with these relative positional embeddings and find that they still provide
good performance but consistently fall behind the node-level (global) RWSE that we employ
in our formulation (Table 4.7b). An issue of these relative patch RWSEs is that the number
of shared neighbors can obscure the local peculiarities of each patch, rendering the context
given to the predictor more ambiguous.

Random subgraphs. A natural question that arises in our framework is how to design the
spatial partitioning procedure. Using a structured approach like METIS [120] is intuitive



4.5 Conclusion 85

Table 4.7 (a) Performance when using node-level vs patch-level RWSEs. (b) Performance
when extracting subgraphs with METIS vs. using random subgraphs.

(a)

Dataset METIS Random
MUTAG 91.25 ± 5.75 91.58 ± 5.82
REDDIT-M5 56.73 ± 1.96 56.08 ± 1.69
IMDB-B 73.68 ± 3.24 73.52 ± 3.08
ZINC 0.434 ± 0.01 0.43 ± 0.01

(b)

Dataset Node RWSE Patch RWSE
MUTAG 91.25 ± 5.75 91.23 ± 5.86
REDDIT-M5 56.73 ± 1.96 56.01 ± 2.1
IMDB-B 73.68 ± 3.24 73.58 ± 4.47
ZINC 0.434 ± 0.01 0.505 ± 0.005

and leads to favorable results. Another option would be to extract random, non-empty
subgraphs as context and targets. As seen in Table 4.7a, the random patches also provide
strong performance, showing that the proposed JEPA architecture is not reliant on the initial
input, as is the case for many methods that rely on data augmentation for view generation
[138]. Even though our results show that using a structured way to extract the patches might
not be necessary, random sampling can be problematic for larger graphs. Thus, we advocate
extracting subgraphs with METIS as it is a safer option in terms of generalizability across
different graphs and the inductive bias it provides.

4.5 Conclusion

In this work, we introduce a new Joint Embedding Predictive Architecture (JEPA) [134], for
graph-level Self-Supervised Learning (SSL). An appropriate design of the model, both in
terms of data preparation and pretraining objective, reveals that it is possible for a neural
network to self-organize the semantic knowledge embedded in a graph, demonstrating
competitive performance in different graph data and tasks. Future research directions include
extending the proposed method to nodes and edge-level learning, theoretically exploring the
expressiveness of Graph-JEPA, and gaining more insights into the optimal geometry of the
embedding space for graph SSL.





Chapter 5

Data-driven Auxiliary Learning via
Latent Geometric Disentanglement

5.1 Introduction

Human learning is often considered to be a combination of processes (e.g., high-level
acquired skills and evolutionary encoded physical perception) that are used together and can
be transferred from one problem to another. Inspired by this, Multi-Task Learning (MTL) [36]
represents a machine learning paradigm where multiple tasks are learned together to improve
the generalization ability of a model by using shared knowledge that derives from considering
different aspects of the input. Specifically, this is achieved by jointly optimizing the model’s
parameters across different tasks, allowing the model to learn task-specific and task-shared
representations simultaneously. As a result, MTL can lead to better generalization, improved
efficiency at inference time, and enhanced performance on individual tasks by exploiting
their underlying relationships.

A specific form of this learning approach, referred to as auxiliary learning, has garnered
considerable interest in recent years [149]. In particular, auxiliary learning is a specific type
of MTL, where auxiliary tasks are simply tasks that operate on the same (or different) input
data as the main one, intentionally crafted to learn an effective, shared representation able
to boost the performance on the principal task. At the state-of-the-art, auxiliary tasks are
found by meta-learning [153, 188], but this requires the a priori definition of the hierarchy
of the desired auxiliary tasks and is computationally inefficient. Thus, the question is: can
we discover with no prior knowledge one or more additional auxiliary tasks to improve
the performance of the principal task? In this work, we explore this difficult problem by
proposing Detaux, a weakly supervised strategy that discovers auxiliary classification tasks



88 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

+

x(1)

x(2)

x̃(1)

x̃(2)

f

z(1)

g

Subspace forced to encode the principal task by the Oracle

Highest distance compared to the
main task subspace

Label 1

Label 2

Label 3

y'

y'

y

Arbitrary Multi-Task Learning
(MTL) Architecture

Weakly supervised disentanglement procedure

Auxiliary task discovery via clustering

1

2

y pred.

y' pred.

Classification problem

+z(2)

z̃(1)

z̃(2)

Fig. 5.1 Detaux involves two steps: 1) First, we use weakly supervised disentanglement to
isolate the structural features specific to the principal task in one subspace (red rectangle at
the top of the image). 2) Next, we identify the subspace with the most disentangled factor
of variation related to the principal task, and through a clustering module, we obtain new
labels (blue rectangle in the bottom left part of the image). These can be used to create a new
classification task that can be combined with the principal task in any MTL model (bottom
right part of the image).

that enable solving a single-task classification problem in a multi-task fashion. Specifically,
Detaux is capable of individuating unrelated auxiliary tasks: unrelatedness in MTL means
to have two or more tasks that do not share any features, as proven to be effective in the
MTL literature [249, 282, 197, 114, 281, 151]. As a result of this automated procedure,
new auxiliary classification tasks can be discovered on a given dataset, thus opening the
possibility of MTL. In this work, we focus specifically on unveiling a single auxiliary task.

In particular, our method takes roots in the idea from [197], which starts with two groups
of tasks, the principal task and the auxiliary tasks, which are given and known to be unrelated,
and assumes the claim that joint learning of unrelated tasks can improve the performance
on the principal task. They propose to generate a shared low-dimensional representation for
both the principal task and the unrelated auxiliary tasks forcing these two representations to
be orthogonal.

The procedure from [197] exploits a linear classifier and requires the knowledge of the
labels for both the principal task and the auxiliary tasks. With our method, we aim to follow a
similar process giving up on the supervision and fostering non-linear classifiers estimated by
neural networks. The proposed method generates auxiliary tasks in such a way that their labels
implicitly drive an MTL network to understand the unrelatedness between the tasks. Our
idea is to work in a specific representation space, a product manifold, to unveil the auxiliary



5.2 Related Work 89

tasks for a given principal task. We get inspiration from [70], who discovered the product
manifold as a convenient representation basis for disentanglement. In particular, as depicted
in Fig. 5.1, we extract task-specific features using weakly supervised disentanglement; then,
we identify the most disentangled factor of variation within a subspace, and finally, we
generate new labels via a clustering module to enable seamless integration with the primary
task in any MTL model. Notably, this makes the proposed pipeline agnostic to the choice
of the MTL model, given that the latter acts directly on the primary and generated auxiliary
labels, as depicted in the bottom right of Figure 5.1. In this way, any MTL model can be
chosen depending on several factors besides performance, such as efficiency, scalability, and
resource constraints. In the experimental section, we utilize four different MTL models with
Detaux, revealing its flexibility. This makes our proposed pipeline agnostic to the choice of
the MTL model, given that the latter acts directly on the primary and auxiliary labels. In this
way, any MTL model can be chosen, depending on several factors besides performance, such
as efficiency, scalability, and resource constraints. In the experimental section, we utilize
three different MTL models with Detaux, revealing its flexibility.

5.2 Related Work

We organize this section into three different parts, each one providing an overview of a topic
related to our work: i) MTL and auxiliary learning; ii) disentanglement; and iii) existing
studies on the relationship between MTL and disentanglement.

5.2.1 MTL and auxiliary learning

MTL, i.e., the procedure through which we can solve multiple learning problems at the
same time [36], can help us reduce inference time, reach improved accuracy, and increase
data efficiency [228]. When the adopted dataset contains annotation for multiple tasks,
the challenges to face concern which tasks may work well together [273, 228, 67] or how
to weigh the losses of different tasks [121] to create a better joint optimization objective.
Numerous methods have recently emerged addressing the simultaneous resolution of multiple
tasks [72, 239].

A different problem arises when we would like to use one of these methods but only one
task is approachable, given the annotations in the considered dataset. Auxiliary task learning
aims at maximizing the prediction performance on a principal task by supervising the model
to additionally learn other tasks, as shown in [153, 188]. Therefore, auxiliary tasks are tasks
of minor interest, or even irrelevant compared to the principal task we want to solve, and



90 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

thus can be seen as regularizers if learned simultaneously with the task of interest [149].
For example, [197] suggests that using two unrelated groups of tasks, where one of them is
hosting the principal task, can lead to better performance, where unrelated means that the two
groups of tasks are defined by an orthogonal set of features. Also in [149] the authors make
use of seemingly unrelated tasks to help the learning on one principal task, this time without
imposing any constraint on the feature structure. In our case, we are working in product
manifold, which has been already shown by [70] as effective for separating embedding
subspaces that are orthogonal by design.

Moreover, recent emerging techniques leverage meta-learning to effectively select the
most appropriate auxiliary tasks or even autonomously create novel ones. [153] and [148]
both train two neural networks simultaneously, a label-generation network to predict the
auxiliary labels and a multi-task network to train the primary task alongside the auxiliary task.
These, in contrast with our approach, require the a priori definition of a hierarchy binding
the auxiliary labels to the principal task labels and present conflicting ideas on the possible
semantic interpretation of the generated labels. Furthermore, they are computationally
inefficient: meta-learning is a resource-intensive technique and requires the retraining of the
entire architecture to change the employed multi-task method.

Even more recently, [53] propose to deconstruct existing objectives for NLP within a uni-
fied taxonomy, identifying connections between them, and generating new ones by selecting
the best combinations from a cartesian product of the available options. Furthermore, [186]
also used meta-learning, presenting a novel framework for generating new auxiliary objec-
tives to address the niche problem of few-shot semi-supervised tabular learning. To the
best of our knowledge, we are not aware of any other method that proposes a systematic
approach for generating new labels from a disentangled latent space, in order to enable MTL
classification when only the annotations for one task are given in the considered dataset.

5.2.2 Learning disentangled representations

Representing data in a space where different components are independent is a long-standing
research topic in machine learning. The rise of deep learning in recent years led to pro-
posed learning disentangled representations as an important aspect of unsupervised deep
learning [22].

Recent literature has proposed several characterizations of disentanglement, whether that
is in terms of group theory [99], metric and product spaces [70], or permutations of element-
wise, nonlinear functions [106]. The seminal paper of [100] demonstrated that variational
auto-encoders could learn to disentangle by enforcing the ELBO objective, while [42]
relies on GANs and an information-theoretic view of disentanglement. Later works, such



5.2 Related Work 91

as [60, 221, 193] extensively explored different directions and use cases. Work by [157]
showed that completely unsupervised disentanglement was not possible due to the inability of
the models to identify factors of variation. Soon after, the authors proposed weak supervision
and having access to few labels as a way to bypass this limitation [158, 160].

In Detaux, we place ourselves in the same setting of [70], but control and force the
disentanglement by supervision only on the known (principal) task. We describe in detail the
main differences between the original method and our custom implementation in Section 5.4.

5.2.3 Relationship between MTL and disentanglement

[178] report a connection between disentangled representations and MTL, showing that
disentangled features can improve the performance of multi-task networks, especially on
data with previously unseen properties. Disentanglement is obtained by adversarial learning,
forcing the encoded features to be minimally informative about irrelevant tasks. In this case,
the tasks to be disentangled are known a priori, while in our case, only the principal task is
known.

[266] propose a novel concept called “Knowledge Factorization”. Exploiting the knowl-
edge contained in a pre-trained multi-task network (called teacher), the idea is to train
disentangled single-task networks (called students) to reduce the computational effort re-
quired by the final single-task network. The factorization of the teacher knowledge is dual:
they provide structural factorization and representation factorization. In structural factoriza-
tion, they split the net into a common-knowledge network and a task-specific network, based
on mutual information.

Finally, [176] propose a disentanglement analysis of MTL models by creating a semi-
synthetic dataset based on latent information in simple datasets. The authors run the latent
information through randomly initialized fully-connected layers to create tasks that are harder
than just recovering the simple factors. A CNN is then trained to produce a representation
that fits these auxiliary tasks. The reported results may be seen as inconclusive, as they
do not provide a clear indication of how disentangled representations directly impact MTL
performance.

In our proposal, we show that disentanglement in a representation space can be used as a
general prior for MTL, i.e., by using disentanglement to mine for auxiliary tasks, an MTL
model extracts a model-specific embedding which exploits the combination of the principal
and the newly discovered labels, thus improving the performance on the principal task.



92 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

5.3 Mathematical Background

To understand the core concepts of our research, let us delve into the mathematical back-
ground presented in [70]. Due to lack of space, we only provide a compact overview of the
key concepts of this idea and refer the readers to the original paper for more details regarding
the loss formulations and training process.

Given as input a collection of data, such as a set of labeled images, a disentanglement
procedure should output a representation of these data, separating the different generative
factors that produce all the variations observed in the data. The method proposed by [70]
is based on the manifold hypothesis: high-dimensional data lies near a lower-dimensional
manifold. Fostering this idea, the authors claim that, if independent factors generate the
data, then this manifold is a product manifold: M = M1 ×M2 × . . . ×Mk, where each
Mi, i ∈ {1 . . .k} is orthogonal to the others and represents (in the ideal case) at most one
generative factor of the data. Given a pair of data (x1,x2) that differ in the h-th generative
factor only, in [70], their learned representations are considered fully disentangled if they are
equal for all projections in the submanifolds {Mi}k

i=1, except for the h-th.
In practice, the authors consider a finite-dimensional normed vector space Z containing

the disentangled latent representation, obtained as the output of an encoder network (Z is
indeed a special case of a manifold). Without loss of generality, considering Z over the field
of reals, we can state that Z ⊆Rd . Under perfect disentanglement, i.e., a fully minimized loss
term L from Equation 5.2, the latent disentangled representation takes the form of a Cartesian
product space Z = S1 ×S2 × . . . ×Sk, such that for all (i, j) ∈ {1 . . .k},Si ∩S j = {0}.
Intuitively, each subspace encodes an “axis” of variation. Finally, an aggregation step
restores the complete latent information, and a decoder g maps the resulting vectors back
to the input data space. More specifically, each Si ⊆ Rd , such that the subspaces have the
same dimensionality as the product space Z. Using a specific regularization (as defined in
Equation 5.6), each subspace will have only a few non-zero entries, and the non-zero entries
in one subspace will be zero in the others. This results in orthogonal and sparse Si, which
can then be aggregated through summation.

To learn the global manifold structure, a standard autoencoder architecture is used, with
f being an encoder that receives non-i.i.d data pairs (x(1),x(2)) and produces the latent
representations (z(1),z(2)), and the decoder g that approximates the inverse of f . The pair
sampling procedure is designed to induce weak supervision, requiring a pair of images to
vary only in one (or a few) generative factors. Additionally, a set of k neural networks
pi, i ∈ {1 . . .k} called projectors, are trained simultaneously and guided by an unsupervised
oracle O , to map the latent codes in the subspaces {Si}k

i=1, each of which contains the
corresponding submanifold {Mi}k

i=1. To wrap up, the representation framework operates in



5.3 Mathematical Background 93

the following way:

x
f−→ z

{pi}−−−−→
i=1...k

{si}
∑i−−−−→

i=1...k
z̃

g−→ x̃ , (5.1)

where the pis are nonlinear operators, and z̃ and x̃ are the aggregated latent representation
and the reconstructed input, respectively. The visual representation of this process is depicted
in Figure 5.1, inside the red rectangle. Notably, f and g are initially trained only to minimize
the reconstruction error, which is needed to generate the global structure of the manifold
M . After a warm-up period, three constraints are added to the optimization problem, each
with its own non-learned weight (i.e., β1, β2, and β3, used to regulate the evolution and
combination of the losses) to disentangle the latent code:

L = Lrec +β1(Ldist +Lspar)+β2Lcons +β3Lreg . (5.2)

Specifically, Lrec corresponds to a reconstruction loss, implemented in practice as the
squared error between the input and the reconstruction following the aggregation operation
in the latent space. It is defined as:

Lrec = ∥x− x̄∥2
2 , (5.3)

x̄ = g
(

∑(p1( f (x)), . . . , pk( f (x))
)
. (5.4)

This term is necessary to learn the global structure of the manifold M .
The distance loss, Ldist , is a contrastive loss term that follows an oracle O , which

calculates the subspace Si where the projections of the images in the pair (x1,x2) differ
the most, and encourages the projection representation of the two input images onto the
subspaces not selected by O to be as close as possible, while the projections in the selected
Si to differ the most. It is defined as:

Ldis =
k

∑
i=1

(1−λi)δ
2
i +λi max(m−δi,0)2 , (5.5)

where λi = 1 if O(z(1),z(2)) = i and 0 otherwise, while m is a hyperparameter that constrains
the points to be at least at a distance m from each other.

Lspar is a L1 constraint which promotes sparsity and orthogonality between the subspaces.
It is defined as:

Lspar =
k

∑
i=1

∥pi( f (x))⊙
k

∑
j ̸=i

p j( f (x))∥1 . (5.6)



94 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

As mentioned at the beginning of the section, this constraint allows the disentanglement
framework to use the sum operation to aggregate the subspaces. The minimization of Lspar

promotes sparsity and orthogonality between the subspaces, encouraging each one to have a
few non-zero entries that will be zero in the others. In our finite-dimensional setting, this
loss is equivalent to imposing that the product space is a direct sum of the subspaces.

Lcons, namely the consistency loss, encourages each projector pi to be invariant to
changes in subspaces S j, j ̸= i. It is defined as:

Lcons =
k

∑
i=1

||pi( fθ (x̂si))− si||22 , (5.7)

with si = pi f (x1) and x̂si = g(∑(pi f (x1), p j ̸=i f (x2))). Along with Ldist , this constraint
encourages a metric definition of disentanglement, i.e., given a pair of images that are
different in image space w.r.t to a particular factor, they should be equally different in the
latent representation of that attribute, hosted only in one submanifold which composes the
global, product manifold of the latent representation.

Finally, the regularization loss Lreg introduces a penalty that ensures the choice of the
oracle O is uniformly distributed among the subspaces, to avoid the collapse of information.
This is necessary given the initial warm-up period with only the reconstruction loss being
active, as there is no guarantee that information will be equally spread out among the
subspaces. It is defined as:

Lreg =
k

∑
j=1

(
1
N

N

∑
n=1

An, j −
1
k

)2

, (5.8)

with A ∈ RN×k being the practical implementation of the oracle indicator variables of
Equation 5.5 in a batch of N pairs, obtained by applying a weighted softmax to the distance
matrix of pairs in each of the k subspaces.

5.4 Methodology

In this Section, after introducing the setting and the adopted notation, we will describe
the fundamental contributions of our work: the principal task-based oracle 5.4.1, and the
auxiliary task discovery procedure 5.4.2.

Setting and notation We assume the existence of a labeled image dataset D= {(x(i),y(i)) |∀i∈
{1 . . .N}, x(i) ∈ Rw×h×c, y(i) ∈ N}, where w is the width, h is the height, and c is the number



5.4 Methodology 95

of channels, and N is the number of (image, label) tuples. We consider the classification task
whose fundamental objective is to learn a mapping from the image space {x(i)|∀i ∈ {1 . . .N}}
to the corresponding label {y(i)|∀i ∈ {1 . . .N}}.

5.4.1 The principal task-based oracle

A major issue of the procedure proposed by [70] in our setting is that the oracle will assign
the variation given by the principal task label to a random subspace. In order to facilitate
the automatic discovery of auxiliary tasks, we must have a way to accommodate the known
variation of the principal task in an arbitrary subspace and fix it there, constraining the
representation learning. To achieve this, we define a masking procedure that creates the
principal task oracle Ô , such that the α-th subspace contains all the variation in the data
corresponding to pairs (x(1),x(2)) whose elements differ in their label. This implies that
we do not inject direct knowledge of the known label, but only whether or not it differs
between images of the pair. Thus, in contrast to [70], where all labels are required, we only
need to utilize the labels associated with the principal task. To do this, we select a subspace
α ∈ {1 . . .k} where we wish to force the variation of the principal task labels (α = 1 in all
our experiments) and define Ô as:

Ô(z(1),z(2)) =

α if y(1) ̸= y(2)

argmaxi d(s(1)i ,s(2)i ), i ̸= α otherwise
, (5.9)

where d(s(1)i ,s(2)i ), i ∈ {1...k} is the distance between the projections of the pair (z(1),z(2)),
in each i-th subspace Si.

Our new oracle implies that the distance and regularization losses will always force the
variation in the data to be encoded in Sα if y(1) ̸= y(2), and in a different subspace otherwise
(if y(1) = y(2)). The choice of the subspace for the case y(1) = y(2) is made by looking at where
the distance between the projections is maximal, as given by the argmax in Equation 5.9. We
set α = 1 in practice as this is a simple and intuitive choice, but any other value ∈ {1...k}
is perfectly suitable. While the organization of the representation space will change with a
different choice of the alpha value, this won’t affect performance, which will remain the same.
In practice, we implement the argmax via a softmax operation on the Euclidean distance
normalized by the average length of the vector representation in each subspace. Thanks to
the consistency loss, the remaining subspaces can encode other variations while remaining
invariant to the ones related to the principal task and contained in Sα . This constraint
imposed through the consistency loss will lead us to discover a proper representation where



96 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

unknown tasks will correspond to (possibly) multiple subspaces, orthogonal to the ones of
the known task.

5.4.2 Auxiliary task discovery

In the disentangled representation of the input data, where the known principal task variation
is encoded into a specific subspace, we look to find new, auxiliary tasks in the remaining
subspaces.

Intuitively, we wish to have a disentangled subspace that exhibits a clustering tendency
over the projected data. Therefore, set p j to be the projector that has maximized the overall
distance d of Equation 5.9 after training and apply a clustering algorithm to the corresponding
subspace S j to obtain weak labels, determining the new auxiliary classification task. Given
that the disentanglement procedure already indicates how much each subspace is divided
into clusters via d, choosing subspace S j makes it such that the image embeddings are
already well separated, giving the clustering procedure that follows an advantage. Under
the assumption that tasks living in orthogonal spaces help increase MTL performance [197],
we now show why our method regularizes the learning procedure and implicitly guides it
towards orthogonal feature spaces for each task.

For the sake of analysis, assume that the model achieves perfect disentanglement. This
situation coincides with the condition L = 0 in Equation 5.2. Let Sα be the subspace that
contains the variation of the principal task, forced by Equation 5.9, and Z∈RN×d be the latent
representation of the input data x. Then, for any two vectors {z(1),z(2)} ∈ Z, the functions
pα and p j will lead to the latent representations {s(1)α ,s(1)j ,s(2)α ,s(2)j }, such that the metric d

induced by the norm of the space acts independently on d(s(1)α ,s(2)α ) from d(s(1)j ,s(2)j ), due to

the orthogonality of the basis vectors. In simpler terms, the relationship between d(s(1)α ,s(2)α )

will not influence the one between d(s(1)j ,s(2)j ), given that the information encoded in each
subspace is different. This can also be verified in terms of covariance, where due to the
orthogonality of subspaces ⟨pα(Z), p j(Z)⟩ = 0, which would lead to a covariance (given
centered data) of 0. To summarize, the labels of the new auxiliary tasks contain discriminative
information that cannot be reduced to the set of the principal task labels. In this way, the
auxiliary task will not provide redundant information.

While it is possible to use an arbitrary clustering algorithm, we would like for it to
support clusters of arbitrary shapes and for the number of clusters to not be directly specified
(e.g., K-Means). Therefore, we utilize HDBSCAN [34] since it allows us to cluster data
points based on their proximity and density without explicitly specifying the number of
clusters. It is worth noting that HDBSCAN can associate points that cannot be assigned



5.5 Experiments 97

to any cluster to a “noise” cluster. We retain the data points labeled as belonging to the
noise cluster as part of the auxiliary task. If HDBSCAN finds just one cluster, we denote
the run as unsuccessful and stop the procedure, given that training a successive MTL model
with an auxiliary task with only a single label will lead to a trivial solution. Otherwise,
we have discovered a novel task and its corresponding labels y′ ∈ N, which can be used
as input to any MTL model, as depicted in the phase 2 of Figure 5.1. In this work, we
limit ourselves to finding only one additional task. Scaling on more tasks,i.e., investigating
additional subspaces, is the subject of future work. At this stage, we have access to the new
dataset D′ = {(xi,yi,y′i) |∀i ∈ {1 . . .N}, xi ∈ Rw×h×c, yi,y′i ∈ N}. We are now ready to learn
on D′ using multi-task classification.

5.5 Experiments

Implementation details We fix the batch size to 32 and the learning rate to 0.0005 for
all our experiments. Our code is written within the PyTorch Lightning framework, we use
AdamW [161] as an optimizer, and all the experiments are executed on an NVIDIA RTX
3090. We train the disentanglement model for 40 epochs on 3D Shapes and 400 epochs
on FACES, CIFAR-10, SVHN, and Cars. The first quarter (25%) of the epochs is used as
a warm-up period where only Lrec is active. On the other hand, the coefficients β1,β2,β3

follow an exponential warm-up routine after this reconstruction-only phase, such that the
constraints they modulate are more gently in the optimization procedure. The projectors
pi, i ∈ {1 . . .k} are implemented as two layers MLPs. Finally, all the MTL models were
trained for 150 epochs.

We start by providing a motivating toy example on the 3D Shapes [31] synthetic dataset
in 5.5.1. Next, 5.5.2 explains the experiments on real-world image datasets (i.e., FACES [61],
CIFAR-10 [130], SVHN [190], and Cars [128]), to cope with real and complex use cases.
Finally, in 5.5.3 we discuss some additional experiments and research questions that pinpoint
the advantages of our solution.

For all our experiments, we fix the batch size to 32, the learning rate to 0.0005, AdamW [161]
as optimizer, within the PyTorch Lightning framework, on an NVIDIA RTX 3090. We train
our disentanglement model for 40 epochs on 3D Shapes and 400 epochs on the other datasets.
Instead, all the MTL models were trained for 150 epochs.



98 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

5.5.1 Synthetic data

To showcase the capabilities of our methodology, we begin our experiments with the 3D
Shapes dataset, a widely used benchmark in the disentanglement literature [122, 159, 70].
3D Shapes is composed of six generative factors: floor hue, wall hue, object hue, scale, shape,
and orientation, resulting in 480,000 images. To adapt it to our specific case, we treat the
classification of one generative factor as the principal task and pretend to have no knowledge
of the others.

Due to the synthetic nature of the images in 3D Shapes, solving classification tasks with a
neural network can be excessively easy, leaving limited possibility for improvement through
MTL. Specifically, using a simple VGG16 model, we achieve perfect accuracy on each of
the six possible tasks, with the expectation of object hue, which is classified with 99.98%
accuracy. Thus, to render this setting slightly more complicated, we add salt-and-pepper
noise to 15% of the image pixels. With the presence of noise, the classification of the object
scale (4 classes) becomes challenging. Hence, we have chosen it as the primary task for our
experiments.

We sample pairs of images with 0.5 probability of having the same principal task label
and fed these into the disentanglement model, where the encoder f and the decoder g are
parametrized through a simple LeNet-like autoencoder architecture. The number of subspaces
k is set to 10 as used in [70].

As described Sec. in 5.4.2, we cluster the most disentangled subspace (not considering the
forced one) according to the disentanglement loss. The minimum cluster size hyperparameter
of HDBSCAN is set to 2% of the number of data points N. In our experiment, it coincides
with the subspace which contains the information regarding the object hue (10 classes). Given
the optimal disentanglement on 3D Shapes, the auxiliary labels generated by the clustering
procedure almost perfectly match the ground-truth object hue labels, having homogeneity
and completeness scores of 0.999.

We feed the noisy 3D Shapes and the enriched label set into an MTL hard parameter-
sharing architecture with a VGG16 [219] as the backbone and compare Single-Task Learning
(STL) vs MTL (using, respectively, one vs two classification heads). For this comparison,
we need to perform a train-test split on 3D Shapes, which is non-trivial since the possible
combinations of the latent factors in the dataset are present exactly once. Therefore, we split
the dataset based on the floor and wall hue labels, allocating the images that contain 5 out of
the 10 values for both factors only to the testing set, resulting in a 75-25 train-test split. On
the principal task, MTL achieves an accuracy of 0.889, outperforming with a large margin
the 0.125 obtained by STL.



5.5 Experiments 99

Table 5.1 Classification accuracy on the FACES, CIFAR-10, SVHN, and Cars datasets. (*)
indicates that the results are the ones reported in the original paper. Boldface indicates the
best results, underlined text indicates the models that outperform STL.

Learning Paradigm FACES CIFAR-10 SVHN Cars
STL 0.915 0.844 0.956 0.711
Ours MTL-HPS 0.951 0.848 0.954 0.789
Ours NDDR 0.932 0.872 0.952 0.712
Ours MTI 0.978 0.910 0.961 0.807
MAXL 0.933 0.868 0.953 0.638
AuxiLearn 0.915 0.811 0.943 0.644*

5.5.2 Real data

As in the toy example, during the disentanglement procedure, pairs of images are sampled
only based on the principal task labels. In FACES this corresponds with the person’s facial
expression. In CIFAR-10, SVHN, and Cars with the only annotated labels. To obtain a higher
fidelity reconstruction, we utilize a ResNet-18 encoder-decoder architecture. The number of
subspaces k is set to 10.

During the auxiliary task discovery, we set the minimum cluster size hyperparameter of
HDBSCAN to 1% of the number of data points N for all the datasets.

We compare our approach to two different auxiliary learning methods, i.e., MAXL [153]
and AuxiLearn [188]. Unlike these auxiliary learning architectures, our discovered auxiliary
task can be exploited interchangeably with any MTL model. To have as much control as
possible over the experiments, we first use parameter-sharing MTL networks as competitors.
Specifically, we select: i) HPS (weighing the losses to give more importance to the main
task, as explained in [121]), ii) NDDR [72], and iii) MTI [239], to foster this property of
our approach. All these models have a loss term composed of a summation of each task’s
classification losses. In this way, during the backpropagation, the gradient alters any shared
parameters between the two tasks while looking to maximize performance on both, which is
what drives the improved generalization capability.

In particular, MTI was proposed to operate with an HRNet backbone [250]. This type
of network performs multi-resolution fusion, starting from a high-resolution convolution
stream and gradually adding high-to-low-resolution convolution streams one by one, finally
connecting the multi-resolution streams in parallel. Since the datasets we operate on contain
mostly low-resolution images (e.g., 64× 64), learning an HRNet from scratch results in
low-quality representations. To avoid this initial problem, we use the official code of MTI,
which uses an HRNet pre-trained on ImageNet.



100 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

Tab. 5.1 summarizes the results. MTI with our generated labels displays the best perfor-
mance. Furthermore, even simple CNN-based architecture like HPS and NDDR, achieve
superior results compared to MAXL and AuxiLearn. Most notably, we outperform STL with
at least one of the MTL models in all the datasets, whereas MAXL and AuxiLearn have
significant performance discrepancies between the datasets.

We would like to report, for the sake of completeness, that on the CARS dataset, which
contains very complex images, we exploit pre-trained MTL models. For the disentanglement
phase, we change the structure of the encoder f such that it does not produce a dense
representation in the bottleneck layer but a compressed feature map. The latent space
projectors are then learned using 1× 1 convolution, and the disentanglement losses are
applied to the flattened feature map. Furthermore, in Tab. 5.1, with *, we denote the result
we take from the original paper, as we encountered challenges in replicating the performance
using the available code and information.

5.5.3 Ablation studies

Is disentanglement useful for discovering new auxiliary tasks?

With this ablation, we wish to quantitatively and qualitatively show how disentanglement is
effective in extracting task labels from the underlying data structure. On the FACES dataset,
we compare the auxiliary task generated by Detaux with the auxiliary task resulting from
the clustering on the latent space of an autoencoder that only learns to reconstruct. Without
the disentanglement, HPS can only reach 0.9 accuracy, worse than the 0.915 obtained by
STL. This reveals that performing auxiliary task mining on the entangled autoencoder space
provides an auxiliary task that is not beenficial to the multi-task network compared to our
approach. In Fig. 5.2, we compare the projected messy clusters created from the entangled
representation (a) and the clear grouping obtained in the disentangled representation space
(b).

Is it necessary to return to the image space for MTL?

One may ask why we did not work directly in the latent feature space found by the disentan-
glement procedure. We did some preliminary experiments in this direction, but they yielded
inconclusive results and raised implementation issues that are out of the scope of the contri-
bution of this paper. A reason is that most of the MTL frameworks (e.g., MTL-HPS, NDDR,
and MTI) require convolution, which is not well defined in the feature space. Another reason
is that Detaux works at a representation level, regardless of any classification aim induced by
a specific classification framework. Its sole purpose is to reveal, together with the principal



5.5 Experiments 101

Fig. 5.2 3D visualization (via PCA) of the discovered auxiliary task in the entangled au-
toencoder feature space (a) and the most disentangled subspace (b) on FACES. Learning a
disentangled representation leads to a subspace that separates the data into two major groups,
which correspond to the labels of the new auxiliary task. Instead, using only a reconstruction
loss leads to an entangled representation from which it is not beneficial to extract auxiliary
tasks. Different colors mean different clusters found by HDBSCAN, which are subsequently
projected by PCA in 3 dimensions. Best viewed in color.

subspace determined by the initial labels, other orthogonal complementary subspaces, which
can be assumed as tasks if they admit clustering. The output of Detaux is an enriched set of
labels, that can be exploited with any MTL model. In addition, Detaux enables us to visualize
and interpret the disentangled subspaces since it reconstructs the images. This procedure
allowed us to understand that, in the toy example, the additional task corresponds to the
object’s hue. Unfortunately, in the more complex real cases, clear interpretation becomes
more challenging, barely disclosing in the FACES benchmark the gender as an additional
task. We provide an example where this difference is can be visualized via latent interpolation
in Fig. 5.3. In the other and much more complex datasets, we had no clue. It is worth noting
that our main focus is the framework that transforms a single-task classification problem into
an MTL one, with the interpretability of novel tasks being an immediate direction of future
work.



102 Data-driven Auxiliary Learning via Latent Geometric Disentanglement

Fig. 5.3 An example of latent interpolation in the disentangled subspaces on the FACES
dataset. The columns represent a pair of images sampled from the dataset, while the rows
represent the chosen number of disentangled subspaces k. The first and last columns hold
the real images, the second and second-to-last represent their corresponding reconstructions,
and the three middle columns (i.e., columns 3,4,5) represent an interpolation from the left
image to the right, with each row being a disentangled subspace. The first row (Sα ) contains
the principal task, i.e., emotion recognition. One can notice how only the eyes and mouth,
related to smiling and being happy are altered, while the rest of the face remains almost
identical. In the second row, we can see a candidate auxiliary task, where the gender of the
subject seems to change and display different traits. These traits are indeed diverse from the
ones dealing with the change in emotion, isolated in the first subspace, showing how we can
extract orthogonal auxiliary tasks.



5.6 Conclusion 103

5.6 Conclusion

In this chapter, we revealed a novel outlook on the utility of disentangled representations,
utilizing them as a proxy for auxiliary learning in order to improve the accuracy of a principal
task originally solvable only in a single-task fashion. Our proposed pipeline facilitates
the unsupervised discovery of new tasks from a factorized representation. These newly
discovered tasks can be readily incorporated into any MTL framework. We demonstrate
empirically that this approach offers advantageous performance, and we analyze various
aspects using ablation studies. Our implementation and analysis shed light on the potential
of combining disentanglement and MTL for improved performance and generalizability.





Chapter 6

Conclusions

6.1 Overview of the Contributions

This thesis navigates the intricate intersection of deep learning, graphs, and geometry,
offering innovative solutions to enhance neural network capabilities in handling complex
data structures. Research findings are presented in two different forking paths: First, we
show that graph data and deep learning can be leveraged to solve 3D Computer Vision
problems, specifically object localization in partially observed 3D scenes and 3D human
pose forecasting. The second path delves into more theoretical aspects of Geometric Deep
Learning, focusing on the geometry of latent representations learned from neural networks.
This intersection of deep learning, graphs, and geometry results in novel solutions that
enhance neural networks’ capabilities in handling non-Euclidean data structures and learning
representations beyond assumed Euclidean latent spaces.

6.2 Limitations

Object localization in partially observed 3D scenes Despite being the first to formalize
and propose solutions to this difficult problem, the overall performance of the system is
relatively low. Abstract reasoning over space is a very difficult task, and the obtained results
reveal that more research is needed before we can adapt object localization in partial scenes
in a practical scenario. The proposed approaches model a scene as a graph by considering
only a single room. Therefore, a natural step forward would be to consider hierarchical
structures such as buildings with multiple rooms. In this scenario, our graph formulation
of the problem would not scale well and it would not be able to directly accommodate the
hierarchy. Nevertheless, these are issues that can be solved efficiently in future research. The



106 Conclusions

amount of available data from scene exploration is very large and multimodal. Our proposed
approaches work at a very abstract level and do not consider additional multimodal features
from the scene such as text embeddings from LLMs or visual embeddings. Multimodal
learning is an important future direction for tasks that are related to navigation, such as object
localization, but it is something we have not tackled in our current work.

3D Human Pose Forecasting As a model that inherits properties from GCNs, SeS-GCN is
prone to over-smoothing, which places an upper bound on the interactions the model can
capture, especially in the temporal aspect. We tried to counter this by learning the adjacency
matrix of the pose, but we did not consider more expressive alternatives such as modern graph
Transformers. Furthermore, after learning the adjacency matrix, our model treats all (graph)
neighbors in the same way, a key property of convolution. The soundness of this property
for human pose forecasting remains to be explored. As mentioned in the contributions, our
model allows us to reach an F1-score of 0.64 on CHICO when it comes to the cobot collision
benchmark. Despite reaching state-of-the-art performance, further improvement is needed
before our model can be deployed to real-time scenarios. On the other hand, its efficiency
allows for immediate use in a hardware-restricted environment, as far as pose forecasting
is concerned. Related to the dataset, CHICO currently contains interaction only with type
or robotic arm. Even though it is the first dataset of its kind, this puts a limit on the type of
trajectories the model can be tested on. While this is not a limitation per se but more so a
derivative of modern learning systems, it limits the transferability of methods trained on the
proposed dataset in other environments that might not have exactly the same KUKA robotic
arm.

Graph-level Representation Learning At the current stage, Graph-JEPA has been de-
signed and tested with regard to graph-level tasks. Therefore, the inability to work on
node-level and edge-level tasks is a limitation of the proposed approach, given that there
exist models present in the state of the art that can tackle all of these different types of tasks
The expressiveness of Graph-JEPA in terms of the WL test is only validated empirically,
which does not allow us to directly compare it with (MP)GNNs. As a final limitation and
direction of future work, insights into the optimal geometry of the embedding space for graph
SSL are not conclusive. We observe that hyperbolic representations are more optimal for
graph-level tasks, as conjecture, but the hierarchical structure might not be as necessary for
node-level tasks. In this regard, an interesting theoretical direction is to try and characterize if
self-supervised and unsupervised deep learning approaches already tend to learn embeddings
that are hierarchical and look at the geometry of the latent space. Mixed geometry approaches



6.3 Future Work 107

might be an important advancement in this regard. Additional empirical validation regarding
the scaling performance of Graph-JEPA is necessary, especially on the large-scale OGB
datasets.

Auxiliary Multi-task Learning through Geometric Disentanglement The main limita-
tion of Detaux is the fact that the generated auxiliary tasks are classification tasks, given the
discretization due to the clustering procedure. As such, our framework cannot currently pro-
duce different types of tasks. Another limiting factor is that in order to generate meaningful
submanifolds, the initial representation of the product manifold should be as close as possible
to a bijection with the input data. In simpler words, a good reconstruction is necessary in
the first part of the pipeline, which requires sophisticated models for more complex images.
While we have focused on image data, a great open question remains whether it is possible to
use the same pipeline to extract auxiliary tasks for dynamic data such as videos. This point is
not explored and is left for future work.

6.3 Future Work

There is a massive body of work that is currently exploring the extensions of neural networks
in alternative geometries, in particular hyperbolic [71, 208, 174, 218, 87] and (learnable)
mixed geometries [279]. One of the most important aspects regarding future work in this
domain is computational efficiency, given that arc lengths and distances in non-Euclidean
geometries are usually much more expensive. This is partly due to the fact that calculations
on the Euclidean plane have been optimized for a very long time in the computer science
community. A very important research direction is the geometric understanding of learning
capabilities and characterization of the representations learned by neural networks [198, 2].
In this regard, understanding what invariants might allow DL approaches to learn some data
while failing to learn others is a very important direction. Additionally, using geometry
and even more abstract concepts from topology to enforce valuable properties such as
disentanglement [22, 70, 179] is an important research direction.

Regarding graph neural networks, it is vital for the research community to understand
how and why self-supervised learning on graphs seems to not work and scale, as well as in
other domains. This might be due to the GNN architecture per se, or due to the fact that the
self-supervised signals are not simple to adapt to graphs [143]. A promising direction for
improving graph learning is extending the concept of physical diffusion (e.g., random walks)
as a learning mechanism [18]. In this regard, geometric concepts can play a significant role.
Finally, the well-celebrated problems of oversmoothing[25] and oversquashing [234] most



108 Conclusions

surely present the chances for novel work and breaking into a new era of neural networks on
graphs.

6.4 Closing Remarks

I want to conclude this thesis by touching upon something that I consider really important,
which is the importance of this research topic in the study of learning systems that can lead to
AI. It is a common belief that humans have a geometric understanding of the world. This can
be clearly understood when one reflects on the strong connections of geometry with physics,
from classical mechanics to quantum mechanics and the theory of relativity [92] [169]. The
more critical aspect of this connection is that, often, humans (intuitively and subconsciously)
reason about physical concepts through shapes, distances, and sizes. This subtle process
encodes a defining feature of intelligent beings, i.e., that they are able to understand and alter
their environment to their advantage intuitively. A perfect example is the wheel, considered
the most influential invention ever. At the time of its invention in ancient Mesopotamia,
people had no conception whatsoever of mechanics, but somehow, they understood from
what they had observed during their lifetime that a circular shape would reduce friction and
facilitate motion under the application of external forces.

Geometry provides a way to give form to these physical concepts, and the concept of
symmetry is what drives most modern physical theories. What is most astounding about this
fact is that, albeit at a basic level, human beings are able to understand geometric concepts in
a somehow natural manner. If we think about data the same way, geometric understanding
becomes an essential factor when it comes to generalization. It is fundamental because if
symmetries and invariances in the data can be induced, this implies the learner understands
that the structure present in the data, and not just the signals, are needed to satisfy its objective.
Based on this conjecture, it should be more straightforward to transfer knowledge to identical
structures and understand the similarities between different structures. Thus generalizing
over the same "space" becomes simpler. This aspect of Geometric Deep Learning is often
not discussed, but it should be held in high regard, and I believe it will contribute to several
research directions in the future that deal with the physics of AI systems.



References

[1] Abboud, R., Ceylan, I. I., Grohe, M., and Lukasiewicz, T. (2020). The surprising power of
graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179.

[2] Acosta, F., Sanborn, S., Duc, K. D., Madhav, M., and Miolane, N. (2023). Quantifying
extrinsic curvature in neural manifolds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 610–619.

[3] Adiga, S., Attia, M. A., Chang, W.-T., and Tandon, R. (2018). On the tradeoff between
mode collapse and sample quality in generative adversarial networks. In 2018 IEEE global
conference on signal and information processing (GlobalSIP), pages 1184–1188. IEEE.

[4] Aksan, E., Kaufmann, M., and Hilliges, O. (2019). Structured prediction helps 3d
human motion modelling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV).

[5] Anderson, J. W. (2006). Hyperbolic Geometry. Springer London.

[6] Armeni, I., He, Z.-Y., Gwak, J., Zamir, A. R., Fischer, M., Malik, J., and Savarese, S.
(2019). 3d scene graph: A structure for unified semantics, 3d space, and camera.

[7] Assran, M., Duval, Q., Misra, I., Bojanowski, P., Vincent, P., Rabbat, M., LeCun, Y.,
and Ballas, N. (2023). Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15619–15629.

[8] Bachmann, G., Bécigneul, G., and Ganea, O. (2020). Constant curvature graph con-
volutional networks. In International conference on machine learning, pages 486–496.
PMLR.

[9] Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., and Auli, M. (2022). Data2vec:
A general framework for self-supervised learning in speech, vision and language. In
International Conference on Machine Learning, pages 1298–1312. PMLR.

[10] Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. ArXiv, abs/1803.01271.

[11] Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., and Honeine, P. (2020).
Spectral-designed depthwise separable graph neural networks. In Proceedings of Thirty-
seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph
Representation Learning and Beyond (GRL+ 2020).



110 References

[12] Bao, J., Duan, N., Zhou, M., and Zhao, T. (2014). Knowledge-based question answering
as machine translation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics.

[13] Bardes, A., Garrido, Q., Ponce, J., Chen, X., Rabbat, M., LeCun, Y., Assran, M., and
Ballas, N. (2023a). V-jepa: Latent video prediction for visual representation learning.

[14] Bardes, A., Ponce, J., and LeCun, Y. (2023b). Mc-jepa: A joint-embedding predictive
architecture for self-supervised learning of motion and content features. arXiv preprint
arXiv:2307.12698.

[15] Batra, D., Gokaslan, A., Kembhavi, A., Maksymets, O., Mottaghi, R., Savva, M.,
Toshev, A., and Wijmans, E. (2020). Objectnav revisited: On evaluation of embodied
agents navigating to objects. arXiv preprint arXiv:2006.13171.

[16] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Mali-
nowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational
inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[17] Bauer, A., Wollherr, D., and Buss, M. (2008). Human–robot collaboration: a survey.
International Journal of Humanoid Robotics, 5(01):47–66.

[18] Behmanesh, M., Krahn, M., and Ovsjanikov, M. (2023). Tide: Time derivative diffusion
for deep learning on graphs. In International Conference on Machine Learning, pages
2015–2030. PMLR.

[19] Beltran, E. P., Diwa, A. A. S., Gales, B. T. B., Perez, C. E., Saguisag, C. A. A.,
and Serrano, K. K. D. (2018). Fuzzy logic-based risk estimation for safe collaborative
robots. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology,
Information Technology,Communication and Control, Environment and Management
(HNICEM), pages 1–5.

[20] Benesova, K., Svec, A., and Suppa, M. (2021). Cost-effective deployment of bert
models in serverless environment.

[21] Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer
learning. In Proceedings of ICML workshop on unsupervised and transfer learning, pages
17–36. JMLR Workshop and Conference Proceedings.

[22] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828.

[23] Bertasius, G., Wang, H., and Torresani, L. (2021). Is space-time attention all you need
for video understanding? In Proceedings of the International Conference on Machine
Learning (ICML).

[24] Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization, volume 6.
Athena scientific Belmont, MA.



References 111

[25] Bo, D., Wang, X., Shi, C., and Shen, H. (2021). Beyond low-frequency information
in graph convolutional networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 3950–3957.

[26] Bresson, X. and Laurent, T. (2017). Residual gated graph convnets. arXiv preprint
arXiv:1711.07553.

[27] Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention networks?
arXiv preprint arXiv:2105.14491.

[28] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature
verification using a" siamese" time delay neural network. Advances in neural information
processing systems, 6.

[29] Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.

[30] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901.

[31] Burgess, C. and Kim, H. (2018). 3d shapes dataset.

[32] Bütepage, J., Kjellström, H., and Kragic, D. (2017). Anticipating many futures:
Online human motion prediction and synthesis for human-robot collaboration. ArXiv,
abs/1702.08212.

[33] Cai, Y., Huang, L., Wang, Y., Cham, T.-J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu,
Y., Shen, X., Liu, D., Liu, J., and Thalmann, N. M. (2020). Learning progressive joint
propagation for human motion prediction. In The European Conference on Computer
Vision (ECCV).

[34] Campello, R. J., Moulavi, D., and Sander, J. (2013). Density-based clustering based on
hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and
data mining, pages 160–172. Springer.

[35] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and Sheikh, Y. A. (2019). Openpose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[36] Caruana, R. (1997). Multitask learning. Machine learning, 28:41–75.

[37] Castro, A., Silva, F., and Santos, V. (2021). Trends of human-robot collaboration in
industry contexts: Handover, learning, and metrics. Sensors, 21(12):4113.

[38] Chaplot, D. S., Gandhi, D., Gupta, A., and Salakhutdinov, R. (2020). Object goal
navigation using goal-oriented semantic exploration. In Proceedings of Neural Information
Processing Systems (NeurIPS).

[39] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X. (2020a). Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).



112 References

[40] Chen, J. H. and Song, K. T. (2018). Collision-Free Motion Planning for Human-Robot
Collaborative Safety under Cartesian Constraint. IEEE Int. Conf. Robot. Autom., pages
4348–4354.

[41] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). A simple framework for
contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR.

[42] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. Advances in neural information processing systems, 29.

[43] Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15750–15758.

[44] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1800–1807.

[45] Colom, R., Karama, S., Jung, R. E., and Haier, R. J. (2010). Human intelligence and
brain networks. Dialogues in clinical neuroscience, 12(4):489–501.

[46] Costanzo, M., De Maria, G., Lettera, G., and Natale, C. (2021). A multimodal approach
to human safety in collaborative robotic workcells. IEEE Transactions on Automation
Science and Engineering, PP:1–15.

[47] Cui, Q., Sun, H., and Yang, F. (2020). Learning dynamic relationships for 3d human
motion prediction. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6518–6526.

[48] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017).
Scannet: Richly-annotated 3d reconstructions of indoor scenes.

[49] Dallel, M., Havard, V., Baudry, D., and Savatier, X. (2020). Inhard - industrial human
action recognition dataset in the context of industrial collaborative robotics. In 2020 IEEE
International Conference on Human-Machine Systems (ICHMS).

[50] Dang, L., Nie, Y., Long, C., Zhang, Q., and Li, G. (2021). MSR-GCN: Multi-scale
residual graph convolution networks for human motion prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

[51] Dawid, A. and LeCun, Y. (2023). Introduction to latent variable energy-based models:
A path towards autonomous machine intelligence. arXiv preprint arXiv:2306.02572.

[52] Deco, G., Vidaurre, D., and Kringelbach, M. (2021). Revisiting the global workspace
orchestrating the hierarchical organization of the human brain. Nature Human Behaviour,
5:497 – 511.

[53] Dery, L. M., Michel, P., Khodak, M., Neubig, G., and Talwalkar, A. (2022). Aang:
Automating auxiliary learning. In The Eleventh International Conference on Learning
Representations.



References 113

[54] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding.

[55] Dhamo, H., Manhardt, F., Navab, N., and Tombari, F. (2021). Graph-to-3d: End-to-end
generation and manipulation of 3d scenes using scene graphs.

[56] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

[57] Duarte, N. F., Raković, M., Tasevski, J., Coco, M. I., Billard, A., and Santos-Victor, J.
(2018). Action anticipation: Reading the intentions of humans and robots. IEEE Robotics
and Automation Letters, 3(4):4132–4139.

[58] Dwivedi, V. P. and Bresson, X. (2020). A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699.

[59] Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2021). Graph
neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875.

[60] Eastwood, C. and Williams, C. K. (2018). A framework for the quantitative evaluation
of disentangled representations. In International Conference on Learning Representations.

[61] Ebner, N. C., Riediger, M., and Lindenberger, U. (2010). Faces—a database of fa-
cial expressions in young, middle-aged, and older women and men: Development and
validation. Behavior research methods, 42:351–362.

[62] Elmannai, W. and Elleithy, K. (2017). Sensor-based assistive devices for visually-
impaired people: current status, challenges, and future directions. Sensors, 17(3):565.

[63] Faldu, K., Sheth, A., Kikani, P., and Akabari, H. (2021). Ki-bert: Infusing knowledge
context for better language and domain understanding. arXiv preprint arXiv:2104.08145.

[64] Fei, Z., Fan, M., and Huang, J. (2023). A-jepa: Joint-embedding predictive architecture
can listen. arXiv preprint arXiv:2311.15830.

[65] Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds.

[66] Fieraru, M., Zanfir, M., Oneata, E., Popa, A.-I., Olaru, V., and Sminchisescu, C. (2020).
Three-dimensional reconstruction of human interactions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7214–7223.

[67] Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., and Finn, C. (2021). Efficiently
identifying task groupings for multi-task learning. Advances in Neural Information
Processing Systems, 34:27503–27516.

[68] Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2015). Recurrent network models
for human dynamics. In 2015 IEEE International Conference on Computer Vision (ICCV),
pages 4346–4354.



114 References

[69] Fumero, M., Cosmo, L., Melzi, S., and Rodola, E. (2021a). Learning disentangled
representations via product manifold projection. In Proceedings of the 38th International
Conference on Machine Learning, pages 3530–3540. PMLR. ISSN: 2640-3498.

[70] Fumero, M., Cosmo, L., Melzi, S., and Rodolà, E. (2021b). Learning disentangled
representations via product manifold projection. In International conference on machine
learning, pages 3530–3540. PMLR.

[71] Ganea, O.-E., Bécigneul, G., and Hofmann, T. (2018). Hyperbolic Neural Networks.
arXiv:1805.09112 [cs, stat].

[72] Gao, Y., Ma, J., Zhao, M., Liu, W., and Yuille, A. L. (2019). Nddr-cnn: Layerwise
feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 3205–3214.

[73] Garcia-Esteban, J. A., Piardi, L., Leitao, P., Curto, B., and Moreno, V. (2021). An
interaction strategy for safe human Co-working with industrial collaborative robots. Proc.
- 2021 4th IEEE Int. Conf. Ind. Cyber-Physical Syst. ICPS 2021, pages 585–590.

[74] Gay, P., Stuart, J., and Del Bue, A. (2018). Visual graphs from motion (vgfm): Scene
understanding with object geometry reasoning. In Proceedings of the Asian Conference
on Computer Vision (ACCV).

[75] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convo-
lutional sequence to sequence learning. In The International Conference on Machine
Learning (ICML).

[76] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR.

[77] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448.

[78] Giuliari, F., Castellini, A., Berra, R., Bue, A. D., Farinelli, A., Cristani, M., Setti, F.,
and Wang, Y. (2021). Pomp++: Pomcp-based active visual search in unknown indoor
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

[79] Giuliari, F., Skenderi, G., Cristani, M., Del Bue, A., and Wang, Y. (2023). Leveraging
commonsense for object localisation in partial scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[80] Giuliari, F., Skenderi, G., Cristani, M., Wang, Y., and Del Bue, A. (2022). Spatial
commonsense graph for object localisation in partial scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19518–19527.

[81] Gopalakrishnan, A., Mali, A., Kifer, D., Giles, L., and Ororbia, A. G. (2019). A
neural temporal model for human motion prediction. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 12108–12117.



References 115

[82] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch,
C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own latent-
a new approach to self-supervised learning. Advances in neural information processing
systems, 33:21271–21284.

[83] Gu, J., Joty, S., Cai, J., Zhao, H., Yang, X., and Wang, G. (2019a). Unpaired image
captioning via scene graph alignments.

[84] Gu, J., Zhao, H., Lin, Z. L., Li, S., Cai, J., and Ling, M. (2019b). Scene graph generation
with external knowledge and image reconstruction.

[85] Gualtieri, L., Palomba, I., Wehrle, E. J., and Vidoni, R. (2020). The Opportunities and
Challenges of SME Manufacturing Automation: Safety and Ergonomics in Human–Robot
Collaboration. Springer International Publishing.

[86] Guo, W., Bie, X., Alameda-Pineda, X., and Moreno-Noguer, F. (2021). Multi-person ex-
treme motion prediction with cross-interaction attention. arXiv preprint arXiv:2105.08825.

[87] Guo, Y., Guo, H., and Yu, S. X. (2022). Co-sne: Dimensionality reduction and visual-
ization for hyperbolic data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21–30.

[88] Gupta, K., Lazarow, J., Achille, A., Davis, L. S., Mahadevan, V., and Shrivastava, A.
(2021). Layouttransformer: Layout generation and completion with self-attention.

[89] Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and
Conference Proceedings.

[90] Gutteridge, B., Dong, X., Bronstein, M. M., and Di Giovanni, F. (2023). Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pages 12252–12267. PMLR.

[91] Haddadin, S., Albu-Schaffer, A., Frommberger, M., Rossmann, J., and Hirzinger, G.
(2009). The “dlr crash report”: Towards a standard crash-testing protocol for robot safety-
part i: Results. In 2009 IEEE International Conference on Robotics and Automation,
pages 272–279. IEEE.

[92] Halliday, D., Resnick, R., and Walker, J. (2013). Fundamentals of physics. John Wiley
& Sons.

[93] Hanin, B. (2019). Universal function approximation by deep neural nets with bounded
width and relu activations. Mathematics, 7(10):992.

[94] Hassani, K. and Khasahmadi, A. H. (2020). Contrastive multi-view representation
learning on graphs. In International conference on machine learning, pages 4116–4126.
PMLR.

[95] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009.



116 References

[96] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

[97] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

[98] He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and Bresson, X. (2023). A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine
Learning, pages 12724–12745. PMLR.

[99] Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and Ler-
chner, A. (2018). Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230.

[100] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., and Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a constrained
variational framework. In International conference on learning representations.

[101] Hinton, G., Dean, J., and Vinyals, O. (2014). Distilling the knowledge in a neural
network. In NIPS, pages 1–9.

[102] Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800.

[103] Hinton, G. E. and Zemel, R. (1993). Autoencoders, minimum description length and
helmholtz free energy. Advances in neural information processing systems, 6.

[104] Hitchman, M. P. (2009). Geometry with an introduction to cosmic topology. Jones &
Bartlett Learning.

[105] Hjorth, S. and Chrysostomou, D. (2022). Human–robot collaboration in industrial
environments: A literature review on non-destructive disassembly. Robotics and Computer-
Integrated Manufacturing, 73:102–208.

[106] Horan, D., Richardson, E., and Weiss, Y. (2021). When is unsupervised disentangle-
ment possible? Advances in Neural Information Processing Systems, 34:5150–5161.

[107] Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C., and Tang, J. (2022).
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 594–604.

[108] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications.

[109] Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., and Leskovec, J. (2019).
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations.



References 117

[110] Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. (2020). Gpt-gnn: Genera-
tive pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1857–1867.

[111] Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. (2014). Human3.6m: Large
scale datasets and predictive methods for 3d human sensing in natural environments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(7).

[112] ISO (2021). ISO/TS 15066:2016. Robots and robotic devices — Collaborative robots.
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en.

[113] Jain, A., Zamir, A. R., Savarese, S., and Saxena, A. (2016). Structural-rnn: Deep
learning on spatio-temporal graphs. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5308–5317.

[114] Jayaraman, D., Sha, F., and Grauman, K. (2014). Decorrelating semantic visual
attributes by resisting the urge to share. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1629–1636.

[115] Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu, Z., and Tang, J. (2020).
Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint
arXiv:2006.10141.

[116] Jin, W., Liu, X., Zhao, X., Ma, Y., Shah, N., and Tang, J. (2021). Automated self-
supervised learning for graphs. In International Conference on Learning Representations.

[117] Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D. A., Bernstein, M. S., and
Fei-Fei, L. (2015). Image retrieval using scene graphs.

[118] Kanazawa, A., Kinugawa, J., and Kosuge, K. (2019). Adaptive Motion Planning for
a Collaborative Robot Based on Prediction Uncertainty to Enhance Human Safety and
Work Efficiency. IEEE Trans. Robot., 35(4):817–832.

[119] Kang, S., Kim, M., and Kim, K. (2019). Safety Monitoring for Human Robot
Collaborative Workspaces. Int. Conf. Control. Autom. Syst., 2019-October(Iccas):1192–
1194.

[120] Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392.

[121] Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7482–7491.

[122] Kim, H. and Mnih, A. (2018). Disentangling by factorising. In International Confer-
ence on Machine Learning, pages 2649–2658. PMLR.

[123] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[124] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en


118 References

[125] Kipf, T. N. and Welling, M. (2016a). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

[126] Kipf, T. N. and Welling, M. (2016b). Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308.

[127] Knudsen, M. and Kaivo-oja, J. (2020). Collaborative robots: Frontiers of current
literature. Journal of Intelligent Systems: Theory and Applications, 3:13–20.

[128] Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3d object representations
for fine-grained categorization. In Proceedings of the IEEE international conference on
computer vision workshops, pages 554–561.

[129] Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalan-
tidis, Y., Li, L.-J., Shamma, D. A., Bernstein, M. S., and Fei-Fei, L. (2016). Visual
genome: Connecting language and vision using crowdsourced dense image annotations.
International Journal of Computer Vision, 123:32–73.

[130] Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images.

[131] Lai, G., Liu, H., and Yang, Y. (2018). Learning graph convolution filters from data
manifold.

[132] Laplaza, J., Pumarola, A., Moreno-Noguer, F., and Sanfeliu, A. (2021). Attention
deep learning based model for predicting the 3d human body pose using the robot human
handover phases. In 2021 30th IEEE International Conference on Robot & Human
Interactive Communication (RO-MAN), pages 161–166. IEEE.

[133] LeCun, V., Denker, J., and Solla, S. (1989). Optimal brain damage. In Advances in
Neural Information Processing Systems.

[134] LeCun, Y. (2022). A path towards autonomous machine intelligence version 0.9. 2,
2022-06-27. Open Review, 62.

[135] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–
444.

[136] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[137] Lee, M. (2023). The geometry of feature space in deep learning models: A holistic
perspective and comprehensive review. Mathematics, 11(10):2375.

[138] Lee, N., Lee, J., and Park, C. (2022). Augmentation-free self-supervised learning on
graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pages
7372–7380.

[139] Lee, S., Kim, J.-W., Oh, Y., and Jeon, J. H. (2019). Visual question answering over
scene graph. In Proceedings of the First International Conference on Graph Computing
(GC).



References 119

[140] Lemmerz, K., Glogowski, P., Kleineberg, P., Hypki, A., and Kuhlenkötter, B. (2019).
A Hybrid Collaborative Operation for Human-Robot Interaction Supported by Machine
Learning. Int. Conf. Hum. Syst. Interact. HSI, 2019-June:69–75.

[141] Li, C., Zhang, Z., Sun Lee, W., and Hee Lee, G. (2018). Convolutional sequence to
sequence model for human dynamics. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[142] Li, G., Su, H., and Zhu, W. (2017). Incorporating external knowledge to an-
swer open-domain visual questions with dynamic memory networks. arXiv preprint
arXiv:1712.00733.

[143] Li, J., Wu, R., Sun, W., Chen, L., Tian, S., Zhu, L., Meng, C., Zheng, Z., and Wang,
W. (2023). What’s behind the mask: Understanding masked graph modeling for graph
autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1268–1279.

[144] Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., and Tian, Q. (2020a). Dynamic
multiscale graph neural networks for 3d skeleton based human motion prediction. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
211–220.

[145] Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.-Y., and Han, S. (2020b). Gan compression:
Efficient architectures for interactive conditional gans. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5283–5293.

[146] Li, M., Patil, A. G., Xu, K., Chaudhuri, S., Khan, O., Shamir, A., Tu, C., Chen, B.,
Cohen-Or, D., and Zhang, H. (2019). Grains: Generative recursive autoencoders for
indoor scenes. ACM Transactions on Graphics (TOG), 38(2):1–16.

[147] Li, X. and Li, D. (2021). Gpfs: A graph-based human pose forecasting system for
smart home with online learning. ACM Trans. Sen. Netw., 17(3).

[148] Li, Y. and Shan, S. (2021). Meta auxiliary learning for facial action unit detection.
IEEE Transactions on Affective Computing.

[149] Liebel, L. and Körner, M. (2018). Auxiliary tasks in multi-task learning. arXiv
preprint arXiv:1805.06334.

[150] Lim, J., Lee, J., Lee, C., Kim, G., Cha, Y., Sim, J., and Rhim, S. (2021). Designing
path of collision avoidance for mobile manipulator in worker safety monitoring system
using reinforcement learning. ISR 2021 - 2021 IEEE Int. Conf. Intell. Saf. Robot., pages
94–97.

[151] Liu, C., Zheng, C.-T., Qian, S., Wu, S., and Wong, H.-S. (2019a). Encoding sparse
and competitive structures among tasks in multi-task learning. Pattern Recognition,
88:689–701.

[152] Liu, J., Yang, M., Zhou, M., Feng, S., and Fournier-Viger, P. (2022). Enhancing
hyperbolic graph embeddings via contrastive learning. arXiv preprint arXiv:2201.08554.



120 References

[153] Liu, S., Davison, A., and Johns, E. (2019b). Self-supervised generalisation with meta
auxiliary learning. Advances in Neural Information Processing Systems, 32.

[154] Liu, S. and Deng, W. (2015). Very deep convolutional neural network based image
classification using small training sample size. In 2015 3rd IAPR Asian Conference on
Pattern Recognition (ACPR), pages 730–734.

[155] Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., and Tang, J. (2023).
Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge
and Data Engineering, 35(1):857–876.

[156] Loaiza-Ganem, G., Ross, B. L., Cresswell, J. C., and Caterini, A. L. (2022). Diagnos-
ing and fixing manifold overfitting in deep generative models. Transactions on Machine
Learning Research.

[157] Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem,
O. (2019a). Challenging common assumptions in the unsupervised learning of disentan-
gled representations. In international conference on machine learning, pages 4114–4124.
PMLR.

[158] Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M.
(2020a). Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348–6359. PMLR.

[159] Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., and Bachem,
O. (2019b). Disentangling factors of variation using few labels. arXiv preprint
arXiv:1905.01258.

[160] Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., and Bachem, O.
(2020b). Disentangling factors of variation using few labels. arXiv 1905.01258.

[161] Loshchilov, I. and Hutter, F. (2018). Decoupled weight decay regularization. In
International Conference on Learning Representations.

[162] Luo, A., Zhang, Z., Wu, J., and Tenenbaum, J. B. (2020). End-to-end optimization of
scene layout.

[163] Lyons, D. W. (2023). Introduction to Groups and Geometries. LibreTexts Mathematics.

[164] López, F., Pozzetti, B., Trettel, S., Strube, M., and Wienhard, A. (2021). Symmetric
Spaces for Graph Embeddings: A Finsler-Riemannian Approach. arXiv:2106.04941 [cs].

[165] Ma, Y. and Tang, J. (2021a). Deep learning on graphs. Cambridge University Press.

[166] Ma, Y. and Tang, J. (2021b). Deep Learning on Graphs. Cambridge University Press.

[167] Magrini, E., Ferraguti, F., Ronga, A. J., Pini, F., De Luca, A., and Leali, F. (2020).
Human-robot coexistence and interaction in open industrial cells. Robotics and Computer-
Integrated Manufacturing, 61.

[168] Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., and Black, M. J. (2019).
AMASS: Archive of motion capture as surface shapes. In International Conference on
Computer Vision.



References 121

[169] Maia, M. D. (2011). Geometry of the Fundamental Interactions: On Riemann’s
Legacy to High Energy Physics and Cosmology. Springer Science & Business Media.

[170] Mao, W., Liu, M., and Salzmann, M. (2020). History repeats itself: Human motion
prediction via motion attention. In The European Conference on Computer Vision (ECCV).

[171] Mao, W., Liu, M., Salzmann, M., and Li, H. (2019). Learning trajectory dependencies
for human motion prediction. In The IEEE International Conference on Computer Vision
(ICCV).

[172] Martinez, J., Black, M. J., and Romero, J. (2017). On human motion prediction using
recurrent neural networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[173] Mathieu, E., Lan, C. L., Maddison, C. J., Tomioka, R., and Teh, Y. W. (2019a).
Continuous Hierarchical Representations with Poincar\’e Variational Auto-Encoders.
arXiv:1901.06033 [cs, stat].

[174] Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R., and Teh, Y. W. (2019b).
Continuous hierarchical representations with poincaré variational auto-encoders. Advances
in neural information processing systems, 32.

[175] Matthias, B. and Reisinger, T. (2016). Example application of ISO/TS 15066 to a
collaborative assembly scenario. 47th Int. Symp. Robot. ISR 2016, 2016:88–92.

[176] Maziarka, Ł., Nowak, A., Wołczyk, M., and Bedychaj, A. (2023). On the relationship
between disentanglement and multi-task learning. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France,
September 19–23, 2022, Proceedings, Part I, pages 625–641. Springer.

[177] Meng, Q., Catchpoole, D., Skillicom, D., and Kennedy, P. J. (2017). Relational
autoencoder for feature extraction. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 364–371.

[178] Meng, Q., Pawlowski, N., Rueckert, D., and Kainz, B. (2019). Representation
disentanglement for multi-task learning with application to fetal ultrasound. In Smart
Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis, pages 47–55.
Springer.

[179] Mercatali, G., Freitas, A., and Garg, V. (2022). Symmetry-induced Disentanglement
on Graphs.

[180] Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., and Chrys-
solouris, G. (2015). Design considerations for safe human-robot collaborative workplaces.
Procedia CIrP, 37:248–253.

[181] Minelli, M., Sozzi, A., De Rossi, G., Ferraguti, F., Setti, F., Muradore, R., Bonfè,
M., and Secchi, C. (2020). Integrating model predictive control and dynamic waypoints
generation for motion planning in surgical scenario. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3157–3163.



122 References

[182] Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2017). Pruning convolu-
tional neural networks for resource efficient inference.

[183] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and Neumann, M.
(2020). Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020).

[184] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and
Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 4602–
4609.

[185] Moutsinas, G., Shuaib, C., Guo, W., and Jarvis, S. (2021). Graph hierarchy: a novel
framework to analyse hierarchical structures in complex networks. Scientific Reports,
11(1):13943.

[186] Nam, J., Tack, J., Lee, K., Lee, H., and Shin, J. (2023). STUNT: Few-shot tabular
learning with self-generated tasks from unlabeled tables. In The Eleventh International
Conference on Learning Representations.

[187] Nascimento, H., Mujica, M., and Benoussaad, M. (2020). Collision avoidance in
human-robot interaction using kinect vision system combined with robot’s model and
data. IEEE Int. Conf. Intell. Robot. Syst., pages 10293–10298.

[188] Navon, A., Achituve, I., Maron, H., Chechik, G., and Fetaya, E. (2021). Auxiliary
learning by implicit differentiation. In International Conference on Learning Representa-
tions.

[189] Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization.
The Computer Journal, 7(4):308–313.

[190] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011.

[191] Nguyen, T. Q. and Salazar, J. (2019). Transformers without tears: Improving the
normalization of self-attention. In Proceedings of the 16th International Conference on
Spoken Language Translation.

[192] Nickel, M. and Kiela, D. (2017). Poincaré embeddings for learning hierarchical
representations. Advances in neural information processing systems, 30.

[193] Ojha, U., Singh, K. K., Hsieh, C.-J., and Lee, Y. J. (2020). Elastic-infogan: Unsuper-
vised disentangled representation learning in class-imbalanced data. Advances in neural
information processing systems, 33:18063–18075.

[194] Oono, K. and Suzuki, T. (2020a). Graph neural networks exponentially lose expressive
power for node classification.

[195] Oono, K. and Suzuki, T. (2020b). Graph neural networks exponentially lose expressive
power for node classification. In International Conference on Learning Representations.



References 123

[196] Papamichalis, M., Turnbull, K., Lunagomez, S., and Airoldi, E. (2022). Latent Space
Network Modelling with Hyperbolic and Spherical Geometries. arXiv:2109.03343 [stat].

[197] Paredes, B. R., Argyriou, A., Berthouze, N., and Pontil, M. (2012). Exploiting
unrelated tasks in multi-task learning. In Artificial intelligence and statistics, pages
951–959. PMLR.

[198] Park, Y.-H., Kwon, M., Choi, J., Jo, J., and Uh, Y. (2023). Understanding the latent
space of diffusion models through the lens of riemannian geometry. arXiv preprint
arXiv:2307.12868.

[199] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems,
32.

[200] Pavllo, D., Feichtenhofer, C., Grangier, D., and Auli, M. (2019). 3d human pose esti-
mation in video with temporal convolutions and semi-supervised training. In Conference
on Computer Vision and Pattern Recognition (CVPR).

[201] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

[202] Ramon, J. A. C., Herias, F. A. C., and Torres, F. (2011). Safe human-robot interaction
based on dynamic sphere-swept line bounding volumes. Robot. Comput. Integr. Manuf.,
27(1):177–185.

[203] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet
classification using binary convolutional neural networks.

[204] Reynolds, W. F. (1993). Hyperbolic geometry on a hyperboloid. The American
Mathematical Monthly, 100(5):442–455.

[205] Richemond, P. H., Tam, A., Tang, Y., Strub, F., Piot, B., and Hill, F. (2023). The edge
of orthogonality: A simple view of what makes byol tick. In International Conference on
Machine Learning, pages 29063–29081. PMLR.

[206] Rodriguez-Guerra, D., Sorrosal, G., Cabanes, I., and Calleja, C. (2021). Human-Robot
Interaction Review: Challenges and Solutions for Modern Industrial Environments. IEEE
Access, 9:108557–108578.

[207] Rosenberg, R. and Feigenson, L. (2013). Infants hierarchically organize memory
representations. Developmental science, 16 4:610–21.

[208] Sala, F., De Sa, C., Gu, A., and Re, C. (2018). Representation tradeoffs for hyperbolic
embeddings. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4460–4469. PMLR.



124 References

[209] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., and Valaee, S. (2017). Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078.

[210] Sampieri, A., di Melendugno, G. M. D., Avogaro, A., Cunico, F., Setti, F., Skenderi,
G., Cristani, M., and Galasso, F. (2022). Pose forecasting in industrial human-robot
collaboration. In European Conference on Computer Vision, pages 51–69. Springer.

[211] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008).
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80.

[212] Selsam, D., Lamm, M., Benedikt, B., Liang, P., de Moura, L., Dill, D. L., et al. (2018).
Learning a sat solver from single-bit supervision. In International Conference on Learning
Representations.

[213] Shah, J., Wiken, J., Breazeal, C., and Williams, B. (2011). Improved human-robot
team performance using Chaski, a human-inspired plan execution system. HRI 2011 -
Proc. 6th ACM/IEEE Int. Conf. Human-Robot Interact., pages 29–36.

[214] Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive learning rates with sublinear
memory cost. In Proceedings of the International Conference on Machine Learning
(ICML).

[215] Shi, J., Zhang, H., and Li, J. (2019). Explainable and explicit visual reasoning over
scene graphs.

[216] Shi, L., Wang, L., Long, C., Zhou, S., Zhou, M., Niu, Z., and Hua, G. (2021a). Sparse
graph convolution network for pedestrian trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[217] Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun, Y. (2021b). Masked
label prediction: Unified message passing model for semi-supervised classification. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

[218] Shimizu, R., Mukuta, Y., and Harada, T. (2021). Hyperbolic Neural Networks++.
arXiv:2006.08210 [cs, stat].

[219] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Representations
(ICLR 2015).

[220] Simson, R. et al. (1838). The elements of Euclid. Desilver, Thomas.

[221] Singh, K. K., Ojha, U., and Lee, Y. J. (2019). Finegan: Unsupervised hierarchical
disentanglement for fine-grained object generation and discovery. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6490–6499.

[222] Skenderi, G., Capogrosso, L., Toaiari, A., Denitto, M., Fummi, F., Melzi, S., and
Cristani, M. (2023a). Disentangled latent spaces facilitate data-driven auxiliary learning.
arXiv preprint arXiv:2310.09278.

[223] Skenderi, G., Li, H., Tang, J., and Cristani, M. (2023b). Graph-level representation
learning with joint-embedding predictive architectures. arXiv preprint arXiv:2309.16014.



References 125

[224] Sofianos, T., Sampieri, A., Franco, L., and Galasso, F. (2021a). Space-time-separable
graph convolutional network for pose forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

[225] Sofianos, T., Sampieri, A., Franco, L., and Galasso, F. (2021b). Space-time-separable
graph convolutional network for pose forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 11209–11218.

[226] Speer, R., Chin, J., and Havasi, C. (2018). Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

[227] Speer, R. and Lowry-Duda, J. (2017). Conceptnet at semeval-2017 task 2: Extend-
ing word embeddings with multilingual relational knowledge. In Proceedings of the
International Workshop on Semantic Evaluation(SemEval).

[228] Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., and Savarese, S. (2020). Which
tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pages 9120–9132. PMLR.

[229] Sun, F.-Y., Hoffman, J., Verma, V., and Tang, J. (2019). Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization.
In International Conference on Learning Representations.

[230] Suresh, S., Li, P., Hao, C., and Neville, J. (2021). Adversarial graph augmentation to
improve graph contrastive learning. Advances in Neural Information Processing Systems,
34:15920–15933.

[231] Tan, Q., Liu, N., Huang, X., Choi, S.-H., Li, L., Chen, R., and Hu, X. (2023). S2gae:
Self-supervised graph autoencoders are generalizable learners with graph masking. In
Proceedings of the Sixteenth ACM International Conference on Web Search and Data
Mining, pages 787–795.

[232] Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer, E. L., Munos, R., Veličković,
P., and Valko, M. (2021). Large-scale representation learning on graphs via bootstrapping.
In International Conference on Learning Representations.

[233] Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and Isola, P. (2020). What
makes for good views for contrastive learning? Advances in neural information processing
systems, 33:6827–6839.

[234] Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., and Bronstein, M. M.
(2021). Understanding over-squashing and bottlenecks on graphs via curvature. arXiv
preprint arXiv:2111.14522.

[235] Torkar, C., Yahyanejad, S., Pichler, H., Hofbaur, M., and Rinner, B. (2019). Rnn-based
human pose prediction for human-robot interaction. In Proceedings of the ARW & OAGM
Workshop 2019, pages 76–80.

[236] Tu, H., Wang, C., and Zeng, W. (2020). Voxelpose: Towards multi-camera 3d human
pose estimation in wild environment. In European Conference on Computer Vision, pages
197–212. Springer.



126 References

[237] van den Burg, G. and Williams, C. (2021). On memorization in probabilistic deep
generative models. Advances in Neural Information Processing Systems, 34:27916–27928.

[238] Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(11).

[239] Vandenhende, S., Georgoulis, S., and Van Gool, L. (2020). Mti-net: Multi-scale
task interaction networks for multi-task learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pages
527–543. Springer.

[240] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

[241] Veličković, P. (2023). Everything is connected: Graph neural networks. Current
Opinion in Structural Biology, 79:102538.

[242] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017).
Graph attention networks. arXiv preprint arXiv:1710.10903.

[243] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks.

[244] Vianello, L., Mouret, J.-B., Dalin, E., Aubry, A., and Ivaldi, S. (2021). Human posture
prediction during physical human-robot interaction. IEEE Robotics and Automation
Letters.

[245] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., and Bottou, L.
(2010). Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of machine learning research, 11(12).

[246] von Marcard, T., Henschel, R., Black, M., Rosenhahn, B., and Pons-Moll, G. (2018).
Recovering accurate 3d human pose in the wild using imus and a moving camera. In
European Conference on Computer Vision (ECCV).

[247] Wald, J., Dhamo, H., Navab, N., and Tombari, F. (2020). Learning 3d semantic scene
graphs from 3d indoor reconstructions.

[248] Wang, C., Wang, Y., Huang, Z., and Chen, Z. (2021). Simple baseline for single
human motion forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, pages 2260–2265.

[249] Wang, H. et al. (2003). Facial expression decomposition. In Proceedings ninth IEEE
international conference on computer vision, pages 958–965. IEEE.

[250] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan,
M., Wang, X., et al. (2020a). Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence, 43(10):3349–
3364.



References 127

[251] Wang, K., Lin, Y.-A., Weissmann, B., Savva, M., Chang, A. X., and Ritchie, D.
(2019a). Planit: Planning and instantiating indoor scenes with relation graph and spatial
prior networks. ACM Transactions on Graphics (TOG), 38(4):132–147.

[252] Wang, K., Savva, M., Chang, A. X., and Ritchie, D. (2018). Deep convolutional priors
for indoor scene synthesis. ACM Transactions on Graphics (TOG), 37(4):1 – 14.

[253] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and Yu, P. S. (2019b). Hetero-
geneous graph attention network. In Proceedings of The World Wide Web Conference
(WWW).

[254] Wang, Y. (2015). Linear least squares localization in sensor networks. EURASIP
Journal on Wireless Communications and Networking, 2015(1):1–7.

[255] Wang, Y., Giuliari, F., Berra, R., Castellini, A., Bue, A. D., Farinelli, A., Cristani, M.,
and Setti, F. (2020b). Pomp: Pomcp-based online motion planning for active visual search
in indoor environments. In Proceedings of the British Machine Vision Virtual Conference
(BMVC).

[256] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying
graph convolutional networks. In International conference on machine learning, pages
6861–6871. PMLR.

[257] Wu, S.-C., Wald, J., Tateno, K., Navab, N., and Tombari, F. (2021). Scenegraphfusion:
Incremental 3d scene graph prediction from rgb-d sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
7515–7525.

[258] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A comprehen-
sive survey on graph neural networks. IEEE transactions on neural networks and learning
systems, 32(1):4–24.

[259] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual
transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5987–5995.

[260] Xie, Y., Xu, Z., and Ji, S. (2022a). Self-supervised representation learning via latent
graph prediction. In International Conference on Machine Learning, pages 24460–24477.
PMLR.

[261] Xie, Y., Xu, Z., Zhang, J., Wang, Z., and Ji, S. (2022b). Self-supervised learning
of graph neural networks: A unified review. IEEE transactions on pattern analysis and
machine intelligence, 45(2):2412–2429.

[262] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y.,
Wang, L., and Liu, T. (2020). On layer normalization in the transformer architecture. In
International Conference on Machine Learning, pages 10524–10533. PMLR.

[263] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural
networks? In International Conference on Learning Representations.



128 References

[264] Xu, N., Liu, A.-A., Liu, J., Nie, W., and Su, Y. (2019). Scene graph captioner: Image
captioning based on structural visual representation. Journal of Visual Communication
and Image Representation, 58:477–485.

[265] Yang, X., Tang, K., Zhang, H., and Cai, J. (2019). Auto-encoding scene graphs for
image captioning.

[266] Yang, X., Ye, J., and Wang, X. (2022). Factorizing knowledge in neural networks.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXIV, pages 73–91. Springer.

[267] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T.-Y. (2021).
Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888.

[268] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018). Hier-
archical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31.

[269] You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020). Graph contrastive
learning with augmentations. Advances in neural information processing systems, 33:5812–
5823.

[270] Yu, C., Ma, X., Ren, J., Zhao, H., and Yi, S. (2020). Spatio-temporal graph transformer
networks for pedestrian trajectory prediction. In The European Conference on Computer
Vision (ECCV).

[271] Yu, T. and De Sa, C. M. (2021). Representing hyperbolic space accurately using
multi-component floats. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34,
pages 15570–15581. Curran Associates, Inc.

[272] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola,
A. J. (2017). Deep sets. Advances in neural information processing systems, 30.

[273] Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S. (2018).
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3712–3722.

[274] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In European Conference on Computer Vision (ECCV).

[275] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023). Dive into deep learning.
Cambridge University Press.

[276] Zhang, B., Titov, I., and Sennrich, R. (2021a). Sparse attention with linear units.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing.

[277] Zhang, H., Wu, Q., Yan, J., Wipf, D., and Yu, P. S. (2021b). From canonical correlation
analysis to self-supervised graph neural networks. Advances in Neural Information
Processing Systems, 34:76–89.



References 129

[278] Zhang, J., Liu, H., Chang, Q., Wang, L., and Gao, R. X. (2020). Recurrent neural
network for motion trajectory prediction in human-robot collaborative assembly. CIRP
annals, 69(1):9–12.

[279] Zhao, W., Lopez, F., Riestenberg, M. J., Strube, M., Taha, D., and Trettel, S. (2023).
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive
Definite Matrices. In Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., and Bonchi,
F., editors, Machine Learning and Knowledge Discovery in Databases: Research Track,
Lecture Notes in Computer Science, pages 122–139, Cham. Springer Nature Switzerland.

[280] Zhao, Y. and Dou, Y. (2020). Pose-forecasting aided human video prediction with
graph convolutional networks. IEEE Access, 8:147256–147264.

[281] Zheng, Y., Fan, J., Zhang, J., and Gao, X. (2019). Exploiting related and unrelated
tasks for hierarchical metric learning and image classification. IEEE Transactions on
Image Processing, 29:883–896.

[282] Zhou, D., Xiao, L., and Wu, M. (2011). Hierarchical classification via orthogonal
transfer. In Proceedings of the 28th International Conference on International Conference
on Machine Learning, pages 801–808.

[283] Zhou, Q.-Y., Park, J., and Koltun, V. (2018). Open3D: A modern library for 3D data
processing. arXiv:1801.09847.

[284] Zhou, Y., While, Z., and Kalogerakis, E. (2019). Scenegraphnet: Neural message
passing for 3d indoor scene augmentation.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Deep Learning on structured data
	1.1.1 Machine and Deep Learning
	1.1.2 Learning on structured data
	1.1.3 Geometric Deep Learning

	1.2 Thesis outline and contributions
	1.2.1 General outline
	1.2.2 Learning on graphs for 3D Computer Vision
	1.2.3 Graph representation learning via hyperbolic self-predictive tasks
	1.2.4 Learning new auxiliary tasks from the representation geometry


	2 Background
	2.1 Geometry
	2.2 The Geometric Deep Learning Blueprint
	2.3 Graph Neural Networks

	3 Learning on graphs for 3D Computer Vision
	3.1 Object Localization in Partial Scenes
	3.1.1 Introduction
	3.1.2 Related work
	3.1.3 (Directed) Spatial Commonsense Graph
	3.1.4 SCG Object Localiser (SCG-OL)
	3.1.5 D-SCG Object Localiser (D-SCG-OL)
	3.1.6 Experiments
	3.1.7 Conclusions

	3.2 Human Pose Forecasting in Industrial Scenarios
	3.2.1 Introduction
	3.2.2 Related Work
	3.2.3 Methodology
	3.2.4 The CHICO dataset
	3.2.5 Experiments
	3.2.6 Conclusions

	3.3 Chapter takeaways

	4 Graph-level Representation Learning with Joint-Embedding Predictive Architectures
	4.1 Introduction
	4.2 Related work
	4.2.1 Self-Supervised Graph Representation Learning
	4.2.2 Joint-Embedding Predictive Architectures

	4.3 Method
	4.3.1 Spatial Partitioning
	4.3.2 Subgraph Embedding
	4.3.3 Context and Target Encoding
	4.3.4 Latent Target Prediction

	4.4 Experiments
	4.4.1 Experimental setting
	4.4.2 Downstream performance
	4.4.3 Exploring the Graph-JEPA latent space
	4.4.4 Additional insights and ablation studies

	4.5 Conclusion

	5 Data-driven Auxiliary Learning via Latent Geometric Disentanglement
	5.1 Introduction
	5.2 Related Work
	5.2.1 MTL and auxiliary learning
	5.2.2 Learning disentangled representations
	5.2.3 Relationship between MTL and disentanglement

	5.3 Mathematical Background
	5.4 Methodology
	5.4.1 The principal task-based oracle
	5.4.2 Auxiliary task discovery

	5.5 Experiments
	5.5.1 Synthetic data
	5.5.2 Real data
	5.5.3 Ablation studies

	5.6 Conclusion

	6 Conclusions
	6.1 Overview of the Contributions
	6.2 Limitations
	6.3 Future Work
	6.4 Closing Remarks

	References

