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Abstract

We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV)
and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving two-
dimensional Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in
time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity.
We employ an AREPO-type approach [168], which rapidly rebuilds a new high quality mesh exploiting the previous
one, but rearranging the element shapes and neighbors in order to guarantee that the mesh evolution is robust even
for vortex flows and for very long simulation times. The old and new Voronoi elements associated to the same
generator point are connected in space–time to construct closed space–time control volumes, whose bottom and top
faces may be polygons with a different number of sides. We also need to incorporate some degenerate space–time
sliver elements, which are needed in order to fill the space–time holes that arise because of the topology changes
in the mesh between time tn and time tn+1. The final ALE FV-DG scheme is obtained by a novel redesign of the
high order accurate fully discrete direct ALE schemes of Boscheri and Dumbser [20, 22], which have been extended
here to general moving Voronoi meshes and space–time sliver elements. Our new numerical scheme is based on
the integration over arbitrary shaped closed space–time control volumes combined with a fully-discrete space–time
conservation formulation of the governing hyperbolic PDE system. In this way the discrete solution is conservative
and satisfies the geometric conservation law (GCL) by construction. Numerical convergence studies as well as a large
set of benchmark problems for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and
robustness of the proposed method. Our numerical results clearly show that the new combination of very high order
schemes with regenerated meshes that allow topology changes in each time step lead to substantial improvements
compared to direct ALE methods on moving conforming meshes without topology change.

Keywords: Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes,
arbitrary high order in space and time, moving Voronoi tessellations with topology change, a posteriori sub-cell finite
volume limiter, fully-discrete one-step ADER approach for hyperbolic PDE, compressible Euler and MHD equations

1. Introduction

The aim of this work is to present a novel family of explicit arbitrary high order accurate direct ALE Finite
Volume (FV) and Discontinuous Galerkin (DG) schemes on moving Voronoi meshes that are regenerated at each
time-step and which consequently allow also topology changes of the computational grid during the time evolution
of the PDE system. The main novelty lies in the use of a space–time conservation formulation of the governing PDE
system over closed, non-overlapping space-time control volumes that are constructed from the moving, regenerated
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Voronoi meshes between time tn and time tn+1. On these closed space–time control volumes the governing equations
are then directly integrated by means of a high order fully discrete one-step ADER method. To the best knowledge
of the authors, this is the first time that a unified framework for arbitrary high order accurate explicit non-oscillatory
direct ALE FV and DG schemes on moving Voronoi meshes is developed, with an embedded mesh generator that
builds a new mesh with a different topology at each time step.

1.1. State of the art

Lagrangian algorithms [178, 12, 42, 55, 85, 139, 41, 166, 134] are characterized by a moving computational
mesh displaced with a velocity chosen as close as possible to the local fluid velocity. In the Lagrangian description
of the fluid, the nonlinear convective terms disappear and, as a consequence, Lagrangian schemes exhibit virtually
no numerical dissipation at contact discontinuities and material interfaces. Therefore, the aim of these methods is
to reduce the numerical dissipation errors due to the convective terms, so that contact discontinuities are sharply
captured and material interfaces can be properly identified and tracked.

Lagrangian finite volume schemes [139, 58, 49, 158, 131, 135, 133, 132, 37, 38] have been developed for the
solution of nonlinear hyperbolic systems of PDEs, using the conservation form of the equations based on the phys-
ically conserved quantities like mass, momentum and total energy. Higher order Lagrangian-type schemes have
been introduced in [46, 118, 47], where high order of accuracy in space is achieved with the aid of an ENO/WENO
reconstruction and Runge-Kutta time stepping guarantees high order time discretization as well. Contrarily to the
cell-centered methods listed so far, where all variables are located at the cell center of the primal mesh, staggered
Lagrangian schemes [125, 122, 126] define the velocity at the grid vertexes and the other variables at the cell center,
hence avoiding the need of a nodal solver to compute the mesh velocity of the grid nodes.

Another option for the numerical solution of hyperbolic conservation laws is given by Discontinuous Galerkin [153]
and Finite Element (FE) schemes [51, 52, 53], where the numerical solution is approximated by piecewise polynomi-
als within each control volume. Robust Lagrangian DG schemes are presented in [101, 137, 119, 120] and they have
been extended to third order for the first time in [84, 82, 83, 115], while high order FE methods applied to Lagrangian
hydrodynamics and elasto-plasticity can be found in [142, 162, 64, 62, 63].

Although these schemes are widely used, a common problem that affects almost all Lagrangian methods is the
severe mesh distortion or mesh tangling that happens in the presence of shear flows, which may even cause a break-
down of the computation. This is the reason which led to the development of so-called Arbitrary-Lagrangian-Eulerian
(ALE) methods [158, 17, 110, 116, 107, 14, 10], where the mesh velocity can be chosen independently of the local
fluid velocity and thus the grid nodes can be moved at an arbitrary velocity. Cell-centered indirect ALE schemes aim
at improving the mesh quality and the overall scheme robustness by performing a purely Lagrangian phase with sub-
sequent rezoning (mesh optimization) [181, 106, 89] and remapping [15], where the numerical solution defined on
the old mesh is transferred onto the new grid. To overcome the problem of mesh tangling, sliding line techniques have
also been proposed [40, 150, 108], which deal with moving nonconforming meshes, whose element sides can slide in
order to accommodate the distortion induced by shear flows. A very effective implicit DG method for dealing with
weakly compressible Navier-Stokes flows with moving boundaries, using a tetrahedralization of space-time, has been
presented in [179]. For what concerns indirect ALE schemes, interesting techniques for handling the mesh motion
have been introduced by the so-called Reconnection ALE (ReALE) algorithms [124, 123, 16, 36], where the rezoning
phase allows for topology changes at each time step of the computation. There, moving Voronoi tessellations have
been employed and the obtained numerical results demonstrate that the flow features that have been computed in the
Lagrangian phase can be better preserved compared to standard indirect ALE methods. ReALE schemes have also
proven to be particularly well suited for dealing with multimaterial fluid flows, in order to sharply capture the inter-
faces across different materials thanks to a conservative remapping phase which transfers the information from the old
mesh to the newly generated one, which keeps tracking the interface. ReALE schemes can therefore be considered as
the seminal works concerning moving mesh methods with topology changes.

Among the different approaches that have been presented in the literature (pure Lagrangian, indirect ALE based
on rezoning and remapping, ReALE as well as special nonconforming slide line treatments), a novel family of meth-
ods has been proposed, so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes. Also in the framework of
direct ALE the mesh velocity can be chosen in an arbitrary way. Usually, it is chosen close to the local fluid velocity.
However, the mesh quality can be optimized by a rezoning phase which takes place before the computation of the
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numerical fluxes, hence allowing the space-time control volumes to be defined for each computational cell by con-
necting the element configuration at the current time level tn to the next time level tn+1. Next, the mesh motion is taken
into account directly in the numerical flux computation of the FV or DG scheme, without needing any remeshing plus
remapping strategy. Furthermore, such approaches naturally extend to unstructured meshes in multiple space dimen-
sions [18] and to slide line treatment with nonconforming meshes [88, 86]. Direct ALE schemes have been recently
presented in [30, 19, 20, 22, 29] by employing either very high order FV and DG schemes, also in combination with
time-accurate local time stepping (LTS), see [68, 24]. These works are characterized by a fixed mesh topology, which
makes it impossible to study phenomena affected by strong shear motion and vortex flows for very long simulation
times, since mesh tangling would inevitably occur and lead to a breakdown of the simulation before the final time
is reached, unless strong mesh smoothing or relaxation procedures are introduced. Also, it should be remarked that
other ways to prevent, or at least to remarkably postpone, the breakdown of simulations consist in employing high
order curvilinear meshes, see the results published in [62, 10, 2, 3]. Moreover, notice that direct ALE schemes, even
when constrained to a fixed connectivity, already ameliorate standard Lagrangian results for complex flow patterns.

From what was observed so far, the idea of allowing a change of topology at each time step within the direct
ALE framework arises. A seminal work along this direction is represented by the AREPO code of Springel and
collaborators [168, 169, 144, 145]. AREPO is a massively parallel second order accurate two- and three-dimensional
direct ALE finite volume scheme on moving Voronoi tessellations that are rebuilt at each time step from a set of
generator points which are moving with the local fluid velocity. The documented results obtained with the AREPO
technique clearly highlight the robustness and potential of that approach. Similar work in the context of finite element
schemes can be found in the well-known particle finite element method of Oñate and Idelsohn et al., see [98, 149,
141, 111, 99, 140]. In the above-mentioned references, the mesh is completely regenerated at each time step, thus
naturally allowing for large deformations and strong shear flows without causing mesh tangling and highly distorted
elements.

1.2. Challenges of this work
Up to now the AREPO algorithm [168, 169] is at most second order accurate in space and time. We therefore

believe that its results can still be improved by (i) increasing the order of accuracy of the underlying FV scheme in
both space and time and by (ii) introducing a higher order DG method into the AREPO framework. However, above
all, the main difficulty arises from the fact that high order direct ALE schemes need a complete knowledge of the
space–time connectivity between two consecutive time steps tn and tn+1, and not only of the spatial connectivity at
each time level. Furthermore, if a change of connectivity is allowed, the space-time connectivity does not coincide
neither with the connectivity at time tn, nor with the one at time tn+1. Hence, an automatic way to construct the
missing space-time connectivity from the available spatial connectivities at tn and tn+1 must be found. In addition, the
space–time control volumes should be allowed to have as bottom and top faces polygons with a different number of
edges, and, moreover, even degenerate space–time sliver elements must be incorporated in order to fill the space-time
holes that are caused by the changing topology. With sliver elements we refer to space–time elements whose areas at
time tn and tn+1 are null, but whose space–time volume is not zero, see Sections 2.6 and 2.7. In other words, sliver
elements exist only in the space-time volume strictly bounded between two consecutive time levels, therefore they
must be taken into account only if the numerical scheme requires the full space-time connectivity.

Finally, this kind of elements should be not only built, but also the one-step ADER finite volume and DG schemes
must be substantially modified to handle the integration of the PDE over these new types of space-time control vol-
umes. A proof of concept that direct ALE methods can work even on degenerate space-time elements was already
given in [88] for second order FV schemes on moving nonconforming meshes, but a much greater effort is necessary
for dealing with such a general situation as the one treated in this work.

1.3. Structure of the paper
The rest of the paper is organized as follows. In Section 2 we first introduce our moving computational mesh,

the data representation over it, and the reconstruction procedure needed to obtain high order in space. Next, in
Section 2.4 we introduce the mesh motion strategy which is obtained by computing the new coordinates of a set
of points (eventually with high order of accuracy, see Section 2.4.1) and re-drawing around them a new Voronoi
tessellation, whose topology could differ from the previous one. Mesh optimization techniques (see Section 2.5) can
be employed as well in order to improve the quality of the new tessellations.
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Sections 2.6 and 2.7 represent the first key ingredient of our algorithm: we explain how to deal with the topology
changes that are caused by the regeneration of the Voronoi tessellation at each time step. Then, we explain how to
automatically construct the space–time connectivity and the space–time sliver elements.

Once this has been set up, in Section 3 we describe our direct ALE FV-DG scheme, namely an algorithm be-
longing to the class of direct ALE PN PM schemes [69], which allows us to formulate a Finite Volume (FV) and a
Discontinuous Galerkin (DG) scheme within a unique framework. The method is first presented for standard moving
Voronoi elements, i.e. Voronoi elements that are displaced without modifying their shape, i.e. the number of their
nodes remains the same at each time level. Then, the method is extended to Voronoi elements with different bottom
and top faces and finally to sliver elements in Sections 3.1.2 and 3.2.2, which is the second key ingredient of our
scheme. In particular, for both types of elements we have detailed: i) the predictor step, which is essential for obtain-
ing high order in time in a fully-discrete one-step procedure, ii) the corrector step, which allows the solution to be
updated, and iii) the limiter that prevents spurious oscillations in the DG scheme.

Concerning a potential extension to compressible multi-material flows, the numerical approach proposed in this
paper is obviously best suited for so-called diffuse interface models, such as the Baer-Nunziato model of compress-
ible two-phase flows [5, 4], the Saurel-Abgrall model [159, 1, 160] or the compressible multi-phase model recently
proposed by Romenski et al. [156, 155, 154].

In Section 4 we show a large set of numerical results, including convergence rates up to fifth order of accuracy
in space and time for smooth problems, as well as a wide set of benchmark test cases solved with our ALE FV-DG
schemes on moving Voronoi meshes with topology change for different systems of hyperbolic equations, namely the
Euler equations of compressible gas dynamics, including the gravity source term, and the ideal MHD equations. The
numerical results are commented and compared with available reference solutions wherever possible.

The paper is closed by some conclusive remarks and an outlook to future work in Section 5.

2. Numerical method I: handling a moving Voronoi tessellation with topology changes and data reconstruction

We consider a very general formulation of the governing equations in order to model a wide class of physical
phenomena, namely all those which are described by equations that can be cast into the following form,

∂Q
∂t

+ ∇ · F(Q) = S(Q), x ∈ Ω(t) ⊂ R2, Q ∈ ΩQ ⊂ Rν, (1)

where x = (x, y) is the spatial position vector, t represents the time, Q = (q1, q2, . . . , qν) is the vector of conserved
variables defined in the space of the admissible states ΩQ ⊂ Rν, F(Q) = ( f(Q), g(Q) ) is the non linear flux tensor,
and S(Q) represents a non linear algebraic source term.

To discretize the moving two-dimensional domain Ω(t) we employ a centroid based Voronoi-type tessellation
made of NP non overlapping polygons Pi, i = 1, . . .NP. The tessellation is first built at time t = 0 and then it is
regenerated at each time step tn. Data are represented via high order polynomials in each Voronoi polygon, which are
either given by a (C)WENO reconstruction procedure for FV schemes, or are directly available from the numerical
solution when a DG method is considered.

2.1. Computational grid

At time tn = 0 we fix the position of NP points, called generator points: their coordinates are denoted as xn
ci
, i =

1, . . . ,NP and they are uniformly distributed inside the rectangular domain Ω(0) as well as on its boundary. Next, we
build a Delaunay triangulation having these generators xn

c as vertexes of the triangles. The defining property of the
Delaunay triangulation is that the circumcircle of each triangle is not allowed to contain any of the other generator
points in its interior. This empty circumcircle property distinguishes the Delaunay triangulation from the many other
triangulations of the plane that are possible for the point set. Furthermore, this condition uniquely determines the
triangulation for points in general position (except for circles with more than three generator points on them for which
the Delaunay triangulation contains degenerate cases where it may flip by an infinitesimal motion of one of the points).
For this step we follow the Delaunay algorithm presented in [35, 180], where the point location phase is efficiently
performed by employing a jump-and-walk method [138].
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Each generator point xn
ci

is then associated to a centroid based Voronoi element Pn
i by connecting counterclock-

wise the barycenters of all the Delaunay triangles having this generator point as a vertex. Note that the use of
barycenters (instead of circumcenters) to construct these Voronoi-type elements avoids degenerate situations caused
by the violation of the empty circumcircle property, thus it does not need to be resolved. We refer to Figure 1
for a graphical interpretation (generator points are always plotted in red and Voronoi vertexes in blue). In partic-
ular, given a Voronoi polygon Pn

i we denote by V(Pn
i ) = {vn

i1
, . . . , vn

i j
, . . . , vn

iNn
Vi

} the set of its Nn
Vi

Voronoi neigh-

bors, by E(Pn
i ) = {en

i1
, . . . , en

i j
, . . . , en

iNn
Vi

} the set of its Nn
Vi

edges, and by D(Pn
i ) = {dn

i1
, . . . , dn

i j
, . . . , dn

iNn
Vi

} the set of

its Nn
Vi

vertexes, consistently ordered counterclockwise. Finally, the barycenter of a Voronoi polygon Pn
i is noted as

xn
bi

= (xn
bi
, yn

bi
) (note that usually it does not coincide with the generator point, and it is always plotted in orange).

By connecting xn
bi

with each vertex of D(Pi) we subdivide the Voronoi polygon Pn
i in Nn

Vi
subtriangles denoted as

T (Pn
i ) = {T n

i1
, . . . ,T n

i j
, . . . ,T n

iNn
Vi

}.

2.2. Spatial representation of the numerical solution
The numerical solution for the conserved quantities Q in (1) is represented via a cell-centered approach inside

each Voronoi polygon Pn
i at the current time tn by piecewise polynomials of degree N ≥ 0 denoted by un

h(x, tn) and
defined in the spaceUh,

un
h(x, tn) =

N−1∑
`=0

ϕ`(x, tn) ûn
`,i := ϕ`(x, tn) ûn

`,i, x ∈ Pn
i , (2)

where ϕ`(x, tn) are modal spatial basis functions used to span the space of polynomialsUh up to degree N. In the rest
of the paper we will use classical tensor index notation based on the Einstein summation convention, which implies
summation over two equal indices. The total number N of expansion coefficients (degrees of freedom, DOFs) ûn

l for
the basis functions depends on the polynomial degree N and is given by N = L(N, d), with

L(N, d) =
1
d!

d∏
m=1

(N + m), (3)

where d = 2 in this paper, since we are dealing only with two-dimensional domains. As basis functions ϕ` in (2) we
employ a Taylor series of degree N in the variables x = (x, y) directly defined on the physical element Pn

i , expanded
about its current barycenter xn

bi
and normalized by its current characteristic length hi

ϕ`(x, tn)|Pn
i

=
(x − xn

bi
)p`

p`! hp`
i

(y − yn
bi

)q`

q`! hq`
i

, ` = 0, . . . ,N − 1, 0 ≤ p` + q` ≤ N, (4)

Figure 1: In these three panels we report the Delaunay triangulation and the generator points in red. The barycenters of the Delaunay triangles and
the Voronoi tessellation are represented in blue. Finally, the barycenters of the Voronoi polygons are represented with orange crosses. Note that to
each generator point corresponds a Voronoi polygon which is obtained by connecting the barycenters of the triangles having this generator point as
a vertex. Note also that we employ its barycenter to construct the sub–triangulation of each Voronoi element (orange dotted line in the right panel).
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hi being the radius of the circumcircle of Pn
i . The unknown expansion coefficients ûn

`,i in (2) are the rescaled deriva-

tives hp`
i hq`

i
∂p`+q`

∂xp`∂yp
`
Q

(
xn

bi

)
of the Taylor expansion about xn

bi
. The time dependence of ϕ(x, tn) derives from the time-

dependence of the cell barycenter xn
bi

.
The discontinuous finite element data representation (2) leads naturally to both a Discontinuous Galerkin (DG)

scheme if N > 0, but also to a Finite Volume (FV) scheme in the case N = 0. This indeed means that for N = 0 we
have ϕ`(x) = 1, with ` = 0 and (2) reduces to the classical piecewise constant data representation that is typical of
finite volume schemes:

un
h(x, tn) = 1 · ûn

0,i= ûn
0,i, x ∈ Pn

i , ûn
0,i =

1
|Pn

i |

∫
Pn

i

Q(x, tn)dx. (5)

Here, the only degree of freedom per element Pn
i is the usual cell average ûn

0,i. Note also that in the case N > 0 the
representation given by (2) already provides a spatially high order accurate data representation with accuracy N + 1,
which is not the case when N = 0. If we are interested in increasing the spatial order of accuracy of a finite volume
scheme, up to M + 1 for example, we need to perform a spatial reconstruction that generates a spatially high order
accurate reconstruction polynomial wn

h(x, tn) of degree M > N (see the CWENO procedure presented in 2.3) that
reads

wn
h(x, tn) =

M−1∑
`=0

ψ`(x, tn) ŵn
`,i := ψ`(x, tn) ŵn

`,i, x ∈ Pn
i , M = L(M, d), (6)

where we simply employ the same basis functions ψl(x, tn) = ϕl(x, tn) for the reconstruction according to (4), but with
0 ≤ ` ≤ M− 1 rather than 0 ≤ ` ≤ N − 1, see also [69].

With this notation, our method falls within the more general class of PN PM schemes introduced in [69] for fixed
unstructured simplex meshes in two and three space dimensions. In [69, 65, 128, 129] a new family of hybrid,
reconstructed discontinuous Galerkin methods was proposed, in which a Hermite-type reconstruction of degree M ≥
N is performed on cell data represented by polynomials of degree N. In this paper, however, we restrict ourselves to
the two most common situations: (i) N = 0, with arbitrary high order reconstruction of degree M > N, which indeed
corresponds to a FV scheme of order M + 1, and (ii) N = M, which corresponds to a DG scheme of accuracy N + 1.
Within the general PN PM formalism one can simultaneously deal with arbitrary high order FV and DG schemes inside
a unified framework, with only very few differences between the two schemes.

For the sake of uniform notation, when N > 0 and hence M = N, we trivially impose that the reconstruction
polynomial is given by the DG polynomial, i.e. wn

h(x, tn) = un
h(x, tn), which automatically implies that in the case

N = M the reconstruction operator is simply the identity.

2.3. CWENO reconstruction

For finite volume schemes (N = 0) the reconstruction procedure allows us to compute a high order non-oscillatory
polynomial representation wn

h(x, tn) of the solution Q(x, tn) for each Voronoi polygon Pn
i , starting from the values of

un
h(x, tn) in Pn

i and its neighbors. It should be employed in the case N = 0,M > 0. As already stated above, the total
number of unknown degrees of freedom wn

h(x, tn) isM = L(M, d), with M denoting the degree of the reconstruction
polynomial wh.

In order to achieve high accuracy, a large stencil centered in Pn
i is required, but this choice produces oscilla-

tions close to discontinuities, the well-known Gibbs phenomenon. Indeed, for linear reconstruction operators, the
requirements of high order of accuracy and non-oscillatory behavior are in contrast with each other, due to the well-
known Godunov theorem [90]. In order to fulfill also the requirement of non-oscillatory behavior, a nonlinear recon-
struction operator has to be adopted. In this paper we rely on the CWENO reconstruction strategy first introduced
in [112, 113, 114], and which can be cast in the general framework described in [50]. Here, we closely follow the
work outlined in [79] for unstructured triangular and tetrahedral meshes. For the sake of completeness, we report here
the entire algorithm: the differences with respect to [79] are highlighted in the last paragraph of this section.

The reconstruction starts from the computation of a so-called central polynomial Popt of degree M. In order to
define Popt in a robust manner, following [79, 11, 104, 164], we consider a stencil S0

i which is filled with a total
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number of ne = f · M = f · L(M, d) elements, containing cell Pn
i and its neighbors

S0
i =

ne⋃
k=1

Pn
ik , (7)

with the safety factor f ≥ 1.5. Stencil S 0
i includes the current Voronoi polygon Pn

i , the first layer of Voronoi neighbors
(node neighbors of Pn

i ) denoted by V(Pn
i ), and is filled by recursively adding neighbors of elements that have been

already selected, until the desired number ne is reached. The polynomial Popt(x, tn) is then defined by imposing that its
average on each cell Pn

ik
matches the known cell average ûn

0,ik
. Since ne >M, this of course leads to an overdetermined

linear system, which is solved using a constrained least-squares technique (CLSQ) [72] as

Popt(x, tn) = argmin
p∈Pi

∑
Pn

ik
∈S0

i

ûn
0,ik −

1
|Pn

ik
|

∫
Pn

ik

p(x, tn)dx

2

, with Pi =

p ∈ PM :
1
|Pn

i |

∫
Pn

i

p(x, tn)dx = ûn
0,i

 , (8)

where PM is the set of all polynomials of degree at most M. In other words, the polynomial Popt has exactly the
cell average ûn

0,i on the polygon Pn
i and matches all the other cell averages of the remaining stencil elements in the

least-square sense. The polynomial Popt is expressed in terms of the basis functions (4) of degree M, hence

Popt(x, tn) =

M−1∑
`=0

ψ`(x, tn)p̂n
`,i, (9)

and the integrals appearing in (8) are computed in each Voronoi polygon Pn
ik

by summing the contribution of each
of its sub-triangles T ∈ T (Pn

ik
). On the sub-triangles we employ (M + 1)2 quadrature points defined by the conical

product of the one-dimensional Gauss-Jacobi formula, see [170].
To make the reconstruction operator nonlinear, which is required in the presence of shock waves, the CWENO

algorithm makes use of other polynomials of lower degree. Given a Voronoi polygon Pn
i with Nn

Vi
Voronoi neighbors

V(Pn
i ), we construct Nn

Vi
interpolating polynomials of degree Ms = 1 referred to as sectorial polynomials. More

precisely, we consider Nn
Vi

stencils S s
i with s ∈ [1,Nn

Vi
], each of them containing exactly n̂e = L(Ms, d) = (d + 1)

cells. Each S s
i includes always the central cell Pn

i and two consecutive neighbors belonging toV(Pn
i ). An example of

stencils S 0
i and S s

i for a polygon with Nn
Vi

= 5 and M = 2 is reported in Figure 2.
For each stencil S s

i we compute a linear polynomial Ps(x, tn) by solving the reconstruction systems

Ps(x, tn) ∈ P1 s.t. ∀Pn
ik ∈ S s

i :
1
|Pn

ik
|

∫
Pn

ik

Ps(x, tn) dx = ûn
0,ik , (10)

which are not overdetermined and therefore have a unique solution for non-degenerate locations of the Voronoi
barycenters. Following the general framework introduced in [50], we select a set of positive coefficients λ0, . . . , λNp

such that
Nn

Vi∑
s=0

λs = 1 (11)

and we define a new polynomial

P0(x, tn) =
1
λ0

Popt(x, tn) −
Np∑
s=1

λsPs(x, tn)

 ∈ PM , (12)

so that the linear combination of the polynomials P0, . . . ,PNn
Vi

with the coefficients λ0, . . . , λNp is equal to Popt and
conservation is ensured. Specifically, we consider the linear weights used in [73], namely λ0 = 105 for S0

i and λs = 1
for the sectorial stencils. These weights are later normalized in order to sum to unity, according to the requirement (11).
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Finally, the sectorial polynomials Ps with s ∈ [1,Nn
Vi

] are nonlinearly hybridized with P0, as it is done also in other
WENO schemes [102, 97, 8]. We thus obtain wh(x, tn) in Pn

i as

wh(x, tn) =

Np∑
s=0

ωsPs(x, tn), x ∈ Pn
i , (13)

where the normalized nonlinear weights ωs are given by

ωs =
ω̃s Nn

Vi∑
m=0

ω̃m


, with ω̃s =

λs

(σs + ε)r . (14)

In the above expression the non-normalized weights ω̃s depend on the linear weights λs and the oscillation indicators
σs with the parameters ε = 10−14 and r = 4 chosen according to [72]. Note that in smooth areas, ωs ' λs and
then whi ' Popt, so that we recover optimal accuracy. On the other hand, close to a discontinuity, P0 and some of
the low degree polynomials Ps would be oscillatory and have high oscillation indicators, leading to ωs ' 0 and in
these cases only lower order non-oscillatory data are employed in whi , guaranteeing the non-oscillatory property of
the reconstruction. The oscillation indicators σs appearing in (14) are simply given by

σs =
∑

l

(
p̂n,s

l,i

)2
. (15)

Figure 2: Stencils for the CWENO reconstruction of order three (M = 2) with f = 1.5 for a pentagonal element Pn
i . Top-left: central stencil made

of the element itself Pn
i (in violet) and ne − 1 = 8 of its neighbors (in blue). In the other panels we report the Nn

Vi
= 5 sectorial stencils containing

the element itself and two consecutive neighbors belonging toV(Pn
i ).
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The CWENO procedure adopted in this work is similar to the one presented in [79] and it has been adapted
to Voronoi polygons and their connectivity. The needed modifications concern the computation of integrals in (8),
the number of sectorial polynomials, and the fact that basis functions are rescaled Taylor monomials referred to
the physical element and not to the reference element, hence yielding a different and very simple evaluation of the
oscillation indicators (15).

2.4. Evolution of the computational domain
At this point we have a high order spatial representation of the solution Q(x, tn) at the current time tn given by the

polynomial wn
h = wh(x, tn) of degree M. We recall that if N = M > 0 then wn

h = un
h; if instead N = 0 then wn

h is
obtained through the reconstruction procedure described in the previous Section 2.3.

By evaluating wn
h at the generator points xn

c , i.e. wn
h(xn

c , t
n) with (6), we recover the local fluid velocity v(xn

c), that
can be used to compute the new coordinates of the generator points simply as

xn+1
ci

= xn
ci

+ ∆t v(xn
ci

). (16)

Note that in our ALE formalism, the mesh can be moved with any velocity, hence it is not necessary to always integrate
the above relation (16) with high order of accuracy. Moreover, for the sake of simplicity, all along this manuscript we
do not move boundary elements.

The Delaunay triangulation connecting the new coordinates of the generator points xn+1
c is now recomputed, as

well as the corresponding updated Voronoi tessellation. Note that the only connection between the tessellations at
time tn and tn+1 is the number NP of generator points (i.e. of Voronoi polygons) and their global numbering. Instead,
the shape of each polygon is allowed to change, i.e. Nn

Vi
, Nn+1

Vi
, and consequently also the connectivities, i.e. for

exampleV(Pn
i ) , V(Pn+1

i ).
This change of the grid topology is actually the strength of the present algorithm, since it allows us to maintain a

high mesh quality without distorted elements, as depicted in Figures 7 and 9, where we show a comparison between the
results obtained by allowing topology changes and by imposing a fixed connectivity, respectively. However, more care
is needed in order to update the solution from time tn to tn+1. In particular, to obtain a high order direct ALE scheme
we need a complete knowledge of the space–time structure between the two time levels, i.e. we need to construct the
so called space–time control volumes and their space–time connectivity. We would like to emphasize that up to Finite
Volume schemes of order 2, one could avoid the procedure that we are going to introduce (see [168, 145]), but starting
from order 3 it is essential.

2.4.1. High order integration of the trajectories of the generator points
Due to the ALE framework of the present work, the mesh can in principle be moved with an arbitrary velocity,

and there is not a specific necessity of moving the grid in a fully Lagrangian fashion. Nevertheless, (16) can also
be replaced by a high order Taylor method [23, 32, 171], leading to a high order approximation of the Lagrangian
trajectories of the generators points. The use of this technique for example improves mesh quality in vortex flow, as
clearly shown in Section 4.1.1, and also improves the overall Lagrangian behavior of the algorithm.

In what follows we detail the high order approach used for the integration of the flow trajectories.
The Taylor expansion of the new position xn+1

ci
of a generator point at time tn+1 with respect to its position at time

tn can be written as

xn+1
ci

= xn
ci

+ ∆t
dx
dt

+
∆t2

2
d2x
dt2 +

∆t3

6
d3x
dt3 +

∆t4

24
d4x
dt4 + O(5), (17)

which achieves fourth order of accuracy in time. Now, the high order time derivatives in (17) are replaced by high
order spatial derivatives, via the Cauchy-Kovalevskaya procedure, using repeatedly the trajectory equation

dx
dt

= v(x(t)), (18)

and assuming a stationary velocity field (i.e. ∂v
∂t = 0), hence

dx
dt

= v = vi,
d2x
dt2 =

d
dt

(
dx
dt

)
=
∂v
∂x

∂x
∂t

= (∇v) v =
∂vi

∂x j
v j. (19)
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The chain rule, as written in (19), can be applied iteratively to obtain the third derivative of the position

d3x
dt3 =

d
dt

(
d2x
dt2

)
= ∇(∇v) v v + (∇v) (∇v) v =

∂vi

∂x j ∂xk
v j vk +

∂vi

∂x j

∂v j

∂xk
vk, (20)

and similarly, the fourth derivative reads

d4x
dt4 = ∇ (∇ (∇v)) v v v + ∇ (∇v) (∇v) v v + 2∇ (∇v) v (∇v) v + (∇v) ∇ (∇v) v v + (∇v) (∇v) (∇v) v =

=
∂vi

∂x j ∂xk ∂xl
v j vk vl +

∂vi

∂x j ∂xk

∂vk

∂xl
vl v j + 2

∂vi

∂x j ∂xk
vk
∂v j

∂xl
vl +

∂vi

∂x j

∂v j

∂xk ∂xl
vl vk +

∂vi

∂x j

∂v j

∂xk

∂vk

∂xl
vl.

(21)

Finally, the partial derivatives of v are recovered from the local fluid velocities u through the high order polynomials
wh (6) which represent the conserved variables Q inside each cell with high order of accuracy. Since wh is given via
modal basis functions, the coefficients ŵn

`,i already represent the values of the partial derivatives with respect to x of
the conserved variables, if a sufficiently high order accurate PN PM method is employed. Then, the chain rule should
be applied in order to recover the partial derivatives of the primitive variable u from those of the conserved variables
ρu and ρ.

2.5. Mesh optimization
The ALE framework also allows to apply some mesh optimization techniques, since the mesh velocity is not

constrained to follow the local fluid velocity exactly. Furthermore, an additional level of liberty in the choice of
type of smoothing scheme is introduced by the possibility of changing the grid connectivity between consecutive
time levels. In this work, the mesh optimization methods are implemented by slightly modifying, at each time step,
the motion of the Voronoi generator points (that is, the vertexes of the dual Delaunay triangulation). This aims at
improving the overall robustness of the method, as well as reducing numerical errors and spurious mesh imprinting.

In general, the target polygonal elements will have a locally uniform edge length (i.e. no small edges for a given
element, smoothly graded mesh size) and will not be excessively stretched in one direction only, so that anisotropies
due to differences in numerical diffusion are minimized. More importantly, this increases the robustness of the matrix
computations involved in the polynomial data reconstruction and in the fully discrete update formulae. Also, we must
note that these objectives shall be pursued in conjunction with the interest of preserving an accurate mesh motion
that follows the local flow field, maintaining the Lagrangian character of the numerical method as far as possible.
This means that one must allow a certain degree of anisotropy in the mesh, which might be desirable to resolve flow
discontinuities or strong gradients.

The mesh regularization procedure begins by computing all the new positions xn+1
ci

for the generator points of
the Voronoi grid and then recovering, for each generator, the position x∗ci

that is prescribed by a simple smoothing
technique applied to the candidate positions xn+1

ci
. We say that x∗ci

is a location for the generator that is optimal in the
sense of mesh quality, as opposed to optimal in following the flow of the fluid, which would be the role taken by xn+1

ci
.

The candidate position xn+1
ci

is subsequently replaced by a corrected value x̂n+1
ci

that is given by the weighted average
x̂n+1

ci
= (1 − µ) xn+1

ci
+ µ x∗ci

, with µ being a blending factor that yields the balance between the amount of mesh motion
due to fluid flow with the one due to smoothing.

Concerning the determination of x∗ci
, we decided to simply compute it from the application to xn+1

ci
of one iteration

of a Lloyd-type algorithm; that is, after updating the Delaunay triangulation of the generator points taking into account
their new candidate positions xn+1

ci
, we evaluate the quality-optimal position x∗ci

for generator ci as

x∗ci
=

 ∑
ak ∈Ai

ωak

−1 ∑
ak ∈Ai

1
2

(
xn+1

ak , i2 + xn+1
ak , i3

)
ωak . (22)

We define Ai to indicate the set of Delaunay triangles ak that share xn+1
ci

as a vertex, while we denote with xn+1
ak , i2

and xn+1
ak , i3

the other two vertexes of the triangle ak, that is, the two that do not coincide with xn+1
ci

. The choice of
weights yields different smoothing methods, and in this work we mainly employ ωak = ‖xn+1

ak , i2
− xn+1

ak , i3
‖ to obtain an

10



algorithm that is reminiscent of Lloyd smoothing [121], as this would prescribe that each generator shall be moved to
the centroid of the polygonal chain obtained by connecting all vertexes xn+1

ak , i2
and xn+1

ak , i3
of all Delaunay triangles inAi.

This choice tends to eliminate small edges just like the algorithms forwarded in [165, 33, 147]. Alternatively, we can
set ωak = 1 and obtain Laplacian smoothing [94, 81], that is, the generic generator xn+1

ci
is moved to the center of mass

of the system of point masses defined by the vertexes of the above described polygonal chain. Laplacian smoothing
yields nicely rounded cells and tends to preserve the grading of the mesh.

Once a set of quality-aware node positions x∗ci
has been determined, the algorithm must choose how to compromise

between such positions and those prescribed by the fluid motion. Instead of simply fixing the value of µ as a simulation
parameter, we chose to let µ vary with time by recomputing it as a function of the solution data and of the current grid
configuration, as well as by accounting for the specific explicit time step restriction in use. Specifically, we compute
the relaxation parameter µ as

µ = min

1, √
U∗ ∆t

∆s
F

 , (23)

with U∗ being a rough scaling estimate for the fluid velocity, computed at each time step as the maximum velocity
encountered for all generator points, ∆t the time step size, and ∆s an indicator for the mesh spacing, given by the
minimum value of the ratio between the area and the perimeter of all Voronoi polygons, in analogy to how the time
step duration is determined in (25). The underlying idea is that we want to balance, during each time step, the spatial
scaling of fluid flow, with a characteristic length representative of the mesh motion due to pure smoothing in the
smallest cells of the domain, which we implicitly assume to be the most delicate. In this way, we have replaced
the blending factor µ with another non-dimensional smoothing parameter F , that fixes the strength of smoothing in
the small cells that are those that might otherwise compromise the stability of the computation. The square root is
arbitrarily introduced in order to reduce the sensitivity of Equation (23) to sudden variations in the flow speed U∗.

Note that, although in a very approximate form, the formula (23) scales with the square root of a characteristic
Mach number, at least when U∗ is negligible with respect to sound speed or vice versa; one can verify this by substi-
tuting (25) in (23) and noting that it simplifies into an expression that includes the degree of the polynomial data N,
the CFL coefficient, and an approximate Mach number. Further investigations on more complex scaling expressions
that correct for such residual dependencies, as well as space-dependent formulae, are left for future work.

The results presented in this paper are obtained by moving the generators with the local fluid velocity and by
applying one of the smoothing techniques described here, with different values of the smoothing parameter F .

2.6. Space–time connectivity
For the sake of clarity, let us first consider the simple case in which no topology changes have occurred between tn

and tn+1, i.e. Nn
Vi

= Nn+1
Vi

andV(Pn
i ) = V(Pn+1

i ), as illustrated in Figure 3. Here, the space–time control volume Cn
i is

(a) (b) (c)

Figure 3: Space time connectivity without topology changes. (a) The tessellation at time tn and time tn+1. (b) Pn
i is connected with Pn+1

i to construct
the space–time control volume Cn

i . (c) The sub-triangle T n
i j

is connected with T n+1
i j

to construct the sub–space–time control volume sCn
i j

.
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easily obtained by connecting each node of the polygon Pn
i via straight line segments with the corresponding node of

Pn+1
i . Moreover, each sub–triangle T n

i j
∈ T (Pn

i ) is connected with the corresponding T n+1
i j
∈ T (Pn+1

i ) obtaining a sub–
space–time control volume, denoted by sCn

i j
in the following, which has the form of an oblique prism in space–time,

with triangular faces on the bottom (tn) and the top (tn+1).
We underline that each space–time element Cn

i is given by a volume that is closed by the polygon Pn
i at time tn, the

polygon Pn+1
i at tn+1 and by the lateral space-time faces ∂Cn

i j
j = 1, . . . ,Nn,st

Vi
which are quadrilaterals in space–time

and represent the time evolution of the edges en
i j
∈ E(Pn

i ). Here, Nn,st
Vi

= Nn
Vi

= Nn+1
Vi

denotes the number of space–time
neighbors of Cn

i . The total surface of Cn
i is denoted with ∂Cn

i

∂Cn
i =

Nn,st
Vi⋃

j=1

∂Cn
i j
∪ Pn

i ∪ Pn+1
i . (24)

Technical details 1. We recall that the node numbering (i.e. the numbering of the blue points in Figure 3) could
be in principle different at the two time levels so the correspondence between the nodes at time level tn and tn+1 is
not obvious. Nevertheless, it can be recovered from the numbering of the Voronoi neighbors V(Pn/n+1

i ) that on the
contrary remains the same. Therefore, we loop over V(Pn/n+1

i ), we find the edges en/n+1
i j

shared between V(Pn/n+1
i j

)

and Pn/n+1
i , and we put in correspondence their end points, so that the space–time control volume Cn

i can be defined.
Besides, the surface obtained by connecting the end points of en

i j
and en+1

i j
is noted as ∂Cn

i j
, see Figure 6b. �

Let us now consider Pn
i and Pn+1

i in the case Nn
Vi
, Nn+1

Vi
. Now, the space–time connection between them induces

the appearance of degenerate elements of two types: (i) degenerate sub–space–time control volumes sCn
i j

, where either
their top or bottom faces are degenerate triangles that are collapsed just to a line, see Figures 4b-4c; (ii) and also sliver
space–time elements, see Figure 4d. Technical details on their construction (intended for the reader interested in
reproducing the algorithm) are reported in the following paragraph. The main characteristics of this kind of elements
are described in next Section 2.7.

Technical details 2. First, we order V(Pn
i ) and V(Pn+1

i ) starting from the first common neighbor (evidence that this
choice does not affect the results are shown in Table 3). Then, we merge the two set of neighbors to compute V(Cn

i )
which, in this case, does not coincide neither withV(Pn

i ) nor withV(Pn+1
i ). V(Cn

i ) contains all the polygons ofV(Pn
i )

and V(Pn+1
i ) counted once (i.e. without multiple entries) and counterclockwise ordered respecting the order of both

V(Pn
i ) andV(Pn+1

i ). It represents the set of Nn,st
Vi

space–time neighbors of Cn
i .

Next, we have to find the node connections in order to build Cn
i , which are not obviously determined and are

recovered from V(Cn
i ). We loop on Pi j ∈ V(Cn

i ) (this loop assures that we account for all the nodes of Cn
i , since by

considering all the neighbors we also consider all the edges of both Pn
i and Pn+1

i ) and we proceed as follows:

I. If Pi j belongs both to V(Pn
i ) and to V(Pn+1

i ), the node connection procedure falls into the previous one, and a
standard sCn

i j
and ∂Cn

i j
can be recovered by connecting the end points of the edges shared between Pn

i − Pn
i j

and
Pn+1

i −Pn+1
i j

. Referring to Pn
3 depicted in Figure 4, we could fix as first common neighbor Pn

1 because Pn
1 ∈ V(Pn

3)
and Pn

1 ∈ V(Pn+1
3 ): nodes 21 − 55 and 22 − 56 can be easily connected.

II. If Pi j ∈ V(Pn
i ) but Pi j < V(Pn+1

i ), then the end points of the edge shared between Pn
i − Pn

i j
will be connected

to a unique node at time tn+1, namely the top node which is common to Pi j−1 and Pi j+1 at time tn+1. Referring to
Figure 4, both nodes 22 and 23 will be connected with node 56. In this case , ∂Cn

i j
is degenerate: it does not

have a rectangular shape but a triangular one. Also sCn
i j

is degenerate because its top face is just given by a line
connecting the barycenter of Pn+1

i with the common top node (node 56 in Figure 4).

III. If Pi j ∈ V(Pn+1
i ) but Pi j < V(Pn

i ), then the end points of the edge shared between Pn+1
i − Pn+1

i j
will be connected

to a unique node at time tn, namely the bottom node which is common to Pi j−1 and Pi j+1 at time tn. Referring to
Pn

4 shown in Figure 4, both nodes 56 and 60 will be connected with node 23. As in the previous case, ∂Cn
i j

has a
degenerate triangular shape and also sCn

i j
is degenerate because its bottom face is just given by a line connecting

the barycenter of Pn
i with the common bottom node (node 23 in Figure 4). �
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Note that when a change of topology occurs in a Voronoi polygon, the same happens to three of its neighbors and
a total of four degenerate sub–space–time control volumes will be originated, two of type (II) and two of type (III),
refer to Figures 4b-4c. Moreover, a void is left between them: to fill it and recover a fully conservative discretization,
we insert a new element called space–time sliver element, depicted in Figure 4d, whose bottom and top faces just
coincide with an edge of the tessellation at time tn and tn+1, respectively. We denote this kind of element with S n

i , its
total lateral surface with ∂S n

i and each of the four lateral faces with ∂S n
i j
, j = 1, . . . , 4.

Technical details 3. The nodes of a sliver element are given by the end points of those edges that flip between the
two time steps and are ordered in such a way that the volume of S n

i is positive. Let us consider case (II) in which
Pi j ∈ V(Pn

i ) but Pi j < V(Pn+1
i ): the edge between Pn

i − Pn
i j

is taken as bottom face for the sliver. Then, we loop over
the edges outgoing from the common top node: two of them belong to Pn+1

i , the third one will be taken as top face of
the sliver element. If that edge connects Pn+1

i → Pn+1
i j

then one sliver element is enough to fill the space–time hole left
from the topology change.

If this is not the case, as illustrated in Figures 5b-5d, more consecutive sliver elements will be necessary to fill
the space–time holes. These consecutive sliver elements have the bottom face in common, given by the edge between
Pn

i − Pn
i j

, and the top faces given respectively by the edges composing the path connecting Pn+1
i → Pn+1

i j
. A similar

procedure is employed for situations depicted in Figures 5a-5c, corresponding to case (III). We allow a maximum of
three consecutive sliver elements. �

Two problems can arise while assembling the space–time connectivity: V(Cn
i ) could be not sortable respecting

both the order ofV(Pn
i ) andV(Pn+1

i ), or more than three sliver elements could be necessary to complete the connection
path. In this case a MOOD [31, 25] procedure described in Section 3.4 will be adopted.

2.7. Degenerate sub–space–time control volumes and sliver space–time elements
The change of topology induces the appearance of degenerate elements in the space–time connectivity.
As is evident from Figures 4b-4c, some of the sub–space–time control volumes sCn

i j
of Cn

i , are triangular prisms
with one of their top or bottom faces collapsed to just a line, and with the lateral space–time surface ∂Cn

i j
being of

triangular shape (instead of the standard quadrilateral shape). They do not pose particular problems because they are
part of a standard control volume, so everything is naturally well defined on them (basis functions, quadrature points,
values of the numerical solution un

h, of the reconstruction polynomials wn
h, and of the space–time predictor qn

h defined
below in (26)).

On the contrary, the space–time sliver element in Figure 4d is a completely new control volume which does neither
exist at time tn, nor at time tn+1, since it coincides with an edge of the tessellation at the old and at the new time levels,
and, as such, has zero area in space at tn and tn+1. However, it has a non-negligible volume in space–time. The
difficulties related to this kind of elements are due to the fact that wh is not clearly defined for them at time tn and that
contributions across them should not be lost at time tn+1, in order to ensure conservation. Space–time sliver elements
always have four neighbors, namely the two Voronoi polygons that share their degenerate bottom face (edge) and the
two Voronoi polygons that share their degenerate top face (edge).

Note that the computation of numerical fluxes across degenerate triangular space–time faces has already been
treated in [88]. In the same paper a proof of concept was given, that situations like those shown in Figures 4b-4c could
be handled up to second order of accuracy. Instead, the treatment of sliver elements is a completely new topic.

3. Numerical method II: high order fully-discrete direct ALE FV-DG scheme

The governing equations (1) are now solved with the aid of a high order fully-discrete one-step predictor-corrector
ADER FV-DG method obtained by generalizing the scheme first presented in [69] to our moving Voronoi meshes with
topology change. ADER finite volume schemes go back to the pioneering work of Toro and Titarev [173, 177, 174,
161, 175] on approximate solvers for the generalized Riemann problem (GPR). ADER schemes have been originally
developed in the Eulerian framework on fixed grids [173, 177, 174, 161, 175, 70, 39] and have subsequently also been
extended to moving meshes in the ALE context [29, 20, 18, 21].

We recall that high order of accuracy in space is provided by the piecewise polynomial data representation wn
h,

which for N = M > 0 coincides with the DG polynomial, i.e. wn
h = un

h, while, in the Finite Volume case (N = 0), wn
h
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(a) (b)

(c) (d)

Figure 4: Space time connectivity with topology changes, degenerate sub–space–time control volumes and sliver element. Panel (a): at time tn

the polygons Pn
2 and Pn

3 are neighbors and share the highlighted edge, instead at time tn+1 they do not touch each other; the opposite situation
occurs for polygons Pn

1 and Pn
4. This change of topology causes the appearance of degenerate elements of different types. The first type is given by

degenerate sub–space–time control volumes colored in violet in Panels (b) and (c). The second type of degenerate elements are called space–time
sliver elements, an example is colored in magenta in Panel (d). The sub–space–time control volumes of Panels (b) and (c) are triangular prisms with
one of their faces collapsed to just a line: they do not pose particular problems because they are part of a standard control volume, so everything
is naturally well defined on them (basis functions, quadrature points, values of un

h,w
n
h,q

n
h). On the contrary, the sliver element in panel (d) is a

completely new control volume which does neither exist at time tn, nor at time tn+1, since it coincides with an edge of the tessellation and, as such,
has zero areas in space. However, it has a non-negligible volume in space–time. The difficulties associated to this kind of element are due to the
fact that wh is not clearly defined for it at time tn and that contributions across it should not be lost at time tn+1 in order to guarantee conservation.
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(a) (b)

(c) (d)

Figure 5: Consecutive space–time sliver elements. Refer for example to Panel (d): Pn
3 and Pn

7 are neighbors at time tn but this is no longer the case
at time tn+1 and moreover Pn+1

4 , Pn+1
5 , Pn+1

6 and Pn+1
8 are among them; this complex change of topology causes the appearance of 3 space–time

sliver elements. A similar situation with 3 space–time sliver elements is depicted in Panel (c). In Panels (a) and (b) we show a change of topology
with 2 space–time sliver elements.
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is obtained through the reconstruction procedure described in Section 2.3. In any case, wn
h only depends on the mesh

configuration at time tn, so that an eventual degeneracy of the space–time geometry does not affect this first step.
Then, the predictor step consists in a local solution of the governing PDE (1) in the small, see [93], inside

each space-time element Cn
i , thus including the sliver elements S n

i . It is called local because it is obtained by only
considering cell Cn

i with initial data wn
h on Pn

i , the governing equations (1) and the geometry of Cn
i , without taking

into account any interaction between Cn
i and its neighbors. It provides, for each space–time control volume Cn

i , a
polynomial data representation qn

h (see below for the details) of high order both in space and time, which serves as a
predictor solution, only valid inside Cn

i , to be used for evaluating the numerical fluxes and sources when integrating
the PDE in the final corrector step of the ADER scheme.

Lastly, the corrector step integrates the weak form of the PDE over the space-time control volumes Cn
i , making use

of the predictor solution qn
h, and returns un+1

h by taking care of the coupling with neighbors through the numerical flux
computations across ∂Cn

i . It ensures high order of accuracy in space and time, provided the high order of accuracy
of qn

h. The scheme is by construction conservative since it takes into account all the flux contributions over ∂Cn
i ,

including those across the sliver elements (see Section 3.2.2). Moreover, the method is stable if the time-step size ∆t
satisfies an explicit CFL stability condition, which reads

∆t < CFL

 |Pn
i |

(2N + 1) |λmax,i|
∑
∂Pn

i j
|`i j |

 , ∀Pn
i ∈ Ωn. (25)

In the above formula, `i j is the length of the edge j of Pn
i and |λmax,i| is the spectral radius of the Jacobian of the flux

F. On unstructured meshes the CFL stability condition requires the inequality CFL < 1
d to be satisfied, see [69].

3.1. High order in time: space–time predictor
In what follows, a predictor of the solution is recovered, which is valid locally inside Cn

i and is given by high order
piecewise space-time polynomials qn

h(x, t) of degree M that are expressed as

qn
h(x, t) =

Q−1∑
`=0

θ`(x, t)q̂n
` , (x, t) ∈ Cn

i , Q = L(M, d + 1). (26)

with θ`(x, t) being a modal space–time basis of the polynomials of degree M in d + 1 dimensions (d space dimensions
plus time), which read

θ`(x, y, t)|Cn
i

=
(x − xn

bi
)p`

p`! hp`
i

(y − yn
bi

)q`

q`! hq`
i

(t − tn)q`

q`! hq`
i

, ` = 0, . . . ,L(M, d + 1), 0 ≤ p` + q` + r` ≤ M. (27)

These basis functions θ are redefined at the beginning of each time step in function of the current position xn
bi

, thus
they are directly linked to the current mesh configuration; however, contrarily to the test functions of Equation (37)
that are used in the corrector step (see the next section), there is no need to move them during each time step, since
they allow to represent information at the predictor step, which is only valid locally inside each Cn

i .
The predictor qn

h is computed through an iterative procedure that looks for the polynomial satisfying a weak form
of (1) obtained for any control volume Cn

i as follows. We multiply the governing PDE (1) by a test function θk,
integrate over Cn

i and insert the discrete solution qn
h instead of Q, hence obtaining∫

Cn
i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
Cn

i

θk(x, t)∇ · F(qn
h) dxdt =

∫
Cn

i

θk(x, t) S(qn
h) dxdt. (28)

Differently from what has been proposed in [69, 70, 19, 20], here we do not integrate the first term in (28) by parts
in time. Instead, we take into account potential jumps of qh on the boundaries of Cn

i in the sense of distributions,
combined with upwinding of the fluxes in time. This approach is similar to the path-conservative schemes proposed
in [146, 44, 43], but much simpler, since the test functions are only taken from within Cn

i and there is no need to define
a non-conservative product on ∂Cn

i . Therefore, the integral containing the time derivative in (28) is rewritten as∫
Cn

i

θk(x, t)
∂qn

h

∂t
dxdt =

∫
Cn

i \∂Cn
i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
∂Cn

i

θk(x, t)
(
qn,+

h − qn,−
h

)
ñ−t dS , (29)
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where Cn
i \∂Cn

i denotes the interior of Cn
i . Here, qn,−

h and qn,+
h denote the boundary-extrapolated inner and outer states

across the jump on ∂Cn
i . Furthermore, ñ− are only those outward pointing unit-normal vectors on ∂Cn

i that point back
in time and ñ−t is their time component, i.e. ñ−t = min(0, ñ·(0, 0, 1)) ≤ 0. Upwinding in time is therefore automatically
guaranteed, since we only consider the contributions coming from the past, according to the causality principle. In
other words, only time fluxes that enter the space–time control volume Cn

i contribute to the jump term in (29), and
they are easily identified by checking the sign of the time component of the space–time normal vector ñ.

3.1.1. Space–time predictor on standard space–time elements
For standard elements, we apply the jump term only on the bottom surface Pn

i of the space–time element Cn
i under

consideration, where it then simplifies to(
qn,+

h − qn,−
h

)
ñ−t

∣∣∣∣
Pn

i

= −
(
wn

h(x, tn) − qn
h(x, tn)

)
= qn

h(x, tn) − wn
h(x, tn), (30)

with qn,+
h = wh(x, tn) being simply given by the reconstruction polynomial at time tn and obviously ñ− = (0, 0,−1) on

Pn
i and thus ñ−t = −1. In this case, (29) reduces to∫

Cn
i

θk(x, t)
∂qn

h

∂t
dxdt =

∫
Cn

i \P
n
i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
Pn

i

θk(x, tn)
(
qn

h(x, tn) − wh(x, tn)
)

dx (31)

for standard space–time elements. The reason for this choice is that in this manner, all space–time predictors of the
standard elements are decoupled from each other, since they only require the initial data wn

h and no information from
the neighbor elements. This will not be the case for sliver elements, for which we do not have any reconstruction
polynomial available at tn. If we considered the jump terms also on lateral surfaces of standard space–time elements,
the space–time predictors would no longer be independent of each other, since our mesh is moving and there will be
in general always a non–empty subset of ∂Cn

i with ñ−t < 0. This would require a proper ordering of the execution
sequence of the space–time predictors on the standard elements, but this is something we want to avoid. With the
following definitions

K1 =

∫
Cn

i \P
n
i

θk
∂θ`
∂t

dxdt, Kx =

∫
Cn

i

θk
∂θ`
∂x

dxdt, Ky =

∫
Cn

i

θk
∂θ`
∂y

dxdt,

M =

∫
Cn

i

θkθ` dxdt, F0 =

∫
Pn

i

θk(x, tn)ψ`(x, tn) dx, F1 =

∫
Pn

i

θk(x, tn)θ`(x, tn) dx, (32)

the weak form (28)-(29) can be compactly rewritten as

(K1 + F1) q̂n
i = F0ŵn

i −Kx f(q̂n
i ) −Ky g(q̂n

i ) + M S(q̂n
i ), (33)

where q̂n
i and ŵn

i contain all the expansion coefficients of q̂n
`,i in (26) and ŵn

`,i in (6), respectively. The solution of (33)
can be found via a simple and fast converging fixed point iteration (a discrete Picard iteration), as detailed in [69, 95].
Here, as initial guess we simply impose q̂n

`,i = ŵn
`,i for the common spatial degrees of freedom (with ` ≤ M) and zero

for the other ones. For linear homogeneous systems, the discrete Picard iteration converges in a finite number of at
most M+1 steps, since the involved iteration matrix is nilpotent, see [100]. In the nonlinear case we allow a maximum
of 10 iterations if convergence is not reached before, being M + 1 iterations enough for obtaining the correct order M
of convergence.

Notice again that in (31) and therefore in (33) we have considered only one jump term, namely the contribution
coming from the past through the bottom face Pn

i of Cn
i , where wn

h = wh(x, tn) is known and well defined. This allows
us to couple (28) with the initial condition wh(x, tn)|Pn

i
via (31). No other information (as neighbors values) is taken

into account in this local phase. Indeed, neighbor data will be considered later in the corrector step (Section 3.2).
The integrals above are evaluated using multidimensional Gaussian quadrature rules of suitable order of accuracy,

see [170] and Figure 6 for details. In order to carry out the integration, we split the space-time volume Cn
i into a set of

sub–space-time volumes sCn
i j

of Cn
i , whose shape is an oblique triangular prism. Note that for degenerate sub–space–

time control volumes, as those of Figures 4b and 4c, the above quadrature formulae remain well defined, hence the
predictor procedure over them does not pose any problem and does not need any adaptation.
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We emphasize that we first carry out the space–time predictor for all standard elements, which can be computed
independently of each other, and only subsequently process the remaining space–time sliver elements. The reason for
this will become clear in the next section.

3.1.2. Space–time predictor on the space–time sliver elements
The predictor procedure on space–time sliver elements, as those shown in Figures 4d and 5, needs particular care.

The main problem connected with the space–time sliver elements is the fact that their bottom face is degenerate and
consists only in a line segment, hence the spatial integral over Pn

i vanishes, i.e. there is no possibility to introduce the
initial condition of the local Cauchy problem at time tn into the predictor for space–time sliver elements.

Furthermore, the degenerate bottom faces are the edges of the Voronoi tesselation at tn and are thus at the interface
between two adjacent elements, which have in principle a discontinuous solution wn

h. Therefore, an initial value for a
sliver element is in general not easy to define. Thus, in order to couple (28) with some known data from the past we
have to slightly modify the algorithm detailed previously.

In particular, the upwinding in time approach is not only used for the surface Pn
i , as done in (30), but we actually

use the jump terms on the entire part of the space–time surface ∂Cn
i that closes a sliver control volume. As already

stated in the previous section, the information needed to feed the predictor is allowed to come only from the past, i.e.
only from those space–time neighbors Cn

j whose common surface ∂Cn
i j = Cn

i ∩Cn
j exhibits a negative time component

of the outward pointing space–time normal vector (ñ−t < 0). In this way, we can introduce information from the
past into the space–time sliver elements by considering also its neighbor elements, but respecting at the same time
the causality principle in time, hence using again upwinding for the flux evaluation of the jump term in (29). As a
consequence, the predictor solution qn

h is again obtained by means of (28), but treating the entire space–time surface
∂Cn

i with the upwind in time approach, hence leading to(
K∗1 − F∗1

)
q̂n

i = −
∑

j

F∗j q̂n
j −K∗x f(q̂n

i ) −K∗y g(q̂n
i ) + M∗ S(q̂n

i ), (34)

where the following definitions for the sliver element hold

K∗1 =

∫
Cn

i \∂Cn
i

θk
∂θ`
∂t

dxdt, K∗x =

∫
Cn

i

θk
∂θ`
∂x

dxdt, K∗y =

∫
Cn

i

θk
∂θ`
∂y

dxdt,

M∗ =

∫
S n

i

θkθ` dxdt, F∗1 =

∫
∂Cn

i

θkθ` ñ−t dS , F∗j =

∫
∂Cn

i j

θkθ` ñ−t dS . (35)

(a) (b) (c)

Figure 6: Space–time quadrature points for third order methods, i.e. M = 2. (a) Quadrature points for the volume integrals and the space–
time predictor. (b) Quadrature points for the surface integrals, i.e. for flux computation. (c) Quadrature points for the volume integrals and the
space–time predictor for a sliver element.
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This is slightly different from what is done for standard elements in (33), where only the space–time surface at time
tn, i.e. Pn

i , is considered for introducing the initial condition wn
h. Here, the information from the past comes through

the upwind fluxes contained in the term F∗j q̂n
j in (34) and thus requires the knowledge of the predictor solution q̂n

j
in the neighbor Cn

j . This is the reason why the predictor step must first be performed over all the standard elements
using (33), so that the predictor solution qn

h is always available to feed the temporal fluxes with the quantities q̂n
j that

are needed for solving (34) in the case of the space–time sliver elements. We underline again that a space–time sliver
element has always four standard Voronoi elements as neighbors. This closes the description of the predictor step for
the space–time sliver elements.

3.2. Corrector step: direct ALE FV-DG scheme
This section contains the core of our direct ALE FV-DG scheme used to solve (1) on regenerating moving meshes.
Following [19, 20, 21], the PDE system (1) is rewritten in a space-time divergence form as

∇̃ · F̃ = S, (36)

with ∇̃ =
(
∂x, ∂y, ∂t

)
denoting the space-time divergence operator and F̃ = (f, g, Q) being the corresponding space-

time flux tensor. Then, we multiply (36) by a set of moving spatial modal test functions ϕ̃k(x, t), which coincide
with (4) at t = tn and at t = tn+1, i.e. ϕ̃k(x, tn) = ϕk(x, tn) and ϕ̃k(x, tn+1) = ϕk(x, tn+1). The test functions are tied to the
motion of the barycenter xbi (t) and move together with Pi(t) in such a way that at time t = tn+1 they refer to the new
barycenter xn+1

bi
. Thus, the test functions explicitly read as follows:

ϕ̃`(x, y, t)|Cn
i

=
(x − xbi (t))

p`

p`! hp`
i

(y − ybi (t))
q`

q`! hq`
i

, with xbi (t) =
t − tn

∆t
xn

bi
+

(
1 −

t − tn

∆t

)
xn+1

bi
, (37)

` = 0, . . . ,N , 0 ≤ p + q ≤ N.

These moving modal basis functions are essential for the approach presented in this paper. They naturally allow for
topology changes, without the need of any remapping steps, which we want to avoid in a direct ALE formulation.

Next, integration over the closed space-time control volume Cn
i yields∫

Cn
i

ϕ̃k∇̃ · F̃(Q) dxdt =

∫
Cn

i

ϕ̃kS(Q) dxdt. (38)

Application of the Gauss theorem leads to the following weak form that is the basis of our fully-discrete ALE scheme∫
∂Cn

i

ϕ̃kF̃(Q) · ñ dS −
∫

Cn
i

∇̃ϕ̃k · F̃(Q) dxdt =

∫
Cn

i

ϕ̃kS(Q) dxdt, (39)

where ñ = (ñx, ñy, ñt) denotes the outward pointing space-time unit normal vector on the space-time faces composing
the boundary ∂Cn

i of the space-time control volume. Moreover, the surface integral can be decomposed over the faces
of ∂Cn

i given by (24).

3.2.1. Corrector step for standard space–time elements
We first describe the corrector step for standard space–time control volumes. After introducing the discrete solu-

tion uh, the space–time predictor qh and a two-point numerical flux function on the element boundaries of the type

F̃(Q) · ñ := F (qn,−
h ,qn,+

h ) · ñ, (40)

into (39), where qn,−
h and qn,+

h are the inner and outer boundary-extrapolated data respectively, (i.e. the values assumed
by the predictors of the two neighbor elements at a point on the shared space–time lateral surface), we obtain the final
direct ALE scheme:

∫
Pn+1

i

ϕ̃kuh(x, tn+1) dx =

∫
Pn

i

ϕ̃kuh(x, tn) dx−
Nn,st

Vi∑
j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

i

∇̃ϕ̃k · F̃(qh) dxdt +

∫
Cn

i

ϕ̃kS(qh) dxdt, (41)
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where the unknown solution at the new time step uh(x, tn+1) can be computed directly from the solution at the pre-
vious time step uh(x, tn) through the integration of the fluxes and source terms over Cn

i , without needing any further
remapping/remeshing steps.

Our scheme is high order accurate in space and time because the predictor solution qn
h, which is given by piecewise

space–time polynomials of degree M, is employed for a high order accurate space-time integration of all remaining
terms in (41), namely the numerical surface flux integral on ∂Cn

i j
and the volume integrals on Cn

i for the fluxes and the
source terms.

The boundary fluxes are obtained by a Riemann solver, thus providing the coupling between neighbors, which
was neglected in the predictor step. The ALE Jacobian matrix w.r.t. the normal direction in space reads

AV
n(Q) =

(√
ñ2

x + ñ2
y

) [
∂F
∂Q
· n − (V · n) I

]
, n =

(ñx, ñy)T√
ñ2

x + ñ2
y

, (42)

with I representing the identity matrix and V ·n denoting the local normal mesh velocity. Furthermore, n is the spatial
normalized normal vector, which is different from the space-time normal vector ñ. We adopt either a simple and
robust Rusanov-type [157] ALE scheme,

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h ) + F̃(qn,−
h )

)
· ñi j −

1
2

smax

(
qn,+

h − qn,−
h

)
, (43)

where smax is the maximum eigenvalue of AV
n(qn,+

h ) and AV
n(qn,−

h ), or a less dissipative Osher-type [143, 77] ALE flux

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h ) + F̃(qn,−
h )

)
· ñi j −

1
2

(∫ 1

0

∣∣∣AV
n(Ψ(s))

∣∣∣ ds
) (

qn,+
h − qn,−

h

)
, (44)

where we choose to connect the left and the right state across the discontinuity using a simple straight–line segment
path

Ψ(s) = qn,−
h + s

(
qn,+

h − qn,−
h

)
, 0 ≤ s ≤ 1. (45)

The absolute value of AV
n is evaluated as usual as R|Λ|R−1, where R, R−1 and Λ denote, respectively, the right

eigenvector matrix, its inverse and the diagonal matrix of the eigenvalues of AV
n.

Finally, using the definitions (2) and (6), our arbitrary high order one-step direct ALE FV-DG scheme becomes

∫
Pn+1

i

ϕ̃kϕ` dx
 ûn+1

` =

∫
Pn

i

ϕ̃kψ` dx
 ŵn

` −

Nn,st
Vi∑

j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
Cn

i

ϕ̃kS(qn
h)dxdt. (46)

The volume integrals in the above expression (46) can be easily computed directly on the physical space-time element
Cn

i by summing up the contributions on each sub-volume sCn
i j

and employing Gaussian quadrature rules of sufficient
precision, see [170]. The lateral space–time surfaces of ∂Cn

i j instead are parameterized using a set of bilinear basis
functions [19], that is

∂Cn
i j = x̃ (χ, τ) =

4∑
k=1

βk(χ, τ) X̃n
i j,k, 0 ≤ χ ≤ 1, 0 ≤ τ ≤ 1, (47)

where the X̃n
i j,k represent the physical space–time coordinates of the four vertexes of ∂Cn

i j
, and the functions βk(χ, τ)

are defined as follows

β1(χ, τ) = (1 − χ)(1 − τ), β2(χ, τ) = χ(1 − τ), β3(χ, τ) = χτ, β4(χ, τ) = (1 − χ)τ. (48)

The mapping in time is given by the transformation

t = tn + τ∆t, τ =
t − tn

∆t
. (49)
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In this way, every ∂Cn
i j

(even if degenerate, i.e. with a triangular shape) can be mapped to a reference square [0, 1] ×
[0, 1] and surface integrals can be computed.

We close this section remarking that the integration of the governing PDE over the space-time volume Cn
i auto-

matically satisfies the geometric conservation law (GCL) for all test functions ϕ̃k. This simply follows from Gauss
theorem applied to closed space–time control volumes and we refer to [20] for a complete proof. The satisfaction of
the GCL property up to machine precision has been numerically verified in each simulation presented in this paper
and a series of test cases aimed at demonstrating its validity is presented in Section 4.1.2

3.2.2. Corrector step on sliver elements
Let us now consider the numerical scheme given by (46) in the case of a sliver element Cn

i = S n
i :

0` ûn+1
` = 0`ŵn

` −

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt, (50)

Since for sliver elements |Pn
i | = |P

n+1
i | = 0, the first two terms vanish. However, since the method is explicit and qn

h
only depends on information coming from the past, the remaining terms in (50) are in general not equal to zero, i.e.

−

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt , 0. (51)

We underline that computing these quantities does not pose any problem, since qn
h on S n

i is well defined (refer to
Section 3.1.2), and the shape of a space–time sliver element is that of a tetrahedron in space–time, hence allowing
standard quadrature rules to be used for integral evaluations.

The problem here arises from the fact that, using (50), the non-null quantity (51) will be lost at time tn+1 because it
plays a role only in the evolution of S n

i , which exists between tn and tn+1, but is null at tn+1. In order to be conservative,
we must avoid losing any contribution from the sliver elements. We therefore couple the weak formulation on S n

i with
the weak form of one of its standard space–time neighbors. Here, we always choose the one with the biggest space–
time volume, referred to as Cbig. The choice of the biggest volume is not mandatory, it only represents our way to
uniquely fix the choice of a particular neighbor of the sliver element. The test function ϕ̃k of (50) is then referred
to the barycenter of Cbig. Conservation is guaranteed by adding the contribution (51) of the sliver element S n

i to the
neighbor Cbig, hence

∫
Pn+1

big

ϕ̃kϕ` dx
 ûn+1

` =

∫
Pn

big

ϕ̃kψ` dx
 ŵn

` −

Nn,st
Cbig∑
j=1

∫
∂Cn

big j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

big

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
Cn

big

ϕ̃kS(qn
h)dxdt

+

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt.

(52)
We would like to remark that sliver elements only exist in between two consecutive time levels and are degenerate

both at tn and tn+1, hence they introduce some complexity in the algorithm. In particular, i) the fact that they coincide
with an edge at time tn makes it difficult to fix a valid initial condition in the predictor step necessary for the high
order of accuracy in time, and ii) the fact that they coincide with an edge at time tn+1 could prevent conservation in
an explicit scheme. Nevertheless, with the strategy outlined in Sections 3.1.2 and 3.2.2, no space-time contributions
are lost while advancing the numerical solution in time, i.e. our proposed ADER ALE FV-DG schemes are fully
conservative and keep their formal high order of accuracy even in the presence of space–time sliver elements.

Furthermore, notice that the presence of degenerate elements is strictly unavoidable in order to connect meshes
in space and time that include topology changes. They are also needed to collect enough geometrical information
for ensuring high order of accuracy in a direct ALE framework. For comparison purposes, let us consider the work
presented in [152], where the authors, in order to connect meshes with topology changes (within a different framework
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w.r.t. this work), have introduced some pyramidal degenerate elements instead of our sliver elements. The strategy
proposed in the aforementioned reference is indeed interesting and could in principle be applied also to the framework
of our explicit high order direct ALE schemes. However, besides the same complexities described for our sliver
elements, an additional difficulty would arise, since a degeneracy would occur at the midpoint of the time step.

3.3. A posteriori sub–cell finite volume limiter
Up to now, the presented PN PM scheme is high order accurate in space and time and, formally, the differences

between the FV case (N = 0) and the DG case (N = M) are only due to the procedure for achieving high order of
accuracy in space, which is obtained through a CWENO reconstruction in the FV case and is instead automatic for
DG. But there is actually one major difference, because the CWENO operator provides a nonlinear stabilization of
the FV scheme, while the DG scheme presented so far is unlimited and, as such, it is affected by the so-called Gibbs
phenomenon, i.e. oscillations are likely to appear in presence of shock waves or other discontinuities, which typically
occur while solving nonlinear hyperbolic systems. These oscillations can be explained by the Godunov theorem [90],
because the presented high order DG scheme is linear in the sense of Godunov.

As a consequence, a limiting technique is required. Our strategy is based on the MOOD approach [48, 60, 61],
which has already been successfully applied in the framework of ADER finite volume schemes [127, 26, 25]. Specif-
ically, the numerical solution is checked a posteriori for nonphysical values and spurious oscillations and, instead of
applying a limiter to the already computed solution, the solution is locally recomputed with a more robust scheme in
the so-called troubled cells. Troubled elements are those that do not pass the admissibility detection criteria, given by
both physical and numerical requirements which mark the numerical solution as acceptable or not acceptable. If the
solution in a cell is discarded, it is recomputed relying on a first order finite volume method applied to a fine sub-grid
generated within each troubled cell. A second order TVD scheme has been used as limiter in [74, 22, 167], while
higher order ADER-WENO subcell finite volume limiters are presented in [78, 182, 27, 151, 54].

We refer to the aforementioned references for an exhaustive description of the a posteriori finite volume subcell
limiter. Here, for the sake of clarity, we briefly recall the main concepts and we underline the differences introduced
for dealing with moving Voronoi elements and topology changes.

First, using the notation adopted in [22], the numerical solution computed so far is assumed to be a candidate
solution and is denoted with un+1,∗

h (x, tn+1). Then, we define a sub-triangulation of Pn
i made of a set of non-overlapping

so called small sub-triangles. Consequently, each control volume Cn
i is split into sub-triangular prisms, called small

sub-volumes, as follows.

• For N = 1 we consider a total number of small sub-triangles Si which is equal to Nn
Ci

, i.e. Si = Nn
Ci

. The small
sub-triangles are given by T n

i j
and the associated small sub-volumes are sCn

i j
, as defined in Section 2.6.

• If a topology change happens with N = 1, i.e. V(Pn
i ) , V(Pn+1

i ), degenerate small sub-triangles/sub-volumes
are considered as well, thus including also sub-triangles which can be given by a line.

• For N ≥ 2 we further subdivide each T n
i j

into N2 small sub-triangles, which are defined through the sub-nodes
provided by standard nodes of classical high order conforming finite elements on triangular meshes. In this way,
a total number of Si = Nn

Ci
· N2 small sub-triangles is taken into account. The splitting of sCn

i j
is consequently

defined.

• Even in the case N ≥ 2, degenerate sub-triangles/sub-volumes are counted if a topology change happens, i.e.
V(Pn

i ) , V(Pn+1
i ). This results in small sub-triangles which may be given by a portion of a line.

We denote each small sub-triangle of Pn
i with sn

i,α, where α ∈ [1,Si]. Next, we define the corresponding subcell
average of the numerical solution at time tn

vn
i,α(x, tn) =

1
|sn

i,α|

∫
sn

i,α

un
h(x, tn) dx =

1
|sn

i,α|

∫
sn

i,α

ϕ`(x) dx ûn
l := P(un

h) ∀α ∈ [1,Si], (53)

where |sn
i,α| denotes the volume of subcell sn

i,α of element Pn
i and the definition P(uh) is the L2 projection operator. We

fix also the candidate subcell average of the numerical solution at time tn+1 as vn+1,∗
i,α (x, tn+1) = P(un+1,∗

h ).
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Now, we mark the troubled cells. The candidate solution vn+1,∗
h (x, tn+1) is checked against a set of detection criteria.

Here we follow the criteria described in [22], however also other and more elaborate choices could be considered, see
for example the recent work of Guermond et al. [92] on invariant domain preserving schemes for hyperbolic systems.

Thus, our first criterion is the requirement that the computed solution is physically acceptable, i.e. belongs to
the phase space of the conservation law being solved. For instance, if the compressible Euler equations for gas
dynamics are considered, density and pressure should be positive and in practice we require that they are greater than
a prescribed tolerance ε = 10−12. Then, a relaxed discrete maximum principle (DMP) is applied, hence we verify

min
m∈V(Cn

i )

(
min

β∈[1,Sm]
(vn

m,β )
)
− δ ≤ vn+1,∗

i,α ≤ max
m∈V(Cn

i )

(
max

β∈[1,Sm]
(vn

m,β )
)

+ δ ∀α ∈ [1,Si], (54)

where δ is a parameter which, according to [22, 78, 182], reads

δ = max
(
δ0 , ε ·

[
max

m∈V(Cn
i )

(
max

β∈[1,Sm]
(vn

m,β )
)
− min

m∈V(Cn
i )

(
min

β∈[1,Sm]
(vn

m,β )
)])
, (55)

with δ0 = 10−4 and ε = 10−3.
If a cell fulfills the detection criteria in all its subcells, then the cell is marked as good, otherwise the cell is

troubled. We emphasize that this step is performed independently in each element and thus the projection v∗h(x, tn+1)
does not need to be retained after the cell has been assigned its marker.

The following step consists in re-computing the solution only in the troubled cells with a first order FV scheme,
applied in each small sub-triangle/sub-volume, that evolves the cell averages vn

i,α in order to obtain vn+1
i,α .

We do not report the details on the very well-known first order ALE-FV scheme, but we add some remarks on
flux computation at the space–time lateral surfaces of each sn

i . i) The same numerical flux function, i.e. (43) or (44),
used in the rest of the scheme is adopted here as well. ii) The employed quadrature rule is a simple mid-point rule that
makes use of the space–time barycenters gn

i of the space–time lateral faces of the sub-volume. iii) The normal vectors
are also computed at gn

i . iv) Referring to (40), when computing the flux between the sub-volume α of Cn
i and the

neighboring sub-volume β (of Cn
i or of any other Cn

i j
), boundary data are simply given by qn,−

h = vn
i,α and qn,+

h = vn
i/i j, β

.
v) If instead the neighbor is not a troubled Voronoi element Cn

i j
(which thus has not been sub-triangulated), then

qn,−
h = vn

i,α and qn,+
h = qn

h|C
n
i j

(gn
i j

).

A first order finite volume scheme always provides a valid solution, hence vn+1
i,α is acceptable. Moreover, since the

FV scheme is not directly applied to the Voronoi element but to each of its sub-triangles, the sub-mesh resolution does
not completely spoil the solution of the DG scheme. Nevertheless, the method does not maintain the formal order
of accuracy of the PN PM scheme, but it is only used and activated across shock waves and strong discontinuities.
Note also that for a troubled cell the mesh motion is not recomputed because it has been fixed using only information
coming from space at time tn, which are, as such, not affected by any problem.

Finally, the DG polynomial for the Voronoi cell Pn+1
i is recovered from the robust and stable solution on the

sub-grid level vn+1
i,α by applying the reconstruction operator R(vn+1

i,α (x, tn)), that is∫
S n

i,α

un+1
h (x, tn+1) dx =

∫
S n

i,α

vn+1
i,α (x, tn) dx := R(vn+1

i,α (x, tn)) ∀α ∈ [1,Si]. (56)

The reconstruction is imposed to be conservative on the main cell Pn+1
i , hence yielding the additional linear constraint∫

Pn+1
i

uh(x, tn+1) dx =

∫
Pn+1

i

vh(x, tn+1) dx. (57)

Moreover, the projection operator P in (53) and the reconstruction operator R in (56) satisfy the property P · R = I,
with I being the identity operator. The reconstruction operator (56)-(57) might still lead to an oscillatory solution,
since it is based on a linear unlimited least squares technique. If this is the case, the cell Pn+1

i will be detected as
troubled while performing the time marching at the next time level tn+2, therefore the finite volume subcell limiter will
be used again in that cell. However, the projection operator P (53) applied to the oscillatory reconstructed solution in
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cell Pn+1
i does not produce an acceptable set of subcell averages vi,α, so that one could not guarantee that the solution

coming from the subcell finite volume scheme is valid at the next time level tn+2. In order to overcome this issue, the
subcell averages vn+1

i,α are always kept in memory till the cell Pi is again marked as valid. In other words, if a cell is
detected to be troubled for the second time step in a row, then the starting subcell averages are not obtained via the
projection operator, but they are given by the solution of the subcell finite volume scheme at the previous time step.

If a cell Cn
i is acceptable but has at least one troubled neighbor cell Cn

i j
in its V(Cn

i ), then we cannot accept its

candidate solution un+1,∗
h (x, tn+1) because the scheme would become nonconservative. Indeed, at the common space–

time lateral surface ∂Cn
i j

, the flux computed from Cn
i would be obtained through the DG scheme (i.e. high order

predictor and high order corrector), while the one coming from the troubled neighbor Cn
i j

would be updated using the
first order FV scheme. Thus, the DG solution in these cells is recomputed in a mixed way: the volume integral and the
surface integrals on good faces are kept, while the numerical flux across the troubled faces is always provided by the
first order limiter.

Neighborhood of a sliver element.

At the subcell level, the difficulties associated with degenerate small sub-volumes are the same stated at the end of
Section 3.2.2 for degenerate big elements: how to impose an initial condition for cells with zero area at tn and how not
to lose any contribution computed through elements with zero area at tn+1. In order to activate and apply the limiter,
the following strategy is proposed.

Firstly, the sliver elements are not sub-triangulated. If one neighbor of a sliver S n
i is troubled, we mark as troubled

also the remaining three neighbors. Among the four neighbors of S n
i , we select the one with the biggest volume which

we call Cn
big.

Next, we need to provide the values q+,−
h when computing the fluxes (40).

• For a degenerate sn
i,α with zero area at tn we take the value obtained by evaluating un

h at the mid point of sn
i,α|tn

(this value is well defined because sn
i,α ⊂ Pn

i and so un
h is continuous).

• For a sliver element S n
i we take the value obtained by evaluating un

h of Cbig at the mid point of S n
i |tn ; this arbitrary

choice is justified by the fact that here we simply employ a first order method, which is stable even if the sliver
elements are neglected (see [168]).

Finally, we need to redistribute the fluxes computed across the degenerate elements when they disappear at tn+1.

• For a degenerate sn
i,α with zero area at tn+1 we assign the sum of the fluxes computed through its space–time

lateral surfaces to the closest sn
i,β that is not degenerate at tn+1 (the concept of closest is uniquely fixed through

a specific numbering of the sub-volumes).

• For a sliver element S n
i we assign its fluxes to Cn

big.

Besides, we remark that the space–time geometry definition in itself does not pose any problem: indeed, the
configuration of big elements has already been fixed in Section 2.6 and the subdivision has been deduced just above.
Therefore, quadrature formulae, normal vectors and bilinear mapping are always well defined.

3.4. MOOD approach to verify the consistency of the space-time connectivity

As already stated at the end of Section 2.6, it may not always be possible to connect two consecutive meshes in a
consistent way if the associated topology changes are too strong. However, these situations are immediately detected
at the beginning of the new time step, when the space–time connectivity is built. Indeed, if i) the setV(Cn

i ) cannot be
ordered consistently with both the order ofV(Pn

i ) andV(Pn+1
i ), or if ii) more than three sliver elements are necessary

to complete a path between elements which are neighbors at one time level but not at the previous or at the next one,
or if iii) the path involving the minimum number of slivers is not unique, then the algorithm detects the problem. To
overcome it, the current time step is simply restarted with a smaller time step size ∆t (reduced by a factor of 2 for
example). Eventually, more restarts are needed, until the connection between the two meshes is coherent.
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Since the mesh generation and the connectivity construction are not expensive, the performances of the algorithm
are not negatively influenced by this additional MOOD-type procedure (which applies before the evolution in time).
However, future work will consider the possibility of remeshing only locally, in the neighborhood of a connectivity
problem without reducing the time step size or more sophisticated mesh optimization algorithms. We emphasize that
such problems are encountered very rarely, see Tables 4, 5, 6 and the notes of Section 4.3.1 for some statistics.

4. Numerical results

The numerical results presented in this section will show the following properties of our new algorithms.
i. Our method has been implemented as general purpose code, in the sense that any kind of hyperbolic system

cast in the form (1) can be easily studied: for this reason we test it on several models, namely the standard
Euler equations of gas dynamics (Section 4.1), the Euler equations with gravity source term (Section 4.2) and
the ideal magnetohydrodynamics (MHD) system (Section 4.3).

ii. Next, we show the capability of our scheme in maintaining a high quality mesh for very long times, even in
the case of strong shear flows and vortices, thanks to its high robustness and adaptability to complex flow
patterns, see Sections 4.1.1 and 4.3.1. In particular, we show that we can preserve the accuracy of the high
order trajectory integration of generator points, as well as sharply fit strong shocks in Section 4.1.4.

iii. Then, we compute numerically the order of convergence of both Finite Volume and Discontinuous Galerkin
schemes for two different test problems, see Tables 1, 2, 7 and 8.

iv. Moreover, for all the presented test cases we have numerically verified that mass and volume conservation is
respected up to machine precision at any time step, and that the same holds true for the GCL condition on each
element, even when topology changes occur. In addition, to provide even more evidence on the fact that the
GCL condition is satisfied by construction, we refer to the set of test cases of Section 4.1.2, where constant states
are preserved up to machine precision for long times over moving meshes where topology changes regularly
occur.

v. Finally, we study some more complicated test problems (see Sections 4.1.3, 4.1.4, 4.1.5 and 4.3.2) to show the
robustness of our method, concerning both the mesh quality in presence of arbitrary and strong velocity fields
as well as the consistency/stability of our high order schemes. In particular, we test the a posteriori sub–cell
finite volume limiter used to stabilize the DG scheme that indeed avoids undesirable oscillations by activating
only where needed (see Figures 13 and 14).

The great variety of the presented tests is intended to show both the wide range of applicability of the proposed
high order ALE scheme on moving Voronoi meshes with topology changes and its level of novelty with respect to the
state of the art.

4.1. Euler equations of gasdynamics
A well-known example of a hyperbolic system of the form (1) is given by the homogeneous Euler equations of

compressible gas dynamics with

Q =


ρ
ρu
ρv
ρE

 , F =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

u(ρE + p) v(ρE + p)

 , S = 0. (58)

The vector of conserved variables Q involves the fluid density ρ, the momentum density vector ρv = (ρu, ρv) and the
total energy density ρE. The fluid pressure p is related to conservative quantities Q using the equation of state for an
ideal gas

p = (γ − 1)
(
ρE −

1
2
ρv2

)
, (59)

where γ is the ratio of specific heats so that the speed of sound takes the form c =
√

γp
ρ

. Where not otherwise specified
we employ the Rusanov-type ALE flux (43) as numerical flux function and we move the generator points using the
local fluid velocity obtained from wn

h (see Section 2.4). Furthermore, we set γ = 1.4.

25



4.1.1. Isentropic vortex
To verify the order of convergence of the proposed ALE FV-DG scheme we consider a smooth isentropic vortex

flow according to [96]. The initial computational domain is the square Ω = [0; 10] × [0; 10] with wall boundary
conditions set everywhere. The initial condition is given by some perturbations δ that are superimposed onto a homo-
geneous background field Q0 = (ρ, u, v, p) = (1, 0, 0, 1), assuming that the entropy perturbation is zero, i.e. δS = 0.
The perturbations for density and pressure are

δρ = (1 + δT )
1
γ−1 − 1, δp = (1 + δT )

γ
γ−1 − 1, (60)

with the temperature fluctuation δT = −
(γ−1)ε2

8γπ2 e1−r2
and the vortex strength is ε = 5. The velocity field is affected by

the following perturbations (
δu
δv

)
=

ε

2π
e

1−r2
2

(
−(y − 5)

(x − 5)

)
. (61)

This is a stationary equilibrium of the system so the exact solution coincides with the initial condition at any time.

Convergence. Tables 1 and 2 report the convergence rates from second up to fifth order of accuracy for the vortex test
problem run on a sequence of successively refined meshes (finer meshes are obtained by simply increasing the number
of generators). For each element, its characteristic size hn

i at time tn is given by the diameter of the circumcircle and
we denote with h(Ω(t f )) the average of hn

i at the final time of the simulation t f = 0.5. Thus, h(Ω(t f )) represents the
characteristic mesh size of our mesh. The optimal order of accuracy is achieved both in space and time for the FV
schemes as well as for the DG schemes. We would like to underline that this is not trivial for moving Voronoi meshes,
because the changing characteristic mesh sizes could affect the convergence results: the mesh is not stationary at all
and no mesh smoothing is applied for this test case.

We remark that for similar spatial resolution and for the same order of accuracy, the numerical errors of the DG
scheme are always less than those of the FV method. This is natural and expected since a DG scheme involves many
more DOFs w.r.t. a FV algorithm and, in this sense it is more accurate on the same mesh.

Quality. In Figure 7 we plot the density contours and the two-dimensional mesh configuration at various output times
obtained with our fourth order ALE-DG scheme. We would like to attract the attention to the long duration of the
simulation and on the high quality of the density profile obtained even after very long simulation times. The correct
density profile and a high quality mesh are conserved for times that are two orders of magnitude larger with respect
to standard conforming ALE schemes, where mesh tangling would occur and stop the simulation much earlier (see
Figure 9).

The second part of Figure 7 shows the position of a bunch of highlighted elements at different times: this makes
clear how strong the differential rotation of the mesh elements is. It also highlights the importance of allowing topol-
ogy changes in the computational grid, which needs to provide enough flexibility in order to preserve a high quality
mesh over long simulation times. Indeed, if the preservation of the connectivity had been imposed, the elements
would have been quite distorted after only rather short times (see Figure 9).

Finally, we would like to emphasize that generator trajectories are almost perfectly circular even for very long
evolution times (indeed the elements are not collapsing into the center), refer to Figure 8. This is achieved thanks to
the computation of the generator trajectories through a fourth order accurate Taylor method. In this test, we used the
Lloyd-like smoothing method described in Section 2.5, with F = 10−4.

Independence of the neighbor numbering. To show that our algorithm is also completely independent of the space–
time neighbor numbering chosen when connecting the old mesh to the new one (see Section 2.6), we have carried out
the following test. In the framework of a third order P2P2 DG scheme we have simulated the isentropic vortex up to
a final time of t = 0.5 on a series of meshes, namely composed by 961, 1681, 2601, 3721 and 6561 Voronoi elements
moving with the exact velocity computed at the generator point of each element. Then, we have run the algorithm for
each mesh configuration by ordering the space–time neighbors in three different ways, namely starting first with the
first common neighbor, next with the second common neighbor and last with the third common neighbor (if existing,
otherwise we have used the first one again).
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Figure 7: Stationary rotating vortex solved with our fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 957 elements with dynamical
change of connectivity and with the generators trajectories computed with fourth order of accuracy and Lloyd-like smoothing algorithm with
F = 10−4. Density contours (top) and the position of a bunch of highlighted elements (bottom) are provided at different times. The dynamic
change of connectivity makes it possible to substantially improve the mesh quality w.r.t. standard conforming ALE schemes without topology
change, for which mesh tangling would lead to a stop of the simulation. In this simulation, after 500s a point located at r = 1.05 (pink circle)
completes 56 revolutions. Moreover, it does not collapse in the center and instead maintains a perfect circular trajectory (see also next Figure.)
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Figure 8: Stationary rotating vortex solved with our fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 957 elements with dynamical
change of connectivity and with the generators trajectories computed with fourth order of accuracy, refer to Equation (17). The test uses the Lloyd-
like smoothing algorithm with F = 10−4. Left: We depict the trajectories (in Cartesian coordinates) of the generators of 3 Voronoi elements (those
highlighted respectively in blue, violet and red) from time t = 0 up to time t = 250. During this time interval the red Voronoi element makes 30
complete rotations around the origin. Right: we depict the y coordinates of the 3 generators (top) and their radial coordinates (bottom). We would
like to emphasize that the trajectories are circular (their radius is indeed almost constant) for a very long evolution time.

Table 1: Isentropic vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology changes. The error
norms refer to the variable ρ at time t = 0.5 in L1 norm.

P0P1 → O2 P0P2 → O3 P0P3 → O4 P0P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
3.8E-01 3.1E-02 - 3.8E-01 2.9E-02 - 1.9E-01 1.6E-03 - 4.7E-01 4.0E-02 -
2.0E-01 6.2E-03 2.4 1.9E-01 4.6E-03 2.8 1.3E-01 4.1E-04 3.4 3.8E-01 1.4E-02 4.8
1.3E-01 2.4E-03 2.4 1.3E-01 1.4E-03 2.9 9.9E-02 1.4E-04 3.8 1.3E-01 2.5E-04 3.8
9.9E-02 1.3E-03 2.3 9.9E-02 6.1E-04 3.0 7.9E-02 6.0E-05 3.9 9.9E-02 6.7E-05 4.6
8.0E-02 7.8E-04 2.2 7.9E-02 3.1E-04 2.0 6.7E-03 3.0E-05 3.8 7.9E-02 2.4E-05 4.7

Table 2: Isentropic vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with topology changes. The
error norms refer to the variable ρ at time t = 0.5 in L1 norm.

P1P1 → O2 P2P2 → O3 P3P3 → O4 P4P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
7.5E-01 6.3E-03 - 7.5E-01 1.4E-02 - 6.1E-01 1.4E-03 - 1.4E-00 1.1E-02 -
6.1E-01 4.2E-04 1.9 6.1E-01 7.2E-03 3.4 5.2E-01 7.4E-04 3.7 1.0E-00 2.0E-03 5.9
3.2E-01 9.9E-04 2.2 3.2E-01 9.3E-04 3.2 4.7E-01 4.1E-04 5.9 9.8E-01 1.6E-03 4.7
2.2E-01 4.4E-04 2.0 2.2E-01 2.8E-04 3.0 3.2E-01 7.7E-05 4.4 8.9E-01 9.0E-04 5.9
1.6E-01 2.5E-05 2.0 1.6E-01 1.2E-04 3.0 2.2E-01 1.6E-05 4.0 8.5E-01 7.0E-04 5.1
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Table 3: Isentropic vortex. Numerical convergence results for the third order P2P2 discontinuous Galerkin algorithm on moving meshes with
topology changes. The error norms refer to the variable ρ at time t = 0.5 in L2 norm. The three groups of results refer to three different ways of
ordering the space–time neighbors of each element. The fact that the errors are exactly the same up to machine precision proves that the algorithm
is independent of the neighbor ordering used in the construction of the space–time elements.

ordering from 1st common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728528E-04 3.1
0.122985013713313 5.1270456290057E-05 3.0

ordering from 2nd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217114 9.2414523328982E-04 -
0.242212163540348 3.9353901581037E-04 3.1
0.194949032600822 2.0616099552752E-04 3.0
0.163155447483668 1.1964571728459E-04 3.1
0.122985013713313 5.1270456288495E-05 3.0

ordering from 3rd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728400E-04 3.1
0.122985013713313 5.1270456291299E-05 3.0

Figure 9: Stationary rotating vortex solved with a fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 957 elements with fixed
connectivity. Density contours (left and right) and position of a bunch of highlighted elements (middle) are provided at different times. The mesh
quality rapidly deteriorates and the simulation ultimately stops at t ' 3.5431 due to tangling elements.
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Table 4: Scheme statistics. In this Table we report some statistics on the computational cost of reaching the final time t f = 60 with four different
schemes. In the second to fourth column we show the the number of total time steps needed to reach the final time, the number of sliver elements
that have been originated during the simulations due to the occurred topology changes and the number of time steps that have been repeated through
the MOOD loop described in Section 3.4. In the fifth column we report the percentage of computational time employed by mesh regeneration and
space-time connectivity generation, in the sixth column the percentage of time needed for the predictor-corrector step on standard elements, and
in the last column the percentage of time spent on sliver elements. It is evident that the cost due to mesh rearrangement and sliver computations
is minimal. (For what concerns FV schemes, the time for spatial reconstruction is not included in the third column, in order to facilitate the
comparison between the cost on standard elements and sliver elements, for which spatial reconstruction is not performed.)

Method time steps slivers restarts Mesh % PN PM standard % PN PM sliver %
FV O(3) 5524 21930 5 0.31 56.03 0.01
FV O(4) 4896 19819 4 0.31 56.00 0.01
DG O(3) 33019 19392 0 1.29 91.07 0.004
DG O(4) 55496 18995 2 0.25 96.31 0.001

Table 3 shows that not only the order of the algorithm does not depend on the neighbor numbering, but also that
the final errors are the same up to machine precision.

4.1.2. Numerical verification of the GCL property
In order to verify that our schemes satisfy the GCL property up to machine precision we consider the following

standard test case, see for example [130].
The initial condition for this test is given by a constant state, namely Q0 = (ρ, u, v, p) = (1, 0, 0, 1) that should

remain constant even with moving meshes if the GCL condition is satisfied. The initial computational domain is the
square Ω = [0; 10] × [0; 10] covered with a mesh of 1979 Voronoi elements and wall boundary conditions are set
everywhere.

Then, in agreement with the ALE framework, the mesh is moved with a completely arbitrary velocity field (thus
not with the fluid velocity which would be zero in this test case). In particular, we have chosen a vortical velocity field
varying in a sinusoidal fashion, given in the form

v(x, y) =

(
− sin

(
2π
`

(y − y0)
)

cos
(
π

`
(x − x0)

)
exp(−kr), cos

(
π

`
(y − y0)

)
sin

(
2π
`

(x − x0)
)

exp(−kr)
)
, (62)

where x0 = (x0, y0) = 5, ` = 10, k = 0.1 and r =
√

(x − x0)2 + (y − y0)2.
In Figure 10 we show the error between our numerical results for density and velocity, with respect to the exact

constant solution, obtained with our FV and DG schemes of order three and four, namely the P0P2, P0P3, P2P2
and P3P3 schemes. We emphasize that these results are obtained over long times (60 time units, and three complete
revolutions of a reference point), thus after thousands of time steps. Furthermore, topology changes regularly occur
during the mesh motion: the number of sliver elements generated per simulation over the total number of time steps
is reported in Table 4, and a bunch of initially adjacent elements is plotted in Figure 11 at different times, in order to
make clear that elements really change their topology and connectivity during the simulation.

This test case proves numerically that the GCL property is satisfied by our scheme even when topology changes
occur and sliver elements appear, which is indeed a property that our schemes satisfy by construction, since PDE
integration is always performed over closed space–time control volumes, see [20] for a formal proof.

Finally, in Table 4 we report the percentage of computational times employed by i) all the the procedures necessary
to rebuild a new mesh at each time step, namely the mesh regeneration of Section 2.4, the mesh optimization of
Section 2.5, and the construction of the space time connectivity of Sections 2.6 and 2.7; ii) the predictor-corrector
step of Section 3 performed on standard elements; iii) the predictor-corrector step of Section 3 performed on sliver
elements. We remark that step i) actually consists in a complete regeneration of a new configuration without exploiting
the previous one, which would decrease the computational cost of the geometric part of the code. Nevertheless, one
can see that the computational cost of the geometric part of our scheme is minimal and does not affect the final cost
of the entire algorithm.
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Figure 10: GCL verification problem. In this Figure we report the error in L−infinity norm of the error between our numerical results and the exact
constant solution for the density ρ (left) and the velocity U =

√
u2 + v2 (right) for four different methods, namely a third and fourth order Finite

Volume scheme and a third and fourth order Discontinuous Galerkin scheme. We underline that the final time of t f = 60 is reached after thousands
of time steps and involves the generations of thousands of sliver elements, as reported in Table 4.

Figure 11: GCL verification problem. In this Figure we report the position of a bunch of elements initially neighbors subjected to the velocity
field (62) at different times. The Voronoi tessellation is regenerated at any of the 33019 time steps of the employed third order P2P2 DG schemes.
The test uses the Lloyd-like smoothing algorithm with F = 10−3. In total 19392 sliver elements have been treated during this simulation (and the
MOOD procedure of Section 3.4 has never been activated).

Table 5: Explosion problem. In this Table we report the number of total time steps needed to reach the final time t f = 0.25 with our P0P3 and P2P2
schemes, the number of sliver elements and the number of time steps that have been repeated through the MOOD loop described in Section 3.4.
Moreover, we report the percentage of computational time employed by mesh regeneration and space time connectivity generation, by the predictor-
corrector step on standard elements and on sliver elements. The other part of the computational time is mostly spent on the reconstruction procedure
for what concerns the FV scheme, and on the limiter for what concerns the DG scheme.

Method time steps slivers restarts Mesh % PN PM standard % PN PM sliver %
FV O(4) 150 1785 0 0.16 79.69 0.003
DG O(3) 883 2238 3 0.70 64.59 0.002
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Figure 12: Explosion problem: we compare the scatter plot of our numerical results (blue dots) with the reference solutions (line) at time t f = 0.25.
Left: results obtained with our P2P2 DG scheme on a moving Voronoi mesh of 9805 elements (corresponding to 58830 total DOFs). Right: results
obtained with our P0P3 FV scheme on a moving Voronoi mesh of 19856 elements (corresponding to 19856 total spatial DOFs, treated with a fourth
order method). The represented values (squares) are obtained from a cut of our numerical solutions along y = 0. Both tests use the Laplacian
smoothing algorithm with F = 10−3.

Figure 13: Explosion problem solved with our P2P2 method on a moving Voronoi mesh of 9805 elements. The test uses the Laplacian smoothing
algorithm with F = 10−3. We show the density profile (left), the pressure profile (center) and we color in red the cells on which the limiter is active
(right) at time t = 0.25.
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4.1.3. Explosion problem
The explosion problems can be seen as a multidimensional extension of the classical Sod test case. Here, we

consider as computational domain a square of dimension [−1.1; 1.1]×[−1.1; 1.1], and the initial condition is composed
of two different states, separated by a discontinuity at radius rd = 0.5ρL = 1, uL = 0, pL = 1, ‖x‖ ≤ rd

ρR = 0.125, uR = 0, pR = 0.1, ‖x‖ > rd.
(63)

The final time is chosen to be t f = 0.25, so that the shock wave does not cross the external boundary of the domain,
where a wall boundary condition is set. We run this problem with two different configurations.

(a) In the first case we use a third order P2P2 DG scheme on a mesh of 9805 Voronoi elements (corresponding to
58830 total DOFs). The results are depicted in Figure 13. In particular, one can notice that the limiter activates
in proximity of the shock waves where it is indeed essential, and only on a handful of other elements.

(b) Then, we test our FV algorithm by employing a fourth order P0P3 scheme on a finer mesh of 19856 Voronoi
elements (corresponding to 19856 total DOFs).

In both cases, we can observe a good agreement between the numerical results and the reference solution. The non
perfect symmetry is justified by the non symmetric initial meshes. Statistics on generation of sliver elements, MOOD
restarts, and computational times are reported in Table 5.

As in [20, 176], a reference solution can be obtained by making use of the rotational symmetry of the problem
and by solving a reduced one-dimensional system with geometric source terms using a classical second order TVD
scheme on a very fine one-dimensional mesh. The comparison between our numerical solutions and the reference
solution is given with a scatter plot in Figure 12. In order to obtain a similar resolution, the FV scheme needs one
order more of accuracy w.r.t. the DG scheme and a finer mesh as well. We remark that for this comparison we have
not exactly matched the total number of DOFs of the FV and the DG simulations because, even if the DOFs of a FV
scheme are only one per cell, the FV algorithm involves a spatial reconstruction procedure (of the necessary order of
accuracy) which increases the resolution (and the cost) of the scheme.

We would like to underline that this test problem involves three different waves, therefore it allows each ingredient
of our scheme to be properly checked. Indeed, we have

• one cylindrical shock wave that is running towards the external boundary: our scheme does not exhibit spurious
oscillations thanks to the CWENO reconstruction, in the case (b), and to the a posteriori sub–cell finite volume
limiter, in case (a);

• a rarefaction fan traveling in the opposite direction, which is well captured thanks to the high order of accuracy;

• an outward-moving contact wave in between, which is well resolved thanks to the Lagrangian framework of
our scheme, in which the mesh moves together with the fluid flow.

4.1.4. Sedov problem
This test problem is widespread in the literature [122] and it describes the evolution of a blast wave that is generated

at the origin O = (x, y) = (0, 0) of the computational domain Ω(0) = [0; 1.2] × [0; 1.2]. An exact solution based on
self-similarity arguments is available from [163] and the fluid is assumed to be an ideal gas with γ = 1.4, which is
initially at rest and assigned with a uniform density ρ0 = 1. The initial pressure is p0 everywhere (with p0 = 10−6 or
p0 = 10−10) except in the cell Vor containing the origin O where it is given by

por = (γ − 1)ρ0
Etot

|Vor |
, with Etot = 0.979264, (64)

being Etot the total energy concentrated at x = 0. We solve this numerical test with a second order P1P1 DG scheme
for p0 = 10−6 and a third order DG scheme for p0 = 10−10; we employ a mesh of 7234 Voronoi elements. The density
profiles are shown in Figure 14 for various output times t = 0, 0.2, 0.5, 0.8, 1.0. The obtained results are in good
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Figure 14: Sedov problem solved with our P2P2 scheme on a moving Voronoi mesh of 7234 elements. The test uses the Laplacian smoothing
algorithm with F = 10−2. We depict the density profile and the mesh configuration at times t = 0, 0.2, 0.5, 0.8, 1 and in the last images we show in
red the cells on which the limiter is activated.

Figure 15: Scatter plot of density values (blue dots) for the Sedov problem compared with the reference solution (line). Left: the initial setting is
with outer pressure equal to p0 = 10−6 and it is solved with our DG scheme of order 2. Right: the initial setting is with outer pressure equal to
p0 = 10−10 and it is solved with our DG scheme of order 3. In both cases, the test uses the Laplacian smoothing algorithm with F = 10−2. In the
two cases the mesh moves with the fluid flow and topology changes occur.
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agreement with the literature. Moreover, one can refer to Figure 15 for a comparison between our numerical solution
(scatter plot) and the exact solution: the position of the shock wave and the density peak are perfectly captured. We
remark that this is quite a challenging benchmark because of the low pressure and the strong shock.

Finally, we refer to the last panel of Figure 14 for the behavior of our a posteriori sub–cell finite volume limiter,
which activates only and exactly where the shock wave is located.

4.1.5. Single material triple point problem
A typical test in the ALE community (especially for comparing ReALE approaches) is given by the so called triple

point problem, first introduced in [124] and widespread in the literature, see for example [123, 36, 109, 31, 16]. Here
in particular we follow the setting presented in [16], which has been slightly modified due to the fact that in this work
we do not allow for moving boundaries and thus we have enlarged our computational domain, which is taken to be
[−1, 8] × [−1, 4]; moreover, generators located outside [−0.5, 7.5] × [−0.5, 3.5] are kept fixed and slip wall boundary
conditions are imposed everywhere.

To impose the initial condition we divide our domain in three regions, namely R1 = [−1, 1] × [−1, 4], R2 =

[1, 8] × [−1, 1.5] and R3 = [1, 8] × [1.5, 4], and we set

(ρ, u, v, p)(x) =


(1, 0, 0, 1), if x ∈ R1

(1, 0, 0, 0.125), if x ∈ R2

(0.1, 0, 0, 0.125), if x ∈ R3,

(65)

with γ = 1.4.
Due to the difference of density and pressure, two shocks propagate in the top and bottom domains with different

speeds. This creates a shear flow along the initial horizontal contact discontinuity. On moving meshes capturing
accurately the vorticity is the difficult part of such a simulation, involving the interaction of shocks, rarefactions, shear
and contact waves.

Since an exact solution does not exist, in order to visually see the convergence of our method, we present the results
obtained with a third order DG scheme, namely a P2P2 scheme, on three different meshes (M1, M2, M3) at time t = 3
(see Figure 16) and t = 5 (see Figure 17) (which are the same times at which results are given in Reference [16]).

In particular, our coarsest mesh M1 is made by a total number of 6140 Voronoi elements (2798 of which in the
usual reference domain, i.e. [0, 7]× [0, 3]), the second mesh M2 is made by a total number of 12706 elements (5823 of
which in the usual reference domain) and the finest mesh M3 is made by 25158 (11597 of which in the usual reference
domain).

This test case demonstrates the robustness of our approach in dealing with complex mesh motion, its ability in
following accurately the fluid flow, and its resolution due to the underlying high order DG method.

4.2. Euler equations with source term

Next, we consider the Euler equations given in (58), but with a gravity source term of the form

S = (0, 0, −gρ, −gρv)T . (66)

The Euler equations with gravity are of interest not only in hydrodynamics [34, 103, 45, 59, 105], but also computa-
tional astrophysics [168, 169, 136].

Rayleigh-Taylor instability. With this test case we study an important type of fluid instability that arises in stratified
atmospheres in approximate hydrostatic equilibrium if a denser fluid lies above a lighter phase. In such a Rayleigh-
Taylor unstable state, energy can be gained if the lighter fluid rises in the gravitational field, triggering buoyancy-driven
fluid motions. We consider here a simple test where we excite only one single Rayleigh-Taylor mode.

Our setup is a small variation (due to the fact that we do not allow for moving boundaries in this work) of a similar
test considered in [117] and in [168]. The computational domain is [−0.25, 0.75]× [−0.25, 1.75], with generators kept
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Figure 16: Triple point solved with our P2P2 third order DG scheme on three meshes. The test uses the Lloyd-like smoothing algorithm with
F = 10−1. Here we plot the density contour levels at time t = 3 in the usual domain [0, 7] × [0, 3] (left) and a zoom in the region [2, 4] × [0.5, 2.5]
(right) on three finer and finer meshes M1 (top), M2 (middle) and M3 (bottom); refer to Section 4.1.5 for the number of element of each mesh.
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Figure 17: Triple point solved with our P2P2 third order DG scheme on three meshes. The test uses the Lloyd-like smoothing algorithm with
F = 10−1. Here we plot the density contour levels at time t = 5 in the domain Ωr = [0, 7]×[0, 3] (left) and a zoom in the region [3.3, 5.3]×[0.5, 2.5]
(right) on three finer and finer meshes M1 (top), M2 (middle) and M3 (bottom); refer to Section 4.1.5 for the number of element of each mesh.
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Table 6: Rayleigh-Taylor instabilities. In this Table we report the number of total time steps needed to reach the final time t f = 12.5 with our P0P2,
P1P1 and P2P2 schemes, the number of sliver elements and the number of time steps that have been repeated through the MOOD loop described
in Section 3.4. Moreover, we report the percentage of computational time employed by mesh regeneration and space time connectivity generation,
by the predictor-corrector step on standard elements and on sliver elements. The other part of the computational time for what concerns the FV
scheme is mostly spent on the reconstruction procedure. Instead the DG scheme was run without activating the limiter.

Method time steps slivers restarts Mesh % PN PM standard % PN PM sliver %
FV O(3), M2 15219 15956 0 1.00 74.19 9.7E-4
DG O(2), M1 27951 2707 0 4.23 87.65 6.5E-4
DG O(3), M1 54493 1297 0 0.65 95.64 9.0E-5
DG O(2), M2 41919 17114 0 5.3 86.43 6.1E-4

fixed outside the domain [−0.1, 0.6] × [−0.1, 1.6] and wall boundary conditions set everywhere. The imposed initial
condition is given by ρB = 2, pB = P0 + g(y − 0.75)ρB, y ≤ 0.75

ρT = 1, pT = P0 + g(y − 0.75)ρT , y > 0.75,
(67)

with P0 = 2.5 and g = −0.1. The initial velocities are zero everywhere, i.e. u = (u, v) = 0, except for a small
perturbation that is designed to excite one single mode for the Rayleigh-Taylor instability

v(x, y) = ω0 (1 − cos(4πx)) (1 − cos(4πy/3)) if 0 ≤ x ≤ 0.5, (68)

where ω0 = 0.0025. Next, we smooth the initial discontinuity in the density (in such a way that the limiter for the DG
scheme will not be necessary) according to [172]

ρ(x) =
1
2

(ρB + ρT ) +
1
2

(ρT − ρB) erf
(

y − 0.75
ε

)
. (69)

We solve this problem deliberately on coarse meshes (M1 made of 2 706 elements and M2 made of 13 340 cells)
and we compare the resolution of the instabilities obtained with our ALE FV-DG schemes with different order of
accuracy, see Figure 18. Specifically, we compare third order FV scheme with second and third order DG schemes,
i.e. P0P1, P1P1, P0P2, P2P2 and we employ the Osher-type ALE flux as approximate Riemann solver (44); we note
that secondary instability vortexes only appear within a high order DG method, being hidden by numerical dissipation
in the other cases.

Finally in Table 6, we report some statistics on the number of sliver elements created over the total number of
time steps, and on the percentage of computational time required both for the geometrical part of the code and for the
PN PM predictor-corrector algorithm.

Comparing our results with those presented in [168], we can remark the importance of coupling our new high
order DG and FV algorithms with the direct ALE framework with topology changes; indeed our results show a
highly increased resolution with respect to [168] and the ability of capturing secondary instability structures on coarse
meshes.

4.3. Ideal MHD equations

We also consider the equations of ideal classical magnetohydrodynamics (MHD) that result in a more complicated
system of hyperbolic conservation laws. The state vector Q and the flux tensor F for the MHD equations in the general
form (1) are

Q =


ρ
ρv
ρE
B
ψ

 , F(Q) =


ρv

ρv ⊗ v + ptI − 1
4πB ⊗ B

v(ρE + pt) − 1
4πB(v · B)

v ⊗ B − B ⊗ v + ψI
c2

hB

 . (70)
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(a) FV O(3), M2 (b) DG O(2), M1 (c) DG O(3), M1 (d) DG O(2), M2

(e) FV O(3), M2 (f) DG O(2), M1 (g) DG O(3), M1 (h) DG O(2), M2

Figure 18: Rayleigh-Taylor instabilities at time t = 10 (top) and time t = 12.5 (bottom). The results in the panel are obtained by using two coarse
meshes: M1 made of 3175 elements and M2 which is made of 13883 elements and is 2 times finer than M1. The test uses the Lloyd-like smoothing
algorithm with F = 10−3. We have employed our FV scheme of order 3 (a,e) and our DG scheme of order 2 (b,d,f,h) and 3 (c,g), and the total
number of DOFs in the DG case corresponds to 9525 (b,f), 19050 (c,g), and 41649 (d,h). We would like to emphasize that the use of a high order
DG scheme makes secondary structures appear even on the coarse mesh M1 (g) which cannot be seen with standard third order FV schemes with a
similar number of DOFs (a,e).
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Table 7: MHD vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology changes. The error norms
refer to the variable ρ at time t = 1.0 in L1 norm.

P0P1 → O2 P0P2 → O3 P0P3 → O4 P0P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
4.6E-01 3.3E-02 - 3.2E-01 1.0E-02 - 4.7E-01 2.1E-02 - 6.0E-01 3.6E-0.2 -
3.9E-01 1.6E-02 1.8 2.4E-01 5.5E-03 2.3 3.2E-01 6.0E-03 3.2 5.8E-01 3.0E-0.2 5.8
2.4E-01 8.9E-03 2.3 1.9E-01 2.7E-03 3.3 2.4E-01 2.0E-03 3.9 5.6E-01 2.7E-0.2 3.6
1.9E-01 5.3E-03 2.4 1.6E-01 1.5E-03 3.1 2.2E-01 1.3E-03 3.6 5.5E-01 2.3E-0.2 5.9
1.6E-01 3.4E-03 2.5 1.4E-01 1.0E-03 2.9 1.9E-01 8.1E-04 4.8 5.2E-01 1.8E-0.2 4.8

Table 8: MHD vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with topology changes. The
error norms refer to the variable ρ at time t = 1.0 in L1 norm.

P1P1 → O2 P2P2 → O3 P3P3 → O4 P4P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
4.7E-01 8.5E-03 - 6.1E-01 2.8E-03 - 8.8E-01 1.1E-03 - 1.6E-00 6.9E-0.3 -
3.2E-01 3.2E-04 2.5 4.7E-01 1.3E-03 2.8 7.5E-01 6.2E-04 3.5 6.1E-01 1.3E-0.4 4.1
2.8E-01 2.1E-04 2.9 3.8E-01 7.3E-04 2.7 6.1E-01 3.1E-04 3.4 5.2E-01 4.7E-0.5 5.8
2.4E-01 1.6E-04 2.0 3.5E-01 5.6E-04 3.6 5.5E-01 1.9E-04 4.3 4.9E-01 3.1E-0.5 8.1
1.9E-01 9.7E-05 2.4 3.2E-01 4.1E-04 3.0 3.2E-01 2.3E-05 3.9 4.7E-01 2.4E-0.5 5.3

Here, B = (Bx, By, Bz) represents the magnetic field and pt = p + 1
8πB2 is the total pressure. The hydrodynamic

pressure is given by the equation of state used to close the system, thus

p = (γ − 1)
(
ρE −

1
2

v2 −
B2

8π

)
. (71)

System (70) requires an additional constraint on the divergence of the magnetic field to be satisfied, that is

∇ · B = 0. (72)

Here, (70) includes one additional scalar PDE for the evolution of the variable ψ, which is needed to transport diver-
gence errors outside the computational domain with an artificial divergence cleaning speed ch, see [56]. A more recent
and more sophisticated methodology to fulfill this condition exactly on the discrete level also in the context of high
order ADER WENO finite volume schemes on unstructured simplex meshes can be found in [7]. A similar approach
is adopted in [80, 30, 28].

4.3.1. MHD vortex
For the numerical convergence studies, we solve the vortex test problem proposed by Balsara in [6]. The compu-

tational domain is given by the box Ω = [0; 10] × [0; 10] with wall boundary conditions imposed everywhere. The
initial condition is given in terms of the vector of primitive variables V = (ρ, u, v,w, p, Bx, By, Bz,Ψ)T as

V(x, 0) = (1, δu, δv, 0, 1 + δp, δBx, δBy, 0, 0)T , (73)

with δv = (δu, δv, 0)T , δB = (δBx, δBy, 0)T and

δv =
κ

2π
eq(1−r2)ez × r

δB =
µ

2π
eq(1−r2)ez × r,

δp =
1

64qπ3

(
µ2(1 − 2qr2) − 4κ2π

)
e2q(1−r2).

(74)

We have ez = (0, 0, 1), r = (x − 5, y − 5, 0) and r = ‖r‖ =
√

(x − 5)2 + (y − 5)2. The divergence cleaning speed is
chosen as ch = 3. The other parameters are q = 1

2 , κ = 1 and µ =
√

4π, according to [6].
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Convergence. Tables 7 and 8 report the convergence rates from second up to fifth order of accuracy for the MHD
vortex test problem run on a sequence of successively refined meshes up to the final time t = 1.0. The optimal order
of accuracy is achieved both in space and time for the FV schemes as well as for the DG schemes.

Quality. In Figure 19 we show the pressure profile and the magnetic field obtained with our fourth order P3P3 DG
scheme at the initial time and after a long simulation with t f = 65. Once again, the profile of the vortex is simulated
and conserved for a longer time with respect to standard conforming ALE scheme, for which mesh tangling would
occur and stop the simulation earlier. Moreover, scatter plots of the constant density profile and of the pressure profile
are reported in Figure 21. One can observe that the errors in the density profile are very low.

In Figure 20 we report the position of a bunch of initially adjacent elements at different times: this clearly shows
how strong the shear is, to which the mesh elements are subject, and why the changes in the mesh topology are
necessary.

Finally, we report some statistics on the number of sliver elements created over the total number of time steps, and
on the percentage of computational time required for the geometrical part of the code and for the PN PM algorithm.
With our P3P3 DG scheme, the number of sliver elements that have been originated during the simulation until the

final time t f = 70 is 21369, on a total of 62741 time steps. Three of these time steps have been repeated through
the MOOD loop described in Section 3.4. The percentage of computational time employed by mesh regeneration and
space time connectivity generation is 0.17%, while the fourth order predictor-corrector step on standard elements and
on sliver elements accounts for 97.39% and 7.5×10−4% of the total wallclock time respectively. It turns out that the
cost due to mesh rearrangement and sliver computations is minimal, that MOOD restart activates very rarely and that
sliver elements are an essential ingredient to carry out the computation on moving meshes with topology change.

4.3.2. MHD rotor problem
This last MHD test case is the classical MHD rotor problem proposed by Balsara and Spicer in [9]. It consists

of a rapidly rotating fluid of high density embedded in a fluid at rest with low density. Both fluids are subject to an
initially constant magnetic field. The rotor produces torsional Alfvén waves that are launched into the outer fluid at

Figure 19: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements using the Lloyd-like smoothing algorithm
with F = 10−5. We depict, from left to right, the pressure profile, the x− and y− components of the magnetic field, and the value of M =√

B2
x + B2

y + B2
z at the initial time t = 0 and at the final time of t f = 70, corresponding to 2 complete loops of the elements located at r = 1. The

connectivity changes (see also Figure 20) together with the high order methods allow to preserve the stationary MHD vortex for long times.
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Figure 20: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements using the Lloyd-like smoothing algorithm
with F = 10−5. In this Figure we show the position of a bunch of initially neighbors elements at different times until t = 70. In this way one can
notice the evolution of the grid topology during time and the necessity of allowing the mesh changing its connectivity in order to correctly follow
the fluid motion without distortion.

Figure 21: MHD vortex solved with our P3P3 DG scheme on a moving Voronoi mesh of 1900 elements using the Lloyd-like smoothing algorithm
with F = 10−5. We report the scatter plot of the constant density profile (left) and of the pressure profile (right) at the final time t f = 70.
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Figure 22: MHD rotor problem solved with our P0P3 fourth order FV scheme on on two moving Voronoi meshes respectively a coarse one made
by 2727 and a finer one made by 10394 elements. This test uses the Lloyd-like smoothing algorithm with F = 10−3. We depict the density profile
(left) the pressure profile (middle) and the magnetic density profile M = (B2

x + B2
y + B2

z )/(8π) (right).
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rest, resulting in a decrease of angular momentum of the spinning rotor. The computational domain is taken to be
Ω = [−0.55, 0.55] × [−0.55, 0.55]. The density inside is ρ = 10 for 0 ≤ r ≤ 0.1 while the density of the ambient fluid
at rest is set to ρ = 1. The rotor has an angular velocity of ω = 10. The pressure is p = 1 and the magnetic field
vector is set to B = (2.5, 0, 0)T in the entire domain. As proposed by Balsara and Spicer we apply a linear taper to the
velocity and to the density in the range from 0.1 ≤ r ≤ 0.12 so that density and velocity match those of the ambient
fluid at rest at a radius of r = 0.12. The speed for the hyperbolic divergence cleaning is set to ch = 2 and γ = 1.4
is used. Wall boundary conditions are applied everywhere. We run this problem on a very coarse mesh M1 made of
2727 Voronoi elements and a finer one M2 made of 10394 Voronoi elements, and in two different configurations

(a) For the first test case we have applied our fourth order P0P3 Finite Volume scheme, see Figure 22.

(b) Then we have employed our third order accurate P2P2 DG scheme, see the results in Figure 23.

In all the cases, we can observe a good agreement between the obtained numerical results and those available in the
literature. Moreover also a visual convergence can be deduced from the presented results on a coarse and a finer mesh.
Finally, by comparing with the reference results found in literature, it is clear that the results obtained with the DG
scheme of order three are sharper than those of the FV scheme of order four.

5. Conclusion

In this work we have developed the first unified framework for explicit and arbitrary high order accurate direct
Arbitrary-Lagrangian-Eulerian FV and DG schemes on moving unstructured Voronoi meshes with topology change,

Figure 23: MHD rotor problem solved with our P2P2 DG scheme on two moving Voronoi meshes respectively a coarse one made by 2727 and
a finer one made by 10394 elements. This test uses the Lloyd-like smoothing algorithm with F = 10−3. We depict the density profile (left) the
pressure profile (middle) and the magnetic density profile M = (B2

x + B2
y + B2

z )/(8π) (right) on the coarse mesh (top) and the fine mesh (bottom).
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in order to benefit simultaneously from high order methods, high quality grids and substantially reduced numerical
dissipation. Indeed, we would like to emphasize that in the current literature at least one of the previous ingredients is
always missing: Lagrangian methods are usually affected by large mesh distortions, and available algorithms which
are able to avoid it are usually only at most second order accurate; Eulerian methods are in general high order accurate,
but exhibit significant dissipation errors due to the convective terms. In particular, the results on vortex flows give
evidence of the advantages conveyed by the proposed algorithm, and a large set of different numerical tests shows its
robustness and accuracy.

We recall that the key ingredient of our novel algorithm is the generalization of the PN PM scheme [69, 20] to
Voronoi and sliver space–time elements, which has required the investigation of several intricate steps. First, an
automatic procedure to construct space-time meshes resulting from the connection of moving Voronoi meshes with
different topologies at two consecutive time levels has not been used before. Next, computations on Voronoi elements
have required their subdivision into triangular prisms, the adaptation of the basis functions, the neighbors search, the
projection and reconstruction algorithms, and also a change in the notions of areas, volumes and characteristic mesh
sizes. Finally, the presence of space–time sliver elements forced us to revisit the core of the PN PM scheme, i.e. the
space–time predictor and the update of the solution through flux computations, in order to maintain the property of
mass, momentum and energy conservation, essential for solving nonlinear hyperbolic equations.

Future work may regard the improvement of the present algorithm in three different directions. First, we plan to
incorporate a path-conservative method to treat non conservative products, so that also a well balanced treatment of
sources and a proper well-balanced preservation of stationary equilibria of the PDE system will be possible, following
the ideas outlined in [146, 43, 87, 86, 57, 91, 13]. Furthermore, non-conservative products would also allow the
straightforward numerical discretization of diffuse interface models for compressible multi-phase flows, see e.g. [5,
159, 1, 71, 66, 67, 155, 154]. Future applications of our new algorithm will then concern the unified first order
hyperbolic formulation of continuum physics recently proposed in [148, 75, 76]. Above all, we plan to incorporate
the presented high order techniques inside the massively parallel second order accurate ALE-FV code AREPO [168],
which currently includes one of the most advanced moving Voronoi mesh generators in 2D and 3D. In this way, we
will add the possibility of refining or coarsening our mesh by adding and deleting generators, and we will gain a
very efficient parallel environment which also redistributes the moving elements among the CPU cores in a dynamic
load balancing approach. At this point, even challenging astrophysical simulations would be feasible. Finally, the
extension to three-dimensional domains is also envisaged. Although the AREPO code is already available in three
space dimensions, it is currently still low order accurate and does not yet provide any information about the space–
time connectivity of the Voronoi meshes between two consecutive time levels, which is, however, needed by our high
order DG and FV schemes. In our opinion, the realization of a coherent 4D space–time connection will be complex,
but feasible (a first hint in this direction could be taken from [152]), and formally the direct ALE PN PM schemes
would require the same adaptations here introduced in order to deal with degenerate four dimensional space–time
control volumes.
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[98] S. R. Idelsohn, E. Oñate, and F. Del Pin. The Particle Finite Element Method: a powerful tool to solve incompressible flows with free-
surfaces and breaking waves. International Journal for Numerical Methods in Engineering, 61:964–984, 2004.
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[126] R. Loubère, P. H. Maire, and P. Váchal. Staggered Lagrangian hydrodynamics based on cell-centered Riemann solver. Communications in

Computational Physics, 10(4):940–978, 2010.
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