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Abstract
This paper shows that generic types (generics) are useful for writing more abstract and more general smart contracts, but

this comes with some security risks, reporting a concrete security issue found while using generics for writing smart

contracts that implement shared entities for the Hotmoka blockchain. That issue can be used to steal the remuneration of

validator nodes. This paper proposes a patch based on appropriate code rewriting. Namely, smart contracts are pieces of

code that are deployed and executed in the context of a blockchain infrastructure in order to automatically enforce some

effects when particular events occur. The writing of smart contracts is a complex and critical activity that can benefit from

the use of high-level features of programming languages, and generics is one of them. In many programming languages,

such as Java, generics are implemented by erasure, i.e. replaced by their upper bound type during compilation into

bytecode. This is safe at source level, since the compiler takes care of checking that types are correct, before erasure.

However, the erased types of the generated bytecode are consequently weaker. In a permissionless blockchain, where every

user can call the bytecode of smart contracts installed by other users, these weaker types pose a risk of attack.

Keywords Smart contracts � Generics � Erasure

1 Introduction

In recent years, blockchain technology has rapidly emerged

as a powerful tool for supporting the development of many

and innovative services and infrastructures. Blockchain-

enabled applications are spreading across diverse sectors

such as supply chain, business, healthcare, IoT, privacy,

and data management [1]. A blockchain is essentially a

distributed ledger, namely a database replicated across

different locations and synchronized by multiple indepen-

dent participants. Blockchains exploit the redundant,

concurrent execution of the same transactions on a

decentralized network of many machines, in order to

enforce their execution in accordance with a set of prede-

fined rules. Namely, blockchains make it hard, for a single

machine, to disrupt the semantics of transactions or their

ordering: a misbehaving single machine gets immediately

put out of consensus and isolated.

That is, the key innovation introduced by this technol-

ogy is a mechanism able to reach an emergent agreement

about a global state without the need for a central authority.

Morever, another peculiarity is that the consensus is not

explicit, because there is not a fixed moment when it

occurs.

The rules of blockchain transactions are specified by

smart contracts, that are code written in a variety of pro-

gramming languages. To the best of our knowledge, none

of them allows generic types (generics) and, in any case,

nothing has been published about the opportunity, but also

the risks of using generics for writing smart contracts. The

contribution of this paper is exactly to show a real-life use

of generics for an actual smart contract contained in the

support library of the Takamaka language [2, 3], and to

demonstrate that a naı̈ve use of Java generics can lead to a

code security vulnerability that allows an attacker to earn

money by exploiting someone else’s work, with both
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economical and legal side effects. This paper provides a fix

to that specific issue, by proposing a re-engineering of the

code that forces the compiler to generate defensive checks.

More generally, this paper can be useful for the definition

of future bytecode languages for smart contract languages,

by learning from the weaknesses of Java bytecode, in

particular from those related to the compilation of generics.

Historically, programming languages for specifying

blockchain transactions started with Bitcoin [4, 5], the first

blockchain’s success story. Here transactions are pro-

grammed in a non-Turing complete bytecode language,

with no notion of generic types, almost exclusively used to

implement transfers of units of coins between accounts,

providing a totally decentralized P2P digital cash system

based on a distributed public ledger. A few years after

Bitcoin, another blockchain, called Ethereum [6, 7],

introduced the possibility of programming transactions in

an actual, imperative and Turing-complete programming

language, called Solidity, also missing generic types. The

major innovation of Ethereum is the construction through

its nodes of a distributed world computer that can run

general-purpose code. Indeed, if the term distributed ledger

is usually used to describe blockchains like Bitcoin,

Ethereum is often defined as a distributed state machine.

Solidity’s code is organized in smart contracts, namely

pieces of code that are stored in the blockchain and are

executed when a particular event occurs, e.g. when a

transaction is scheduled. From a theoretical point of view, a

smart contract is essentially an agreement between two or

more parties that can be automatically enforced without the

need for a trustworthy intermediary [8]. Through smart

contracts, Ethereum’s transactions can hence execute much

more than coin transfers. In this case the global shared state

is given by a set of objects that are persisted and manip-

ulated in the same way by all nodes in the blockchain

through the execution of the same object constructors and

methods.

The world computer built by Ethereum is known as

Ethereum Virtual Machine (EVM) and is the platform

where accounts and smart contracts live and are executed.

Solidity is a high-level programming language and smart

contracts need to be compiled into bytecode to be executed

inside the EVM. At this regard, observe that, in Solidity’s

bytecode, non-primitive values are referenced through a

very general address type. For instance, a Solidity

method child(Person p, uint256 n) returns

Person actually compiles into child(address p,

uint256 n) returns address, losing most type

information [9]. Since, at run time, it is the bytecode that

gets executed, everything can be passed for p, not just a

Person instance, as illustrated in Fig. 1. The compiler

cannot even enforce strong typing by generating defensive

type instance checks and casts, because values are unboxed

in Ethereum: they have no attached type information at run

time, they are just numerical addresses. It follows that,

inside the child method, an eventual call to a Person’s

method on p might actually execute any arbitrary code, if p

is not a Person. In other words, Solidity is not strongly

typed. Consequently, it is highly discouraged, in Solidity,

to call methods on parameters passed to another method,

such as on p passed to child, since an attacker can pass

crafted objects for p, with arbitrary implementations for

their methods, which can result in the unexpected execu-

tion of dangerous code. This actually happened in the case

of the infamous DAO hack [10], that costed millions of

dollars.

Strong typing is one of the reasons that pushed towards

the adoption of traditional programming languages for

smart contracts. For instance, the Cosmos blockchain [11]

uses Go. The Hotmoka blockchain [12] uses a subset of

Java for smart contracts, called Takamaka [2, 3]. Hyper-

ledger [13] allows Go and Java. Another reason is the

availability of modern language features, that are missing

in Solidity, such as generics. They are a powerful and very

useful facility for programming smart contracts, since they

allow one to personalize the behavior of such contracts and

partially overcome their inherent incompleteness [8].

Through the use of generics, it is possible to provide to

users a set of predefined contract templates that they can

extend and specialize with lower programming skills, but

higher knowledge about the specific application domain.

Generics are based on the use of type placeholders in order

to produce parametrized code, that can be instantiated for

each concrete type provided for the placeholders. However,

strong typing and generics are two intertwined language

features that have to be carefully considered when smart

contracts are implemented and their bytecode is subse-

quently deployed on a blockchain. For instance, in Java

source code, generics are strongly typed, if no unchecked

operations are used [14], as it will always be the case in

this paper. However, generics might have security issues at

the level of compiled Java code and this paper originated

from a real issue that has been found in our code.

The remainder of this paper is organized as follows.

Section 2 discusses the management of generics in Java.

Section 3 presents the basic notions about the Takamaka

language for smart contracts in Java. Section 4 shows our

real-life Java smart contracts for shared entities, that use

generics. Section 5 shows the instantiation of the shared

entities to implement the validators’ set of a proof of stake

blockchain. Section 6 shows that a naı̈ve deployment of a

subclass of the validators’ set leads to a code vulnerability

due to the way generics are compiled. Section 7 presents a

fix to that vulnerability. Section 8 discusses some related

work. Section 9 concludes.
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This paper is a revised and extended version of [15]. In

comparison to that paper, Sects. 3 and 5 are new; while all

other sections have been expanded with several additional

details and enriched with many explanatory figures.

2 Generics implementation in programming
languages

There exist two common ways to implement generics in a

programming language, that are often described in litera-

ture as heterogeneous and homogeneous [16]. In the

heterogeneous approach, the code is duplicated and spe-

cialized for each instance of the generic parameters; this is

the approach adopted by C?? templates. Conversely, the

homogeneous approach is that provided by Java and .Net;

in this case, only one instance of the code is maintained and

shared by all generic instances. This implementation is

based on the type erasure mechanism, where the generic

parameter is replaced by the upwards bound of each

instance, mostly often Object. Even though the hetero-

geneous approach is the safest, it is rarely applied, in

particular in resource-constrained applications, because the

code size may dramatically increase as a consequence of

duplication [17]. For code in blockchain, the heteroge-

neous approach obliges one to reinstall all instantiations of

the generic code, with extra costs of gas, which makes it

impractical. Conversely, the homogeneous approach

ensures a smaller consumption of resources.

In order to understand the mechanism of erasure, con-

sider for instance the interface SharedEntity in Fig. 7

and its method accept. The functionality of Share-

dEntity will be discussed later (Sect. 4). Here, it is

relevant to consider only how its generic type parameters

get compiled. Namely, SharedEntity uses two generic

type parameters S and O, that must be provided whenever a

client creates a concrete implementation of the interface.

Such generic parameters have an upper bound: S can only

be a subtype of PayableContract, while O can only be

a subtype of Offer\S[. If one checks the bytecode

generated for SharedEntity, she will see that accept

is declared, in bytecode, as void accept(BigInte-

ger amount, PayableContract buyer, Offer

offer), that is, the two type variables S and O have been

erased and replaced with their respective upper bound, as

illustrated in Fig. 2.

Erasure weakens the type information of the compiled

code. It is the responsibility of the compiler to guarantee

that types are still respected, in all implementations of

SharedEntity. In Java, the compiler guarantees type

correctness and the Java language remains strongly-typed,

also in the presence of generic types, if no unchecked

operations are performed [14] (such as casts to generic

types, that are unchecked for a limitation of the Java

bytecode). However, this guarantee applies to Java source

code compiled by the Java compiler, not to bytecode that

can be generated manually, in order to attack instances of

the SharedEntity class, as shown later.

3 The Takamaka language for smart
contracts

This section gives a short introduction to the Takamaka

subset of Java that this paper uses for writing smart con-

tracts. This language has been introduced in [2]. A full

tutorial is available online, as part of the documentation of

the Hotmoka blockchain that runs smart contracts written

in Takamaka [18]. This section introduces only the

essential notions that are needed to understand the subse-

quent sections. The hierarchy of the classes described in

this section is in Fig. 3. In the following, a simplified

presentation of the code of some of such classes will be

reported. The full code is in the Github repository of

Hotmoka [18].

Takamaka implements objects persisted in blockchain as

subclasses of the class io.takamaka.-

code.lang.Storage. This is the main difference with

other attempts at using Java for writing smart contracts: the

programmer does not code the serialization and

Fig. 1 Example of possible

problem that can occur in

Solidity due to the absence of a

strong typing mechanism
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deserialization of objects into a keeper or a key/value map,

but simply extends Storage and objects get persisted

automatically out of magic. In this sense, Takamaka fol-

lows the approach of Solidity, but using Java.

Fig. 2 Example of generics

implementation by erasure in

Java

Fig. 3 The hierarchy of Takamaka classes that implement accounts, shared entities and validators. Their source code can be found inside the Java

project https://github.com/Hotmoka/hotmoka/tree/master/io-takamaka-code

2102 Cluster Computing (2023) 26:2099–2113

123

https://github.com/Hotmoka/hotmoka/tree/master/io-takamaka-code


The io.takamaka.code.lang.Contract class

implements objects that can be persisted in blockchain and

have a balance. Therefore, they can receive and provide

payments. Their balance is available through a balance

method. This is a @View method, meaning that it can be

called without paying gas (the measure of execution cost),

since such methods cannot have side-effects and conse-

quently do not modify the storage of the blockchain.

Payments can be received only through methods annotated

as @Payable. The Contract superclass has no such

methods, but subclasses may have. For instance, its

io.takamaka.code.lang.PayableContract

subclass has a method receive to receive payments from

its caller. Many methods (inclusing all @Payable meth-

ods) need to identify their caller. This is done by adding the

@FromContract annotation, that guarantees that the

caller is a contract, available inside the method as

caller().

Method calls started from outside the blockchain (for

instance, from a client such as a wallet or from a web

application), must specify an already existing Exter-

nallyOwnedAccount as caller. This account will pay

for the gas of the execution. The blockchain will accept the

call only if is signed with the private key that matches the

public key provided to the constructor of the account when

it was created. Method publicKey allows one to recover

that public key and method nonce allows one to get a

progressive identifier that can be used to distinguish suc-

cessive calls with the same account, to force their order of

execution and to avoid replaying. All that is very similar to

Solidity, except for the fact that externally owned accounts

are actual Java objects inside the blockchain, not just an

abstraction of a public key. An exemplification of a call

made to a PayableContract is reported in Fig. 4

Neither the Takamaka language nor the Hotmoka

blockchain dictate a specific consensus mechanism. Both

proof of work and proof of stake can be used, for instance.

In particular, if proof of stake is used, then each validator

node of the blockchain must specify a

io.takamaka.code.governance.Validator

object, that plays the role of the banking account where the

validation rewards of the node get accumulated (see

Fig. 5). It is a special externally owned account, with an

extra id method that provides the identifier of the validator

node inside the blockchain network. This identifier depends

from the specific network. For instance, the subclass

io.takamaka.code.governance.tender-

mint.TendermintED25519Validator implements

id as for the Tendermint blockchain engine [19], that is, as

the first 40 hexadecimal digits of the sha256 digest of the

Base64-encoded public key (see its code in Fig. 5).

4 A generic shared entities implementation

A shared entity is a concept that often arises in blockchain

applications. Namely, a shared entity is something divided

into shares. Participants, that hold shares, are called

shareholders and can dynamically sell and buy shares. An

example of a shared entity is a corporation, where shares

represent units of possess of the company. Another

example is a voting community, where shares represent the

voting power of each given voter. A further example is the

set of the validator nodes of a proof of stake blockchain,

where shares represent their voting power and remunera-

tion percentage.

In general, two concepts are specific to each imple-

mentation of shared entities: who are the potential share-

holders and how offers for selling shares work. Therefore,

one can parameterize the interface of a shared entity with

two type variables: S is the type of the shareholders and O

is the type of the sale offers of shares.

The SharedEntityView interface at the top of the

hierarchy in Fig. 3 defines the read-only operations on a

shared entity. This view is static, in the sense that it does

not specify the operations for transfers of shares. Therefore,

its only type parameter is S: any contract can play the role

of the type for the shareholders of the entity. Method

getShares yields a snapshot of the current shares of the

entity (who owns how much). Method getShare-

holders yields the shareholders. It is not @View, since it

creates a new stream, which is a side-effect. Method

isShareholder checks if an object is a shareholder.

Method sharesOf yields the number of shares of a

shareholder. As typical in Takamaka, a snapshot

method allows one to create a frozen read-only copy of an

entity (in constant time), useful when an entity must be

queried from a client without the risk of race conditions if

another client is modifying the same entity concurrently.

The SharedEntity subinterface adds methods for

transfer of shares (see Fig. 7). It includes an inner class

Offer that models sale offers: it specifies who is the seller
Fig. 4 Exemplification of the Takamaka persistent objects stored in

the blockchain

Cluster Computing (2023) 26:2099–2113 2103

123



of the shares, how many shares are being sold, the

requested price and the expiration of the offer. Method

isOngoing checks if an offer has not expired yet.

Implementations can subclass Offer if they need more

specific offers. Offers can be placed on sale by calling the

place method with a sale offer (see Fig. 6). This

method is annotated as @FromContract since the caller

must be identified (or otherwise anybody could sell the

shares of anybody else) and as @Payable so that imple-

mentations can require to pay a ticket to place shares on

sale. The sale offer is passed as a parameter to place,

hence it must have been created before calling that method.

The set of all sale offers is available through getOffers.

Method sharesOnSale yields the cumulative number of

shares on sale for a given shareholder. Who wants to buy

shares calls method accept with the accepted offer and

with itself as buyer (the reason will be explained soon)

and becomes a new shareholder or increases its cumulative

number of shares (if it was a shareholder already). Also this

method is @Payable, since its caller must pay ticket

� offer.cost coins to the seller. This means that

shareholders must be able to receive payments and that is

why S extends PayableContract: only

PayableContracts are guaranteed to have a receive

method in Takamaka.

As said before, the annotation @FromContract on

both place and accept enforces that only contracts can

call these methods. These callers must be (old or new)

shareholders, hence they must have type S. Therefore, one

would like to write @FromContract(S.class).

Unfortunately, Java does not allow a generic type variable

S in the syntax S.class. Due to this syntactical limita-

tion of Java, the best that can be written in Fig. 7 is

@FromContract(PayableContract.class),

which allows any PayableContract to call these

methods, not just those of type S. Since the syntax of the

language does not support the needed abstraction, one has

to program explicit dynamic checks in code, as shown

later, and this will be the reason of the parameter buyer in

accept.

Figure 8 shows a portion of the code of our Sim-

pleSharedEntity implementation of the Share-

dEntity interface in Fig. 7, that uses two fields:

shares maps each shareholder to the amount of shares

the it holds and offers collects the offers that have been

placed. The constructor initially populates the map

shares with the initial shareholder. Other shareholders

can be added later, by buying shares.1 Method sharesOf

simply accesses shares, by using zero as default. Method

place requires its caller() to be the seller identified in

the offer. This forbids shareholders to sell shares on

behalf of others. Moreover, this guarantees that the caller

has type S, the type of offer.seller. As it has been

said before, this cannot be expressed with the syntax of the

language. Method place further requires the seller to be a

shareholder with at least offer.sharesOnSale shares

not yet placed on sale. This forbids to oversell more shares

than one owns. At the end, place adds the offer to the

set of offers. Method accept requires that who calls

the method must be buyer. Hence, successful calls to

accept can only pass the same caller for buyer. This is

a trick to enforce the caller to have type S, since the syntax

of the language does not allow one to express it, as

explained before. Then accept requires the offer to

exist, to be still ongoing and to cost no more than the

amount of money provided to accept. If that is the case,

the offer is removed from the offers, shares are

moved from seller to buyer (code not shown in Fig. 8) and

the seller of the offer receives the required price

offer.cost.

Fig. 5 The account of a validator and its specialization for a Hotmoka

blockchain based on Tendermint

1 In the real code, the class has constructors to create shared entities

with a set of initial shareholders. This paper reports a simplification of

the actual code.
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5 Blockchain validators set as a shared
entity

The Hotmoka blockchain is built over Tendermint [19], a

generic engine for replicating an application over a net-

work of nodes. In our case, the application is an executor of

smart contracts in Java, such as that in Fig. 8. Tendermint

is based on a proof of stake consensus, which means that a

selected dynamic subset of the nodes is in charge of vali-

dating the transactions and voting their acceptance. As

already said, Hotmoka models validator nodes as Val-

idator objects, that are externally owned accounts with

an extra identifier. In the specific case of a Hotmoka

blockchain built over Tendermint, validators are Ten-

dermintED25519Validator objects whose identifier

is derived from their ed25519 public key (see Fig. 5). This

identifier is public information, reported in the blocks or

easily eavesdropped. Tendermint applications can

implement their own policy for rewarding or changing the

validators’ set dynamically.

The set of the validator nodes of a blockchain network is

an example of a shared entity. Namely, each such validator

owns an amount of validation power, that corresponds to

the shares of a shareholder. Validation power can be sold

and bought, exactly as shares. Consequently, the Val-

idators interface in Fig. 3 (reported in Fig. 9) extends

the SharedEntity interface, fixes the shareholders to be

instances of Validator and adds two methods: getS-

take yields the money at stake for each given validator (if

the validator misbehaves, its stake will be reduced or sla-

shed); and reward, that is called by the blockchain itself

at the end of each block creation: it distributes the cost of

the gas consumed by the transactions of the block, to the

well-behaving validators, and slashes the stakes of the

misbehaving validators.

The AbstractValidators class implements the

validators’ set and the distribution of the reward and is a

subclass of SimpleSharedEntity (see Figs. 9, 10).

Shares are voting power in this case. Its subclass Ten-

dermintValidators restricts the type of the validators

to be TendermintED25519Validator. At each

block committed, Hotmoka calls the reward method of

Validators in order to reward the validators that

behaved correctly and slash those that misbehaved, possi-

bly removing them from the validators’ set. They are

specified by two strings that contain the identifiers of the

validators, as provided by the underlying Tendermint

engine.

Fig. 6 Exemplification of a Takamaka shared entity and of its

connections with the objects persisted in the blockchain

Fig. 7 A simplified part of our

shared entity interface
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Fig. 8 A simplified part of our

implementation of the shared

entity interface

Fig. 9 The shared entity of the validators set of a Hotmoka blockchain
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Since SimpleSharedEntity allows shares to be

sold and bought, this holds for its TendermintVal-

idators subclass as well: the set of validators is dynamic

and it is possible to sell and buy voting power in order to

invest in the blockchain and earn rewards at each block

committed. At block creation time, Hotmoka calls method

getShareholders inherited from Sim-

pleSharedEntity and informs the underlying Ten-

dermint engine about the identifiers of the validator nodes

for the next blocks. Tendermint expects such validators to

mine and vote the subsequent blocks, until a change in the

validators’ set occurs.

6 An attack to the shared entities contract

Let us state an important, expected property about shared

entities:

Consistency of Shareholders

If se is a SharedEntity\S,O[ object, then

se.getShareholders() contains only elements of type S.

This property is important since it states that one can

trust the type S of the shareholders: if one creates a

SharedEntity and fixes a specific type S for its

shareholders, then only instances of S will actually manage

to become shareholders.

It turns out that the Consistency of Shareholders prop-

erty holds for instances of the class Sim-

pleSharedEntity in Fig. 8. Namely, that class does

not use unchecked casts, hence it is strongly-typed [14] and

its map shares actually holds values of type S in its

domain, only. For this consistency result, one needs the

dummy buyer argument for the method accept of the

shared entities. Without that argument, the Consistency of

Shareholders property would not hold, since one could

only write addShares((S) caller(), offer.-

sharesOnSale) in the implementation of accept in

Fig. 8, with an unchecked cast that makes its code non-

strongly-typed. In that case, also contracts not of type

S could call accept and become shareholders.

There is, however, a problem with the reasoning in the

previous paragraph. Namely, absence of unchecked oper-

ations guarantees strong typing of Java source code. But

what is installed and executed in blockchain is the Java

bytecode that has been derived from the compilation of the

code in Fig. 8. Malicious users might install in blockchain

some manually crafted bytecode, not derived from its Java

source code compiled together with the source code in

Fig. 8. That crafted code might call the methods of

SimpleSharedEntitys in order to attack that contract.

In particular, the signature of method accept declares a

parameter buyer of type S at source code level, but its

compilation into Java bytecode declares an erased param-

eter buyer of type PayableContract instead. It fol-

lows that an attacker can install in blockchain a snippet of

bytecode that calls accept and passes any

PayableContract, not only those that are instances of

S: the Consistency of Shareholders property is easily vio-

lated at bytecode level.

In particular, it is important that the Consistency of

Shareholders property holds for the subclass Tender-

mintValidators: its shareholders must be Tender-

mintED25519Validators (as declared in the generic

signature of TendermintValidators in Fig. 9) that

enforce a match between their public key, that identifies

who can spend the rewards sent to the validator, and their

Tendermint identifier, that identifies which node of the

blockchain must do the validation work (see how the

constructor initializes this.id in Fig. 5). If it were

possible to add a shareholder of another type Attacker,

the code of Attacker could decouple the node identifier

from its public key (see Fig. 11): Tendermint would expect

Fig. 10 Hierarchy of classes for

implementing Hotmoka

Validators
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the node (belonging to the victim) to do the validation work

while the owner of the private key of the Attacker could

just wait for accrued rewards to spend. A sort of validator’s

slavery. Section 4 asserted that the Consistency of Share-

holders property holds, at source level. Namely, an at-

tacker (of type Attacker) can only become

shareholder by accepting an ongoing sale offer of shares

through a call to tv.accept(offer.cost,

attacker, offer) (Fig. 8). This is impossible at

source level (left part of Fig. 12), where that call does not

compile, since attacker has type Attacker that is not

an instance of V, which has been set to Tender-

mintED25519Validator. But a Hotmoka blockchain

contains only the bytecode of SimpleSharedEntity,

where the signature of accept has been erased into

accept(BigInteger amount, PayableCon-

tract buyer, Offer offer) (see Fig. 2 and the right

part of Fig. 12). Hence a blockchain transaction that

invokes tv.accept(offer.cost, attacker,

offer) at bytecode level does succeed, since attacker

is an externally owned account and all such accounts are

instances of PayableContract (Fig. 3). That transac-

tion adds attacker to the shareholders of tv, therefore

violating the Consistency of Shareholders property and

allowing validator’s slavery.

7 A solution for fixing the compilation
of the contract

The security issue in Sect. 6 is due to the over-permissive

erasure of the signature of method accept, where the

compiler gives buyer the type PayableContract.

Therefore, a solution is to oblige the compiler to generate a

more restrictive signature where, in particular, the param-

eter buyer has type TendermintED25519Valida-

tor: only that type of accounts must be accepted for the

validators, consequently banning instances of Attacker.

The fixed code is shown in Fig. 13. The only difference is

thatmethodaccept has been redefined to enforce the correct

type forbuyer (see that redefinedmethod also in Fig. 3). For

the rest, that method delegates to its implementation inherited

from AbstractValidators, through a call to su-

per.accept. It is important to investigate which is the Java

bytecode generated from the code in Fig. 13. Since Java

bytecode does not allow one to redefine a method and modify

its argument types, the compiled bytecode actually contains

two accept methods, as follows:

The first accept method above is the compilation of

that from Fig. 13: it delegates to the accept method of the

superclass AbstractValidators. The second accept

method above is a bridge method that the compiler generates

in order to guarantee that all calls to the erased signature

accept(BigInteger,PayableContract,Offer)

actually get forwarded to the first, redefined accept. It

casts its buyer argument into Tender-

mintED25519Validator and calls the first accept.

This bridge method and its checked cast guarantee that only

TendermintED25519Validators can become val-

idators. As shown in Fig. 14, an instance of Attacker

(Fig. 11) cannot be passed to the first accept (type mis-

match) and makes the second accept fail with a class cast

exception. The Consistency of Shareholders holds for

instances of TendermintValidators now and the

attack in Sect. 6 cannot occur anymore.

The solution of redefining method accept can be seen

as a limited form of heterogeneous compilation of generics,

restricted to a specific method and forced manually. It is

interesting to consider which methods would need that
Fig. 11 An attacker that exploits the work of a blockchain validator

node and fraudolently earns the rewards of that work
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Fig. 12 Example of possible attack to a smart contract that uses Java generics

Fig. 13 The fixed code of the shared entity of the validators of a Hotmoka blockchain built over Tendermint

Fig. 14 Example of how the

proposed solution works at run

time when the accept method

is called by a Validator or

an Attacker
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redefinition, in general. They are those that have a

parameter of a generic type that is restricted in a subclass.

For instance, method accept in Fig. 7 has parameters

buyer and offer of generic type S and O, respectively.

The subclass in Fig. 9 restricts S to be a Tender-

mintED25519Validator and O to be an

Offer\TendermintED25519Validator[. Hence

one must redefine accept in the subclass with the more

specific types for the buyer and offer parameters. In

the future, a compiler might perform this automatically or a

static analysis tool might issue a warning when such

redefinition is needed. Currently, however, that is left to the

programmer of the smart contracts, who might overlook the

problem and give rise to security issues, as shown in

Sect. 6.

8 Related Work

Programming languages specific to smart contracts (such as

Solidity) do not have generic types. Conversely general-

purpose programming languages do have generic types in

most cases, but are much less frequently used for writing

smart contracts. In any case, we are not aware of any sci-

entific work on the use of generic types for writing more

generic smart contracts, nor of any study on the security

risks, and their solutions, that this implies for the resulting

smart contracts. From this point of view, the present paper

has no direct literature to compare with. Anyway, it is

possible instead to insert this paper in the broader context

of software correctness and security.

It has been estimated that, on average, software devel-

opers make from 100 to 150 errors for every thousand lines

of code [20]. In 2002, the National Institute of Standards

and Technology (NIST) estimates that the economic costs

of faulty software in the US is about tens of billions of

dollars per year and represent approximately just under one

percent of the Nation’s gross domestic product. The effects

induced by errors in software development are even worse

when such pieces of software are smart contracts. Indeed, it

is usually impossible to change a smart contract once it has

been deployed, the immutability being one of its main

characteristics, so that errors are treated as intended

behaviors. Moreover, smart contracts often store and

manage critical data such as money, digital assets and

identities. For this reason, smart contracts vulnerabilities

and correctness are becoming important in literature [21].

Possible solutions can be classified into three main cate-

gories: (i) static analysis of EVM bytecode, (ii) automatic

rectification of EVM bytecode and (iii) development of

new languages for smart contracts.

Given the plurality of languages currently available for

the design of smart contracts, static analysis is usually

performed directly on the Ethereum bytecode, in order to

make the solution general enough and promote its adop-

tion. At this regards, SafeVM [22] is a verification tool for

Ethereum smart contracts that works on bytecode and

exploits the state-of-the-art verification engines already

available for C programs. The basic idea is to take as input

a smart contract in compiled bytecode, that can possibly

contain some assert or require annotations, decom-

pile it and convert it into a C program with ERROR

annotations. This C program can be verified by using

existing verification tools. In [23], the authors propose a

verification tool for Ethereum smart contracts based on the

use of the existing Isabelle/HOL tool, together with the

specification of a formal logic for Ethereum bytecode.

More specifically, the desired properties of the contracts

are stated in pre/postcondition style, while the verification

is done by recursively structuring contracts as a set of basic

blocks down to the level of instructions. Another tool for

the analysis of Ethereum bytecode is EthIR [24]. This

open-source tool allows the precise decompilation into a

high-level, rule-based representation. Given such repre-

sentation, properties can be inferred through available

state-of-the-art analysis tools for high-level languages.

More specifically, EthIR relies on an extension of Oyente,

a tool that generates code control-flow graphs in order to

derive a rule-based representation of the bytecode. Con-

sidering the specific case of the Java language, formal

techniques for static analysis can be built, for instance, over

the Featherweight Java calculus [25], or by abstract inter-

pretation [26]. Currently, however, we are not aware of

formal verifications for generics, at bytecode level.

Relatively to the automatic certification of smart con-

tracts, Solythesis [27] is a compilation tool for smart

contracts that provides an expressive language for speci-

fying desired safety invariants. Given a smart contract and

a set of user defined invariants, it is able to produce a new

enriched contract that will reject all transactions violating

the invariants. Another solutions, based on bytecode

rewriting, is presented in [28], where the authors propose

the enforcement of security policies through the enhance-

ment of bytecode. More specifically, the disassembled

bytecode is instrumented through new security guard code

that enforces the desired policy. Their initial efforts are

mainly focused on the verification of arithmetic operations,

such as the prevention of overflows. In the future, they plan

to focus on verifying memory access operations.

SMARTSHIELD [29] is another tool for automatically

rectifying bytecode with the aim to fix three typical secu-

rity bugs in smart contracts: (i) state changes after external

calls, (ii) missing checks for out-of-bound arithmetic

operations, and (iii) missing checks for failing external

calls. More specifically, given an identified issue, the tool

performs a semantic-preserving code transformation to
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ensure that only the insecure code patterns are revised,

eventually sending the rectification suggestions back to the

developers when the eventual fixes can lead to side effects.

The tool not only guarantees that the rectified contracts are

immune to certain attacks but also that they are gas-

friendly. Indeed, it adopts heuristics to optimize gas

consumption.

The solution proposed in this paper could be imple-

mented through an automatic bytecode rectification

mechanism. Indeed, the additional method with a more

restrictive signature could be automatically added in the

bytecode without the need for an explicit method redefi-

nition at the source code level.

Finally, as regards to the definition of new programming

languages for safe smart contracts, Scilla [30] has been

tailored by taking System F as a foundational calculus. It is

able to provide strong safety guarantees by means of type

soundness. Thanks to its minimalistic nature, it has been

possible to define also a generic and extensible framework

for lightweight verification of smart contracts by means of

user-defined domain-specific analyses. The type variables

of the functional foundational calculus can be seen as

generic types. We do not know how they are compiled and

if the strong typing guarantee of the source code extends to

the compiled code as well. Scilla contracts are developed

with the Neo Savant online IDE. Currently, neither Neo

Savant IDE nor the block explorer allow one to inspect the

compiled bytecode, in order to understand how generic

types are compiled.

As regards to this last solution, which is based on the

definition of new programming languages specific for

writing safe smart contracts, the proposed solution could

guide a more sophisticated and conscious bytecode gen-

eration. Indeed, the next generation of programming lan-

guages for smart contracts should take in mind that the

generated bytecode should be called directly, without

passing from the source code and the compiler checks.

Therefore, any checks that are possible at source-code

level, such as type checking, should remain possible also

during bytecode execution.

9 Conclusion

This paper has shown that generics are useful in the defi-

nition of smart contracts and can simplify the development

of rather complex code such as that for shared entities, and

support code reuse, for instance to implement the validators

set of a blockchain network. However, this paper has

shown that generic types introduce risks of security as well.

Namely, many programming languages, including Java,

erase them at compile time into types that might be too

permissive for low-level calls, such as those that are started

by blockchain transactions. Note that the use of a pro-

gramming language without generics is not the solution:

Solidity has no generics and consequently erases all ref-

erence types into address. That is the worst possible

erasure.

The solution in this paper has been to redefine the

methods that have an argument of generic type, in such a

way to call their superclass (see the case of accept in

Fig. 13). This fixes the security risk, but cannot be regarded

as the definite solution to the problem. It is just a trick that

works because it forces the compiler to generate some

specific kind of bytecode. A smarter compiler might rec-

ognize the redefined accept as useless and just remove it.

This would recreate the issue that has been just solved.

That is, the solution in this paper works only for the way

compilers compile today.

With hindsight, it is questionable to have implemented

generics by erasure and code instrumentation (bridge

methods). If generics would be present and checked at

bytecode level, the attack in Sect. 6 would just be impos-

sible. Currently, generics can only exist as bytecode

annotations that are not mandatory and are ignored by the

Java virtual machine that runs the bytecode. The same

consideration might be applied beyond generics: many

features of modern programming languages have no direct

low-level counterpart but are implemented via instrumen-

tation. Examples are inner classes and closures (lambda

expressions). This is fine at source level, but allows low-

level calls to easily circumvent the encapsulation guaran-

tees of the language. When embedded in a permissionless

blockchain, such features become dangerous attack sur-

faces. This paper has shown the attack surface due to

redefinition of methods with a generic parameter. But

another example is the use of instrumented methods to

allow access to private state from inner classes: since inner

classes are compiled into distinct bytecode classes, the

compiler adds non-private accessors to the private state.

These accessors cannot be used at source level, but can be

called at bytecode level to gain access to private state. This

paper does not provide a solution to this other issue, but

this further example makes it clear that the attack surface is

larger than what described here.
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