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We revisit a construction of wide subcategories going back to 
work of Ingalls and Thomas. To a torsion pair in the category 
R - mod of finitely presented modules over a left artinian 
ring R, we assign two wide subcategories in the category 
R - Mod of all R-modules and describe them explicitly in terms 
of an associated cosilting module. It turns out that these 
subcategories are coreflective, and we address the question 
of which wide coreflective subcategories can be obtained in 
this way. Over a tame hereditary algebra, they are precisely 
the categories which are perpendicular to collections of pure-
injective modules.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

A subcategory X of the module category R - Mod over a ring R is said to be reflective, 
respectively coreflective, if the inclusion functor X ↪→ R - Mod admits a left, respectively 
right, adjoint. A result of Gabriel and de la Peña characterizes the subcategories which 
are both reflective and coreflective as those which arise as module categories X = S - Mod
from some ring epimorphism R → S. Much less is known when only one of the two 
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conditions is satisfied, even when restricting to wide, i.e. exact abelian, subcategories of 
R - Mod.

The aim of this paper is to revisit a construction of wide subcategories due to In-
galls and Thomas [26]. We will see that these wide subcategories often turn out to be 
coreflective and, moreover, they are completely determined by their finitely presented 
modules.

Here is the construction. To a torsion pair (T , F) in R - Mod, one associates the 
subcategories

α(T ) = {X ∈ T | all morphisms f : T → X with T ∈ T have ker(f) ∈ T }

and β(F) which is defined dually.
When the ring R is left noetherian, we focus on torsion pairs (T , F) arising as direct 

limit closures of torsion pairs (t, f) inside the category R - mod of finitely presented 
modules. Such torsion pairs are parametrized by cosilting modules (Theorem 2.8), we 
denote their collection by Cosilt(R). We give an explicit description of α(T ) and β(F)
in terms of the associated cosilting module and prove the following result.

Theorem A (Theorem 4.6). Let R be a left noetherian ring. The construction α(T ) above 
defines a surjective map α : Cosilt(R) −→ wide(R), where wide(R) denotes the collec-
tion of all subcategories of R - Mod of the form lim−−→W for some wide subcategory W of 
R - mod.

As a consequence, every subcategory lim−−→W in wide(R) is wide and coreflective and 
satisfies lim−−→W ∩R -mod = W. A parallel result for β holds true over left artinian rings 
(Theorem 4.11).

The properties of the maps α and β lead to new insight on the lattice torsΛ of torsion 
classes in the category Λ -mod over a finite dimensional algebra Λ. In particular, they 
lead to new characterizations of τ -tilting finite algebras. This class of finite dimensional 
algebras was introduced in [20] and can be defined by a number of equivalent conditions 
which postulate finiteness of certain classes of modules. For example, Λ is τ -tilting finite 
if there are only finitely many isomorphism classes of finite dimensional bricks, or equiv-
alently, only finitely many torsion pairs in Λ -mod. We show that τ -tilting finiteness can 
also be phrased in terms of properties of the class of wide subcategories of Λ -Mod. Here 
is a sample.

Theorem B (Theorem 5.10). The following statements are equivalent for an artin alge-
bra Λ.

(i) Λ is τ -tilting finite.
(ii) Every wide subcategory of Λ -Mod closed under coproducts belongs to wide(Λ).
(iii) There are only finitely many wide subcategories of Λ -Mod closed under coproducts.
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In the last part of the paper, we address the question of which wide coreflective 
subcategories can be obtained via the maps α and β.

When Λ is the Kronecker algebra, i.e. the path algebra Λ of the Kronecker quiver 
0 1 , this leads us to an open problem of Krause and Stevenson [27] concerning the 

classification of localizing subcategories in the derived category of quasi-coherent sheaves 
on the projective line: are there more localizing subcategories beyond the ones con-
structed from our understanding of the compact objects? This question can be rephrased 
as follows.

Question: Is it true that every wide coreflective subcategory X of Λ -Mod is the (left) 
perpendicular category ⊥0,1P of a collection of indecomposable pure-injective modules 
P?

We show that X has this shape if and only if it arises from a wide subcategory W of 
the category Λ -mod of finite dimensional Λ-modules by some standard constructions. 
Our result holds true over any tame hereditary algebra.

Theorem C (Theorem 7.1). The following statements are equivalent for a wide coreflec-
tive subcategory X over a tame hereditary algebra Λ.

(1) There is a set of P of indecomposable pure-injective Λ-modules such that X = ⊥0,1P.
(2) There is a wide subcategory W of Λ -mod such that X is either the (right) perpen-

dicular category W⊥0,1 or the direct limit closure lim−−→W of W.

We close the paper with a possible approach to the question above. The idea is to 
consider a family of submodules of the generic module G over the Kronecker algebra that 
were constructed by Ringel in [36]. They are indexed by subsets of k, and for infinite 
disjoint subsets they form large semibricks, that is, collections of Hom-orthogonal infinite 
dimensional modules with endomorphism ring k. If B is such a module, its perpendicular 
category ⊥0,1B is wide and has no indecomposable pure-injective modules. This implies 
that ⊥0,1B contains a wide coreflective subcategory X which cannot arise from a wide 
subcategory of Λ -mod as described above, unless it is zero. Unfortunately, however, we 
are not able to exclude the case ⊥0,1B = 0, and so the classification problem from [27]
remains unsolved.

Structure of the paper. In Section 2 we collect some preliminaries on torsion pairs, purity, 
approximations, and cosilting theory. The constructions α(T ) and β(F) are introduced 
in Section 3. In Section 4, we study the case when (T , F) is in Cosilt(R), and we prove 
Theorem A together with further fundamental results on the maps α and β. Section 5
is devoted to applications to the lattice torsΛ over a finite dimensional algebra Λ. We 
first show that the maps α and β control the shape of the Hasse quiver of tors(Λ), and 
more precisely, the existence of locally maximal or minimal elements in tors(Λ). The 
notion of a minimal cosilting module from [6] plays an important role in this context. 
Then we turn to some characterizations of τ -tilting finiteness, including Theorem B, and 
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we close the section with some open problems. In Section 6 we focus on hereditary rings 
and revisit the notion of an Ext-orthogonal pair from [28]. Section 7 is devoted to the 
proof of Theorem C. Finally, in Section 8, we discuss the classification problem explained 
above.

Notation. Given a class of objects S in an abelian category A, we write Add(S) for 
the class of objects isomorphic to direct summands of direct sums of objects in S, and 
Prod(S) for the class of objects isomorphic to direct summands of products of objects in 
S. The class of objects isomorphic to direct summands of finite direct sums of objects in 
S is denoted by add(S). Moreover, Cogen(S) denotes the class of objects isomorphic to 
a subobject of a product of objects in S, and Gen(S) is defined dually. Finally, ⊥0,1S is 
the subcategory consisting of the objects X ∈ A such that ExtiA(X, S) = 0 for i ∈ {0, 1}
and S ∈ S. Similarly one defines ⊥0S, ⊥1S, S⊥0,1 etc.

Unless otherwise stated, R will denote an arbitrary ring. We denote by R - Mod the 
category of all left R-modules and by R - mod the category of finitely presented left R-
modules. If S is a class of modules in R - Mod, we denote by lim−−→S the full subcategory 
of R -Mod whose objects are the colimits of directed systems of modules in S. When S
is a class of finitely presented modules closed under finite direct sums, lim−−→S is closed 
under directed colimits by [29, Proposition 2.1]. This is not true for a general S, see [11, 
Example 1.1].

2. Torsion pairs

In this section we fix the terminology and collect some fundamental concepts and 
results that we will use in the sequel. We start out by reviewing the notion of a torsion 
pair. Then we focus on torsion pairs whose torsionfree class is closed under direct limits 
and describe them in terms of approximation theory and cosilting theory. This allows us 
to show that the torsion pairs in the category of finitely presented modules over a left 
noetherian ring are parametrized by cosilting modules.

Definition 2.1. Let A be an abelian category.
(1) Two subcategories T , F of A form a torsion pair (T , F) if:

(i) For all F ∈ F , for all T ∈ T , HomA(T, F ) = 0.
(ii) For all M ∈ A there is a short exact sequence

0 → T → M → F → 0

with T ∈ T and F ∈ F .

In this case, T is a torsion class and F is a torsionfree class.
(2) Let A be a complete and co-complete abelian category. Given a class of objects C

in A, we can form
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- the torsion pair (T(C), C⊥0) generated by C, and
- the torsion pair (⊥0C, F(C)) cogenerated by C.

Here T(C) = ⊥0(C⊥0) is the smallest torsion class containing C, and F(C) = (⊥0C)⊥0 is 
the smallest torsionfree class containing C.

In the case of module categories, there are well-known explicit descriptions for the 
torsion resp. torsionfree class generated by C. We first need the following easy observation.

Lemma 2.2. If A is an abelian category such that all the objects of A are noetherian, 
then a subcategory of A is a torsion class if and only if it is closed under extensions and 
quotients.

Dually, if A is an abelian category such that all the objects of A are artinian, then 
a subcategory of A is a torsionfree class if and only if it is closed under extensions and 
submodules.

Given a left coherent ring R, we consider the abelian category R - mod and denote by 
tors(R) the collection of all torsion pairs in R - mod. We use the symbols T̃(C) and F̃(C)
for the torsion resp. torsionfree class in R - mod generated by some subcategory C. We 
further denote by gen(C) the class of objects isomorphic to a quotient of a finite direct 
sum of objects in C, define dually cogen(C), and write filt(C) for the extension closure 
of C.

Proposition 2.3. [30, Lemma 3.1] Let R be a ring and C a subcategory of R - mod.
(1) If R is left noetherian, then T̃(C) = filt gen(C).
(2) If R is left artinian, then F̃(C) = filt cogen(C).

Using transfinite extensions, one can obtain an analogous description of the torsion 
class T(C) in the module category R - Mod, see [10, Lemma 3.2].

Next, we collect some well known facts about definable classes and purity. A compre-
hensive reference can be found in [33].

Definition 2.4. (1) A short exact sequence 0 → L → M → N → 0 in R - Mod is pure-exact
if for every U ∈ R - mod the sequence

0 Hom(U,L) Hom(U,M) Hom(U,N) 0

is an exact sequence of abelian groups. In this case, we say that L is a pure submodule
of M or that the map L → M is a pure monomorphism.

(2) A module E is pure-injective if every pure exact sequence starting at E is split 
exact.

(3) A subcategory of R - Mod is definable if it is closed under products, pure submod-
ules and direct limits.
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Notice that a torsionfree class in R - Mod is definable if and only if it is closed under 
direct limits, as closure under products and (pure) submodules is granted. Moreover, 
definable torsionfree classes can be described in terms of approximation theory and 
cosilting theory. Let us recall the relevant notions.

Definition 2.5. Let A be an abelian category with a subcategory S ⊆ A. Let M ∈ A. 
A morphism g : S → M is a S-precover if S ∈ S and every morphism g′ : S′ → M with 
S′ ∈ S factors through g. The map g is a S-cover if in addition it is right minimal, 
i.e. every endomorphism s of S such that gs = g is an isomorphism. Finally, the subcat-
egory S is called (pre)covering if every object in A admits an S-(pre)cover. Dually, we 
define S-(pre)envelopes and (pre)enveloping subcategories.

When A = Λ -mod for an artin algebra Λ, then subcategories closed under direct 
summands which are both precovering and preenveloping (and therefore covering and 
enveloping) are called functorially finite.

Definition 2.6. (1) We say that an R-module C is cosilting if there exists an injective 
copresentation ω : I0 → I1 such that:

Cogen(C) = Cω :=
{
X ∈ R - Mod

∣∣∣ HomR(X,ω) is surjective
}

(2) Two cosilting modules C1, C2 are equivalent if Cogen(C1) = Cogen(C2).
(3) A module C is cotilting (of injective dimension at most one) if Cogen(C) = ⊥1C, 

or equivalently, if it is cosilting with respect to an injective copresentation which is 
surjective.

Silting modules and tilting modules of projective dimension at most one are defined 
dually.

We collect some important properties of cosilting modules.

Theorem 2.7. (1) [15, Theorem 4.7] Every cosilting module is pure-injective.
(2) [16,40], [3, Theorem 3.8 and Corollary 3.9] A torsionfree class F ⊆ R − Mod is 

definable if and only if it is covering, if and only if F = Cogen(C) for some cosilting 
module C.

In light of the theorem above, we will denote by Cosilt(R) the collection of all torsion 
pairs with definable torsionfree class, and refer to such pairs as cosilting torsion pairs. 
The interplay between torsion pairs in R - mod and cosilting torsion pairs is based on 
the following fundamental result which goes back to [18].

Theorem 2.8. When R is a left noetherian ring, there is a bijection

tors(R) ↔ Cosilt(R).
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It associates to a torsion pair (t, f) in R - mod the direct limit closure (T , F) :=
(lim−−→ t, lim−−→ f), which coincides with the torsion pair (Gen t, t⊥0) generated by t. The in-
verse of this map sends a cosilting torsion pair (T , F) to its restriction (T ∩R -mod, F ∩
R - mod).

In other words, the torsion pairs in tors(R) over a left noetherian ring are 
parametrized by cosilting modules. Over an artin algebra, the finitely generated cosilting 
modules are precisely the support τ−-tilting modules. So, we can use the results from 
[1] to observe the following.

Remark 2.9. Assume that Λ is an artin algebra and let (t, f) be a torsion pair in tors(Λ). 
Then t is functorially finite if and only if so is f , and this happens precisely when the 
associated cosilting module is finitely generated.

Remark 2.10. In the literature, τ -tilting theory is usually applied in the case of finite-
dimensional algebras Λ. However, all the results which we will use from [1], [20] and [38]
are valid in the more general setting of artin algebras. Two crucial points to ensure the 
validity of such results are the fact that Λ -mod is an abelian length category and that 
for every torsion pair (t, f) in Λ - mod the torsion class t is functorially finite if and only 
if the torsionfree class f is functorially finite.

3. Wide subcategories

We now introduce the construction of wide subcategories from torsion pairs due to 
Ingalls and Thomas [26]. From the interplay between small and large torsion pairs over 
a noetherian ring R we derive some compatibility results between the constructions 
in R - mod and R - Mod. Furthermore, we show that the simple objects in the wide 
subcategories we obtain from a torsion pair are precisely the objects studied in [5,8] and 
[13].

Definition 3.1. Let A be an abelian category. A subcategory W ⊆ A is wide if it is closed 
under kernels, cokernels and extensions.

Definition 3.2. Let (T , F) be a torsion pair in some abelian category A. We define:

A(T ) = {X ∈ A | for all T ∈ T , f : T → X, ker(f) ∈ T }

B(F) = {X ∈ A | for all F ∈ F , f : X → F, coker(f) ∈ F}

α(T ) = T ∩ A(T )

β(F) = F ∩ B(F)

Lemma 3.3. Let (T , F) be a torsion pair in A. The following statements hold true.
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(i) The subcategory A(T ) is closed under subobjects and extensions. Moreover, F ⊆
A(T ).

(ii) α(T ) is a wide subcategory of A. It is closed under torsion subobjects.
(iii) A(T ) consists of the objects M of A appearing in short exact sequences 0 → C →

M → D → 0 with C ∈ α(T ) and D ∈ F . In particular, α(T ) = 0 if and only if 
A(T ) = F .

The dual statements hold true for B(F) and β(F).

Proof. (i) First, notice that if F ∈ F , then HomR(T, F ) = 0 for every T ∈ T . Thus, 
every such object F is trivially an element of A(T ).

Let X ∈ A(T ), consider Y ≤ X. Then for every torsion object T and every map 
f : T → Y , the kernel of f is equal to the kernel of the composition of f with an 
embedding of Y into X. Thus, Y is in A(T ).

Let 0 X ′ Y X ′′ 0g be a short exact sequence with X ′, X ′′∈
A(T ). Let f : T → Y be some map. Consider the following commutative diagram:

0 ker(g ◦ f) T Im(g ◦ f) 0

0 X ′ Y X ′′ 0

h f

g

By the previous point, Im(g ◦ f) ∈ A(T ), thus ker(g ◦ f) ∈ T . An application of the 
snake lemma yields that ker(f) = ker(h) and this is a torsion module since X ′ ∈ A(T ). 
Thus, A(T ) is closed under extensions.

(ii) is [26, Proposition 2.12], and (iii) is left to the reader. �
We want to study these constructions when A is a module category. Over a left 

coherent ring R, besides R -Mod, we can also consider the abelian category R - mod. We 
will use the symbols Ã, B̃, α̃ and β̃ for the operators in R -mod. If R is left noetherian, 
we can use the interplay between torsion pairs in R -mod and cosilting torsion pairs in 
R - Mod to obtain the following compatibility result:

Lemma 3.4. Let R be a left noetherian ring. Let (T , F) be a cosilting torsion pair in 
R - Mod with restriction (t, f) to R - mod. The following statements hold true.

(i) A(T ) ∩R - mod = Ã(t) and thus α(T ) ∩R - mod = α̃(t)
(ii) B(F) ∩R - mod = B̃(f) and thus β(F) ∩R -mod = β̃(f).

Proof. (i) The inclusion A(T ) ∩ R - mod ⊆ Ã(t) is immediate. Assume A ∈ Ã(t). Let 
f : T → A be a morphism with T ∈ T . We need to show that K := ker f ∈ T . As Ã(t)
is closed under submodules, we may assume that f is an epimorphism. Since the torsion 
pair is cosilting, we can find a family of finitely-generated torsion modules {ti}I with an 



172 L. Angeleri Hügel, F. Sentieri / Journal of Algebra 664 (2025) 164–205
epimorphism p :
⊕

I ti → T . At this point, since A is finitely-generated, we can find a 
finite subset J ⊆ I, such that the map fJ := f ◦ (p|J) is an epimorphism. Denote by KJ

the kernel of this map and consider the following commutative diagram:

0 KJ

⊕
J ti A 0

0 K T A 0

L L

p|J

fJ

f

We have that L ∈ T , being the quotient of a torsion module. Moreover, KJ ∈ t as ⊕
J ti ∈ t and A ∈ Ã(t). Therefore, K ∈ T as required.
(ii) Again B(F) ∩ R -mod ⊆ B̃(f) by definition. So assume X ∈ B̃(f), let F ∈ F

and f : X → F with cokernel C. To show that X ∈ B(F) we need to prove that C is 
torsionfree. As F = t⊥0 , assume we have an injection T → C, with T ∈ t, and consider 
the following pull-back diagram:

X P T 0

X F C 0f

By construction, P is a finitely generated torsionfree module, thus, using that X ∈ B̃(f)
we must have that T ∈ f . Thus T = 0 being both torsion and torsionfree. �

Given a left coherent ring R, we denote by wide(R) the collection of wide subcate-
gories of R - mod. We then have maps α̃, β̃ : torsR → wide(R). In [12,30], these maps 
are shown to be surjective over artin algebras. In fact, one just needs the description of 
the operators T̃ and F̃ in Proposition 2.3.

Theorem 3.5 ([12], [30]). Let R be a ring and W a subcategory of R - mod.

(i) If R is a left noetherian ring, then α̃(T̃(W)) = W if and only if W is a wide 
subcategory.

(ii) If R is a left artinian ring, then β̃(F̃(W)) = W if and only if W is a wide subcategory.

Definition 3.6 ([12]). Let R be a left noetherian ring. A torsion pair (T , F) in R - Mod, 
respectively its restriction (t, f) in R -mod, is said to be widely generated if there exists 
a wide subcategory W ∈ wide(R) such that T(W) = T , or equivalently, T̃(W) = t.

The next result computes β for widely generated torsion pairs over noetherian hered-
itary rings.
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Lemma 3.7. Let R be a left noetherian ring. If W is a wide subcategory of R - mod
consisting of modules of projective dimension at most one, then

β(W⊥0) = W⊥0,1 .

Proof. Notice that T(W) = lim−−→ T̃(W), thus W ⊆ α(T(W)) by Lemma 3.4 and Theo-
rem 3.5(i).

We can immediately verify that a module M in W⊥1 is in B(W⊥0) once we have 
noticed that it is enough to check the condition for injective maps 0 → M → F with 
F ∈ W⊥0 (here we need that W⊥1 is closed under quotients).

For the other inclusion, take M ∈ β(W⊥0) = W⊥0 ∩B(W⊥0). Consider a short exact 
sequence:

0 → M → N → W → 0

with W ∈ W. Then, taking the torsion part of N we obtain the following commutative 
diagram:

0 K tN I 0

0 M N W 0

0 L N W̃ 0

Then since M ∈ B(W⊥0) and this class is closed under quotients, L ∈ B(W⊥0). There-
fore, W̃ is in W⊥0 as N ∈ W⊥0 . But W̃ is a quotient of W , thus it must be zero.

Thus I = W , and since W ⊆ α(T(W)) we have that K ∈ T(W). However, K is also a 
submodule of M which is in W⊥0 , therefore, K = 0 as it is both torsion and torsionfree. 
This shows that the middle sequence splits. �

Finally, we determine the simple objects in the wide subcategories given by α and β.

Definition 3.8. Let (T , F) be a torsion pair in R - Mod. A non-zero module B ∈ T is 
torsion, almost torsionfree with respect to (T , F) if it satisfies the following conditions.

(1) Every proper submodule of B is contained in F .
(2) For every short exact sequence 0 → K → T → B → 0, if T ∈ T , then K ∈ T .

Dually, we define torsionfree, almost torsion modules.

These concepts were introduced in [25] and studied in [5,8]. They are closely related 
to the notions of minimal extending, resp. coextending, modules appearing in [13].
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Remark 3.9. [38, Proposition 2.11] Let R be a left noetherian ring. Let (t, f) be a torsion 
pair in R -mod and (T , F) the corresponding cosilting torsion pair in R - Mod. Then 
all torsion, almost torsionfree modules with respect to (T , F) are finitely generated and 
coincide with the minimal co-extending modules with respect to (t, f) in the sense of 
[13]. Moreover, the finitely generated torsionfree, almost torsion modules with respect to 
(T , F) are precisely the minimal extending modules with respect to (t, f).

Proposition 3.10. Let R be a ring. Let (T , F) be a torsion pair in R - Mod. Then:

(i) The simple objects of α(T ) are precisely the torsion, almost torsionfree modules in 
T .

(ii) The simple objects of β(F) are precisely the torsionfree, almost torsion modules in 
F .

Proof. We give a proof of (i). Notice that condition (2) in Definition 3.8 states that B
belongs to A(T ). Hence B is torsion, almost torsionfree if and only if it is an object of 
α(T ) and all proper submodules of B are contained in F . This clearly implies that B
is a simple object in α(T ). Also the reverse implication follows immediately, as α(T ) is 
closed under torsion submodules. �
4. Wide subcategories and cosilting modules

For cosilting torsion pairs we can obtain an explicit description of the wide sub-
categories defined in the previous section. Let C be a cosilting module and (T , F) =
(⊥0C, CogenC) its cosilting torsion pair. Recall that every module admits a F-cover 
with kernel in Prod(C). Let us fix an injective cogenerator E(R) with a minimal approx-
imation sequence

0 C1 C0 E(R)g (1)

Lemma 4.1. Let C be a cosilting module with approximation sequence (1) and F =
CogenC. The following statements hold true.

(1) C0 is split-injective in F , i.e. every monomorphism C0 → F with F in F is a 
split monomorphism. Moreover, C0 ⊕ C1 is a cosilting module equivalent to C.

(2) Im(g) = {x ∈ E(R) | Ann(C)x = 0} is an injective cogenerator of R/ Ann(C).
(3) F = ⊥1C1 ∩R/ Ann(C) - Mod.

Proof. (1) is shown in [16, Lemma 3.3 and Theorem 3.5].
(2) Notice that C is a cotilting module over R/ Ann(C), see [3, Theorem 3.6]. Thus 

every R/ Ann(C)-module admits a surjective F-cover, and clearly all modules with a 
surjective cover are in R/ Ann(C) - Mod (being annihilated by Ann(C)).

Let E = {x ∈ E(R) | Ann(C)x = 0}. This is the largest submodule of E(R) belonging 
to R/ Ann(C) -Mod. Thus Im(g) ⊆ E. On the other hand, as recalled above, E admits 
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a surjective F-cover C ′ → E. The induced map C ′ → E → E(R) must factor through 
g : C0 → E(R) showing that E ⊆ Im(g). Now, for any M ∈ R/ Ann(C) - Mod there is a 
set I such that M embeds in E(R)I , but since M is in R/ Ann(C) -Mod this embedding 
must factor through EI . This shows that E is a cogenerator. Injectivity over R/ Ann(C)
is also immediate, using that E is a submodule of the injective E(R) and that all maps 
from a module in R/ Ann(C) -Mod to E(R) must factor through E.

(3) Notice that the sequence

0 C1 C0 Im(g) 0

is an approximation sequence as in (1). In particular, a module M is cogenerated by 
C precisely if it is annihilated by Ann(C) and Ext1R/Ann(C)(M, C1) = 0. However 
Cogen(C) ⊆ kerExt1R(−, C1) ⊆ kerExt1R/Ann(C)(−, C1), thus we obtain the desired iden-
tity. �
Lemma 4.2. Let M be a module with minimal injective copresentation 0 → M → I0

σ−→ I1. 
Then

(1) Cσ =
{
X ∈ R - Mod | Ext1(Y,M) = 0 for all Y ≤ X

}
(2) If R is left artinian and M is pure-injective, then Cσ is a cosilting class.

Proof. (1) The inclusion ⊆ follows from the fact that Cσ is closed under submodules and 
contained in ⊥1M . For the reverse inclusion we refer to the proof of [40, Lemma 4.17].

(2) We first show that Cσ is closed under lim−−→. Note that Cσ = ⊥1M ∩ C�, where 
� : Im(σ) → I1. Since M is pure-injective ⊥1M is closed under lim−−→, thus it is enough 
to show that C� is closed under lim−−→. This is true for any monomorphism �. In fact, let 
(Xi, {ϕij}) be a directed system in C�, and let f : lim−−→Xi = X → I1. Then for each i ∈ I

we obtain a commutative diagram

Xi X

Im(σ) I1

ϕi

hi f

�

Moreover, we have

(�hj)ϕij = fϕjϕij = fϕi = �hi

and since � is a monomorphism, hjϕij = hi, thus {hi} is compatible with the directed 
system and it induces, by the universal properties of colimits, a factorization h : X →
Im(σ). Now �hϕi = �hi = fϕi, for all i ∈ I, thus, by uniqueness of factorization �h = f

and X ∈ C�.
Assuming now that R left artinian, it remains to show that Cσ is a torsionfree class. 

But this is immediate as it coincides with the limit closure of Cσ ∩ R - mod, which is a 
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torsionfree class in R - mod by Lemma 2.2 because Cσ is closed under submodules and 
extensions. �

We can now describe the class A(⊥0C) associated to the cosilting module C.

Proposition 4.3. If C is a cosilting module with approximation sequence (1) and T = ⊥0C

is the associated torsion class, then

A(T ) = Cσ

where σ is a minimal injective copresentation of C0.
In particular, if R is left artinian, then A(T ) is a cosilting class.

Proof. “⊇”: Let X ∈ Cσ. We show that for every T ∈ ⊥0C and every map f : T → X

we have ker(f) ∈ ⊥0C.
Since Cσ is closed under submodules, we may assume, without loss of generality, that 

f is an epimorphism. Consider the short exact sequence 0 → ker(f) → T → X → 0. 
Applying HomR(−, C0) to the sequence, we obtain that Hom(ker(f), C0) = 0. However, 
since C0 cogenerates Cogen(C), by Lemma 4.1(1), it follows that Hom(ker(f), C) = 0 as 
desired.

“⊆”: Let X ∈ A(⊥0C). This class is closed under submodules by Lemma 3.3, so it is 
enough to show that Ext1(X, C0) = 0.

Let 0 → C0 → M
f−→ X → 0 be a short exact sequence. Applying the snake lemma to 

the commutative diagram:

0 F tM f(tM) = I 0

0 C0 M X 0f

we obtain

0 F tM I 0

0 C0 M X 0

0 L M/ tM X 0

f

h

Since I is a submodule of X it is in A(⊥0C), thus F ∈ ⊥0C. But then F ∈ Cogen(C) ∩
⊥0C = 0.
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This forces L = C0. Then, since C0 is split-injective in Cogen(C) and M/ tM is in 
Cogen(C), the third short exact sequence splits. Therefore we get a map g : M/ tM → L. 
Then the map g ◦ h is a splitting epimorphism for the middle sequence. �

Over a noetherian ring, we again have a compatibility result thanks to the interplay 
between cosilting torsion pairs and torsion pairs in R - mod.

Proposition 4.4. Let R be a left noetherian ring. If (T , F) is a cosilting torsion pair in 
R - Mod with restriction (t, f), then

α(T ) = lim−−→[α̃(t)].

Proof. Observe that Cσ is closed under coproducts by definition. By Lemma 3.3 and 
Proposition 4.3, we then have that α(T ) = T ∩ Cσ is wide and closed under coproducts, 
whence it is closed under direct limits. Since α̃(t) ⊆ α(T ) by Proposition 3.4, we obtain 
the inclusion “⊇”.

Conversely, if X ∈ α(T ), then by Proposition 3.4, all its finitely generated submodules 
are in Ã(t). Hence, we can write X = lim−−→(Xi) with Xi ∈ Ã(t). Since F is definable, the 
torsion radical of the torsion pair commutes with direct limits, in particular X = t(X) =
t(lim−−→Xi) ∼= lim−−→ t(Xi). Now, each t(Xi) ∈ T ∩ Ã(t) = α̃(t). This proves the inclusion 
“⊆”. �
Lemma and Definition 4.5. [19, Corollary 3.2 and Remark 3.2] A subcategory C of 
R - Mod is precovering and closed under cokernels if and only if the inclusion functor 
C ↪→ R -Mod admits a right adjoint.

A subcategory with these properties is said to be coreflective. We denote by 
CWide(R) the class of all wide coreflective subcategories of R - Mod.

Theorem 4.6. Let R be a noetherian ring. Then the assignment (T , F) �→ α(T ) defines 
a map

α : Cosilt(R) −→ CWide(R)

whose image is the class wide(R) of subcategories of R - Mod which are obtained as 
direct limit closures of wide subcategories of R - mod. Taking the restriction res : X �→
X ∩R - mod we obtain a commutative diagram

Cosilt(R) α

res

wide(R)

res

tors(R) α̃

lim−→

wide(R)

lim−→
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In particular, for any W ∈ wide(R), the subcategory lim−−→W is wide and lim−−→W ∩
R - mod = W.

Proof. A result of El Bashir [22] states that a subcategory of a module category is a 
covering class if and only if it is closed under coproducts and directed colimits and equals 
the direct limit closure of some set of modules. In particular this applies to any class of 
the form lim−−→W for some W ∈ wide(R). Recall from Theorem 3.5 that W = α̃(t) with 
t = T̃(W). It follows from Proposition 4.4 that lim−−→W = α(T ) for T = lim−−→ t. Hence lim−−→W
is a wide subcategory of R - Mod which is covering; in particular, it is precovering and 
closed under cokernels, that is, coreflective in R - Mod by Lemma 4.5. We conclude that 
the map α : Cosilt(R) −→ CWide(R) is well-defined and that wide(R) is its image. 
Now apply Lemma 3.4 to see that every W ∈ wide(R) satisfies lim−−→W ∩ R - mod = W
and that the diagram has the stated properties. �

In the artinian case, we can identify when α(T ) is also closed under products.

Corollary 4.7. Let A be a left artinian ring, and let (T , F) be a cosilting torsion pair 
with restriction (t, f) in A -mod. Then α(T ) is closed under direct products in A -Mod
if and only if α̃(t) is functorially finite in A -mod.

In other words, a wide subcategory W ∈ wide(A) is functorially finite if and only if 
lim−−→W is bireflective.

Proof. The subcategory α̃(t) is covariantly finite if and only if lim−−→ α̃(t) = α(T ) is a 
definable subcategory, see [18, Section 4.2]. In this case, we can show that it is also 
contravariantly finite. In fact, α̃(t) = B -mod for some left artinian ring B which is 
finitely generated as an A-module.

Indeed, assume α(T ) is closed under products, and therefore a bireflective subcategory 
of A -Mod. Then, by [24, Theorem 1.2], there exists a ring epimorphism A → B with 
α(T ) ∼= B - Mod. Consider a small progenerator of α(T ), which we denote again by 
B. Then B can be written as a direct limit of objects Bi in α̃(t), in particular, it is a 
quotient of 

∐
Bi. Since B is projective in the subcategory, we have that B is actually a 

direct summand of 
∐

Bi. But B is also compact in the category, thus it is a summand 
of a finite direct sum of finitely generated modules. In particular B is finitely generated. 
This shows that α̃(t) = B - mod. �
Remark 4.8. We see in Theorem 4.6 that the assignment W �→ T (W) is a right inverse of 
the map α : Cosilt(R) −→ CWide(R). In fact, it is shown in [10] that α(T(W)) = W
for any wide subcategory W which is closed under coproducts.

We now turn to a description of the class B(CogenC).

Proposition 4.9. If C is a cosilting module with approximation sequence (1) and F =
CogenC, then
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B(F) = ⊥0C1

In particular, B(F) is a torsion class in R - Mod.

Proof. “⊆”: As B(Cogen(C)) is closed under quotients (by Lemma 3.3), it is enough to 
show that we can’t have a non-zero monomorphism from some object B ∈ B(Cogen(C))
to C1.

Assume that we can find a monomorphism i : B → C1 and consider the following 
pushout diagram:

B B

0 C1 C0 E(R)

0 coker(i) P E(R)

i

f

l

m

r

Since B ∈ B(Cogen(C)), we have that P ∈ Cogen(C). Thus the map m : P → E(R)
must factor through f via some r : P → C0. Whence we obtain that f = m ◦l = (f ◦r) ◦l. 
By right minimality of f , the map r ◦ l is an isomorphism. Thus l is a monomorphism. 
This implies that B = 0.

“⊇”: Let X ∈ ⊥0C1. We must show that every map X → F for F ∈ Cogen(C) has 
torsionfree cokernel. Since ⊥0C1 is closed under quotients, without loss of generality we 
consider only injective maps.

So let 0 → X → F → M → 0 be a short exact sequence. The long exact se-
quence obtained applying the functor HomR(−, C1) shows that Ext1R(M, C1) = 0, 
as Ext1R(F, C1) = 0 by Lemma 4.1. Moreover, as M is a quotient of F , we have 
M ∈ R/ Ann(C) -Mod. It follows that M belongs to ⊥1C1 ∩ R/ Ann(C) -Mod, which 
coincides with Cogen(C) again by Lemma 4.1. �

The categories α(T ) and β(F) can be regarded as generalized perpendicular cate-
gories; in fact, that’s what they are in the cotilting case.

Remark 4.10. When C has injective dimension at most one, we have A(T ) = ⊥1C0 and 
α(T ) = ⊥0,1C0. If C is a cotilting module, we also have F = ⊥1C1, thus β(F) = ⊥0,1C1.

Our second main result is devoted to the map β.

Theorem 4.11. Let A be a left artinian ring. Then the assignment (T , F) �→ β(F) defines 
an injective map

β : Cosilt(A) −→ CWide(A)
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Taking the restriction res : X �→ X ∩A -mod we obtain a commutative diagram

Cosilt(A)
β

res

CWide(A)

res

tors(A)
β̃

lim−→

wide(A)

Remark 4.12. In the proof of this theorem, we will make use of the following fact: a 
cosilting torsion pair in the module category of a left artinian ring is uniquely determined 
by its torsionfree, almost torsion modules. In [38, Proposition 2.20] this is stated for finite-
dimensional algebras. However, the proof only relies on the compatibility results between 
small and large torsion pairs and on a result of Enomoto [23] giving a connection between 
bricks and torsionfree classes which is valid in an arbitrary abelian length category. Thus, 
the statement remains true in the context of left artinian rings.

Proof. Given a cosilting class F , we know from Lemma 3.3 and Proposition 4.9 that 
the class β(F) = ⊥0C1 ∩ Cogen(C) is wide and closed under coproducts. Moreover, it 
is also closed under pure quotients, as it is the intersection of two classes closed under 
such quotients. It follows from [14, Theorem 2.5] that β(F) is precovering. Since β(F)
is also closed under cokernels, we infer from Lemma 4.5 that is coreflective.

The map β is thus well-defined. Moreover, if β(F) = β(F ′), then F and F ′ have the 
same torsionfree, almost torsion modules by Proposition 3.10. Since A is left artinian, 
we conclude from [38, Proposition 2.20] that F = F ′. Observe further that the diagram 
commutes by Lemma 3.4 and β̃ is surjective by Theorem 3.5(ii). Finally, since the left 
vertical arrow is a bijection, the right vertical arrow is a surjection. �

In the hereditary case, we can characterize when β(F) is closed under direct products.

Corollary 4.13. A cosilting torsion pair (T , F) in R - Mod over a left artinian hereditary 
ring R is widely generated if and only if β(F) is closed under direct products in R - Mod.

Proof. If F = W⊥0 for some W ∈ wide(R), then it follows from Lemma 3.7 that 
β(F) = W⊥0,1 is closed under products. Conversely, if β(F) is closed under products, 
then by [28, Theorem 8.1] there is W ∈ wide(R) such that β(F) = W⊥0,1 , and the latter 
coincides with β(W⊥0) by Lemma 3.7. Hence F = W⊥0 by the injectivity of β. �

A cosilting class which is not widely generated will be exhibited below. We will also 
see that in general the map β is not surjective and the map β̃ is not injective.

Examples 4.14. Let Λ be the Kronecker algebra, i.e. the path algebra of the quiver 
0 1 over an algebraically closed field k. We denote by p, t, and q the classes of 
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all indecomposable preprojective, regular, and preinjective modules, respectively. Recall 
that t =

⋃
x∈X tx where (tx)x∈X is a family of tubes.

There is a complete classification of the cosilting torsion pairs in Λ -Mod. They are 
either generated by a finite dimensional module M ∈ p ∪ q, or by a set of the form 
tP ∪ q determined by a subset of the tubes tP =

⋃
x∈P tx with P ⊆ X. The torsion pair 

generated by tP ∪q with P �= ∅ is of the form (Gen tP , FP ). In case P = X we just write 
(Gen t, F). When P = ∅, we obtain the split torsion pair (Addq, C) generated by q.

Observe that (Addq, C) is the only cosilting torsion pair which is not widely generated. 
In fact, β(C) = ⊥0,1G is the perpendicular class to the generic module G, and it is not 
closed under direct products. For details we refer to [6, Example 4.10 and Section 6.4].

Observe further that α(Addq) = α̃(addq) = 0. Indeed, if we number the modules 
(Qn)n∈N in q such that dimk HomA(Qn+1, Qn) = 2, we see that every Qn is isomorphic 
to Qn+1/S for a simple regular module S, and therefore it can’t belong to α(Addq). 
This shows that α and α̃ are not injective.

For a proper subset ∅ �= P ⊂ X consider now the direct limit closure WP = lim−−→ add tP
of the wide subcategory add tP of Λ -mod. It is a wide coreflective subcategory of Λ -Mod
by Theorem 4.6, and it is not closed under direct products, because add tP is not co-
variantly finite in Λ -mod. Hence WP can’t be of the form β(F) for a widely generated 
torsion pair. Moreover, WP �= β(C) because any simple regular S ∈ tx with x ∈ X \ P
lies in β(C) \ WP . Hence WP does not belong to the image of β. This shows that the 
map β : Cosilt(Λ) ↪→ CWide(Λ) is not surjective.

Finally, we notice that (Gen t, F) = (⊥0G, CogenG) coincides with the torsion pair 
cogenerated by the generic module G. Hence G is its unique torsionfree almost torsion 
module, and β(F) �= 0 while β(F) ∩Λ - mod = β̃(addp) = 0. So, the map β̃ : tors(Λ) →
wide(Λ) is not injective. Moreover, we see that the image of β is not contained in 
wide(Λ).

5. Applications to τ -tilting infinite algebras

Throughout this section we will assume that Λ is an artin algebra. Recall that there 
is a natural partial order on the collection of torsion classes tors(Λ) of Λ -mod given by 
inclusion. As shown in [21], the resulting poset has the structure of a complete lattice 
and enjoys several nice lattice-theoretic properties. The algebras for which this lattice is 
finite are called τ -tilting finite. A typical phenomenon in the τ -tilting infinite case is the 
presence of non-trivial locally maximal elements.

Definition 5.1. Given two torsion classes u and t in tors(Λ), we say that t covers u if 
u ⊂ t and there is no t′ in tors(Λ) which properly contains u and is properly contained 
in t.

A torsion class t ∈ tors(Λ) is said to be locally maximal if there are no elements of 
tors(Λ) covering t. Moreover, t is locally minimal if there are no elements of tors(Λ)
covered by t.
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It is shown in [13] that the torsion classes covering (respectively, covered by) t are 
in bijection with the isoclasses of minimal (co)extending modules with respect to the 
torsion pair (t, f). Moreover, we know from [8] that a torsion pair covering t amounts to a 
mutation of the associated cosilting module, or more precisely, of the corresponding two-
term cosilting complex. Rather than giving further details on the concept of mutation 
for cosilting objects introduced in [8], here we prefer to use the following equivalent 
characterization from [8, Theorem 8.8]:

Definition 5.2 ([8]). Let (t, f) and (u, v) be torsion pairs in tors(Λ). We say that (t, f)
is a right mutation of (u, v), and (u, v) is a left mutation of (t, f), if u ⊆ t and t ∩ v ∈
wide(Λ).

The classes α̃(t) and β̃(f) control the existence of mutations of the torsion pair (t, f).

Proposition 5.3. Let (t, f) be a torsion pair in tors(Λ). The torsion class t is locally 
minimal if and only if α̃(t) = 0, if and only if (t, f) admits no proper left mutation. 
Moreover, t is locally maximal if and only if β̃(f) = 0, if and only if (t, f) admits no 
proper right mutation.

Proof. We know from [13, Theorem 2.11] that t is locally minimal if and only if there 
are no (finitely generated) torsion, almost torsionfree modules. By Proposition 3.10 this 
means that α̃(t) = 0. Moreover, the latter is equivalent to f = Ã(t) by Lemma 3.3. 
This amounts to saying that there is no proper left mutation. Indeed, it is shown in [8, 
Corollary 9.9] that v̂ = Ã(t) is the largest torsionfree class such that (û, ̂v) is a left 
mutation of (t, f).

The second statement is proven dually, since we know from [13, Theorem 1.2] that t is 
locally maximal if and only if there are no finitely generated torsionfree, almost torsion 
modules. �

We now characterize τ -tilting finiteness using the small wide subcategory β̃(f). Parts of 
this result can be found in the literature with a different terminology (viz. [30, Corollary 
3.11] for the dual statement):

Proposition 5.4. The following statements are equivalent for an artin algebra Λ:

(1) Λ is τ -tilting finite.
(2) Every torsion pair (t, f) in tors(Λ) is widely cogenerated, i.e. there exists a wide 

subcategory W ∈ wide(Λ) such that F̃(W) = f .
(3) The map β̃ : tors(Λ) → wide(Λ) is bijective.
(4) For every torsionfree class f in Λ - mod we have β̃(f) = 0 if and only if f = 0.

Proof. (1) ⇒ (2) ⇒ (3) is essentially proved in [30].
(3) ⇒ (4) is trivial.
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(4) ⇒ (1) is a consequence of [38, Corollary 4.10]: if the algebra is τ -tilting infinite, 
there exists a torsion pair (t, f) in tors(Λ) such that t is a torsion class which is not func-
torially finite and is locally maximal. Then f �= 0, and β̃(f) = 0 by Proposition 5.3. �

Our next aim is to exhibit a condition on a torsion pair which ensures the existence 
of a mutation. The following concept is introduced in [6, Definition 4.12, Remark 4.18].

Definition 5.5. A cosilting module C over a ring R with cosilting class F = Cogen(C)
and approximation sequence (1) is minimal if

(i) β(F) is closed under direct products (and thus a bireflective subcategory) in R -Mod,
(ii) HomR(C0, C1) = 0.

The interest in minimal cosilting modules stems from their connection with ring 
epimorphisms. For example, over a commutative noetherian or over a hereditary ring, 
minimal cosilting modules are in one-one-correspondence with homological ring epimor-
phisms, up to equivalence. For details we refer to [6].

In general, it is not easy to understand if a certain cosilting class is cogenerated by a 
minimal cosilting module, however over a hereditary algebra there is a handy criterion.

Proposition 5.6. Let A be a left artinian hereditary ring. Then a cosilting module C is 
equivalent to a minimal one if and only if the cosilting torsion pair cogenerated by C is 
widely generated.

Proof. If C is a minimal cosilting module, then β(CogenC) is bireflective, hence by [28, 
Theorem 6.1] it is of the form W⊥0,1 for some W ∈ wide(A). By Lemma 3.7 we infer 
that β(CogenC) = β(W⊥0), and the claim follows immediately from the injectivity of β
in Theorem 4.11.

Conversely, every torsion pair (T(W), W⊥0) with W ∈ wide(A) is cosilting, and 
β(W⊥0) = W⊥0,1 is a bireflective subcategory. Now [6, Theorem 4.16 and Corollary 4.18]
tell us that in the hereditary case the map β restricts to a bijection between minimal 
cosilting modules and bireflective subcategories. So there is a minimal cosilting module 
C such that β(CogenC) = β(W⊥0) and the claim follows applying Theorem 4.11 once 
again. �

We will prove that, over an artin algebra, all minimal cosilting modules (with the 
exception of injective cogenerators) admit some torsion, almost torsionfree module. The 
following preliminary result holds true over an arbitrary ring.

Lemma 5.7. Let C be a cosilting module over a ring R with approximation sequence (1), 
and let (T , F) = (⊥0C, CogenC) be the associated torsion pair.

(1) If α(T ) = 0, then C0 is cosilting.
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(2) If C is cotilting, then C0 is cotilting if and only if α(T ) = 0.
(3) If C is a minimal cosilting module and the module C0 is cosilting, then C1 = 0.

Proof. (1) Let σ be the minimal injective copresentation of C0. We know from Proposi-
tion 4.3 that Cσ = A(T ), and by Lemma 3.3 the latter class equals F , as α(T ) = 0 by 
assumption. Since F = Cogen(C0), we conclude that C0 is cosilting with respect to σ.

(2) We know from Remark 4.10 that α(T ) = ⊥0,1C0. Thus α(T ) = 0 if and only if 
Cogen(C0) = ⊥1C0, that is, if and only if C0 is cotilting.

(3) By Lemma 4.1 we have that Cogen(C0) = Cogen(C), thus the two cosilt-
ing modules are equivalent and Prod(C) = Prod(C0). Therefore, C1 ∈ Prod(C0). 
However, by assumption, Prod(C0) ⊆ β(Cogen(C)). But by Proposition 4.9 we have 
β(Cogen(C)) ⊆ ⊥0C1, thus C1 = 0. �
Proposition 5.8. Let Λ be an artin algebra, and let C be a minimal cosilting module with 
associated torsion pair (T , F). Assume that F �= Λ -Mod. Then α(T ) �= 0, and the 
torsion pair has some torsion, almost torsionfree module.

Proof. Consider again the approximation sequence (1). If α(T ) = 0, then C0 is a cosilting 
module and thus C1 = 0. This implies that C0 is a finitely generated cosilting module, 
or in other words, C0 is support τ−-tilting. Moreover, the (functorially finite) torsion 
class t = T ∩Λ - mod corresponding to the torsionfree class cogenerated by C0 in Λ -mod
must satisfy α̃(t) = 0 and therefore be locally minimal by Proposition 5.3. But if t �= 0, 
then by [20, Theorem 3.1] it is possible to find, by means of mutation, a torsion class u
which is covered by t. Thus, we must have Λ -mod = cogen(C0), which contradicts our 
hypothesis by Theorem 2.8.

Hence α(T ) �= 0, which by Proposition 4.4 amounts to α̃(t) �= 0. Now α̃(t) has some 
simple object, and this is a torsion, almost torsionfree module for (T , F) by Proposi-
tion 3.10. �

In other words, minimal cosilting modules always admit left mutation.

Corollary 5.9. Let Λ be an Artin algebra and (t, f) be a non-trivial torsion pair in Λ -mod. 
If the associated cosilting torsion pair (T , F) = (lim−−→ t, lim−−→ t) in Λ -Mod is cogenerated 
by a minimal cosilting module, then t is not locally minimal.

It is proved in [38] that over any τ -tilting infinite artin algebra there exists a torsion 
class in tors(Λ) which is locally maximal and not functorially finite, and dually, there 
exists one which is locally minimal and not functorially finite. From the discussion above 
we can see that this “pathological” behavior of tors(Λ) is directly connected with patho-
logical behavior of the corresponding cosilting modules: it ensures both the existence of 
large torsionfree, almost torsion modules (cf. [38, Lemma 3.13]) and of large non-minimal 
cosilting modules. Let us collect our findings in a number of new characterizations of 
τ -tilting finite algebras.
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Theorem 5.10. The following statements are equivalent for an artin algebra Λ.

(i) Λ is τ -tilting finite.
(ii) Every cosilting module which is not equivalent to a finitely generated one is minimal.
(iii) Every wide subcategory of Λ -Mod closed under coproducts is the direct limit closure 

of a wide subcategory of Λ -mod.
(iv) For every W ∈ wide(Λ) there exists a unique wide subcategory X of Λ -Mod closed 

under coproducts such that W = X ∩ Λ -mod.
(v) If X is a wide subcategory of Λ -Mod closed under coproducts, then X ∩ Λ -mod = 0

if and only if X = 0.
(vi) The class of wide subcategories of Λ -Mod closed under coproducts is a finite set.

Proof. First of all, recall from [10, Theorem 4.8] that over a τ -tilting finite algebra, all 
torsion(free) classes in Λ -Mod are given by finitely generated (co)silting modules.

(i) ⇒ (ii) is then trivial.
(ii) ⇒ (i): It follows from Corollary 5.9 and Remark 2.9 that there cannot exist a 

torsion class in tors(Λ) which is both locally minimal and not functorially finite. Thus 
Λ is τ -tilting finite by the dual version of [38, Corollary 3.10].

(ii) ⇒ (iii): If X is a wide subcategory of Λ -Mod which is closed under coproducts, 
then X = αT(X ) by Remark 4.8. Moreover, since Λ is τ -tilting finite, the torsion pair 
(T(X ), X⊥0) is a cosilting torsion pair, so X ∈ wide(Λ) by Theorem 4.6.

(iii) ⇒ (iv): By Theorem 4.6, restriction to Λ -mod induces a bijection between the 
wide subcategories of Λ -Mod closed under coproducts and wide(Λ).

(iv) ⇒ (v) is immediate.
(v) ⇒ (i): We apply Theorem 4.11. Given a torsion pair (t, f) in tors(Λ), we know 

that β maps F = lim−−→ f to a wide subcategory closed under coproducts which restricts 
to β̃(f). Our assumption then tells us that β̃(f) = 0 implies β(F) = 0, hence F = 0 by 
the injectivity of β. From Proposition 5.3 and [38, Corollary 3.10] we deduce that Λ is 
τ -tilting finite.

(i) ⇒ (vi): When Λ is τ -tilting finite, the map α̃ induces a bijection between tors(Λ)
and wide(Λ), as proved in [30, Corollary 3.11]. The statement then follows from condition 
(iii).

(vi) ⇒ (i): By the injectivity of the map β : Cosilt(Λ) −→ CWide(Λ) in The-
orem 4.11 we see that (vi) implies finiteness of Cosilt(Λ). Now use Theorem 2.8 to 
conclude. �

In [30, Corollary 3.11] it is also shown that over a τ -tilting finite algebra every wide 
subcategory of Λ -mod is functorially finite. As observed in Corollary 4.7 and its proof, 
this means that every category X in wide(Λ) is closed under products, and in fact there 
even exists a ring epimorphism Λ → Γ to an artin algebra Γ such that X ∼= Γ - Mod. We 
can then restate the equivalence of (i) and (iii) in Theorem 5.10 as follows:
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Corollary 5.11. An artin algebra Λ is τ -tilting finite if and only if every wide subcategory 
of Λ - Mod closed under coproducts is equivalent to the category of modules over some 
artin algebra.

We close this section with some open questions.

Questions 5.12. The following is a list of necessary conditions which are satisfied when 
Λ is a τ -tilting finite artin algebra (see the discussion above and [10, Theorem 4.8]). Is 
any of them a sufficient condition?

(1) Every wide subcategory of Λ -mod is functorially finite.
(2) Every wide subcategory closed under coproducts of Λ -Mod is closed under products.
(3) The target of any ring epimorphism Λ → Γ with TorΛ1 (Γ, Γ) = 0 is an artin algebra.

Note that (2) implies (1). Moreover, (2) and (3) imply that Λ is τ -tilting finite by 
Corollary 5.11.

6. Torsion pairs and Ext-orthogonal pairs

In this section we give some applications to Ext-orthogonal pairs over a hereditary 
ring.

Definition 6.1 ([28, Def. 2.1]). Let R be a ring. A pair (X , Y) of full subcategories of 
R - Mod is said to be an Ext-orthogonal pair if:

X ∈ X ⇐⇒ ∀n ∈ Z Extn(X,Y) = 0

Y ∈ Y ⇐⇒ ∀n ∈ Z Extn(X , Y ) = 0

An Ext-orthogonal pair is complete if for all M ∈ R - Mod we have an exact sequence:

0 YM XM M Y M XM 0

with XM , XM ∈ X and YM , Y M ∈ Y.

As noticed in [28], every complete Ext-orthogonal pair over a hereditary ring gives 
rise to a torsion pair (and a cotorsion pair) from which it can be recovered.

Proposition 6.2. Let A be a hereditary ring, (X , Y) a complete Ext-orthogonal pair. Then 
there is a (uniquely determined) torsion pair (T , F) in A -Mod such that (X , Y) =
(α(T ), β(F)).

Proof. As in [28], we consider the torsion pair (T(X ), X⊥0) generated by X .
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We have that Cogen(Y) ⊆ X⊥0 , since the latter is a torsionfree class containing Y. 
Moreover, if L ∈ X⊥0 , the approximation sequence of the Ext-orthogonal pair gives an 
embedding L → Y L with Y L ∈ Y. Thus Cogen(Y) = X⊥0 . In a similar way we can 
obtain that T(X ) = Gen(X ).

Now, being the left part of an Ext-orthogonal pair, X is a wide subcategory closed 
under coproducts. Thus, Remark 4.8 gives α(T(X )) = X .

Moreover, Y is a wide subcategory closed under products. We prove that
β(Cogen(Y)) = Y.

“⊆”: If B ∈ β(Cogen(Y)), there is some element Y ∈ Y and a short exact sequence 
0 → B → Y → F → 0 with F ∈ Cogen(Y). In particular, as F can also be embedded in 
some Y ′ ∈ Y, the module B can be realized as the kernel of a map in Y.

“⊇”: Let Y ∈ Y and Y → F → M → 0 a short exact sequence with F ∈ Cogen(Y). 
Once again, we can embed F in some Y ′ ∈ Y. The cokernel C of the composite Y →
F → Y ′ is then a module in Y. Applying the snake lemma to the diagram

Y F M 0

0 Im(i ◦ f) Y ′ C 0

f

i

we can see that M embeds in C. Thus M ∈ Cogen(Y) and Y ∈ β(Cogen(Y)).
For uniqueness, let (T , F) be a torsion pair with (X , Y) = (α(T ), β(F)). Then, obvi-

ously T(X ) ⊆ T and Cogen(Y) ⊆ F . But the inclusion of the torsion classes is equivalent 
to the reverse containment for the torsionfree classes, thus the two torsion pairs must 
coincide. �
Example 6.3. Not every torsion pair gives rise to an Ext-orthogonal pair. As an example, 
recall from Example 4.14 that the cosilting torsion pair (Addq, C) over the Kronecker 
algebra satisfies (α(Addq), β(C)) = (0, ⊥0,1G).

We can characterize the torsion pairs associated to certain Ext-orthogonal pairs with 
distinguished properties.

Corollary 6.4. Let A be a left artinian hereditary ring, and (X , Y) a complete Ext-
orthogonal pair. Then the corresponding torsion pair is cogenerated by a (minimal) 
cosilting module if and only if Y is a bireflective subcategory of A -Mod.

Proof. Y is bireflective if and only if it is of the form Y = W⊥0,1 for some W ∈ wide(A). 
But then the associated torsion pair must coincide with (T (W), W⊥0) by uniqueness and 
Lemma 3.7, and it is therefore cogenerated by a minimal cosilting module by Proposi-
tion 5.6.
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Conversely, if the torsion pair is cosilting, then X = lim−−→(X ∩ A -mod) by Proposi-
tion 4.4. By [28, Theorem 5.1], this means that Y is closed under coproducts and is thus 
bireflective. �

There is a dual concept for minimal cosilting modules. Minimal silting modules are 
defined for general rings, but here we will use the following, more accessible, definition:

Definition 6.5 ([9, Definition 5.4]). Let A be a hereditary ring. A silting A-module T is 
minimal silting if A admits an Add(T )-envelope.

Recall that for a cosilting torsion pair (T , F) with approximation sequence (1), we 
have α(T ) = ⊥0,1C0 when A is hereditary, cf. Remark 4.10. Dually, we can consider the 
silting torsion pair (Gen(T ), T⊥0) and show the following.

Lemma 6.6. Let T be a minimal silting module over a hereditary ring A. Let A → T0 →
T1 → 0 be the exact sequence induced by the Add(T )-envelope. Then β(T⊥0) = T0

⊥0,1 .

It is shown in [9, Theorem 5.8] that minimal silting modules over hereditary rings 
are in one-one-correspondence with homological ring epimorphisms via the map α. More 
precisely, given a minimal silting module T over a hereditary ring A, the wide subcategory 
α(Gen(T )) is bireflective and thus there is a ring epimorphism λ : A → B such that 
λ∗(B -Mod) = α(Gen(T )). Then Gen(T ) = Gen(AB), and the induced A-module map 
A → AB is a Gen(B)-envelope, thus β(T⊥0) = B⊥0,1 .

Corollary 6.7. Let A be a hereditary ring, and (X , Y) a complete Ext-orthogonal pair. 
Then the corresponding torsion pair is generated by a minimal silting module if and only 
if X is a bireflective subcategory of A -Mod.

Proof. By the observations above, we can assign to each minimal silting module T a com-
plete Ext-orthogonal pair (α(Gen(T )), β(T⊥0)) = (λ∗(B - Mod), B⊥0,1) with the required 
property, see [28, Proposition 3.1]. Conversely, if (X , Y) is any complete Ext-orthogonal 
pair with X bireflective, then X = λ∗(B - Mod) for some ring epimorphism. Thus, once 
again by uniqueness and [28, Proposition 3.1], this pair is obtained as above from the 
minimal silting torsion pair (Gen(B), B⊥0). �

We can now combine these observations with the fact that the homological ring 
epimorphisms starting at a hereditary ring A are precisely the universal localizations 
A → AW of A at wide subcategories W ∈ wide(A), see [28, Theorem 6.1] for details. 
The following result is a variation of [28, Theorem 8.1].

Theorem 6.8. If A is a left artinian hereditary ring, there are bijections between

(1) wide subcategories of A -mod;
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(2) (complete) Ext-orthogonal pairs (X , Y) with Y bireflective.
(3) (complete) Ext-orthogonal pairs (X , Y) with X bireflective.
(4) minimal cosilting torsion pairs;
(5) minimal silting torsion pairs.

Proof. The bijections are given as follows.

Bijection Assignment

(1) → (2) W �→ (lim−−→W,W⊥0,1 )
(1) → (3) W �→ (W⊥0,1 , AW

⊥0,1 )
(1) → (4) W �→ (T (W),W⊥0 )
(1) → (5) W �→ (GenAW = W⊥1 , AW

⊥0 ) �

7. Wide subcategories arising from pure-injectives

In Theorem 6.8 we have described the Ext-orthogonal pairs of the form (X , Y) =
(α(T ), β(F)) for some widely generated torsion pair (T , F) over a hereditary ring. Over 
a finite-dimensional tame hereditary algebra, the classes α(T ) and β(F) admit a further 
description. It turns out that they are precisely the wide coreflective subcategories of 
Λ -Mod which are obtained as perpendicular categories to a collection of pure-injective 
modules.

Theorem 7.1. Let (X , Y) be a complete Ext-orthogonal pair over a finite-dimensional 
tame hereditary algebra Λ. The following statements are equivalent.

(1) There exists a wide subcategory W of Λ -mod such that X = lim−−→W or X = W⊥0,1 .
(2) There exists a set of indecomposable pure-injective Λ-modules P such that X =

⊥0,1P.
(3) X or Y is bireflective.

The equivalence of (1) and (3) follows immediately from Theorem 6.8. The proof of 
the equivalence of (1) and (2) will be divided into several steps to improve the overall 
clarity. We begin with the easy implication (1)⇒ (2):

Lemma 7.2. Let Λ be a tame hereditary algebra. Let W be a wide subcategory of Λ -mod. 
Then there exist two families of indecomposable pure-injective Λ-modules P, Q such that 
W⊥0,1 = ⊥0,1P and lim−−→W = ⊥0,1Q.

Proof. We obtain the result by using cosilting theory and the AR-formula.
For a category of the form W⊥0,1 , recall that we have W = filt(B) for a semibrick B

and W⊥0,1 = B⊥0,1 . Then if B contains any indecomposable projective module P , we 
have a corresponding indecomposable injective I such that P⊥0,1 = P⊥0 = ⊥0I = ⊥0,1I. 
For all the non-projective bricks B we have that B⊥0,1 = ⊥0,1τB. In conclusion, we can 
find a set of indecomposable finite-dimensional modules B′ such that W⊥0,1 = ⊥0,1B′.
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For the case lim−−→W, consider (T , F) = (T(W), W⊥0) the torsion pair in Λ -Mod
generated by W; this is a cosilting torsion pair. In particular, we have that α(T ) = lim−−→W
by Proposition 4.4.

Consider now an approximation sequence 0 → C1 → C0 → DΛ as in (1) with C0

and C1 in ProdC for the associated cosilting module C. Then lim−−→W = ⊥0,1C0 by 
Remark 4.10.

Now recall that C is pure-injective, hence so are C0 and C1. Moreover, it is well known 
that over a tame hereditary algebra every pure-injective module E is the pure-injective 
hull of 

∐
Ei, where the Ei are, up to isomorphism, precisely the indecomposable direct 

summands of E, see e.g. [17, Proposition 2.1]. Therefore the perpendicular category of E
is determined by a family of indecomposable pure-injective Λ-modules. This completes 
the proof. �

For the converse implication we will need some classification results over tame heredi-
tary algebras. Let us first recall the shape of the Auslander-Reiten quiver of Λ. It consists, 
as in Example 4.14, of a preprojective and a preinjective component, denoted by p and 
q, respectively, and a family of orthogonal tubes t =

⋃
λ∈X tλ containing the regular 

modules.
Almost all tubes have rank 1. Given an exceptional tube tλ of rank r > 1 and a 

module X = U [m] ∈ tλ of regular length m < r, we may consider the full subquiver 
WX of tλ which is isomorphic to the Auslander-Reiten-quiver of the linearly oriented 
quiver of type Am with X corresponding to the projective-injective vertex. The set WX

is called a wing of tλ of size m with vertex X.
Next, we recall that there is a complete classification of the indecomposable pure-

injective Λ-modules: they are the indecomposable finite dimensional modules, the adic 
modules S[−∞] and Prüfer modules S[∞] corresponding to simple regular modules S, 
and the generic module G.

The infinite-dimensional cotilting modules were classified in [17]. According to [7, 
Theorem 5.5], they are parametrized by pairs (Y, P ) where Y is a branch module and P
is a subset of X. More specifically, the following modules form a complete irredundant 
list of all large cotilting Λ-modules, up to equivalence:

C(Y,P ) = Y ⊕
∐
μ∈P

{all S[∞] in ⊥1Y from tμ} ⊕G⊕
∏
μ/∈P

{all S[−∞] in Y ⊥1 from tμ}

Rather than giving the precise definition of a branch module, let us focus on the two 
particular cases which will be relevant for our discussion. We will choose the branch 
module Y to consist of modules on a fixed ray or on a fixed coray in an exceptional tube 
tλ. Given a quasi-simple module S, let us denote by S[i] the module of regular length 
i on the ray starting in S, and by S[−i] the module of regular length i on the coray 
ending at S. Setting P to be the singleton containing λ, or its complement, we obtain 
the following cotilting modules.
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Fig. 1. The torsion pair for the cotilting module C+
S . Torsionfree modules in blue, torsion modules in gray. 

(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Proposition 7.3. Let Λ be a tame hereditary algebra. Given an index λ ∈ X such that the 
tube tλ has rank r, and a quasi-simple S ∈ tλ, the following modules are cotilting:

(1) C+
S := S[1] ⊕· · ·⊕S[r−1] ⊕S[∞] ⊕G ⊕

∏
μ�=λ Mμ, where each Mμ is the direct sum 

of all the adic modules from the tube tμ.
(2) C−

S := S[−∞] ⊕S[−r+1] ⊕· · ·⊕S[−1] ⊕G ⊕
∐

μ�=λ Nμ, where each Nμ is the direct 
sum of all the Prüfer modules from the tube tμ.

Remark 7.4. (1) By [4, Theorem 3.16], the modules C+
S and C−

S are minimal cotilting 
modules, and the corresponding torsion pairs are widely generated by Proposition 5.6.

(2) In Fig. 1 we sketch the torsion pair (T , F) cogenerated by the cotilting module 
C+

S .
Every preprojective module is torsionfree, while every preinjective module and every 

regular module in a tube different from tλ are torsion. In the tube tλ we have that all 
modules on the ray starting at S are torsionfree. The wide subcategory generated by the 
semibrick S+ = {τ−S, . . . , τ−r+1S = τS} is contained in T . The other modules in the 
tube are neither torsion, nor torsionfree.

Now it is easy to check that W = α(T ) ∩ Λ -mod is given by the non-preinjective 
torsion modules. Therefore the torsion, almost torsionfree modules are precisely the 
quasi-simples in the tubes different from tλ together with the modules in the semibrick 
S+, cf. Proposition 3.10.

Next, we claim that the brick S[r] is torsionfree, almost torsion. Indeed, it is torsion-
free, and all its proper quotients are torsion: they are either preinjective, or they are 
modules on the coray ending at τS of regular length at most r − 1. Consider a short 
exact sequence with torsionfree middle term 0 → S[r] → F → N → 0. By Remark 3.9, 
we may assume F is finite-dimensional. In fact, since S[r] doesn’t have any non-zero map 
to a preprojective module or to a regular module in a different tube, we may assume 
that F is a direct sum of modules of the form S[i + r] for some i ∈ N.
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As add tλ is closed under cokernels, the module N decomposes as a direct sum of 
modules in tλ. Suppose N is not torsionfree. By taking a pullback, we can reduce to the 
case where N is torsion and indecomposable, that is, it lies in the wing determined by the 
semibrick S+. However, none of these modules is obtained as a quotient of a torsionfree 
module by S[r], as Ext1(N, S[r]) = 0 for all these N . Hence N must be torsionfree, and 
our claim is proven.

In fact, S[r] is the unique torsionfree, almost torsion module: any such module must 
be a brick and must belong to β(F) by Proposition 3.10; however, the torsionfree bricks 
different from S[r] are either of the form S[i] with i < r, or they are preprojective, and 
in both cases they admit a non-zero map to S[r] whose cokernel can’t be torsionfree, 
cf. [39, XII, Lemma 3.6].

(3) For the torsion pair cogenerated by C−
S we have again that every preprojective 

module is torsionfree and that every preinjective module is torsion; moreover every reg-
ular module in a tube different from tλ is torsionfree, while in tλ the modules on the 
coray ending at τ−S are torsion and the modules in the wide subcategory generated by 
the semibrick S− = {S, τS, . . . τ r−2S} are torsionfree. The other modules in the tube 
are neither torsion, nor torsionfree.

With similar arguments to (2) we see that the torsionfree, almost torsion modules are 
precisely the quasi-simples in the tubes different from tλ together with the modules in 
the semibrick S−, and that there is a unique torsion, almost torsionfree module, namely 
the module τ−S[−r].

We start the proof of the implication (2)⇒(1) by computing the perpendicular cate-
gories of the indecomposable pure-injective modules.

Lemma 7.5. Let M be a finite-dimensional indecomposable module. Then ⊥0,1M = W⊥0,1

for some W in wide(Λ).

Proof. We distinguish two cases. If M is injective, then ⊥0,1M = ⊥0M is a Serre sub-
category and there exists an indecomposable projective P such that P⊥0 = ⊥0M so 
that we can take W = filt(P ). If M is not injective, we use the AR-formulae to obtain 
⊥0,1M = τ−M⊥0,1 Thus we can take W to be the smallest wide subcategory containing 
τ−M . �
Lemma 7.6. For the generic module G we have ⊥0,1G = lim−−→W where W = add t is the 
wide subcategory of Λ -mod spanned by the regular modules.

Proof. We consider the cotilting torsion pairs (Gen t, t⊥0) and (Genq, q⊥0) gener-
ated by the regular and by the preinjective modules, respectively. The first one is 
given by the cotilting module C(0,∅) = G ⊕

∏
μ∈X{all S[−∞] from tμ}, and we in-

fer that (Gen t, t⊥0) = (⊥0G, CogenG). The second one is given by C(0,X) = G ⊕∏
μ∈X{all S[∞] from tμ}. If 0 → C1 → C0 → DΛ → 0 is a minimal approximation 
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sequence as in (1), then we know from [34, Theorem 7.1] that C1 is a direct sum of 
copies of G, thus the cotilting class C = q⊥0 = ⊥1C1 equals ⊥1G.

We conclude that ⊥0,1G = Gen t ∩ C, which has the stated shape by [34, §3.4]. �
For the Prüfer and adic modules we will need some results from [5] which allow us 

to locate S[∞] and S[−∞] inside the minimal approximation sequences given by the 
cotilting modules C+

S and C−
S .

Definition 7.7. Let C be a cotilting module with associated torsion pair (T , F). A module 

E ∈ ProdC is called critical if there exists a short exact sequence 0 → F → E
b−→ M → 0

where F is a torsionfree, almost torsion module with respect to (T , F), and E is the 
Prod(C)-envelope of F . Moreover, a module E ∈ ProdC is called special if there exists 
a short exact sequence: 0 → E

b−→ N → T → 0 where T is a torsion, almost torsionfree 
module with respect to (T , F), and N is the F-cover of T .

Remark 7.8. This definition differs from, but is equivalent to the original definition in 
[5]. There critical and special modules are defined in terms of the existence of certain 
(strong) left almost split maps in F . As shown in [5, Lemma 4.3], such left almost split 
maps are either injective or surjective. The critical modules are the modules in ProdC

which are source of a left almost split epimorphism in F , and the special modules are the 
modules in ProdC which are source of a left almost split monomorphism in F , see [5, 
Corollaries 5.18 and 5.22]. By [5, Theorem 4.2] these are precisely the modules defined 
above. In fact, the maps b in the definition are the required left almost split morphisms.

Proposition 7.9 ([5, Corollary 5.23 and Lemma 6.10]). Let C be a cotilting module with 
associated torsion pair (T , F) and minimal approximation sequence 0 → C1 → C0 →
DΛ → 0 as in (1). Then every special module is a direct summand of C1 and every 
critical module is a direct summand of C0. Moreover, if C is a minimal cotilting module, 
then an indecomposable module lies in Prod(C) if and only if it lies in Prod(C0) or 
Prod(C1), and not in both.

Now we turn to the minimal cotilting modules C+
S and C−

S . We will see that the Prüfer 
module S[∞] is the only critical summand of C+

S , and the adic module S[−∞] is the 
only special summand of C−

S . These facts will be exploited to compute the perpendicular 
categories of S[∞] and S[−∞].

Lemma 7.10. Let S be a quasi-simple module in a tube of rank r, and let S[∞] be the 
corresponding Prüfer module. Then there exists a wide subcategory W in wide(Λ) which 
consists of regular modules and satisfies ⊥0,1S[∞] = lim−−→W

Proof. Denote by (T , F) the torsion pair associated to C+
S . We will show that ⊥0,1S[∞] =

α(T ). To this aim, it is enough to show that in the minimal approximation sequence 
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0 → C1 → C0 → DΛ → 0 for C+
S we have Prod(C0) = Prod(S[∞]). This amounts to 

show that S[∞] is the unique critical module and that all the other summands of C+
S

are either special or occur as summands in products of copies of S[∞].
The latter is the case for the generic module G, which is known to lie in Prod(S[∞])

and thus satisfies ⊥0,1S[∞] = ⊥0,1(S[∞] ⊕G).
Next, we show that S[∞] is critical. We have seen in Remark 7.4 that S[r] is 

the (unique) torsionfree, almost torsion module, so we have to show that S[∞] is its 
Prod(C+

S )-envelope. This is immediate, in fact S[∞] is the only indecomposable module 
in Prod(C+

S ) with a non-zero morphism from S[r], and the envelope is given by the short 
exact sequence

0 → S[r] → S[∞] b−→ S[∞] → 0.

It remains to show that all the other summands of C+
S are special. For the finite-

dimensional ones, this is witnessed by the short exact sequences

0 → S[i] → S[i + 1] gi−→ τ−iS → 0, 1 ≤ i < r.

Notice that gi is an F-cover of the torsion, almost torsionfree module τ−iS, because S[i]
lies in Prod(C+

S ) and is therefore Ext-injective in F . For the adic summands, we use 
the fact that every quasi-simple module in a tube different from tλ is torsion, almost 
torsionfree, and that every adic summand appears as the kernel of the F-cover of one of 
these modules. This is witnessed by the sequence

0 → S′[−∞] → τ−S′[−∞] g−→ τ−S′ → 0

where g is again an F-cover because S′[−∞] is Ext-injective in F .
We have shown that Prod(C0) = Prod(S[∞]), and we can conclude by Proposition 4.4

and Remark 4.10 that

⊥0,1S[∞] = ⊥0,1C0 = α(T ) = lim−−→W

where W = α(T ) ∩Λ -mod = ⊥0,1S[∞] ∩Λ -mod consists of regular modules, as already 
observed in Remark 7.4. �
Lemma 7.11. Let S be a quasi-simple module in a tube of rank r, and let S[−∞] be the 
corresponding adic module. Then there exists a wide subcategory W in wide(Λ) which 
consists of regular modules and satisfies ⊥0,1S[−∞] = W⊥0,1

Proof. We proceed dually to the Prüfer case; here we want to show that S[−∞] is the 
unique special summand of the cotilting module C−

S .
We consider the torsion pair (T , F) cogenerated by C−

S and a minimal approximation 
sequence 0 → C1 → C0 → DΛ → 0. First, we notice that all the finite-dimensional 
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summands and all the Prüfer summands of C−
S are contained in Prod(C0). In fact C0

cogenerates the torsionfree class F , but none of these modules is cogenerated by the 
other summands of C−

S . Then also the generic module G, being a direct summand in a 
direct product of copies of any Prüfer module, lies in Prod(C0).

In order to prove that S[−∞] is special, we consider the (unique) torsion, almost 
torsionfree module τ−S[−r]. From the pullback diagram

0 τ−S[−∞] P S[−r + 1] 0

0 τ−S[−∞] τ−S[−∞] τ−S[−r] 0

τ−S τ−S

we obtain that P � S[−∞]. Thus we have a short exact sequence

0 → S[−∞] → τ−S[−∞] ⊕ S[−r + 1] g−→ τ−S[−r] → 0

that represents the adic as kernel of the F-cover of a torsion, almost torsionfree module. 
Here g is the map induced by the canonical projection τ−S[−∞] → τ−S[−r] and by the 
irreducible morphism S[−r + 1] → τ−S[−r]. It is indeed an F-precover because S[−∞]
is Ext-injective in F , and it is minimal as its components are non-trivial.

In conclusion, recalling that (T , F) is widely generated, and combining Remark 4.10
with Lemma 3.7, we obtain

⊥0,1S[−∞] = ⊥0,1C1 = β(F) = W⊥0,1

where W = α(T ) ∩ Λ - mod = filt(τ−S[−r])) consists of regular modules. �
For the general case, when P is a collection of indecomposable pure-injective modules, 

we will make use of the following decomposition result, consequence of work by Ringel.

Proposition 7.12 ([35, Theorem in Section G, Theorem 4.4, Proposition 4.8]). Every 
module M ∈ lim−−→ add t has a decomposition M =

∐
λ∈XMλ where Mλ is the largest 

submodule of M belonging to lim−−→ add tλ. Moreover, for each λ ∈ X there exists a pure 
exact sequence

0 → Aλ → Mλ → Zλ → 0

where Aλ is a direct sum of finite-dimensional modules in tλ, while Zλ is a direct sum 
of Prüfer modules from tλ.
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We will also need the following structure result for the wide subcategories lying in the 
additive closure of a tube.

Lemma 7.13. Let A = add tλ be the additive closure of a tube of rank r, which we view 
as an abelian length category with simple objects denoted by S1, S2 = τ−S1, ..., Sr =
τ−r+1S. The non-trivial wide subcategories of A have the shape add(F ∪ T ) where F is 
a subset of a wing of size at most r − 1, and T is either zero or T = {Si[nr] | n ∈ N}.

Proof. Recall that wide subcategories in an abelian length category are in bijection with 
semibricks. Thus, we consider the bricks in the category A. These are precisely the 
modules Si[k] for 1 ≤ i, k ≤ r.

Notice that every brick Si[r] has non-zero morphisms to any other brick Sj [r]. In 
particular, a given semibrick can only contain a single brick of regular length r. Moreover, 
using the structure of the tube, we see that the bricks in A which are Hom-orthogonal to 
a given Si[r] are contained in the wing with vertex τ−Si[r− 2] (for r ≥ 3). However, all 
the modules in this wing are Ext-orthogonal to Si[r]. Therefore a wide subcategory of A
containing Si[r] is the additive closure of some collection of indecomposables from the 
wing with vertex τ−Si[r − 2] and of the self-extensions of Si[r]. The latter are precisely 
the modules Si[nr].

It remains to consider the wide subcategories whose semibricks do not contain bricks 
of regular length r. In this case, the semibrick, and thus the whole wide subcategory, 
must be contained in a wing of size at most r − 1. �
Lemma 7.14. Let P be a collection of indecomposable pure-injectives consisting of Prüfer 
modules and possibly also of the generic module. Then ⊥0,1P = lim−−→W for some wide 
subcategory in wide(Λ) consisting of regular modules.

Proof. If the set P consists only of the generic module, then we are done by Lemma 7.6. 
If it contains at least a Prüfer module, then the generic doesn’t contribute to the com-
putation of the perpendicular category, thus we may assume it doesn’t belong to P.

We want to show that for two wide subcategories consisting of regular modules U
and V we have lim−−→U ∩ lim−−→V = lim−−→(U ∩ V). The inclusion ⊇ is immediate. For the 
reverse inclusion, pick X ∈ lim−−→U ∩ lim−−→V. Without loss of generality, we may assume 
that X ∈ lim−−→ add tλ for some index λ. Then by Proposition 7.12 this module fits into a 
pure short exact sequence

0 → Aλ → X → Zλ → 0

and since all the three subcategories involved are closed under kernels, pure-epimorphic 
images and extensions, X lies in one category if and only if so do Aλ and Zλ.

But now, Aλ is a coproduct of finite-dimensional modules, thus Aλ ∈ lim−−→U ∩ lim−−→V
if and only if Aλ ∈ Add(U ∩ V) ⊆ lim−−→(U ∩ V). As for Zλ, it is a coproduct of Prüfer 
modules, so once again, we may restrict to the case of a single Prüfer module. But S[∞]
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can only be written as a direct limit of regular modules if we use infinitely many modules 
from the ray starting at S. However, using Lemma 7.13, we see that the intersection of a 
wide subcategory of Λ -mod with a tube is either contained in some wing of size strictly 
smaller than the rank of the tube, or it contains all modules of regular length nr, n ∈ N, 
on a certain ray in that tube. This consideration yields that S[∞] ∈ lim−−→U ∩ lim−−→V if and 
only if the modules S[nr], n ∈ N, are in U ∩ V, so that S[∞] ∈ lim−−→(U ∩ V). �

For collections of adic and finite-dimensional modules we use a result due to Schofield.

Lemma 7.15. Let P be a collection of finite-dimensional or adic modules. Then there 
exists a wide subcategory W in wide(Λ) such that ⊥0,1P = W⊥0,1 .

Proof. By [37, Theorem 2.3], [28, Theorem 6.1], the assignment W �→ W⊥0,1 defines a 
bijection between wide(Λ) and the collection of the extension-closed bireflective sub-
categories of Λ -Mod. Notice that ⊥0,1P is of the form 

⋂
P∈P WP

⊥0,1 with each WP in 
wide(Λ) via Lemma 7.5 and 7.11. This is an extension-closed bireflective subcategory 
of Λ -Mod, as so are all WP

⊥0,1 . Hence it has the required shape. �
Now we are ready for the final step.

Lemma 7.16. Let P be a collection of pure-injective modules. Then there exists a wide 
subcategory W of Λ -mod such that ⊥0,1P = lim−−→W or ⊥0,1P = W⊥0,1 .

Proof. By the discussion above, we only have to treat the case when P = A ∪ D where 
A consists of finite-dimensional or adic modules, and D consists of Prüfer modules (and 
possibly the generic). By our previous computations, we have that ⊥0,1A = U⊥0,1 and 
⊥0,1D = lim−−→W where U and W are in wide(Λ) and W consists of regular modules. Then 
⊥0,1P = U⊥0,1 ∩ lim−−→W, and we want to show that the latter coincides with the direct 
limit closure of the wide subcategory U⊥0,1 ∩W.

The inclusion lim−−→(U⊥0,1 ∩ W) ⊆ U⊥0,1 ∩ lim−−→W is clear as U⊥0,1 is closed under 
direct limits. For the other inclusion, assume X ∈ U⊥0,1 ∩ lim−−→W. As this module is in 
lim−−→W ⊆ lim−−→ add t, we can again apply Proposition 7.12 to reduce to the cases when 
X ∈ Add(Λ -mod) or X is a coproduct of Prüfer modules. The first case is immediate; in 
the second case, we may further reduce to X = S[∞] by using that all the subcategories 
we are considering are closed under summands and coproducts. Then, as observed before, 
W must contain the modules S[nr] for all n ∈ N.

Since S[∞] ∈ U⊥0 , the same holds true for its submodules S[nr]. We claim that 
the modules S[nr] also lie in U⊥1 . To this end, we pick U ∈ U , which we may as-
sume indecomposable. Notice that U is neither preprojective, nor preinjective, because 
it is Hom-orthogonal to S[∞], see [39, XII, Lemma 3.6]. Assume that Ext1(U, S[r]) =
DHom(τ−S[r], U) �= 0. Then the regular module U must be of the form U = τ iS[k]
with 0 ≤ i ≤ r− 1 and k− i ≥ 1. But for any such choice, we have Hom(U, S[∞]) �= 0, a 
contradiction. So we have proved our claim for S[r], and consequently, also for all S[nr], 
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as U⊥1 is closed under extensions. This shows that S[∞] is a direct limit of modules in 
U⊥0,1 ∩W, concluding the proof. �
8. Wide coreflective subcategories over the Kronecker algebra

In the previous section we have determined the wide coreflective subcategories which 
are perpendicular to collections of pure-injective modules. The existence of further wide 
coreflective subcategories seems to be an intriguing question. In fact, it is related to the 
problem of classifying the localizing subcategories in the unbounded derived category 
D(A -Mod). Let us start by recalling some terminology.

Definition 8.1. Let T be a triangulated category with suspension functor Σ.
(1) Two subcategories U , V of T closed under direct summands form a torsion pair

(U , V) if:

(i) HomT (U , V) = 0
(ii) For all objects T ∈ T we can find a triangle

UT T VT ΣUT

with UT ∈ U and VT ∈ V.

If in addition U and V are both closed under suspension, that is, they are triangu-
lated subcategories of T , then (U , V) is called a stable t-structure (or a semiorthogonal 
decomposition).

(2) A full subcategory U of T is localizing if it is a triangulated subcategory closed 
under taking coproducts, and it is strictly localizing if it can be completed to a stable 
t-structure (U , V) in T .

Observe that taking 0-th cohomology yields a bijection between the localizing sub-
categories of D(A -Mod) and the wide subcategories of A -Mod that are closed under 
coproducts. The inverse map assigns to X the category DX (A -Mod) consisting of the 
complexes in D(A -Mod) with all cohomologies in X , cf. [28, Proposition 2.4]. These 
correspondences restrict as follows.

Proposition 8.2. [28,31] Let A be a hereditary ring. There are bijections between

(1) strictly localizing subcategories of D(A -Mod);
(2) complete Ext-orthogonal pairs in A -Mod;
(3) wide coreflective subcategories of A -Mod.

Proof. It is shown in [28, Proposition 2.7] that a full subcategory X of A -Mod can 
be completed to a complete Ext-orthogonal pair (X , Y) if and only if the category 
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DX (A -Mod) is the kernel of a localization functor. By [2, Proposition 1.6] this amounts 
to the existence of a right adjoint for the inclusion functor inc : DX (A -Mod) ↪→
D(A -Mod), or in other words, to the fact that U = DX (A - Mod) can be completed 
to a stable t-structure (U , V). Furthermore, by a result of Nakamura [31], the func-
tor inc : DX (A -Mod) ↪→ D(A -Mod) admits a right adjoint if and only if so does 
inc : X ↪→ A -Mod. This shows that the correspondences above restrict to a bijection 
between (1) and (3), and that there is a natural bijection between (2) and (3). �

The localizing subcategories of the derived category of a commutative noetherian ring 
were completely classified in work of Hopkins and Neeman [32]; they are parametrized by 
subsets of the prime spectrum. But already for the simplest non-affine case, the derived 
category D(QcohP 1

k ) of the category of quasicoherent sheaves on the projective line P 1
k

over an algebraically closed field k, the situation appears to be rather intricate. In [27], 
Krause and Stevenson address the problem of classifying the strictly localizing subcate-
gories of D(QcohP 1

k ), that is, the localizing subcategories L appearing in semiorthogonal 
decompositions (L, M) of D(QcohP 1

k ). Combining the classifications of smashing sub-
categories and tensor ideals, they obtain a class of strictly localizing subcategories of 
D(QcohP 1

k ) which are parametrized by a copy of Z and the powerset of P 1, and they 
ask whether all strictly localizing subcategories arise in this way.

This problem can be phrased inside the derived category of the Kronecker algebra Λ
via the well-known derived equivalence between the Kronecker quiver and the projective 
line. Krause and Stevenson have given an intrinsic description of their class of strictly lo-
calizing subcategories in terms of perpendicular categories of pure-injective sheaves. The 
question then becomes whether there are strictly localizing subcategories in D(Λ -Mod)
which are not of the form ⊥ZP = {X ∈ D(Λ -Mod) | HomD(Λ - Mod)(X, Y [i]) =
0 for all i ∈ Z and all Y ∈ P} for a collection P of indecomposable pure-injective Λ-
modules. In virtue of Proposition 8.2, this amounts to asking

Question 8.3. Are there wide coreflective subcategories of Λ -Mod which are not of the 
form ⊥0,1P for a collection P of indecomposable pure-injective Λ-modules?

Indeed, since any complex X ∈ D(Λ -Mod) can be written as X =
∐

n∈ZHn(X)[−n], 
we have that X is in ⊥ZP if and only if so are all its cohomologies, or equivalently, all 
its cohomologies belong to ⊥0,1P. Hence ⊥ZP and ⊥0,1P correspond to each other under 
the bijection in Proposition 8.2.

From now on Λ denotes the Kronecker algebra, and we use the notation from Exam-
ple 4.14 and Section 7. In the Kronecker case, the proof of Theorem 7.1 is much easier, 
as the relevant classes can be computed directly. We present this alternative proof for 
the reader’s convenience. As usual, τ denotes the Auslander-Reiten translation, and ΓΛ

is the Auslander-Reiten quiver of Λ.
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Lemma 8.4. Let M be a module in p ∪q. Then ⊥0,1M = AddN where N is the successor 
of M in ΓΛ or N is simple projective. Moreover, W = addM is a wide subcategory of 
Λ - mod with

(1) W⊥0,1 = AddL = ⊥0,1K where L is the predeccessor of M in ΓΛ or L is simple 
injective, and K = τM or K is indecomposable injective.

(2) lim−−→W = AddM = ⊥0,1L where L is the predeccessor of M in ΓΛ or L is simple 
injective.

Proof. W = addM is a wide subcategory because M is a stone, i.e. a brick without self-
extensions. The remaining statements are easy observations obtained from the shape of 
ΓΛ. �
Lemma 8.5. Let ∅ �= P ⊂ X and Q = X \ P . Moreover, let P be the set of adic modules 
corresponding to the simple regulars in tP , and let Q be the set consisting of the generic 
module G and the Prüfer modules corresponding to the simple regulars in tQ. Then 
W = add tP is a wide subcategory of Λ -mod with W⊥0,1 = ⊥0,1P and lim−−→W = ⊥0,1Q.

Proof. Consider the cosilting torsion pair (T , F) = (Gen tP , FP ) = (T (W), W⊥0). It is 
in fact a cotilting torsion pair with minimal approximation sequence 0 → C1 → C0 →
E(Λ) → 0 where ProdC1 = ProdP, and ProdC0 = ProdQ. Combining Remark 4.10
with Proposition 4.4 and Lemma 3.7 we obtain lim−−→W = α(T ) = ⊥0,1C0 = ⊥0,1Q and 
W⊥0,1 = β(F) = ⊥0,1C1 = ⊥0,1P. �
Proof of Theorem 7.1 in the Kronecker case. In order to show (1)⇒(2), we use the fol-
lowing table which summarizes Lemma 8.4 and 8.5.

W W⊥0,1 lim−−→W
0 Λ - Mod = ⊥0,1∅ 0 = ⊥0,1{all indec. pure-inj.}
Λ - mod 0 = ⊥0,1{all indec. pure-inj.} Λ - Mod = ⊥0,1∅
addM, M ∈ p ∪ q ⊥0,1K for suitable K ⊥0,1L for suitable L

add tP , ∅ �= P ⊂ X ⊥0,1{adics from P} ⊥0,1{G, Prüfer from Q = X \ P}

For the implication (2)⇒(1), we start by collecting the basic situations in the following 
table.

P X = ⊥0,1P W with X = W⊥0,1 orX = lim−−→W
∅ Λ - Mod Λ - mod
all indec. pure-inj. 0 0
M ∈ p ∪ q AddN for suitable N ∈ p ∪ q addN

M ∈ tx tx ⊥0,1 add tx
adics from P tP ⊥0,1 add tP
Prüfer from Q lim−−→ add tP with P = X \ Q add tP
G lim add t add t
−−→
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We only need to explain line 4, since the other cases follow immediately from 
Lemma 7.6, 8.4 and 8.5. For line 4, we note that if P = {M} with M ∈ tx, then Y
contains the wide closure of M , that is add tx, and thus X = ⊥0,1tx, which coincides 
with tx ⊥0,1 by the Auslander-Reiten formula.

Now, let us consider an arbitrary set of indecomposable pure-injectives P. First, we see 
that X = 0 provided that P contains more than one finite dimensional module. Similarly, 
X = 0 whenever P contains a module M ∈ p ∪ q together with an infinite dimensional 
indecomposable pure-injective, because ⊥0,1M = AddN for a suitable N ∈ p ∪ q, and 
N does neither belong to lim−−→ add tP nor to tP ⊥0,1 for any P ⊂ X. For the remaining 
cases, it is enough to observe that tP ⊥0,1 ∩ lim−−→ add tQ = lim−−→ add tQ\P . Altogether, 
we can conclude that in all cases X arises as X = W⊥0,1 or X = lim−−→W for some 
W ∈ wide(Λ). �

In [36], Ringel constructs a family of bricks P (I) over Λ indexed by the subsets of the 
ground field k. Recall that the generic module G corresponds to the representation

k(T ) k(T )

given by the field of fractions k(T ) together with the identity map and the multiplication 
T · by the element T . The module P (I) is constructed as the subrepresentation

V (I) V (I) + k · 1

where V (I) is the vectorspace with basis { 1
T−λ | λ ∈ I}, and k · 1 is the one-dimensional 

vectorspace generated by the element 1 ∈ k(T ). We collect some properties of these 
modules.

Lemma 8.6. [36] Let I be a subset of k and S(I) =
⊕
λ∈I

Sλ where Sλ is the simple regular 

in tλ.

(1) When I is a set of cardinality n, then P (I) is indecomposable preprojective of dimen-
sion vector (n, n + 1). In particular, P := P (∅) is the simple projective Λ-module.

(2) When I is an infinite set, P (I) is an infinite dimensional brick.
(3) HomΛ(P (I), P (J)) = 0 whenever I, J are two infinite disjoint sets.
(4) For any subset J ⊂ I there is a short exact sequence 0 → P (J) → P (I) → S(I\J) →

0.

We now use these large bricks to construct a wide subcategory of Λ -Mod which might 
not fit in the classification from Theorem 7.1.

Proposition 8.7. Let B = P (I) be constructed as above from an infinite subset I ⊂ k, 
and let (T , F) = (⊥0B, F (B)) be the torsion pair cogenerated by B. Then
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(1) HomΛ(B, Sλ) �= 0 for all λ ∈ k ∪ {∞}.
(2) α(T ) = ⊥0,1B has no nonzero finite dimensional modules.

Proof. (1) The sequence 0 → P → B → S(I) → 0 from Lemma 8.6(4) shows the 
statement for λ ∈ I. For λ ∈ k \ I we use the non-split exact sequence 0 → B → P (I ∪
{λ}) → Sλ → 0 to see that DHomΛ(B, Sλ) ∼= Ext1Λ(Sλ, B) �= 0, thus HomΛ(B, Sλ) �= 0. 
It remains to show HomΛ(B, S∞) �= 0. To this end, we regard S∞ as representation 
k · 1 k · 1 given by the linear map 0 and the identity map idk·1, and we define a 

linear map f : V (I) −→ k · 1 on the basis { 1
T−λ | λ ∈ I} of V (I) by setting f( 1

T−λ ) = 1
for all λ ∈ I. Since the elements 1

T−λ , λ ∈ I, and 1 are linearly independent in k(T ), we 
can further define a linear map g : V (I) +k ·1 −→ k ·1 by setting g |V (I)= 0 and g(1) = 1. 
Now we have g ◦ id |V (I)= 0 ◦ f , and g(T · 1

T−λ ) = g(λ · 1
T−λ + 1) = g(1) = f( 1

T−λ ) for 
all λ ∈ I, that is, g ◦ T · |V (I) = idk·1 ◦ f . Thus f and g define a non-zero morphism of 
representations B → S∞.

(2) We show that ⊥0,1B ⊆ α(T ). If g : T → X is a morphism with T ∈ T and 
X ∈ ⊥0,1B, then its image obviously lies in T , and even in ⊥0,1B, as ⊥1B is closed under 
submodules. Thus we can assume without loss of generality that g is surjective. Now 
applying HomΛ(−, B) on the exact sequence 0 → K → T

g→ X → 0 and using that 
HomΛ(T, B) = Ext1Λ(X, B) = 0 we conclude that K ∈ T .

For the reverse inclusion we have to show that every X ∈ α(T ) satisfies Ext1Λ(X, B) =
0. Consider a short exact sequence 0 → B

f→ E
g→ X → 0. The middle term E cannot 

belong to T , otherwise B ∈ T ∩ F = 0. So its torsion-free part E = E/t(E) is non-zero 
and thus admits a non-zero map h : E → B. Then the composition hν of h with the 
canonical epimorphism ν : E → E is also non-zero. Now suppose that hνf = 0. Then hν
factors through g, that is, hν = hg for some non-zero map h : X → B, contradicting the 
hypothesis X ∈ T . We infer that hνf : B → B is non-zero and therefore an isomorphism. 
This shows that our exact sequence splits, as desired.

Now recall that B is an infinite dimensional brick, and in particular, B has no direct 
summands in p∪ q. Together with (1), this shows that no preprojective module belongs 
to ⊥0B and that neither preinjective nor regular modules can belong to ⊥1B. Hence 
α(T ) ∩ Λ -mod = 0. �
Proposition 8.8. Let B = P (I) be constructed as above from an infinite subset I ⊂ k

which is not cofinite, and let (T , F) = (⊥0B, F (B)) be the torsion pair cogenerated by B. 
Assume that α(T ) �= 0. Then there is a wide and coreflective subcategory X of Λ - Mod
which is contained in α(T ) and is not of the form X = W⊥0,1 nor X = lim−−→W for some 
wide subcategory W ∈ wide(Λ).

Proof. We claim that α(T ) does not contain any indecomposable pure-injective mod-
ule. We already know from Proposition 8.7 that α(T ) does not contain indecomposable 
finite dimensional modules. Since every simple regular module occurs as kernel of an en-
domorphism of the associated Prüfer module, α(T ) cannot contain any Prüfer module, 
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and dually, it cannot contain any adic module. We now show that it cannot contain the 
generic module G.

To see this, we first observe that every X ∈ ⊥1B lies in CogenG. Indeed, X can be 
written as a direct limit of its finitely generated submodules, which lie again in ⊥1B and 
are therefore preprojective. Thus X ∈ lim−−→ addp = CogenG. In particular, α(T ) = ⊥0,1B

is contained in CogenG.
Next, we assume that G belongs to α(T ) and take a nonzero subobject X in α(T ). 

Then G/X is in α(T ) and therefore admits an embedding in a product of copies of G. 
Since G is a brick and G → G/X is a proper epimorphism, we conclude that X = G. 
This shows that G must be a simple object in α(T ). It follows from Proposition 3.10
that G is torsion, almost torsion-free with respect to (T , F). But this is not possible, 
because any module of the form P (J) with J an infinite subset of k disjoint from I is 
a proper submodule of G which lies in T by Lemma 8.6(3). This concludes the proof of 
our claim.

Now we assume there is an object 0 �= X ∈ α(T ). We set X to be the smallest wide 
subcategory of Λ -Mod which is closed under coproducts and contains X. Then X is 
coreflective by [28, Theorem 2.2], and it is a subcategory of α(T ) by construction.

Of course, X does not contain any indecomposable pure-injective module. In partic-
ular, X ∩ Λ -mod = 0, and we immediately see that X is not of the form W⊥0,1 for 
some W = addM with M ∈ p ∪ q, nor for some W = add tP arising from a proper 
subset P of X. Moreover, we can also exclude that X = (add t)⊥0,1 = AddG. Finally, X
can’t be of the form lim−−→W for some W ∈ wide(Λ), because this would imply W = 0 by 
Theorem 4.6, contradicting the hypothesis X �= 0. �
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