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Biomarkers for cognitive impairment in
alpha-synucleinopathies: an overview of
systematic reviews and meta-analyses
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Cognitive impairment (Cl) is common in a-synucleinopathies, i.e., Parkinson’s disease, Lewy bodies
dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses
on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of Cl in a-
synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes,
abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer’s disease (AD)
biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased
cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C
and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum
neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm
slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E €2 and €4 alleles.
Some AD/amyloid/tau biomarkers may diagnose/predict Cl in a-synucleinopathies, but single,
validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia,
biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the

complexity of Cl in a-synucleinopathies.

Abnormal aggregates of a-synuclein in the form of intraneuronal (e.g., Lewy
bodies, Lewy neurites) or glial cytoplasmatic inclusions are involved in the
pathophysiology of several neurodegenerative diseases, which have been
collectively termed a-synucleinopathies™’. In these disorders, a-synuclein is
believed to self-propagate in a prion-like fashion, triggering the conversion
from normal to misfolded protein isoforms, which in turn cause the pro-
gressive loss of vulnerable neurons in the central and peripheral nervous
system™.

Depending on the topography of neuropathology and affected target
cells (i.e., neurons, oligodendrocytes), a-synucleinopathies can be divided
into Lewy body disease (LBD) and multiple system atrophy (MSA), each
exhibiting distinct clinical and pathological features. Common clinical pre-
sentations of LBD include Parkinson’s disease (PD), PD-related dementia
(PD-D) and dementia with Lewy bodies (DLB). PD is the most prevalent a-
synucleinopathy, followed by DLB and PD-D°. DLB and PD/PD-D have
been traditionally considered separate nosographic entities, but their con-
sistent overlap in clinical, neuroimaging, pathophysiological and genetic
features support a unifying view’. MSA is rarer, with ten-fold lower incidence

and prevalence than PD® (Table 1). Abnormal a-synuclein in the skin,
cerebrospinal fluid (CSF), and olfactory mucosa allows an in-vivo diagnosis
of a-synucleinopathies and a biological definition of PD and DLB has been
recently defined by means of genetic, a-synuclein and clinical biomarkers™"’.

Cognitive impairment (CI) is one of the most disabling non-motor
clinical manifestations of a-synucleinopathies, severely decreasing both
patients’ and caregivers’ quality of life'>"”. CI in a-synucleinopathies is
highly heterogeneous in terms of prevalence, clinical, neuropathological and
neuropharmacological features. CI is very common in PD, PD-D and DLB
along the diseases course, with nearly half of the patients developing severe
CI within 10 years after the diagnosis"’. Mixed findings have been reported
for CI in MSA; although severe CI was initially listed among its non-
supporting diagnostic features, accumulating evidence suggests that cog-
nitive symptoms are integral to the disease'*"”. CI in a-synucleinopathies
may range from subjective cognitive decline/impairment (SCD/SCI, i.e.,
subjective report of cognitive worsening despite no objective evidence of CI
at cognitive testing and normal functioning in daily life), to mild cognitive
impairment (MCI, ie., mild cognitive disturbances with no functional
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Table 1 | Core neuropathological and clinical features of a-synucleinopathies

a-synucleinopathy  Neuropathology

Clinical features

Cognitive features

PD, PD-D Mild-to-moderate dopaminergic neuronal loss in the Bradykinesia, rigidity, resting tremor, non-motor Impairment in executive domain
ventrolateral part of the substantia nigra; limbic and features (e.g., olfactory loss, RBD, depression, in PD; deficits in multiple domains
neocortical a-syn pathology’ cognitive impairment) in PD-D

DLB Moderate-to-severe dopaminergic neuronal loss in the Dementia, fluctuating cognition, visual Significant impairment in
ventrolateral part of the substantia nigra; limbic and hallucinations, RBD, parkinsonism executive, language, visuo-
neocortical a-syn pathology spatial domains

MSA Glial cytoplasmatic inclusions in the basal ganglia, Dysautonomia, parkinsonism, cerebellar Significant deficit in executive
substantia nigra, pontine nuclei, medulla, cerebellum syndrome, cognitive impairment (i-e., shifting) domain

"For PD-D only.

a-syn alpha-synuclein, DLB dementia with Lewy bodies, MSA multiple system atrophy, PD Parkinson’s disease, PD-D Parkinson’s disease-related dementia, RBD rapid eye movement sleep behavior

disorder.

impairment) and dementia (i.e., severe multidomain CI impacting basic
daily life activities'®). Different degrees of CI severity have been associated
with specific a-synucleinopathies, with MSA and PD showing less severe CI
(i.e., SCD/SCI, MCI) than PD-D and DLB, which are characterized by
dementia. CI in a-synucleinopathies may also vary in terms of affected
cognitive domains, with MSA being associated to deficits in shifting abilities
compared to PD, whereas DLB shows more severe and widespread deficits
involving attentive, visuo-spatial and language domains than PD-D'"*,

Multiple underlying neuropathologies (e.g., beta amyloid, tau neuro-
fibrillary tangles) coexisting with a-synuclein accumulation may contribute
to CI development and progression in a-synucleinopathies, further com-
plicating neuropathological-based diagnosis”. Alzheimer’s disease (AD)
neuropathology is common in DLB, with 18% of DLB patients showing
advanced AD-related neuropathology according to in-vivo instrumental
biomarkers and 28% having sufficient post-mortem AD neuropathology to
receive a secondary diagnosis of AD”.

The neuropharmacology of CI in a-synucleinopathies involves the
disruption of multiple neurotransmitter systems, including both dopami-
nergic and non-dopaminergic (i.e., serotonin, noradrenalin, acetylcholine)
networks™ ™, adding further complexity to the identification of effective
treatment strategies'®.

The clinical diagnosis of CI in a-synucleinopathies is now based on
well-defined, widely available criteria**, however it is not always reliable
and even expert centers may fail to early identify patients with subtle CI-
related symptoms. Post-mortem studies are traditionally considered the
gold standard for exploring neuropathology of CI in a-synucleinopathies,
but they are limited to selected cases and do not offer information on early
disease stages. Biomarkers are characteristics that may be objectively mea-
sured and evaluated as in-vivo indicators of presence of normal/pathological
biologic processes, risk of developing neuropathology, biological responses
to a therapeutic intervention. Biomarkers can be classified into diagnostic,
prognostic, predictive, susceptibility/risk, monitoring, and pharmaco-
dynamic/response according to the type of information they offer’*”.
Several attempts have been made to validate single specific and sensitive
diagnostic or prognostic biomarkers of CI in a-synucleinopathies, but
results have been inconclusive””. Neuroimaging biomarkers, despite
proving sensitive in detecting CI in a-synucleinopathies, appear not to be
specific and reliable enough to accurately predict CI progression at a single-
patient level™. Although reports on CSF biomarkers have shown promising
results for diagnostic and prognostic purposes, data on less invasive and
cost-effective modalities (e.g., blood, plasma-based) warrant further
research™”". These inconclusive findings may be due to the complexity of
the neuropathology and neuropharmacology of CI in in a-synucleino-
pathies, as briefly discussed above.

In light of these considerations, the adoption of a multimodal approach
based on a system biology perspective and coupling neuroimaging, neuro-
physiological, biofluid and genetic biomarkers, may better reflect the com-
plexity of CI in a-synucleinopathies. This paper has been conceived within
this framework; we herein provide an overview of systematic reviews (SRs)
with/without meta-analyses (MAs) exploring structural/functional

neuroimaging, neurophysiological, biofluid and genetic biomarkers for CI in
a-synucleinopathies, with a focus on diagnostic and prognostic ones. We
further introduced a preliminary classification approach to score biomarkers
that proved diagnostic or prognostic significance according to evidence levels,
clinical utility, and reproducibility, to provide recommendations for design-
ing future multi-omics biomarker studies on CI diagnosis and prognosis.

Results

Identification and selection of the studies

The literature search yielded a total of 215 records. After duplicates removal,
213 unique records were obtained for title and abstract screening. One
hundred forty-nine articles were excluded based on title/abstract, and 64 full
texts were in-depth examined according to eligibility criteria. Sixteen
additional papers were retrieved from citation searching. Eighty papers were
finally obtained for full-text screening. Two authors (EM, ST) indepen-
dently assessed the selected full texts. Disagreement concerned two papers
(inter-raters’ agreement: 96%) and was solved by discussion. Twenty-five
papers fulfilled inclusion criteria and were therefore included in the over-
view (Fig. 1). The retrieved SRs and MAs were grouped according to the
population of interest at review level (i.e., patients with PD) and the type of
biomarkers (i.e., neuroimaging, neurophysiological, biofluids, genetics). No
eligible SRs or MAs including patients with MSA were found.

Characteristics of the included studies

Neuroimaging and neurophysiology biomarkers of cognitive
impairment in Parkinson’s disease. Fourteen papers, of which six
SRs**7 and eleven MAs”™, were found on neuroimaging and neu-
rophysiology biomarkers of CI associated with PD and DLB (Table 2).

Neuroimaging biomarkers. Eleven studies were found on neuroimaging
biomarkers, of which six on structural*****"**** one on functional”, one
on amyloid”, one on tau’, one on brain metabolism and synaptic density™,
and one on combined measures™. Eight SRs and MAs included studies with
diagnostic purposes™*******, whilst one MA* and two SRs*** included
studies with prognostic purposes.

Three voxel-wise MAs explored gray matter volume changes asso-
ciated to CI in PD and converged in reporting GM atrophy in the left insula
that extended to the superior and inferior temporal lobe, and superior
frontal lobe when comparing PD-MCI to PD without CI"***, A single
voxel-wise MA found gray matter atrophy involving the bilateral superior
temporal lobe extending to hippocampus, insula, inferior frontal lobe, and
the left superior frontal lobe in PD vs. PD-D*. A MA of region-of-interest-
based volumetric longitudinal analyzes of structural MRI data documented
significant whole-brain volume loss of 1.16% per year in PD with cognitive
decline compared to cognitively normal PD*. A SR of MRI studies reported
that reduced hippocampal volume over time may predict conversion from
PD with normal cognition (PD-NC) to PD-MCI and from PD-MCI to PD-
D*. A SR of structural MRI studies addressing gray and white matter
reported atrophy in various cortical and subcortical brain areas and wide-
spread white matter changes to be associated with conversion to PD-MCI
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PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources
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Fig. 1 | PRISMA flowchart of the study.

and PD-D; in particular, PD-MCI converters showed greater atrophy
accumulation in fronto-temporal areas, caudate, thalamus and nucleus
accumbens compared to non-converters over time”.

A voxel-wise MA of resting-state functional MRI studies reported
reduced connectivity in the left precuneus, right median cingulate gyrus, left
superior frontal gyrus and right precentral gyrus, together with an increased
functional connectivity of the right cerebellum suggesting reduced con-
nectivity within the DMN when comparing PD with CI to PD-NC”.

A MA of amyloid imaging using Pittsburgh Compound B (PiB), i.e.,
the most validated PET tracer for non-invasive in vivo imaging of abnormal
amyloid deposition in the brain®, in subjects with a-synucleinopathies and
CI reported substantial variability in the prevalence of “PiB-positive” stu-
dies, with higher prevalence in DLB than PD-D, while PD-MCI subjects
showed overall lower PiB-positive prevalence than PD-D and DLB, as well
as in comparison to reported findings in non-PD associated MCI”".

A MA of tau PET imaging reported higher tau tracer binding in the
entorhinal region in PD with CI than PD-NC, while inconsistent results
were found when comparing PD-D to PD without dementia (PD-ND, i.e.,
PD-NC and PD-MCI)*.

A SR of brain metabolism and synaptic density PET imaging studies
found a regional decoupling of metabolic activity and synaptic density when
comparing DLB/PD-D to PD-ND, with the former exceeding the latter™.

A coordinate-based MA documented structural alterations in the right
supramarginal gyrus, left posterior insula and mid-cingulate cortex that did
not overlap with functional changes in areas (i.e., left angular gyrus, bilateral
dorsolateral prefrontal cortex) underlying executive processing and sup-
porting the existence of PD-MCI subtyping, and gray matter atrophy in
bilateral insula in PD-D**.

Neurophysiological biomarkers. A SR of cross-sectional and longitudinal
quantitative electroencephalography (EEG) studies reported EEG slowing
(i.e., lower acand B, higher 8 and 6 power), and some connectivity measures
to be associated to PD with CI compared to PD-NC, and higher 6 power

levels at baseline as a predictor of PD-related cognitive deterioration at single
patient level™. A SR of cross-sectional and longitudinal magnetoencepha-
lography (MEG) studies reported conflicting data on connectivity measures
as diagnostic biomarkers of PD-D, while lower  band power, higher 6
power at baseline, spectral slowing and more random 6 band topology
correlated with cognitive decline”. A MA documented that short-latency
afferent inhibition (SAI), a neurophysiological marker of cholinergic dys-
function, which is obtained through the conditioning of a cortical tran-
scranial magnetic stimulus by electrically stimulating contralateral
peripheral hand nerves with an inter-stimulus interval (ISI) of ~20 ms, was
more impaired in PD with CI than PD-NC. Furthermore, the SAI was
associated to visuo-spatial, executive, memory, and attention deficits of PD,
with a stronger association to the two former domains®. Short-interval
intracortical inhibition (SICI, ISI=1-4 ms) and intracortical facilitation
(ICF; ISI = 7-20 ms), neurophysiological markers of GABAergic and glu-
tamatergic function, respectively, were reported to be altered in PD-D than
PD-MCI and PD-NC". The latency of P300, an event-related potential that
is thought to reflect cognitive processing, has been reported to be prolonged
for PD-D patients compared to PD-NC in a recent MA™®.

Combined neuroimaging and neurophysiological biomarkers. A SR on
diagnostic biomarkers summarized the main structural and functional
neuroimaging and the neurophysiological changes associated with PD-MCI
subtypes and found consistent structural and functional changes in pos-
terior (i.e., occipital, parietal, temporal) regions in amnestic PD-MCI
compared to PD-NC, with less robust functional neuroimaging and neu-
rophysiological changes in non-amnestic and executive PD-MCI subtypes
and more marked structural and functional neuroimaging abnormalities
associated with more severe CI”.

Biofluid and genetic biomarkers of cognitive impairment in Parkin-
son’s disease. Seven papers, of which one SR* and six MAs™"* were
found on biofluid and genetic biomarkers of CI in PD (Table 3).
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Biofluid biomarkers. We found five studies on biofluid biomarkers, of which
two on cerebrospinal fluid (CSF)**, two on plasma/serum®* and one
addressing both CSF and plasma/serum biomarkers™. Most of them focused
on studies with diagnostic purposes™"***, while only one included prog-
nostic biomarkers studies” (Table 3).

A SR that included CSF biomarker studies focusing on different disease
pathways (i.e., oxidative stress, neuroinflammation, lysosomal dysfunction
and proteins involved in PD and other neurodegenerative disorders)
reported lower amyloid beta 1-42 (A342) and increased total tau (t-tau) and
phosphorylated taul81 (p-tau), which are core biomarkers for AD diag-
nosis, in the CSF of PD-D compared to PD-NC®. These findings were
confirmed in a MA focusing on CSF AD biomarkers in PD *. Besides, CSF
levels of A342 were shown as good predictors of cognitive decline in PD and
progression to PD-D*.

A MA reported increased plasma homocysteine and lower levels of
vitamin BI12 and folate, which together might be toxic on neurons and
vascular walls, in PD patients with CI compared to cognitively intact ones™'.
Higher serum levels of Cystatin C, a protease inhibitor and a reliable bio-
marker of kidney disfunction that has been associated to several neurolo-
gical disorders including AD, were reported in PD-MCI compared to PD-
NCina MA™

Higher levels of serum neurofilament light chain (NfL) and increased
CSF/serum albumin quotient were reported in PD-D patients compared to
those with normal cognition in a recent MA focused on biomarkers of
blood-brain barrier disruption™.

promising predictors for

APOE alleles and EEG
PD-CI

slowing may be

Conclusions

0.75) and
0.92) are

0.06) are associated

0.09) and ¢4 alleles (RR: 3.04; 95%
Cl:[1.88,4.91];p=

APOE €2 (RR: 6.47;95% CI:[1.29, 32.53];

increased median 6 power (RR: 2.93;

95% Cl: [1.61, 5.33]; p
associated with an increased risk of

Reduced median a power (RR: 1.77;
PD-CI

Main results
with an increased risk of PD-CI
95% Cl: [1.07,2.92]; p

p

comparisons
PD-Cl vs PD-NC

Group

Genetic biomarkers. We found two MAs on genetic biomarkers of CI in PD
with prognostic purposes™”. Both MAs explored the relationship between
the functional polymorphism Val66Met in the gene encoding brain-derived
neurotrophic factor (BDNF) and increased CI risk and converged in
reporting a significant association in Caucasian populations with PD***,

dysfunction
severity

Cognitive
PD-CI

Mixed biomarkers of cognitive impairment in Parkinson’s disease.
We found one prognostic MA® on clinical, neuroimaging, neurophy-
siological, biofluid and genetic prognostic biomarkers that included
prospective cohort studies of PD patients without CI at baseline and
found apolipoprotein E (APOE) €2 and &4 alleles and EEG slowing (i.e.,
reduced a, increased 0 power) to be associated with an increased risk of CI
in PD* (Table 4).

Purpose
Prognosis

Risk of bias of included studies

The results of the JBI checklist showed a mean overall score of 4.16, indi-
cating that the overall quality of the included SRs and MAs was generally
low. Specifically, twelve papers were judged to be of moderate quality, while
the remaining thirteen were deemed to be of low quality (Supplementary
Table 1).

Neuroimaging (MRI, DAT SPECT);
EEG (a, B, 8, 6 power); CSF (AB42; t-
tau); genetics (APOE alleles; MAPT

H1/H1; GBA mutations)

Biomarker

Type

Assessment of evidence levels, clinical utility and reproducibility
Nineteen biomarkers were considered to have diagnostic (N=14) and
prognostic (N = 5) significance according to the level of evidence, clinical
utility, and reproducibility. All biomarkers had B2 level of evidence (ie.,
evidence from cross-sectional and longitudinal cohort biomarker studies);
five had questionable clinical utility, while the remaining 14 had higher-to-
intermediate clinical utility. Most biomarkers (N=14) had high-to-
moderate reproducibility, while 3/19 and 1/19 had low and questionable
reproducibility, respectively (Table 5; Fig. 2).

(N, diagnosis)
PD-CI (CSF):

Included
subjects
1698
PD-CI
(EEG): 180

Discussion

The present study aims to identify diagnostic and prognostic biomarkers for
CI in a-synucleinopathies using a multimodal approach based on a system
biology perspective and coupling neuroimaging, neurophysiological, bio-
fluid and genetic biomarkers. Twenty-five SRs with or without MAs on
structural/functional neuroimaging, neurophysiological and biofluid bio-
markers for CI in PD have been identified, while data on other a-synu-
cleinopathies are largely lacking. We will discuss the results separately

N: 57 prospective,

Included studies
cohort

(N, design)

Study
design
MA

AB beta-amyloid, APOE apolipoprotein gene, C/ confidential interval, CSF cerebrospinal fluid, DAT dopamine transporter, EEG electroencephalogram, GBA glucocerebrosidase, MA meta-analysis, MAPT microtubule associated protein tau, MR/ magnetic resonance
imaging, PD-ClI patients with Parkinson’s disease and cognitive impairment, PD-NC patients with Parkinson’s disease and normal cognition, SPECT single-photon emission computed tomography, AR relative risk, t-tau total tau.

Table 4 | Systematic reviews and meta-analyses of combined biomarkers of cognitive impairment in Parkinson’s disease

Ref.
56
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Table 5 | Proposed classification of the biomarkers here reviewed that proved diagnostic or prognostic significance according

to level of evidence, clinical utility and reproducibility

Type of biomarker Level of Clinical utility? Reproducibility®
evidence' — : : —
Clinical/research  Diagnostic/ Non- Accessibility
application prognostic yield invasiveness
Diagnosis Neuroimaging
Atrophy of the insula, and frontal B2 C + + - 45
and temporal lobes
Altered DMN activity B2 R - - -
Higher PET tau-binding in the B2 (¢} + L - -
entorhinal region
Neurophysiology
EEG/MEG cortical rhythm slowing B2 C + L + AL
Abnormal connectivity measures B2 R - - o -
Reduced SAI B2 C + + - +
Increased SICI, reduced ICF B2 C + + - +
Delayed P300 latency B2 R - + - 4k
Biofluids - CSF
Increased albumin quotient B2 C - - - +
Anormal amyloid and tau B2 + - = 5
biomarkers
Biofluids - plasma/serum
Increased albumin quotient B2 C - + L +
Increased homocysteine, B2 C - + + +
cystatin C
Decreased vitamin B12 and folate B2 C = + + +
Increased NfL B2 C + + o -
Prognosis Neuroimaging
Atrophy of the hippocampus, B2 C + 4 = b
fronto-temporal lobes, caudate,
thalamus, NAcc, WM
Neurophysiology
EEG/MEG cortical rhythm slowing B2 (¢} + e uE 4L
Biofluids - CSF
Abnormal amyloid biomarkers B2 C I - - +
Genetics
BDNF Val66Met polymorphism B2 R + + - 45
APOE €2/¢4 alleles B2 C + + - 4

APOE apolipoprotein E gene, BDNF brain-derived neurotrophic factor, C clinical, CSF cerebrospinal fluid, DMN default mode network, EEG electroencephalography, ICF intracortical facilitation, MEG
magnetoencephalography, NAcc nucleus accumbens, NfL neurofilament light chain, PET positron emission tomography, R research, SAl short afferent inhibition, SIC/ short-interval intracortical inhibition,

WM white matter.

"Level of evidence defined according to the following classification '*: A = proven/consensus association in human medicine; B1 = prospective, randomized clinical trial; B2 = cross-sectional and
longitudinal cohort biomarker studies; B3 = retrospective biomarker studies; C = individual case reports from clinical journals; D = in vivo or in vitro models support associations; E = indirect evidence.
2Clinical utility, i.e., the actual usefulness/added value of the biomarker in clinical routine considering the defined context of use (i.e., clinical, research), diagnostic/prognostic yield (i.e., + = definite, - =
uncertain), non-invasiveness (i.e., + = non-invasive, - = invasive) and accessibility (i.e., -+ = available in both primary and specialized care centers; - = access limited to some primary and specialized care

centers or available only in specialized care centers).

®Reproducibility has been defined according to standardization and interoperability (i.e., -+ = established, - = unclear or not defined).

according to the diagnostic (i.e., SRs and MAs of cross-sectional studies) and
prognostic (i.e., SRs and MAs of longitudinal studies) aim of the explored
biomarkers.

We identified several structural and functional neuroimaging, neuro-
physiology, and biofluid diagnostic biomarkers of CI in PD.

Three voxel-wise MAs including structural neuroimaging studies
provided converging evidence that CI in PD is associated to gray matter
atrophy in a brain network including the insula, the superior and inferior
temporal lobe, and the superior and inferior frontal lobe, with a pre-
dominant left side involvement in PD-MCI and bilateral atrophy in PD-
D**** The involvement of frontal and temporal lobes is in keeping with the
frequent impairment of executive and attention domains that can be

documented since the early stages of PD***"™. At variance, the temporal
involvement may correlate with the impairment of memory, which is fre-
quently found later in PD course™**®". Striatal and insular dopamine
denervation have been suggested to underlie MCI, and in particular
executive dysfunction, in PD*. The bilateral gray matter atrophy in PD-D is
in keeping with evidence of a unilateral-to-bilateral spread of dopaminergic
cell loss in a genetic model of PD”, the clinical observation that onset of PD
motor symptoms is usually asymmetrical, and early susceptibility of left
hemisphere to cortical atrophy in PD*. Indeed, the predominant left-side
atrophy in PD-MCI seems counterintuitive, as it would imply an involve-
ment of language domain that is not commonly affected in early PD stages®".
However, the left hemisphere is highly specialized for other complex abilities
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Fig. 2 | Neuroimaging, neurophysiological and biofluid biomarkers for cognitive
impairment in Parkinson’s disease scored according to the level of evidence
(panel A), clinical utility (panel B) and reproducibility (panel C). Panel A: all
biomarkers had a B2 level of evidence (i.e., evidence from cross-sectional and
longitudinal cohort biomarker studies)'*. Panel B: clinical utility, i.e., the actual
usefulness/added value of the biomarker in clinical routine considering the defined
context of use, diagnostic/prognostic yield, non-invasiveness and accessibility with
greenish/yellowish shades indicating higher/intermediate clinical utility, respec-
tively. Panel C: reproducibility defined according to standardization and

interoperability with greenish/yellowish/reddish shades indicating higher/inter-
mediate/low reproducibility, respectively. APOE apolipoprotein E gene, BDNF
brain-derived neurotrophic factor, CSF cerebrospinal fluid, CysC cystatin C, DMN
default mode network, EEG electroencephalography, FT frontal lobe, HC hippo-
campus, Hcy homocysteine, ICF intracortical facilitation, MEG magnetoencepha-
lography, NAcc nucleus accumbens, NfL neurofilament light chain, PET positron
emission tomography, Qalb albumin quotient, SAI short afferent inhibition, SICI
short-interval intracortical inhibition, WM white matter.

that may be affected by CI in PD, such as motor planning, organization of
complex movements and actions, motor learning®**. The cross-sectional
design of the original studies however does not support direct evidence of
unilateral-to-bilateral progression of gray matter atrophy in the frontal-
limbic-temporal region associated to CI in PD.

In keeping with the role of the anterior insula as a crucial hub in the
salience network that mediates dynamic interactions between other large-
scale brain networks, such as the default mode network and the central
executive network®, a voxel-wise MA of functional MRI studies docu-
mented reduced connectivity specifically in the default mode network™. The
default mode network includes the medial parietal, bilateral inferior-lateral-
parietal and ventromedial frontal cortex and plays an important role in
various cognitive functions, including memory, processing speed and
executive function, which are affected in PD-MCI*®, Changes in the default
mode network have been reported in PD* and in several other neurode-
generative disorders such as AD, Huntington’s disease, and frontotemporal
dementia®.

Structural and functional changes and their overlap in PD with CI were
explored by a coordinate-based MA that confirmed larger gray matter
atrophy, involving bilateral insula, in PD-D than PD-MCI but yielded
conflicting results in PD-MCI, which showed structural alterations in
somatosensory brain areas that do not overlap with functional changes in
areas underlying executive processing”. A hypothesis to reconcile this
paradoxical finding is that the somatosensory network functional deficit
may not be visualized because the somatosensory brain areas in PD-MCI
may have developed early structural atrophy’® with no functional imaging
signal to be detected™.

The pattern of structural and functional neuroimaging and the neu-
rophysiological changes associated with PD-MCI subtypes (i.e., according
to the main cognitive domain involved) were examined in a SR that reported
structural and functional changes in occipital, parietal, and temporal regions
in amnestic PD-MCI, while non-amnestic and executive PD-MCI was
mainly associated with functional neuroimaging and neurophysiological
rather than structural abnormalities ™. However, only few studies considered
the cognitive variability of PD-MCI, and the conclusions are biased by the
high heterogeneity of the included studies™.

Cortical amyloid deposition in CI associated to a-synucleinopathies
was examined by a MA that reported higher amyloid deposition in DLB
than PD-D, while PD-MCI subjects showed lower deposition than PD-D

and DLB, with substantial variability in the findings”. Of interest, results in
PD-MCI diverged from those in MCI associated to AD and in cognitively
normal elderly controls, where the prevalence of amyloid deposition is
reported to be larger’"”. Increased tau PET tracer binding was found in the
entorhinal region in PD patients with CI in comparison to cognitively intact
ones, but tau binding did not differ according to the degree of CI in PD*.
The time course of amyloid and tau PET findings in relation to CI in PD
differs to some extent from the classical AD findings”. These data suggest
that PD-MCI may be more related to dopamine denervation and a-synu-
clein than amyloid deposition in comparison to PD-D and DLB, or that PD
brain is less prone to amyloid deposition, at least in early disease stages”.
Conversely, abnormal tau deposition appears to be related to CI in PD but is
not associated to its severity, again pointing to the importance of coexisting
a-synucleinopathy’.

Brain metabolism reduction was found to exceed changes in synaptic
density in DLB/PD-D according to PET imaging studies™ suggesting the
presence of additional functional changes that may be ascribed to a func-
tional rather than structural damage related to a-synuclein, amyloid or tau
proteinopathy.

A SR of quantitative EEG studies reported cortical rhythm slowing,
which have been reported to reflect cortical neurodegeneration” and
degeneration of the cholinergic nucleus basalis of Meynert in AD and DLB’,
and abnormalities in some connectivity measures in PD with CI compared
to PD-NC, with data in PD-MCI ranging between those of cognitively
unimpaired PD and PD-D”, while a SR of MEG studies yielded conflicting
data on connectivity measures associated to PD-D*. Both reviews converge
on insufficient evidence for the use of EEG and MEG connectivity measures
as a biomarker of cognitive function in PD because of the small number of
studies™”.

SAI, a measure of cortical inhibitory cholinergic activity, was reported
to be more impaired in PD with CI than PD-NCand its reduction was found
to be associated to visuo-spatial, executive, and less strongly to memory, and
attention deficits in PD in a MA*. Cholinergic dysfunction has been
hypothesized to play a key role in the appearance of cognitive deficits in
PD”. The “dual syndrome hypothesis” suggests that dopaminergic dys-
function in the fronto-striatal regions and cholinergic dysfunction within
the posterior cortical and temporal lobes, the latter being more involved in
early deficits in visuo-spatial function and semantic fluency and more rapid
cognitive decline to dementia, contribute to CI in PD"",
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Increased SICI and reduced ICF, which suggest enhanced cortical
GABAergic and reduced glutamatergic activity, respectively, were reported
to be associated with the severity of CI in PDY. These abnormalities, which
differ from those typically found in PD irrespective of CI (i.e., reduced SICI
and increased ICF that can be partially reverted by dopaminergic treatment)
suggest the additional involvement of other neurotransmitter deficits or the
bias effect of concomitant medications”.

The event related potential P300 is associated to visual perception,
verbal fluency, working memory, and planning and its latency is related to
cognitive processing and mainly reflects the time of stimulus evaluation®’. A
MA reported P300 latency to be prolonged in PD-D patients compared to
PD-NC". This finding is in keeping with a study that suggested prolonged
P300 latency to reflect early changes in attention and cognitive processing®".

A SR and a MA on CSF biomarkers of CIin PD converged in reporting
classical AD biomarkers (i.e., reduced A342, increased t-tau and p-tau) in
PD patients with CI and especially in PD-D***’, supporting a potential role
of amyloid brain deposition as a core feature of CI in PD, in accordance with
the neuropathological evidence of AD neuropathology in PD patients with
advanced disease course and CI'*"**,

Plasma homocysteine, a metabolic product of methionine, was found
to be increased and plasma vitamin B12 and folate, which together regulate
homocysteine methylation, were found to be reduced in PD with CI when
compared to PD-NC in a MA™'. Homocysteine has been suggested to exert
neurotoxicity and contribute to vascular damage™, and increased homo-
cysteine has been reported as a risk factor for AD and dementia***'. How-
ever, the scenario appears to be more complex because of the intricate
relationships between homocysteine, vitamin B metabolites, long-term L-
dopa/dopa-decarboxylase inhibitor treatment, and PD motor and non-
motor symptoms, and the lack of longitudinal studies ruling out a possible
reverse causation relationship®. Serum levels of cystatin C, a cysteine pro-
tease inhibitor that regulates several biological processes, including matrix
proteases activity, inflammation, and autophagy®, has been found to be
increased in PD patients with MCI compared to PD-NC™. Cystatin C has
been reported as a biomarker of motor progression and to correlate with
NfL, an axonal damage marker, in PD®.

A MA explored CSF and blood biomarkers of blood-brain barrier
disruption in a-synucleinopathies and reported significantly increased levels
of serum NfL, suggesting axonal damage and increased CSF/serum albumin
quotient associated with PD-D, lending some support to the presence of
blood-brain barrier disruption in the pathogenesis of CI in PD™.

In summary, the reported diagnostic biomarkers of CI in PD include: a)
atrophy of the insula, frontal and temporal lobes and to less extent the
somatosensory areas, with more marked and more widespread/bilateral
changes in PD-D than PD-MCI; b) functional changes in the default mode
network and in areas underlying executive processing, with some mismatch
between the areas undergoing structural and functional changes; c)
abnormal cortical amyloid and increased tau deposition in the entorhinal
region, and positive CSF amyloid and tau biomarkers, more marked in PD-
D than PD-MCI; d) slowing of EEG and MEG cortical rhythm, with to less
extent changes in some connectivity measures; e) reduced cortical inhibitory
cholinergic activity documented by SAI measure; f) increased cortical
GABAergic activity and decreased cortical glutamatergic and cholinergic
transmission in PD-D than PD-MCI and PD-NGC; g) delayed P300 latency;
h) increased plasma homocysteine and cystatin C and decreased vitamin
B12 and folate, with unclear pathophysiological significance; i) increased
CSF/serum albumin quotient and serum NfL, suggesting blood-brain
barrier disruption and axonal damage, respectively (Fig. 3). Biomarkers
associated to CI subtypes have been seldom explored, with some evidence
supporting more consistent structural neuroimaging changes in amnestic
PD-MCI, and SAI cholinergic abnormalities to be more marked in PD
patients with visuo-spatial and executive deficits.

We identified some structural neuroimaging, neurophysiology, CSF
and genetic prognostic biomarkers of CI in PD.

A structural MRI MA documented more marked and progressive
whole-brain volume loss in PD patients with CI than PD-NC but did not

report data on specific regions of interest''. A SR of MRI studies focusing on
the hippocampus reported atrophy of hippocampal volume and hippo-
campal subfields over time as a potential prognostic biomarker for con-
version from PD-NC to PD-MCI and from PD-MCI to PD-D*. These
findings align with AD neuroimaging literature, which has similarly found
reductions in hippocampal volume to predict cognitive progression and the
20-30% prevalence of AD pathology at post-mortem autopsy in PD
patients”. Another SR on multimodal structural neuroimaging reported
greater volume loss in several brain areas, including fronto-temporal areas,
caudate, thalamus and nucleus accumbens and widespread white matter
changes over time in PD-MCI”. Taken together, these figures indicate that
various cortical and subcortical regions might play a key role in the pro-
gression of CI in PD.

Two SRs of quantitative EEG and MEG converged in reporting cortical
rhythm slowing as biomarkers of cognitive worsening in PD even at single-
subject level’>”. Changes in cortical oscillatory slowing activity are supposed
to rely upon the involvement of brainstem dopaminergic, noradrenergic,
and serotonergic projection systems in early PD*, while cortical Lewy body
and tau pathology, degeneration of the cholinergic nucleus of Meynert and
thalamo-cortical circuits pathology take place in later disease stages*™" and
may contribute to cortical neurophysiological changes in PD patients
with CL

SAI'was reported to be abnormal in PD patients with CI, but the lack of
longitudinal studies impedes any conclusion on SAI as a potential bio-
marker of CI progression in PD*. Similarly, P300 was found to be abnor-
mally prolonged in patients with PD-D, but the absence of longitudinal
studies on P300 and other event related potentials does not offer informa-
tion on the role as potential predictor of CI evolution™.

In keeping with the data on CSF AD biomarkers for the diagnosis of CI
in PD (see above), CSF Af342 levels were reported to be good predictors of
cognitive decline in PD and progression to PD-D in a SR of prognostic
studies”.

Two MAs reported significant association with the BDNF Val66Met
polymorphism and increased risk of CI in Caucasian populations with
PD***. These findings are in keeping with the role of the BDNF gene
product in dopaminergic neurons survival and differentiation, synaptic
plasticity, and dopamine activity in the fronto-striatal circuitry™.

A MA on a wide range (i.e., clinical, neuroimaging, neurophysiological,
biofluids, genetics) of prognostic biomarkers reported only APOE €2 and &4
alleles, reduced a and increased 0 power to be associated with increased risk
of CI in PD, while clinical, neuroimaging, CSF and other included bio-
markers yielded negative findings™.

To summarize, the reported prognostic biomarkers of CI in PD
include: a) atrophy of the whole brain and specific regions, including the
hippocampus, fronto-temporal areas, caudate, thalamus, nucleus accum-
bens and white matter; b) cortical rhythm slowing that can be informative at
single-subject level; ¢) CSF amyloid biomarkers; d) the BDNF Val66Met
polymorphism and APOE 2 and &4 alleles (Fig. 3).

The main strength of this overview is that it offers an updated and
comprehensive scenario on the state-of-the-art of diagnostic and prognostic
biomarkers of CI in a-synucleinopathies, through an overview of SRs and
MAs and a proposal of scoring based on evidence levels, clinical utility, and
reproducibility.

There are several limitations with our findings. First, no SRs/MAs
including patients with CI due to MSA were found, while only one SR
included patients with CI due to DLB*. CI has been consistently reported as
an important non-motor feature in DLB and MSA'®, and further studies are
warranted on diagnostic and prognostic biomarkers for CI in these condi-
tions. Second, the diagnosis of PD-MCI and PD-D differed across the ori-
ginal studies included in the SRs and MAs that we examined, and only 8 out
of 25 reports explicitly mentioned this as one of the main
constraints™******#*%%3% Before the publication of diagnostic criteria for
PD-MCI according to abbreviated or comprehensive assessment by a
Movement Disorders Society task force”, the construct of MCI in PD was
unclearly defined and older studies might differ in terms of MCI diagnostic
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criteria. Third, most of the original studies did not provide sub-scores for
single cognitive domains or offer information on MCI subtypes, hampering
the analysis of the association between single biomarkers and specific pat-
terns of CI in most of the included studies. Fourth, many of the SRsand MAs
we included were based on cross-sectional studies that offer diagnostic
biomarkers of CI but does not allow the assessment of a direct causation

effect between biomarkers and CI and cognitive decline. Indeed, data on
prognostic biomarkers were less robust than diagnostic ones, in terms of the
number of SRs/MAs and subjects included, and findings on susceptibility/
risk, monitoring, and pharmaco-dynamic/response biomarkers of CI in PD
are largely lacking. Fifth, some of the association between reported bio-
markers and CI might have been at least partially biased by covariates such
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Fig. 3 | State of the art and opportunities and issues for future development of
biomarkers for cognitive impairment in Parkinson’s disease (PD). The overview
of the literature yielded neuroimaging, neurophysiological, biofluid and genetic
diagnostic and prognostic biomarkers with conflicting results and limited applica-
tion at single patient level (panel A). Susceptibility/risk, monitoring, pharmaco-
dynamic response, digital and minimally invasive clinical biomarkers should be
tested in future studies (panel B). Artificial intelligence, machine and deep learning
combined with large biobanks including traditionally neglected may implement a
multi-omics approach that might be more informative in single patients (panel C).

PD subtypes might be associated with different multi-omics fingerprints that may
represent the basis for a personalized medicine approach to cognitive impairment in
PD (panel D). This figure was partially created with Biorender.com. APOE apoli-
poprotein E gene, BDNF brain-derived neurotrophic factor, CSF cerebrospinal fluid,
DMN default mode network, EEG electroencephalography, ICF intracortical facil-
itation, MEG magnetoencephalography, NAcc nucleus accumbens, NfL neurofila-
ment light chain, PET positron emission tomography, PIGD postural instability gait
disorder, SAI short afferent inhibition, SICI short-interval intracortical inhibition,
WM white matter.

as age, sex, education, disease duration, pharmacological treatment, motor
severity, other PD non-motor symptoms, but moderator analyses were
performed only in 7/25 studies”*****°. Finally, the original studies might
have been affected by publication bias as this issue was assessed in only 16/25
MAS and SRS included32735,37,39,40,43,47,50732,34756'

This overview reported updated evidence on diagnostic and prognostic
biomarkers of CI in PD, offering a state-of-the-art based on SRs and MAs,
together with a proposed scoring based on evidence levels, clinical utility, and
reproducibility that might represent a starting point for assessing their
clinical significance in terms of sensitivity, specificity and area under the
curve for diagnosis and prognosis of CI in patients with a-synucleinopathies.

Future studies on biomarkers of CI in PD should consider the open
questions on this topic (Fig. 3). First, they should include biomarkers of
susceptibility/risk, monitoring of CI worsening, and those offering infor-
mation on pharmaco-dynamic/response biomarkers”. Second, given they
can be more easily applied, clinical biomarkers of CI should be tested in
addition to more complex, expensive, and not widely available instrumental
ones™. Third, the application of plasma/serum neurodegeneration/neuro-
pathological biomarkers, instead of the more invasive CSF ones is an
emerging field of study’’. Promising results have been shown for plasma
NfL, which has recently been reported as a sensitive biomarker for pre-
dicting cognitive decline in PD. According to two recent prospective studies,
increased plasma NfL, but not p-taul81, was a better predictor of pro-
gression to dementia during follow-up in PD patients™”". In this review we
found only preliminary evidence on NfL and these data, although inter-
esting, remain inconclusive. Fourth, studies should assess the significance of
digital biomarkers”, an emerging topic in CI and dementia, in that they may
offer the unique chance of being recorded remotely and in a more ecological
home environment™. Fifth, the complexity of the motor and non-motor PD
clinical subtypes that include the classical tremor-dominant and postural-
instability-gait-disorder motor phenotypes”, but have consistently expan-
ded in recent years, encompassing both non-motor symptoms and putative
specific pathophysiological features™”” should be considered. The large
heterogeneity of findings in the included MAs might derive from an
imbalance in PD clinical phenotype in the original studies. From this per-
spective, the combination of clinical features, biomarkers of abnormal a-
synuclein deposition together with CI biomarkers might lead to a better PD
subtyping based on clinical and biological features. Sixth, the increasing
availability and the lower cost of biomarkers yield technical, analytical and
standardization challenges that can be addressed by artificial intelligence,
machine learning solutions, and digital twin technology to realize the full
potential of a multiomics approach to CI in PD**"'*. Large multicenter
consortia and biobanks that include sex- and gender-balanced subjects and
traditionally poorly represented minorities will be of paramount importance
to address these issues.

Methods

Overview of systematic reviews and meta-analyses

This overview of SRs and MAs was performed following the recommen-
dations for conducting umbrella reviews according to the Joanna Briggs
Institute (JBI) methodology'”', the Cochrane Handbook for SRs of
Interventions'” and the principles of the Preferred Reporting Items for SRs
and MAs (PRISMA) guidance'”, where applicable. The review protocol was
not registered.

Eligibility criteria. The SPIDER tool'" was used to frame the inclusion
criteria for this overview. The Sample (S) included patients with a-synu-
cleinopathies (i.e., PD/PD-D, DLB, MSA); the Phenomenon of Interest (PI)
was the association between neuroimaging, neurophysiological, biofluid
and genetic biomarkers of any type (i.e., diagnostic, prognostic, predictive,
susceptibility/risk, monitoring, pharmaco-dynamic/response) and CI of
any severity or degree (i.e., SCI/SCD, MCI, dementia); the Design (D)
encompassed SRs with/without MAs clearly identified by the authors in
either the title or abstract of the review and presenting evidence of a
systematic search and process (i.e., duplicates removal, titles/abstracts
screening, full-texts screening, data extraction and analysis) according to
PRISMA guidance'”’; the Evaluation (E) was any neuroimaging, neuro-
physiological, biofluid and/or genetic measure that served as a biomarker;
the Research type (R) included qualitative and quantitative peer-reviewed
studies. Eligible SRs and MAs were included regardless the number or
breadth of search engines used, the study design and methodology of the
primary studies. SRs and MAs were excluded when comparing patients
with CI vs. healthy controls (including normal aging) or other conditions
due to different neuropathologies (e.g., AD), only.

Search strategy. PubMed/MEDLINE and Cochrane Database of Sys-
tematic Reviews were searched to identify relevant articles published
from databases inception to December 16™ 2022. The following search
string was used: (alpha synucleinopathies OR Parkinson’s disease OR
“PD” OR Lewy body dementia OR “LBD” OR multiple system atrophy
OR “MSA”) AND (cognitive dysfunction OR “cognitive impairment”)
AND (biomarker) AND (magnetic resonance imaging OR “MRI” OR
positron emission tomography OR “PET” OR single photon emission
tomography OR “SPECT” OR electroencephalography OR “EEG” OR
magnetoencephalography OR “MEG” OR evoked potentials OR tran-
scranial magnetic stimulation OR “TMS” OR cerebrospinal fluid OR
“CSF” OR blood OR plasma OR serum OR epigenomics OR proteomics
OR genetics OR genomics). The search on PubMed/MEDLINE was fil-
tered for reviews, SRs and MAs. Besides, the reference lists of relevant
publications were manually inspected for any additional citation to
ensure a comprehensive literature search. The search was updated on
June 4™, 2024 to ensure currency of results.

Study selection. Search results were uploaded to Rayyan software, a
web-based application to facilitate collaboration among reviewers during
the selection of the studies'”. Two authors (EM, ST) independently
screened titles and abstracts. Any disagreement was solved by consensus.

Data extraction and management. A shared, previously pilot-tested
data extraction sheet was created to record the following data from
included SRs and MAs: study design (i.e., SR with/without MA), type(s)
and number of included studies and participants, biomarker type
according to nature (i.e., neuroimaging, neurophysiological, biofluids,
genetics) and purpose of measurement (i.e., susceptibility/risk, diagnosis,
monitoring, prognosis, prediction), cognitive dysfunction severity (i.e.,
SCI/SCD, MCI, dementia), group comparisons, main results and con-
clusions. Results pertaining comparisons between patients with CI vs.
healthy controls (including normal aging) or other conditions due to
different neuropathologies (e.g., AD) were not reported, as we were
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specifically interested on the association between biomarkers and Clin a-
synucleinopathies.

Data analysis. A systematic and descriptive analysis of the results was
reported in the text and tables.

Risk of bias. The JBI Critical Appraisal ChecKlist for Systematic Reviews
and Research Syntheses was used to assess the methodological quality of the
included SRs and MAs"". Quality assessment according to JBI checklist
involves eleven domains: 1) clarity and explicity of the review question, 2)
inclusion criteria, 3) search strategy, 4) adequacy of sources and resources
used, 5) criteria for study appraisal, 6) number of reviewers, 7) methods to
minimize errors in data extraction, 8) methods used for combined studies, 9)
assessment of publication bias, 10) recommendations for policy and prac-
tice, 11) directives for new research. Every domain was given a rating of
“yes”, “unclear”, “no” or “not applicable”, and one point was given to every
domain rated “yes”. Based on the sum of points, the overall quality of the
paper was judged as being low (0-4), moderate (5-8) or high (9-11). Two
authors (EM, ST) performed the risk of bias assessment independently, and
disagreements were solved by consensus.

Assessment of evidence levels, clinical utility and reproducibility
To provide guidance for prioritizing biomarkers for future research, we
assessed and scored each biomarker that demonstrated diagnostic and
prognostic value in terms of level of evidence, clinical utility and
reproducibility'®. The classification of level of evidence was stratified as
follows: A = proven/consensus association in human medicine; B1 = pro-
spective, randomized clinical trial; B2 = cross-sectional and longitudinal
cohort biomarker studies; B3 = retrospective biomarker studies; C = indi-
vidual case reports from clinical journals; D = in vivo or in vitro models
support associations; E = indirect evidence. The definition of clinical utility
was based on diagnostic/prognostic yield (i.e., definite or uncertain), non-
invasiveness (i.e., invasive or non-invasive) and accessibility (i.e., availability
in primary and/or specialized care centers). Finally, reproducibility was
defined according to the presence/absence of standardized and interoper-
able protocols.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files.
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