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They are not capable to ground a canonicity of universal consistency.

—Alexandra Deligiorgi (ΠAI∆EIA, 1998)

1. INTRODUCTION

For effective automated reasoning, the ability to ignore irrelevant data is just as im-
portant as the capability to derive consequences from given information. Thus, the-
orem provers generally incorporate various mechanisms for controlling the growth
of the collection of inferred formulæ or derived goals. It is a challenge, however,
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to ensure that such rules for simplification or deletion of formulæ do not impinge
upon the completeness of the resulting theorem proving strategy.

One class of inference engines that make heavy use of simplification includes the
Knuth-Bendix completion procedure for equational inference [Knuth and Bendix
1970] and Buchberger’s Gröbner-basis algorithm for polynomial ideals [Buchberger
1985]. These forward-reasoning systems aim at generating sets of formulæ that
are “complete” in the sense that completion can provide a rewriting-based decision
procedure for validity in the given equational theory, and that the Gröbner basis is
similarly used to decide membership in the ideal. Ballantyne (cited in [Dershowitz
et al. 1988]) and Metivier [1983] took note of the fact that the fully reduced result
of completion is unique for given axioms and term ordering.

Brown [1975], for the Horn case, and Lankford [1975], for the general case, showed
how to combine equational completion with clausal resolution improving on the
original paramodulation [Robinson and Wos 1969], a line of investigation that later
produced methods based on ordered resolution and ordered paramodulation [Hsiang
and Rusinowitch 1991; Bachmair and Ganzinger 1994; Nieuwenhuis and Rubio
2001]. Huet [1981] showed how Knuth’s completion procedure can also play the
rôle of an incomplete prover for equational validity. Hsiang and Rusinowitch [1987]
and Bachmair, Dershowitz and Plaisted [Bachmair et al. 1989] designed unfailing
versions of completion without compromising the powerful rôle of simplification in
controlling the completion process.

In the following sections, we suggest that proof orderings, rather than formula
orderings, take center stage in theorem proving with contraction (simplification
and deletion of formulæ). Given a specific proof ordering, completeness of a set of
formulæ—which we refer to as a presentation—will mean that all derivable theorems
enjoy a minimal proof, while completeness of an inference system will mean that
all formulæ needed as premises in such ideal proofs can be inferred. This formalism
is very flexible, since it allows small proofs to use large premises, and vice-versa.

Well-founded orderings of proofs, as developed in [Bachmair and Dershowitz
1994], distinguish between economical, “direct” proofs, namely, those that are of a
computational flavor (e.g. rewrite proofs), and expensive “indirect” proofs, those
that are discovered after performing a search (e.g. equational proofs). These proof
orderings are lifted from orderings on terms and formulæ. Given a formula ordering,
one can, of course, choose to compare proofs by simply comparing (the multiset of)
their premises.

Our proof-ordering based approach to deduction suggests generalizations of the
current concepts of “saturation,” “redundancy,” and “fairness.” Saturated, for us,
will mean that all inexpensive proofs are supported, as opposed to completeness,
which makes do with one minimal proof per theorem. Accordingly, we define two
notions of fairness: a fair derivation generates a complete set in the limit, while
a uniformly fair derivation generates a saturated limit. By considering different
orderings on proofs, one gets different kinds of saturated sets. The notion of sat-
uration in theorem proving, in which superfluous deductions are not necessary for
completeness, was suggested in [Rusinowitch 1991]. In our terminology: A pre-
sentation was said to be saturated when all inferrible formulæ are syntactically
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subsumed by formulæ in the presentation.1

We also define redundancy in terms of the proof ordering, as propounded in
[Bonacina and Hsiang 1995]: A sentence is redundant if adding it to the presentation
does not decrease any minimal proof. (See Bonacina 1992, Chap. 2.) The definition
of redundancy in [Bachmair and Ganzinger 1994]—an inference is redundant if its
conclusion can be inferred from smaller formulæ—coincides with ours when proofs
are measured first by their maximal premises. In [Bachmair and Ganzinger 1994;
2001; Nieuwenhuis and Rubio 2001], saturated means that every possible inference
is redundant.

The present work continues the development of an abstract theory of “canonical
inference,” begun in [Dershowitz and Kirchner 2006], which, in turn, grew out of
the theory of rewriting (see, for example, Dershowitz and Plaisted 2001; Terese
2003) and deduction (see, for example, Bonacina 1999; Bachmair and Ganzinger
2001; Nieuwenhuis and Rubio 2001). Although we will use ground equations as an
illustrative example, this framework applies equally well in the first-order setting,
whether equational or clausal. Our motivations and contributions are primarily
æsthetic and intellectual:

— organizing the theory of “canonical inference” in an architecture with primi-
tive objects (such as presentations and proofs), their properties (canonical presen-
tations, normal-form proofs), mappings between objects (inferences, derivations),
their properties (good inferences, fair derivations), and theorems that state the
weakest possible sufficient conditions for the desirable properties;

— keeping the treatment throughout as abstract as possible, so as to maximize
generality, without losing sight of concrete instances;

— providing a terminology that is simultaneously general and precise; and

— assembling a notation that is at the same time elegant, compact, and helpful.

Since good theory produces the simplicity of concepts and clarity of priorities that
are key to the building of strong systems, our hope is that this work might also
nurture practical applications.

The next section sets the stage, with basic notions and notations, and introduces
a running example. To keep this article self-contained, Section 3 recapitulates rele-
vant definitions and results from [Dershowitz and Kirchner 2006].2 Specifically, the
canonical basis of an abstract deductive system is defined in three equivalent ways:
(1) formulæ appearing in minimal proofs; (2) minimal trivial theorems; (3) non-
redundant lemmata. Section 4 articulates the abstract framework, by introducing
inferences and proof procedures, providing proofs with structure, and characteriz-
ing good inference sequences. Sections 5–7 carry out the study of derivation and

1In [Rusinowitch 1991], the language is clausal, and a clause C subsumes a clause D if there is a
substitution σ such that Cσ ⊆ D and C does not have more literals than does D. We refer to this
as “syntactic subsumption” to distinguish it from the general semantic principle, under which C

subsumes D if |= ∀x̄C ⇒ ∀ȳD, where x̄ and ȳ are the variables of C and D, respectively.
2The study in [Dershowitz and Kirchner 2006] is concerned with defining abstract properties
of sets of formulæ. It is extended here with notions, such as fairness, that describe properties
of derivations. That article is about properties of objects (presentations); we study properties
required of processes (derivations) so as to generate the desired presentations.
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completion processes. Finally, we close with a discussion in Section 8, including
related work and connections with the praxis of theorem proving.

2. ORDERED PROOF SYSTEMS

Let A be the set of all formulæ (ground equations and disequations, in our examples)
over some fixed vocabulary. Let P be the set of all (ground equational) proofs. These
sets of abstract objects are linked by two functions: Pm : P→ 2A gives the premises
(assumptions) in a proof, and Cl : P→ A gives its conclusion. For example, if p ∈ P
is a proof of a = b, a = c ` f(b, c) = f(c, b), then [p]Pm is {a = b, a = c} and [p]Cl

is f(b, c) = f(c, b). Both functions extend to sets of proofs in the usual fashion.
The framework proposed here is predicated on two well-founded partial orderings

over P: a proof ordering ≥ and a subproof relation �. They are related by a
monotonicity requirement given below (Eq. 7). If the best proof of a theorem c
requires some lemma b, this monotonicity condition precludes the possibility that
the best proof of b turn around and use c, since then ultimately both b and c would
be needed to support all ideal proofs, and there would be no “localized” way of
knowing when a formula is never needed and truly redundant. On the other hand,
this monotonicity condition does allow b to be better in some proof contexts and c
in others.

For convenience, we assume that the proof ordering only compares proofs with
the same conclusion (p ≥ q ⇒ [p]Cl = [q]Cl ), rather than mention this condition
each time we have cause to compare proofs.

We use the standard notation A ` c, for premises A ⊆ A and conclusion c ∈ A,
to mean that there exists a proof p ∈ P such that [p]Pm = A and [p]Cl = c. We will
use the term presentation to mean a set of formulæ, and justification to mean a set
of proofs. Given a presentation A, the set of all proofs using all or some premises
of A is denoted by:3

Pf (A)
!
= {p ∈ P : [p]Pm ⊆ A}

We reserve the term theory for deductively-closed presentations. Let Th A denote
the theory of presentation A, that is, the set of conclusions of all proofs with
premises in A:

Th A =
{
[p]Cl : p ∈ P, [p]Pm ⊆ A

}
= [Pf (A)]Cl

Presentations A and B are equivalent (A ≡ B) if their theories are identical (Th A =
Th B).

We presume the following standard properties of Tarskian consequence relations:

A ` c ⇒ A ∪ B ` c (1)

A ⊆ Th A (2)

Th Th A = Th A (3)

for all A, B and c. It follows from the definition of Th that

Th A ⊆ Th (A ∪ B) (4)

3We use
!
= and

!
≡ for definitions.
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Thus, Th is a closure operation. On account of the (left) weakening property of
Eq. (1), we need not distinguish between A ` c, meaning that there is a proof of c
using all the premises A, or using just some.

As a very simple running example, let the vocabulary consist of the constant 0
and unary symbol s. Abbreviate tally terms si0 as numeral i. The set A consists of
all unordered equations i = j; so symmetry is built into the structure of proofs (we
postpone dealing with disequations for the time being). An equational inference
system (with this vocabulary) might consist of the following five inference rules:

�

0 = 0
Z

i = j

i = j
Ii=j

i = j
si = sj

S
a c
c

P
i = j j = k

i = k
T

where boxes surround premises, Z is an axiom, I introduces premises, and S infers
i+1 = j +1 from a proof of i = j. Proof-tree branches of the transitivity rule T are
unordered. Projections P allow irrelevant premises to be ignored and are needed to
accommodate monotonicity, that is, Eq. (1).

For example, if A = {4 = 2, 4 = 0}, then

Th A = {i = j : i ≡ j (mod 2)}

Consider the proof schemata:

�

0 = 0
1 = 1

...
i = i

4 = 2

4 = 2
5 = 3

...
i + 4 = i + 2

4 = 0

4 = 0

4 = 2

4 = 2
2 = 0

p0

i− j − 1 = 1
i− j = 2

i− j = 0
...

i = j

where p0 is a proof of i − j − 2 = 0. Let’s use proof terms for proofs, denoting
the above three trees (from left to right) by p = S iZ, q = S iI(4, 2) and r =
SjT (T (I(4, 0), I(4, 2)), SS(p0)). Thus, [p]Pm = ∅, [q]Pm = {4 = 2}, and [r]Cl is the
formula i = j.

With a (multiset) recursive path ordering [Dershowitz 1982] to order proofs, and
a precedence Z < S < T < I < P < 0 < 1 < 2 < · · · on proof combinators and
vocabulary symbols, the minimal proof of a theorem in Th A takes one of the forms

Sj (∇4k=0) Sj (∇4k=2)

where the subproofs ∇4k=0 and ∇4k=2 are defined recursively:

∇0=0 = Z ∇0=2 = T (∇4=0,∇4=2)
∇4=0 = I(4, 0) ∇4(k+1)=0 = T (S 4k∇4=0,∇4k=0)
∇4=2 = I(4, 2) ∇4(k+1)=2 = S2T (∇0=2, S

2∇4k=0)

We call a proof trivial when it proves its only premise and has no subproofs other
than itself, that is, if [p]Pm = {[p]Cl} and p � q ⇒ p = q. We denote by a ` a or â
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such a trivial proof of a ∈ A, and by Â the set of trivial proofs of each a ∈ A. For
example, 4̂=0 = I(4, 0).

We assume that premises appear in proofs (5), that subproofs do not use non-
extant premises (6), and that proof orderings are monotonic with respect to (re-
placement of) subproofs (7). Specifically, for all proofs p, q, r and formulæ a:

a ∈ [p]Pm ⇒ p � â (5)

p � q ⇒ [p]Pm ⊇ [q]Pm (6)

p � q > r ⇒ ∃v ∈ Pf ([{p, r}]Pm). p > v � r (7)

We make no other assumptions regarding proofs or their structure.
The intuition for assumption (5), “proofs use their premises,” is related to the

distinction between proof and derivation. Informally, a derivation contains all for-
mulæ generated by a deduction mechanism from a given input, while a proof of a
formula generated during the derivation contains all, and only, the formulæ involved
in inferring that formula within that proof (derivations will be treated formally in
Section 5). The Replacement Postulate (7) states that � and > (which we have re-
stricted to proofs with the same conclusion) commute. In other words, “replacing”
a subproof q of a proof p with a strictly smaller proof r “results” in a proof v that is
smaller than the original p, and which does not involve extraneous premises. This
postulate implies the following weaker commutation property:

p � q > r ⇒ ∃v ∈ Pf ([{p, r}]Pm). p > v � r (8)

Most proof orderings in the literature obey this monotonicity requirement.
Every formula a admits a trivial proof a ` a by Eqs. (2) and (5). On account of

(5 and 7), proofs are also monotonic with respect to any inessential premises they
refer to, should the latter admit smaller than trivial proofs.

It may be convenient to think of a proof-tree “leaf” as a subproof with only
itself as a subproof; other subproofs are the “subtrees.” There are two kinds of
leaves: trivial proofs a ` a (such as inferences I), and vacuous proofs (axioms) ā
with [ā]Pm = ∅ and [ā]Cl = a (such as Z). By well-foundedness of �, there are no
infinite “paths” in proof trees. It follows from Replacement (7) that the transitive
closure of >∪� is also well-founded.

3. CANONICAL PRESENTATIONS

The results in this section are extracted from [Dershowitz and Kirchner 2006], which
should be consulted for proofs not given here.

Define the minimal proofs in a set of proofs as:

µP
!
= {p ∈ P : ¬∃q ∈ P. q < p}

On account of well-foundedness, minimal proofs always exist.
Note that Pm, Cl , Th and Pf are all monotonic with respect to set inclusion,

but µPf is not. Indeed, A ⊆ B does not imply µPf (A) ⊆ µPf (B), and P ⊆ Q does
not imply µP ⊆ µQ, because a proof p that is minimal in P need not be minimal
in Q, since Q may contain a q < p such that q /∈ P . Also, µP ⊆ µQ does not imply
P ⊆ Q, since P may contain all sorts of non-minimal proofs not in Q.
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We say that presentation A is contracted when A = [µPf (A)]Pm , that is, A
contains precisely the premises used in minimal proofs based on A. By a “normal-
form proof,” we mean a minimal proof using any theorem as a lemma (that is, as
a premise):

Definition 3.1 (Normal-Form Proof). The normal-form proofs of a presentation
A are the set

Nf (A)
!
= µPf (Th A)

This leads to our main definition:

Definition 3.2 (Canonical Presentation). The canonical presentation A] of A
contains those formulæ that appear as premises of normal-form proofs:

A] !
= [Nf (A)]Pm

So, we will say that A is canonical if A = A].

It follows from the definitions that

Nf (A) = µPf (A]) ⊆ Pf (A]) (9)

The next proposition gives a second characterization of the canonical
presentation—as normal-form trivial theorems:

Proposition 3.3.

A] = [Nf (A) ∩ T̂h A]Cl

Â] = Nf (A) ∩ T̂h A

Theorem 3.4. The function ] is “canonical” with respect to the equivalence of
presentations. That is:

A] ≡ A
A ≡ B ⇔ A] = B]

A] ] = A]

(Consistency)
(Monotonicity)
(Idempotence)

By lifting proof orderings to justifications and presentations, the canonical pre-
sentation can be characterized directly in terms of the ordering. First, proof order-
ings are lifted to sets of proofs, as follows:

Definition 3.5.

— Justification Q is better than justification P if:

P w Q
!
≡ ∀p ∈ P. ∃q ∈ Q. p ≥ q

— It is much better if:

P A Q
!
≡ ∀p ∈ P. ∃q ∈ Q. p > q

— Two justifications are similar if:

P ' Q
!
≡ P w Q w P

ACM Transactions on Computational Logic, Vol. 8, No. 1, January 2007.
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Recall that only proofs with the same conclusion are compared by proof orderings.
Transitivity of these three relations follows from the definitions. They are com-

patible: (w ◦ A) ⊆ A, (w ◦ ') ⊆ w, etc. Since it is also reflexive, w is a
quasi-ordering. Note that A is not merely the strict version of w, since every proof
in P must have a strictly smaller one in Q.4

The next proposition states that subproofs of minimal proofs are minimal, bigger
presentations may offer better proofs, and minimal proofs are the best.

Proposition 3.6.

(a) For all proofs p and q and presentations A:

p ∈ µPf (A) and p � q ⇒ q ∈ µPf (A)

(b) For all presentations A and B:

Pf (A) w Pf (A ∪ B)

(c) For all justifications P :

P w µP

This “better than” quasi-ordering w on proofs is lifted to a “simpler than” %
quasi-ordering on (equivalent) sets of formulæ, as follows:

Definition 3.7.

— Presentation B is simpler than an equivalent presentation A when B provides
better proofs than does A:

A % B
!
≡ A ≡ B and Pf (A) w Pf (B)

— Presentations are similar if their proofs are:

A ≈ B
!
≡ Pf (A) ' Pf (B)

Similarity ≈ is the equivalence relation associated with %.

These relations are also compatible.
Canonicity may be characterized in terms of this quasi-ordering:

Theorem 3.8. The canonical presentation is the simplest:

A % A]

Recalling that all subproofs of normal-form proofs are also in normal form (Propo-
sition 3.6), we propose the following definitions:

Definition 3.9 (Saturation and Completeness).

— A presentation A is saturated if it supports all possible normal-form proofs:

µPf (A) = Nf (A)

4The strict version of w would say P w Q 6w P , that is, ∀p ∈ P.∃q ∈ Q. p ≥ q and ∃q ∈ Q.∀p ∈
P. q < p. On the other hand, P A Q says ∀p ∈ P. ∃q ∈ Q. p > q. This is why we use the term
“much better” and not “strictly better.”
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— A presentation A is complete if every theorem has a normal-form proof:

Th A = [Pf (A) ∩ Nf (A)]Cl

It can be shown that:

Lemma 3.10. A presentation A is saturated if and only if

Nf (A) ⊆ Pf (A)

A presentation is complete if it is saturated, but for the converse, we need an
additional hypothesis: minimal proofs are unique if, for all theorems c ∈ [Pf (A)]Cl ,
there is exactly one proof in Nf (A) with conclusion c. In particular, this holds for
proof orderings that are total (on proofs of the same theorem). Bear in mind that
abstract proofs may be designed to represent whole equivalence classes of concrete
proofs.

Proposition 3.11.

(a) A presentation is complete if it is saturated.

(b) If minimal proofs are unique, then a presentation is saturated if and only if
it is complete.

If a theorem has two distinct normal-form proofs p and q, a presentation A such
that p ∈ Pf (A), but q /∈ Pf (A), may be complete but not saturated. For example,
suppose all rewrite (valley) proofs are minimal but incomparable. In that situation,
every Church-Rosser system is complete, since every identity has a rewrite proof,
but only the full deductive closure is saturated, because for every identity it offers
all rewrite proofs.

The next theorem relates canonicity and saturation.

Theorem 3.12.

(a) A presentation A is saturated if and only if it contains its own canonical
presentation:

A ⊇ A]

In particular, A] is saturated.

(b) Moreover, the canonical presentation A] is the smallest saturated set:

— No equivalent proper subset of A] is saturated.
— If A is saturated, then every equivalent superset is also.

Regarding completeness, we have the following:

Theorem 3.13. If A is complete and setwise minimal (i.e. no B ( A, such that
B ≡ A, is complete), then A ⊆ A].

Proof. By way of contradiction, let c ∈ A\A]. Since A] is the set of all premises
of normal-form proofs, c is not a premise of any such proof. So, let B = A \ {c}:
B has the same normal-form proofs as does A, that is, one per theorem. It follows
that B is complete, contrary to the hypothesis that A is setwise minimal.

ACM Transactions on Computational Logic, Vol. 8, No. 1, January 2007.
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Proposition 3.14.

(a) Presentation A is saturated if and only if Th A ≈ A.

(b) Similar presentations are either both saturated or neither is.

(c) Similar presentations are either both complete or neither is.

The following definition sets the stage for the third characterization of canonical
presentation—as non-redundant lemmata. Formulæ that can be removed from a
presentation—without making proofs worse—are deemed “redundant”:

Definition 3.15 (Redundancy).

— A formula r is redundant with respect to a presentation A when:

A % A \ {r}

— The set of all redundant formulæ of a given presentation A will be denoted as
follows:

Red A
!
= {r ∈ A : A % A \ {r}}

— A presentation A is irredundant if

Red A = ∅

By definition, Red A ⊆ A.
Thanks to the well-foundedness of > the set of all redundant formulæ in Red A

is globally redundant:

Proposition 3.16. For all presentations A:

A ≈ A \Red A

Thus, it can be shown that A is contracted (i.e. A = [µPf (A)]Pm ) if and only if it
is irredundant (Red A = ∅).

Furthermore, every redundant r ∈ Red A has a minimal proof p ∈ µPf (A), in
which it does not appear as a premise (r /∈ [p]Pm).

The third characterization of the canonical set is central for our purposes:

Theorem 3.17. A presentation is canonical if and only if it is saturated and
contracted.

Informally, A is contracted if it is the set of premises of its minimal proofs; it is
saturated if minimal proofs in A are exactly the normal-form proofs in the theory;
it is canonical if it is the set of premises of normal-form proofs. Hence, saturated
plus contracted is equivalent to canonical.

4. VARIATIONS ON CANONICITY

The idea we are promoting is that, given a set of axioms, A, one is interested in the
(unique) set of lemmata, A] ⊆ Th A, which—when used as premises in proofs—
supports all the normal-form proofs of the theorems Th A. These lemmata form
the “canonical basis” of the theory. In this section, we observe how the canonical
basis varies as the proof ordering varies.

ACM Transactions on Computational Logic, Vol. 8, No. 1, January 2007.
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Returning to our simple example, we take the five rules of Section 2 (reproduced
here for convenience),

�

0 = 0
Z

i = j

i = j
Ii=j

i = j
si = sj

S
a c
c

P
i = j j = k

i = k
T

extend I and T to disequalities, and add a third rule for disequalities as follows:

i 6= j

i 6= j
Ii6=j

i = j j 6= k
i 6= k

T
i 6= i
j = k

Fj=k

With these rules, one can infer, for instance, 0 6= 0 from 1 6= 1 and 1 6= 0, by
applying I16=1, F0=1, I16=0 and T:

I16=1

0 = 1 I16=0

0 6= 0

Suppose we are using a proof ordering based on a precedence on the inference
rules, or proof combinators, Z, I, S, P, T, F . For simplicity, we use > for both proof
ordering and precedence. The intended meaning will be clear from the context.

If F is smaller than all other proof combinators in the precedence, and I nodes
are incomparable in the proof ordering, then the canonical basis of any inconsistent
set is {i 6= j : i, j ∈ N}. All positive equations are redundant, because Fj=k is a
smaller proof than Ij=k .

If P > I in the precedence, then

a c
c

> c

or P (a, c) > I(c). By the Replacement Postulate (7), every application of P can be
replaced by an application of I to yield a smaller proof. Hence, no minimal proof
includes P steps.

If proofs are compared in a simplification ordering (that is, in an ordering for
which subproofs are always smaller than their superproofs), then minimal proofs
will never have superfluous transitivity inferences of the form

u = t t = t
u = t

because the trivial proof of u = t (made of u = t itself) is smaller.
More specifically, suppose we are using something like the recursive path ordering

for proof terms and consider the above inference rules for ground equality and
disequality, with the rule for successor extended to apply to all function symbols of
any arity. That is, rule S, which infers si = sj from i = j, is generalized here to an
inference rule for functional reflexivity, that infers f(x̄) = f(ȳ) from x̄ = ȳ, for any
function symbol f , of any arity n, and n-tuples x̄ and ȳ of variables.

Deductive closure. If the proof ordering prefers introduction I of premises over all
other inferences (including Z), then trivial proofs are best. In this case, the whole
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theory is irredundant (Red Th A = ∅); and the canonical basis includes the whole
theory (A] = Th A). In other words, everything is needed, because each sentence
constitutes the smallest proof of itself.

Congruence closure. If the precedence makes functional reflexivity S smaller than
I (more precisely: S < T < I), but the only ordering on leaves is I(u, t) ≤
I(c[u], c[t]) for any context c, then inferring c[u] = c[t] from u = t by repeated appli-
cations of S yields a less expensive proof than I(c[u], c[t]). Ground paramodulation
can deduce c[u] = c[t] from u = t and c[u] = c[u] in one step. The canonical basis
will be the congruence closure, as generated by paramodulation. Redundancies will
have the form f(u1, . . . , un) = f(t1, . . . , tn) for all u1 = t1, . . . , un = tn ∈ Th A and
function symbol f (of any arity n) in the vocabulary. Theory Th A is the closure
under functional reflexivity of the basis A]. If A is as in our first example (i.e.
A = {4 = 2, 4 = 0}), then A] = {2j = 0 : j > 0}. The other equalities in Th A =
{i = j : i ≡ j (mod 2)} are obtained from those in A] by applying S (e.g. 8 = 4 is
derived from 4 = 0 by applying S4 to both sides).

Completion. On the other hand, if the ordering on leaves compares terms in
some simplification ordering ≥≥ (still assuming S < T < I), then the canonical
basis will be the fully contracted set, as generated by (ground) completion. The
redundancies will be the trivialities u = u, for all terms u, and equalities u = t,
when there is a t = v ∈ Th A (v different than u), such that t� v. Operationally,
u = t can be contracted to u = v. For our first example, with A = {4 = 2, 4 = 0},
we have A] = {2 = 0}, as all equations in {2j = 0 : j > 0} reduce to 2 = 0.
For another example, if A = {a = c, sa = b} and sa � sb � sc � a � b � c,
then I(sa, b) > T (S(I(a, c)), I(sc, b)), and I(sc, b) < T (S(I(a, c)), I(sa, b)), hence
A] = {a = c, sc = b}.

Refutation. If T < I , the combinator F is the smallest in the precedence and
I(i, j) nodes are measured by the values of i and j, then the canonical basis of
any inconsistent presentation is a (smallest) trivial disequation {t 6= t}. Indeed,
all positive equations can be obtained by applying F to t 6= t, and all negated
equations can be obtained by two applications of T :

n = t t 6= t
n 6= t t = m

n 6= m

for all numerals m, n and t. Thus, the process of searching for a refutation of a
given input set is the process of seeking its canonical basis, or forcing a minimal
nucleus of inconsistency to emerge.

Superposition. In the ground case, completion can be done by simplification only.
However, with a suitable ordering, one can observe also superposition. If one dis-
tinguishes T steps based on the weight of the shared term j, making T > I when
j is the greatest, and T < I otherwise, then the canonical basis is also closed
under superposition, or paramodulation into the larger side of equations. For ex-
ample, consider k = j and j = i. If the shared term j is the greatest, we have
T (I(k, j), I(j, i)) > I(k, i), meaning that adding k = i by superposition provides
a smaller proof. The transitivity proof T (I(k, j), I(j, i)) corresponds to the peak
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k ← j → i. Otherwise, we have T (I(k, j), I(j, i)) < I(k, i). In particular, if the
shared term j is the smallest, the transitivity proof T (I(k, j), I(j, i)) corresponds
to a valley k → j ← i, and T (I(k, j), I(j, i)) < I(k, i) means that valley proofs are
the smallest.

5. INFERENCE AND DERIVATIONS

There are two basic applications for ordering-based inference: constructing a fi-
nite canonical presentation when such exists, and searching for proofs by forward
reasoning from axioms, avoiding inferences that do not help the search.

Inference steps are defined by deduction mechanisms. In general, a (one-step)
deduction mechanism ; is a binary relation over presentations, and we call a pair
A ; B, a deduction step. A deduction mechanism is functional if for any A there
is a unique B (possibly A itself) such that A ; B. Practical mechanisms are
functional (and usually operate deterministically); they are obtained by coupling
an (nondeterministic) inference system with a search plan (or strategy), to yield a
completion procedure or proof procedure. Specific procedures may impose additional
structure, such as singling out one formula as the target theorem or “goal,” in which
case the deduction mechanism applies to labelled formulæ; see [Bonacina 1999] for
a survey.

Here, we consider only functional mechanisms that apply to presentations, and
take the notion of a deduction mechanism as a whole. Focusing attention on de-
duction mechanisms that apply to presentations entails no loss of generality, since
the abstract set P may be limited on the concrete level to proofs and subproofs of
a specific goal.

5.1 Goodness

A sequence of deductions A0 ; A1 ; · · · is called a derivation.5 We write {Ai}i for
sequences of presentations, and—in particular—for derivations. Let A∗ = ∪iAi be
all formulæ appearing anywhere in {Ai}i. The result A∞ of the sequence is—ever
since Huet [1981]—its persisting formulæ:

A∞
!
= lim inf

j→∞
Aj =

⋃

j

⋂

i≥j

Ai

We say that a proof p persists when its premises do, that is, when [p]Pm ⊆ A∞.
Thus, if p persists, so do its subproofs, by Postulate (6). By Proposition 3.6(b), we
have Pf (Ai) w Pf (A∗) for all i.

Definition 5.1 (Soundness and Adequacy).

— A deduction step A ; B is sound if B ⊆ Th A.

— It is adequate if A ⊆ Th B.

— It is both if A ≡ B.

— A derivation {Ai}i is sound if A∞ ⊆ Th Ai, for all i.

— It is adequate if Ai ⊆ Th A∞.

— It is both if Ai ≡ A∞.

5We do not consider transfinite derivations in this paper.
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Adequacy is essentially a monotonicity property, since it implies that Th A ⊆ Th B
whenever A ; B.

We will concern ourselves only with sound and adequate derivations. In addition,
we want derivations to improve gradually the presentation.

Definition 5.2 (Goodness).

— A deduction step A ; B is good if A % B.

— A sequence {Ai}i is good if Ai % Ai+1 for all i.

— A deduction mechanism ; is good if proofs only get better, in the sense that
A % B whenever A ; B.

Goodness is the cardinal principle of canonical inference. From here on in, only
good, sound, adequate derivations will be considered.

Since the proof ordering is well-founded, we get:

Lemma 5.3. For each presentation Ai in a good derivation {Ai}i, we have:

Pf (Ai) w Pf (A∞)

Th Ai ⊆ Th A∞

Let {A ` c}
!
={p ∈ Pf (A) : [p]Cl = c} signify the proofs of formula c from any

subset of presentation A.

Proof. Let pi ∈ {Ai ` c}. Since the derivation is good, there are proofs pj ∈
{Aj ` c}, for j > i, such that pi ≥ pi+1 ≥ · · · . By well-foundedness, from some
point on these are all the same proof q. Thus, [q]Pm ⊆ A∞, q ∈ Pf (A∞) and
Pf (Ai) w Pf (A∞). That Th Ai ⊆ Th A∞ follows then from the definitions.

Note 5.4. For bad (i.e. non-good) derivations this is not the case. To wit, let

P =

{
c
b

,
b
c

}

and consider {c} ; {b}; {c}; {b}; · · · . As the derivation oscillates perpetu-
ally between deriving b from c and c from b, at the limit A∞ = ∅ and Th A∞ = ∅,
whereas Th Ai = {b, c} for all finite i.

5.2 Canonicity

Canonicity of presentations leads to canonicity of derivations, in the sense that a
derivation deserves to be considered canonical if it generates a canonical limit. More
generally, a desirable attribute of presentations induces a corresponding character-
istic of derivations that is sufficient to guarantee that the limit has the desirable
attribute. The first ingredient for canonicity of derivations is the property that
once something becomes redundant during a derivation, it will remain such forever,
or “once redundant, always redundant.” The following lemma implies that good
derivations have this feature:

Lemma 5.5. For all presentations A and B:

Pf (A) w Pf (B) ⇒ B ∩ Red A ⊆ Red B
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Proof. Consider a proof p ∈ Pf (B) that uses a redundant premise a ∈ B ∩
Red A ⊆ A. Since â ∈ Pf (A), by assumptions (1,2), a must also have an alternative
(nontrivial) proof q ∈ {A \ {a} ` a}, such that â > q. By assumption, there is an
r ∈ Pf (B) such that q ≥ r. By the postulates of subproofs, p � â > r implies the
existence of a proof p′ ∈ Pf (B ∪ {a}) = Pf (B) such that p > p′. If a ∈ [p′]Pm ,
then this process continues. It cannot continue forever, so we end up with a strictly
smaller proof not involving a, establishing a’s redundancy vis-à-vis B.

Proposition 5.6. If a derivation {Ai}i is good, then its limit supports the best
proofs:

A∗ ≈ A∞

Proof. One direction, namely Pf (A∞) w Pf (A∗), follows by Proposition 3.6(b)
from the fact that A∞ ⊆ A∗. To establish that Pf (A∗) w Pf (A∞), we show that
µPf (A∗) w Pf (A∞) and rely on Proposition 3.6(c). Suppose p ∈ µPf (A∗). It

follows from Eq. (5) and Proposition 3.6(a) that [̂p]Pm ⊆ µPf (A∗). By goodness,
each a ∈ [p]Pm persists from some Ai on. Hence, [p]Pm ⊆ A∞ and p ∈ Pf (A∞).

Definition 5.7 (Canonical Derivations).

— A derivation {Ai}i is completing if its limit is complete.

— It is saturating if its limit is saturated.

— It is contracting if its limit is contracted.

— It is canonical if it is both saturating and contracting.

Lemma 5.8.

(a) A good derivation {Ai}i is completing if and only if every theorem of A0

eventually admits a persistent normal-form proof:

Th A0 ⊆ [Pf (A∞) ∩ Nf (A0)]Cl

(b) It is saturating if and only if all normal-form proofs emerge eventually:

Nf (A0) ⊆ Pf (A∞)

(c) It is contracting if and only if no formula remains persistently redundant:

Red A∗ ∩A∞ = ∅

Proof. Completeness of the limit is Th A∞ = [Pf (A∞) ∩ Nf (A∞)]Cl . By
Lemma 5.14, we know that A∞ ≡ A0 (Th A0 = Th A∞) for all derivations
of concern to us. Therefore, [Pf (A∞) ∩ Nf (A∞)]Cl = [Pf (A∞) ∩ Nf (A0)]Cl ⊆
[Pf (A∞)]Cl = Th A∞ = Th A0. With the preceding condition, we get Th A∞ =
[Pf (A∞) ∩ Nf (A∞)]Cl , as desired. The “only-if” direction is straightforward.

Similarly, by Lemma 3.10, the condition Nf (A0) ⊆ Pf (A∞) gives saturation.
By Proposition 5.6, A∗ ≈ A∞ and Pf (A∗) ' Pf (A∞). By applying Lemma 5.5

to Pf (A∗) w Pf (A∞), one gets Red A∗ ∩A∞ ⊆ Red A∞. If the limit is contracted,
Red A∞ = ∅, so that we have Red A∗ ∩ A∞ ⊆ Red A∞ = ∅. For the “if” direction,
by applying Lemma 5.5 to Pf (A∞) w Pf (A∗), one gets Red A∞ ∩ A∗ ⊆ Red A∗.
Since Red A∞ ⊆ A∞ ⊆ A∗, we have Red A∞ = Red A∞ ∩ A∗ ⊆ Red A∗. So, if the
condition Red A∗∩A∞ = ∅ holds, then Red A∞ = Red A∞∩A∞ ⊆ Red A∗∩A∞ = ∅,
and A∞ is fully contracted.
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Lemma 5.9. A sufficient condition for a good derivation {Ai}i to be completing
is that each non-normal-form proof eventually becomes much better:

⋃

i

µPf (Ai) \Nf (A0) A
⋃

i

Pf (Ai)

Proof. By Lemma 5.3, if pi ∈ µ{Ai ` c} then q ∈ {A∞ ` c}, for some q. If
q ∈ Nf (A0), then c ∈ [Pf (A∞) ∩ Nf (A0)]Cl and we are done. Otherwise, the
sufficient condition implies that, for some k, there is a proof qk ∈ Pf (Ak) of c such
that pi ≥ q > qk. Completeness follows by induction on proofs.

Lemma 5.10. A good derivation {Ai}i is canonical if and only if

A∞ = A]
0

Proof. Assume the derivation is canonical, that is, saturating and contracting.
Saturating means Nf (A0) ⊆ Pf (A∞), hence [Nf (A0)]

Pm = A]
0 ⊆ A∞. Contracting

means Red A∞ = ∅, from which it follows that A∞ ⊆ A]
0 (by way of contradiction,

if there were an x ∈ A∞, but x /∈ A]
0, this x would be redundant, contradicting

the contracting hypothesis). Together, these conclusions give A]
0 = A∞. The other

direction is trivial.

In summary, the limit of a derivation is complete, contracted, saturated, if the
derivation is completing, contracting, saturating, respectively, where saturated is
stronger than complete, and saturated and contracted together mean canonical.

5.3 Compactness

Goodness implies that if any proof shows up during a derivation, then there is a
better or equal proof in the limit (cf. Lemma 5.3). The converse property, namely
that if there is a proof in the limit, then there must also have been a proof along
the way, is ensured by continuity:

Definition 5.11 (Continuity). (Minimal) Proofs are continuous if

lim inf
i→∞

µPf (Ai) = µPf (A∞)
(
= µPf (lim inf

i→∞
Ai)

)

for any good sequence A0 % A1 % · · · .

In other words, the operator µPf is continuous for any chain: the limit of the chain
of the images is equal to the image of the limit of the chain.

In turn, for continuity suffices that minimal proofs use only a finite number of
premises. We call this property compactness (of proofs), because it is used tradi-
tionally to infer compactness of a logic (namely, that a set of formulæ is unsatisfi-
able if and only if it has a finite unsatisfiable subset) from its completeness (viz. a
presentation is unsatisfiable if and only if it is inconsistent).6

6Indeed, if a set A is unsatisfiable, there is a proof of F (falsehood) in Pf (A) (unsatisfiable implies
inconsistent). Take a minimal proof p ∈ µPf (A) of F , and let A′ be the finite set [p]Pm ; since
p ∈ Pf (A′), A′ is unsatisfiable (inconsistent implies unsatisfiable), and is a finite subset of A.
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Definition 5.12 (Compactness). An ordered proof system is compact if minimal
proofs use only a finite number of premises:

∀p ∈ µPf (A).
∣∣[p]Pm

∣∣ <∞

For ordinary inference systems, even non-minimal proofs are finitely based.

Lemma 5.13. Compactness implies continuity.

Proof. Continuity requires
⋃

j

⋂
i≥j µPf (Ai) = µPf (

⋃
j

⋂
i≥j Ai) for good se-

quences.
To show µPf (∪j ∩i≥j Ai) ⊆ ∪j ∩i≥j µPf (Ai): Let p ∈ µPf (∪j ∩i≥j Ai) =

µPf (A∞). By compactness, there are only finitely many a ∈ [p]Pm . Let j be
the smallest index in the derivation such that all a ∈ [p]Pm are in Aj . Then
p ∈ Pf (Aj). Second, p ∈ µPf (Aj), because p ∈ µPf (A∞), and (by the previous
lemma) Aj cannot provide a strictly better proof. Third, p ∈ ∩i≥jµPf (Ai), because
all a ∈ [p]Pm persist, since [p]Pm ⊆ A∞. It follows that p ∈ ∪j ∩i≥j µPf (Ai).

For ∪j ∩i≥j µPf (Ai) ⊆ µPf (∪j ∩i≥j Ai): Let p ∈ ∩i≥jµPf (Ai) for some j. It
follows that for every premise a ∈ [p]Pm , a ∈ ∩i≥jAi, whence a ∈ ∪j∩i≥j Ai = A∞.
This means that p ∈ Pf (A∞). As above, were p not minimal, on account of
compactness and goodness, it would have already turned non-minimal at some
stage k. But p is minimal at all stages i ≥ j, so p ∈ µPf (A∞).

Lemma 5.14. If proofs are continuous, then any good derivation {Ai}i is sound
and adequate. That is, for all i,

Ai ≡ A∞

Proof. Lemma 5.3 gives adequacy, regardless of continuity: Th Ai ⊆ Th A∞.
Suppose, now, that c ∈ Th A∞, with proof p ∈ µPf (A∞). By continuity, p ∈
∩i≥jµPf (Ai) for some j. Thus, c ∈ Th Ai for all i ≥ j. That c ∈ Th Ai also for
i < j follows from goodness, since Ai % Aj implies Ai ≡ Aj (see Definition 3.7).

Note 5.15. This does not necessarily hold for infinitary systems that violate the
compactness hypothesis. Let all proofs be incomparable, including (for all i and j):

âi
aj

ai c
a0, a1, . . .

c

The derivation {aj : j ≤ i}i is good, but only its limit includes the infinitary proof.

6. COMPLETION PROCEDURES AND PROOF PROCEDURES

The central concept underlying completion is the existence of critical proofs. Com-
pletion alternates “expansions” that infer the conclusions of critical proofs with
“contractions” that remove redundancies. More generally, theorem proving with
simplification (e.g. Dershowitz 1991b; Bonacina and Hsiang 1995; Bachmair and
Ganzinger 1994) entails two processes: Expansion, whereby any sound deductions
(anything in Th A) may be added to the set of derived theorems; and Contraction,
whereby any redundancies (anything in Red A) may be removed. This inference-
rule interpretation of completion, accommodating both expansion and contraction,
was elaborated on in [Bachmair and Dershowitz 1994].
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Definition 6.1 (Expansion and Contraction).

— A deduction step A ; A ∪ B is an expansion provided B ⊆ Th A.

— A deduction step A ∪ B ; A is a contraction provided A ∪B % A.

It is easy to see that:

Proposition 6.2.

(a) Expansions and contractions are good.

(b) Derivations, whose steps are expansions or contractions, are good.

Definition 6.3 (Criticality).

— A minimal proof p ∈ µPf (A) is critical if it is not in normal form, but all its
proper subproofs are:

p ∈ µPf (A) \Nf (A)

∀q. p � q ⇒ q ∈ Nf (A)

— We use C(A) to denote the set of all such critical proofs in A.

— The critical theorems of a presentation A are the conclusions of its critical
proofs, or [C(A)]Cl .

— A formula is critical for A if it is a premise of a proof smaller than a critical
proof in C(A).

Lemma 6.4. The canonical presentation has neither critical formulæ nor critical
theorems.

Proof. By the definition of critical proof, C(A]) ⊆ µPf (A]) \ Nf (A]). Since
µPf (A]) \ Nf (A]) = ∅, by the definition of Nf , it follows that C(A]) = ∅, and A]

has no critical theorems or critical formulæ.

Since [Huet 1981], fairness has been seen as the fundamental requirement of
derivations generated by completion procedures. Here, we define two fairness prop-
erties, one each for complete or saturated limits:

Definition 6.5 (Fairness).

— A good derivation {Ai}i is fair if

C(A∞) A Pf (A∗)

— It is uniformly fair if

Â∞ \ Â] A Pf (A∗)

Fairness means that all critical proofs with persistent premises are “subsumed”
eventually by strictly smaller proofs, whereas uniform fairness predicates the same
for trivial proofs with persistent premises.

Theorem 6.6. Presentation A is complete if C(A) A Pf (A).
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Proof. Assume, by way of contradiction, that A is incomplete, in other words,
that [Pf (A) ∩ Nf (A)]Cl ( Th A. Then there is a c ∈ Th A such that c /∈ [Pf (A) ∩
Nf (A)]Cl , or there is no proof of c in Pf (A) ∩ Nf (A). However, there are proofs
of c in Pf (A): let’s take a minimal one, that is, let p ∈ µ{A ` c}. By the above,
p /∈ Nf (A). If p is not in normal form, it means that it has some subproof(s) that
is not in normal form, that is, some q � p that is not in normal form. By the well-
foundedness of �, let q be a minimal (with respect to �) such proof. Minimality
with respect to � means that all subproofs of q are in normal form. Thus, we have
a (possibly trivial) subproof q of p, which is not in normal form, but such that
all its subproofs are. But this is the definition of critical proof: q ∈ C(A). The
hypothesis C(A) A Pf (A) implies that there exists a proof r ∈ Pf (A) such that
r < q. Since we have p � q > r, by Replacement (8), there exists a p′ ∈ Pf (A),
such that p′ < p, with r in place of q, that is, p > p′ � r. This contradicts the fact
that p is minimal.

Corollary 6.7. If a good derivation is fair, then its limit is complete.

Proof. By the definition of fairness we have C(A∞) A Pf (A∗). By Proposi-
tion 5.6, Pf (A∗) ' Pf (A∞), so that C(A∞) A Pf (A∞). By Theorem 6.6, A∞ is
complete.

This suggests completing an axiomatization A0 by adding, step by step, what is
needed to make for better proofs than the critical ones.

For example, suppose a proof ordering makes ĉ > b
c

and c
b

> b̂. Start with
A0 = {c} and consider ĉ. Were ĉ to persist, then by fairness a better proof would

evolve, the better proof being b
c . If b̂ is in normal form, then b ∈ A∞ and both

minimal proofs b
c

and b̂ persist.

Another example: µP = {b̂, ĉ, b
c
} and A = {b}, then A ; A ; · · · is fair, since

A∞ = A and C(A∞) = ∅. The result is complete but unsaturated (c is missing).
Clearly, a fair derivation is also completing. On the other hand, completing

does not imply fair, because the limit could feature a normal-form proof of some
c ∈ Th A0, without having reduced all persistent critical proofs of c. The two
notions serve different purposes: completing is the more abstract and represents
the condition for attaining a complete limit. Fair is stronger and more concrete, as
it specifies a way to achieve completeness by reducing all persistent critical proofs.

A saturated limit is not necessarily contracted, unless the derivation is contract-
ing, in which case it is canonical:

Theorem 6.8 (Fair Completion). Contracting, fair derivations are canoni-
cal, provided minimal proofs are unique.

Proof. This follows from Lemma 5.8(c) (contracting derivation implies con-
tracted limit), Corollary 6.7 (fair derivation implies complete limit), Proposi-
tion 3.11 (saturated and complete are equivalent if minimal proofs are unique),
and Theorem 3.17 (saturated and contracted imply canonical).

By Proposition 3.3, this also means that each a ∈ A∞ (= A]) is its own ultimate
proof â ∈ Nf (A), so is not susceptible to contraction.

We are left with the task of identifying sufficient conditions for saturation, in
case minimal proofs are not unique:
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Theorem 6.9. Presentation A is saturated if and only if Â \ Â] A Pf (A).

Proof. Recall that A saturated means µPf (A) = Nf (A).

First, we show that Â \ Â] A Pf (A) implies saturation, assuming, by way of
contradiction, that µPf (A) 6= Nf (A). Then, there is a theorem c ∈ Th A for which
a normal-form proof p∗ is absent from µPf (A). Instead, there is a minimal non-
normalized proof p ∈ µPf (A) \ Nf (A). So, there is some x ∈ [p]Pm \ A], since
p would be in normal form were [p]Pm ⊆ A]. By hypothesis, x̂ > r for some
r ∈ Pf (A). By Replacement (8), there exists a v ∈ Pf (A), such that p > v � r,
contradicting the minimality of p.

For the other direction, suppose µPf (A) = Nf (A). Employing Proposition 3.6(c),

we have Â\ Â] w Pf (A) w µPf (A) = Nf (A). But if x ∈ A\A], then x̂ /∈ Pf (A]) ⊇
Nf (A) (the inclusion is from (9)), so there must be some other, strictly smaller proof

than x̂ in Nf (A). So, in fact, Â \ Â] A Nf (A) = µPf (A) w Pf (A), as desired.

By the previous theorem, if A is saturated, A \ A] is redundant (i.e. A \ A] =
Red A).

Corollary 6.10. A good derivation is uniformly fair if and only if its limit is
saturated.

Proof. Uniform fairness says that Â∞ \ Â] A Pf (A∗). Since Pf (A∗) ' Pf (A∞)

by Proposition 5.6, this is equivalent to Â∞ \ Â] A Pf (A∞), which is equivalent to
A∞ being saturated by Theorem 6.9.

7. INSTANCES OF THE FRAMEWORK

A class of completion procedures can be described as deduction mechanisms,
wherein each step Ai ; Ai+1 is the composition of an expansion that adds some
formulæ, followed by a contraction that removes all redundant formulæ (cf. Der-
showitz 1985, Sect. 3.1). In other words, we are looking at deductions of the form

A ; (A ∪D)[, where D is the expansion and B[ !
=B \ Red B is B = A ∪D after

contraction.
One possibility for such a mechanism is to expand with all critical theorems:

Definition 7.1 (Critical Completion). Critical completion is a sequence of steps:

Critical : A ;
c

(A ∪ [C(A)]Cl )
[

An alternative is to add only something better:

Definition 7.2 (Bulk Completion). Bulk completion is a sequence of steps:

Bulk : A ;
b

(
A ∪ [B(A)]Pm

)[

where B(A) is a minimal subset of Pf (A) (minimal, with respect to ⊆) that is much
better than critical proofs: C(A) A B(A).

ACM Transactions on Computational Logic, Vol. 8, No. 1, January 2007.



Abstract Canonical Inference · 21

Another variation on this theme is “mass completion,” where the expansion com-
ponent of each step Ai ;m Ai+1 adds normal-form trivial theorems, en masse,
followed by contraction:

Definition 7.3 (Mass Completion). Mass completion is a sequence of steps:

Mass : A ;
m

(A ∪ [M(A)]Cl )
[

where

M(A)
!
= {p ∈ µPf (A) : p̂ < p ∧ ∀q � p. q̂ 6< q}

and p̂ is short for ̂[p]Cl , the trivial proof of the conclusion of p.

By Proposition 6.2:

Theorem 7.4. Critical completion, bulk completion and mass completion are all
good.

A presentation A is stable under a deduction mechanism ; if B = A whenever
A ; B.

Theorem 7.5. The canonical presentation is stable under critical, bulk and
mass completion.

Proof. By the proof of Lemma 6.4, µPf (A]) \ Nf (A]) = ∅ and C(A]) = ∅.
It follows that [C(A])]Cl = ∅. Second, the condition C(A]) A B(A]) is satisfied
vacuously and the minimal subset of Pf (A]) is ∅, so that B(A]) = ∅ and [B(A)]Pm =
∅. Third, since there are no better proofs than those provided by A] (Theorem
3.8), M(A]) = ∅ and [M(A)]Cl = ∅. Hence, expansions by critical, bulk and mass
completion do not apply. Because A] is contracted (by Theorem 3.17), we have
Red A] = ∅, and contraction does not apply either. So, for all three mechanisms,
A] ; A] only.

Let ABulk
∞ and AMass

∞ denote the limits of derivations by bulk and mass completion
from A, respectively. Similarly, let ABulk

∗ and AMass
∗ denote the sets of all derived

formulæ in those derivations.

Theorem 7.6. Bulk completion is canonical, provided proofs are continuous and
minimal proofs are unique, in which case

ABulk
∞ = A]

Proof. Let {Ai}i be a derivation by bulk completion starting from A = A0. By
Theorem 6.8, canonicity of the limit requires that derivations by bulk completion
be fair and contracting. Fairness says that

∀p ∈ C(ABulk
∞ ). ∃q ∈ Pf (ABulk

∗ ). p > q

Let p be a proof in C(ABulk
∞ ) and let i be the smallest index such that p ∈ C(Ai).

There must be such an i by continuity (Definition 5.11), given goodness—per
Theorem 7.4. By the definition of bulk completion and the nature of expan-
sion and redundancy removal (Propositions 3.6(b) and 3.16), C(Ai) A B(Ai) w
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Pf ((Ai ∪ [B(Ai)]
Pm)[) = Pf (Ai+1). It follows that there is some q ∈ Pf (Ai+1) ⊆

Pf (ABulk
∗ ), such that q < p, establishing fairness. As bulk completion removes re-

dundancies immediately, its derivations are also contracting; see Lemma 5.8(c).

Theorem 7.7. Mass completion is canonical, provided proofs are continuous
and minimal proofs are unique, in which case

AMass
∞ = A]

Proof. For mass completion, it is convenient to show that the limit is satu-
rated in terms of the characterization of A] as all trivial normal-form theorems
(Proposition 3.3). Suppose c ∈ A] and ĉ is in normal form, and let p ∈ µPf (AMass

∞ )
be a minimal proof of c in the limit, which exists by virtue of Theorem 7.4 and
Lemma 5.3. Since minimal proofs are unique, ĉ and p are comparable. Suppose that
ĉ < p. Let q be the smallest subproof of p such that q > q̂, and let i be the smallest
index (as in the previous proof) such that q ∈ µPf (Ai). Thus, q ∈M(Ai), and, by
the definition of mass completion, q and p (by (7)) have better proofs in Ai+1, and
hence (by goodness and Lemma 5.3) in AMass

∞ , contradicting the minimality of p.
So ĉ = p, and c ∈ AMass

∞ , as desired. Hence, AMass
∞ is saturated. But AMass

∞ is also
contracted, so, by Theorem 6.8, mass completion is canonical.

In the equational case, persistent critical pairs are at one and the same time both
critical formulæ and critical theorems, since the proof ordering is designed so that
the trivial proof using a critical pair is always smaller than the peak from which the
critical pair is derived. So, expansions by C(A), B(A) and M(A) are essentially the
same, and bulk, mass and critical completion lead to the same result. In general,
the different methods of expansion differ, as the following example demonstrates:

Suppose formula a has three proofs: â, p = b
a
, and q = c

a
, and assume a proof

ordering that orders proofs of a by â > p > q, proofs of c by a
c > p

c > q
c > ĉ,

while b̂ is the only proof of b. The only critical proof using A = {b} is b
a : it is

minimal in Pf (A), it is not in normal form, and its only subproof b̂ is in normal
form. Note that p

c
is not critical, although it is minimal and not in normal form,

because its subproof p is not in normal form. Critical completion generates the
critical theorem a and then deletes it right away, because a is redundant, since
â > p. Thus, derivation by critical completion is unfair, because a proof smaller
than p never arises. The limit of the derivation by critical completion is {b} itself,
which is not canonical, since it provides no normal form proofs for either a or c.

On the other hand, bulk completion generates the critical formula c, premise of
c
a

< b
a
. Similarly, mass completion generates c, because M(A) = { p

c
}, since p

c
is

the minimal proof of c in A, ĉ < p
c , and its only subproof p does not share this

property, as â > p. By adding c, the critical proof p is replaced by q. The critical
formula c is not redundant and persists. Thus, the derivation is fair, and its limit
{b, c} is canonical, with normal form proofs b̂, ĉ and c

a . The behavior of critical
completion, on one hand, and bulk or mass completion, on the other, would be the
same, under a non-total proof ordering defined as the one above, except with proofs
of c ordered by p

c
> a

c
> ĉ, q

c
> a

c
> ĉ, where p

c
and q

c
are incomparable.

A subtle point is that bulk completion does not add all critical formulæ, but only
sufficiently many to provide a smaller proof for each critical proof. (This is the gist
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of the C(A) A B(A) condition in the definition of bulk completion.) To appreciate
the difference, consider a proof ordering such that ĉ > ai

c
> b

c
, for i ≥ 0, with all

the ai

c incomparable. If the definition of bulk completion required it to add all the
ai’s, it could not be considered a “mechanical” process. On the other hand, the
definition of bulk completion makes it sufficient to add just one of the ai’s.

Lastly, the hypothesis that minimal proofs are unique is actually needed. Indeed,
consider proofs â, a

b
and b̂ with an empty ordering and let A = {a}. The minimal

proofs in A are â and a
b . Since b̂ < a

b does not hold, M(A) is empty and mass
completion does not generate b. Similarly, C(A) is empty and bulk completion
cannot generate b either.

Returning to the ground equational case, with inference rules P , I , T , S, Z,
where S is the inference rule for functional reflexivity given in Section 4, let ≥≥ be a
total simplification-ordering of terms, let P > I > T > S > Z in the precedence, let
proofs be greater than terms, and compare proof trees in the corresponding total re-
cursive path simplification-ordering. Ground completion is an inference mechanism
consisting of the following inference rules:

Deduce: E ∪ {w = t[u]} ; E ∪ {w = t[v]} if u = v ∈ E
and u� v

Delete: E ∪ {t = t} ; E

Operationally, completion implements these inferences “fairly”: No persistently
enabled inference rule is ignored forever.

Theorem 7.8 (Completeness of Completion). Ground completion
results—at the limit—in the canonical, Church-Rosser basis.

Proof. Ground completion is good, since Deduce and Delete do not increase
proofs (;⊆%). In particular,

I(w, t[u]) > T (I(w, t[v]), Sn(I(u, v)))

if u � v, where n is the number of applications of S needed to build the context
t, since t[u] � t[v] and t[u] ≥≥ u � v. Ground completion is fair and contracting.
For example, the critical obligation

w = t t = v
w = v

T

when t� w, v, is resolved by Deduce. Also, since T > S, non-critical cases resolve
naturally:

w = t
fw = ft

t = v
ft = fv

fw = fv
>

w = t t = v
w = v

fw = fv

or T (S(I(w, t)), S(I(t, v))) > S(T (I(w, t), I(t, v))). Since the proof ordering is total,
minimal proofs are unique, and Theorem 6.8 applies.
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8. DISCUSSION

Completion procedures have been studied intensively since their discovery and ap-
plication to automated theorem proving by Knuth and Bendix [1970] and Buch-
berger [1985]. The fundamental rôle of proof orderings in automated deduction,
and the interpretation of completion as nondeterministic application of inference
rules, received systematic treatment in [Bachmair and Dershowitz 1994]. The com-
pletion principle can be applied in numerous situations [Dershowitz 1989; Bonacina
and Hsiang 1995], including the following:

— equational rewriting [Peterson and Stickel 1981; Jouannaud and Kirchner
1986; Bachmair and Dershowitz 1989];

— Horn theories [Kounalis and Rusinowitch 1991; Dershowitz 1991a; 1991b];

— induction [Kapur and Musser 1987; Fribourg 1989; Bachmair and Dershowitz
1994];

— unification [Doggaz and Kirchner 1991]; and

— rewrite programs [Bonacina and Hsiang 1992; Dershowitz and Reddy 1993].

Our abstract framework can be applied to re-understand completion mechanisms
in a fully uniform setting. Because we have been generic in our approach, the
results here apply to any completion-based framework, including standard ones,
like ground completion and congruence closure,7 as illustrated herein, equational
completion (see [Burel and Kirchner 2006]), or completion for unification, and also
to derive new completion algorithms, such as for constraint solving.

In [Bachmair and Dershowitz 1994], a completion sequence is deemed fair if all
persistent critical inferences are generated, and criteria are employed to eliminate
redundant inferences from consideration. In [Nieuwenhuis and Rubio 2001, fn. 8], an
inference sequence is held to be fair if all persistent inferences are either generated
or become redundant. The approach of [Bonacina and Hsiang 1995] distinguishes
between fairness requirements for proof search and for saturation. The notion of
fairness was formulated in terms of proof reduction with respect to a proof ordering,
and made relative to the target theorem, suggesting for the first time that fairness
should earn one a property weaker than saturation. Specifically, a derivation was
considered fair if whenever a minimal proof of the target theorem is reducible by
inferences, it is reduced eventually; see [Bonacina 1992, Chap. 2]. The treatment
of fairness propounded here combines all these ideas. Fairness—for us—means
that all persistent critical proofs are reduced, but it only attains completeness, not
saturation. As we have seen, a stronger version of fairness, namely uniform fairness,
is needed for saturation when the proof ordering is partial.8

Furthermore, by putting the accent on proof search and proof reduction, the
approach of [Bonacina and Hsiang 1995] leads to an appreciation of the rôle of

7That ground completion can be used to compute congruence closure has been known since
[Lankford 1975]; using congruence closure to generate canonical rewrite systems from sets of
ground equations has been investigated further in [Gallier et al. 1993; Plaisted and Sattler-Klein
1996], among others; a recent survey comparing different ground completion and congruence
closure algorithms can be found in [Bachmair et al. 2003].
8The term “uniform fairness” was introduced in [Bonacina 1992] for that property which guaran-
tees saturation.
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contraction as productive inference, as opposed to pure deletion. This is reflected
here in the emphasis on canonicity, rather than saturation alone.

Bulk completion, as investigated here, is an abstract notion. Concrete procedures
are obtained by coupling the inference system with a search plan that determines
the order in which expansion and contraction steps take place. From a practical
point of view, fair and contracting are two requirements for the search plan: it
should schedule enough expansion steps to be fair, hence complete, and enough
contraction steps to be contracting. Specific search plans may settle for some ap-
proximation of these properties. The two are intertwined, as a basic control issue is
how best to avoid performing expansion inferences from premises that can be con-
tracted, because such expansions are not necessary for fairness, and would generate
redundancies. This principle has led many to design search plans called by various
authors simplification-first, contraction-first, or eager contraction plans. Our defi-
nition of critical obligations also allows one to incorporate “critical pair criteria,”
as, for example, in [Bachmair and Dershowitz 1988].

On the other hand, making sure that contraction takes priority over expansion
is not cost-free, because it involves keeping a potentially very large database of
formulæ inter-reduced. In turn, this involves forward contraction, that is, contract-
ing newly generated formulæ with respect to already existing ones, and backward
contraction, that is, contracting formulæ already in the database with respect to
new formulæ that survived forward contraction. Conceptually, forward contraction
is considered to be part of the generation of a formula, while backward contraction
is considered to be a bookkeeping task for the database of formulæ. In prac-
tice, an observation that helped streamline implementations of completion, and of
theorem-proving strategies based on completion, was that backward contraction
can be implemented by forward contraction. That is, it suffices to detect that a
formula in the database is reducible, and then subject it to forward contraction, as
if it were newly generated. This way, formulæ generated by backward contraction
are treated like formulæ generated by expansion. This observation appeared in
implementations since the late eighties, most notably in Otter [McCune 1994].

In our framework, the endeavor to implement contraction efficiently is the en-
deavor to make contracting derivations efficient. A sufficient condition for being
contracting is Red A∗ ∩ A∞ = ∅. One may approach the problem by aiming at
ensuring that Red Ai = ∅, for all stages i of a derivation. The practical meaning
and feasibility of such a requirement depends on how one defines the map between
the prover’s operations and the steps Ai ; Ai+1 of a derivation. If every single
expansion or contraction inference done by the prover is a step Ai ; Ai+1, it is tri-
vially impossible to have Red Ai = ∅. Thus, either Ai ; Ai+1 corresponds to many
inference steps (as is the case for bulk completion), or one aims at implementing
Red A∗ ∩ A∞ = ∅ by ensuring that Red Ai = ∅ holds periodically.

For instance, take Otter’s well-known given-clause loop. The prover maintains
a list of formulæ already selected as expansion parents and a list of formulæ to

be selected. At every iteration, it selects a given clause, performs all expansions
between the given clause and the already selected clauses, and moves the given

clause to the already selected list. Every new formula is forward-contracted after
its generation, and those that survive forward contraction are added to the list
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to be selected, and applied to backward-contract elements of both lists until no
further backward contraction applies. Thus, if A is the union of the two lists
already selected and to be selected, Otter’s given clause loop aims at something
like Red Ai = ∅, for all i’s that correspond to a stage after an iteration of the loop.

A more conservative approach is to implement Red A∗ ∩ A∞ = ∅ by ensuring
that Red Bi = ∅ holds periodically and only for a subset Bi ⊂ Ai. This is the
approach of the so-called discount version of the given-clause loop, where only
the subset of formulæ eligible to be expansion parents (the already selected list
augmented with the given clause) is kept inter-reduced. However, when a formula
in Bi is backward-contracted, its direct descendants in Ai \ Bi can be deleted as
“orphans” [Schulz 2002]. Most of Otter’s successors, such as Gandalf [Tammet
1997], Spass [Weidenbach et al. 1999], Vampire [Riazanov and Voronkov 2002] and
Waldmeister [Hillenbrand 2003], implement both versions of the given-clause
loop, while the E prover [Schulz 2002] features only the discount version.

Since contraction is, at the same time, an essential ingredient for efficiency and
an expensive task, the appropriate balance of contraction and efficiency is still a
subject of current research in the implementation of theorem provers.
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