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1 A Modified Clause-Diffusion prover with multi-search

Peers-mcd.d implements contraction-based strategies for equational logic, mo-
dulo associativity and commutativity, with paramodulation, simplification and
functional subsumption. It is a new version of Peers-mcd [4], that parallelizes
McCune’s prover EQP (version 0.9d), according to the Modified Clause-Diffusion
methodology (http://www.cs.uiowa.edu/∼bonacina/cd.html).

In parallel search with peer processes (no master-slave hierarchy), multiple
deductive processes search the space of the theorem-proving problem, each deve-
loping its own data base and derivation, and cooperate through communication
of data, until one finds a proof and all halt. Within parallel search, we distin-
guish between distributed search, where the searches generated by the processes
are differentiated by subdividing the inferences among them, and multi-search,
where they are differentiated by assigning different search plans to the processes.
Most approaches to parallel search in theorem proving adopted either one or the
other: for instance, the systems based on Team-Work and combination of ho-
mogeneous provers emphasized multi-search, while the previous Clause-Diffusion
provers emphasized distributed search (see [6] for a survey and references). A ma-
jor difference between Peers-mcd.d and all its predecessors is that Peers-mcd.d
implements both distributed search and multi-search, and their combination.

Peers-mcd.d can run in one of three modes:

– Pure distributed-search mode: the search space is subdivided among the pro-
cesses; all processes execute the same search plan.

– Pure multi-search mode: the search space is not subdivided; every process
executes a different search plan.

– Hybrid mode: the search space is subdivided, and the processes execute dif-
ferent search plans.

The basic structure of the search plan in a Peers-mcd.d process is to se-
lect premises for expansion (paramodulation), normalize the generated equa-
tions (forward contraction), and apply them to normalize pre-existing equations
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(backward contraction), in such a way to keep the data base inter-reduced. Peers-
mcd.d offers three ways of diversifying the search plan:

– Different premise selection mechanism,
– Different ratio of breadth-first search and best-first search, and
– Different heuristic function to sort equations for premise selection.

Peers-mcd.d inherits from EQP two mechanisms to select the premises for
paramodulation, the given-clause algorithm and the pair algorithm. The first
one is a best-first search with the weight of equations as heuristic function:
at every selection extract an equation of smallest weight and generate all its
paramodulants with the already selected equations. The second one is a best-
first search on pairs: at every selection extract a pair of equations of smallest
weight and generate all their paramodulants. The most basic way of introducing
multi-search is to have some processes execute the given-clause and some the pair
algorithm: in Peers-mcd.d, when the flag diverse-sel is set, the even-numbered
processes execute the pair algorithm, and the odd-numbered processes execute
the given-clause algorithm.

If the parameter pick-given-ratio has value x, the given-clause/pair al-
gorithm picks the oldest, rather than lightest, equation/pair once every x + 1
choices. The second way of diversifying search plans in Peers-mcd.d is to let each
process use a different value of pick-given-ratio: when the flag diverse-pick

is set, process pk resets its pick-given-ratio to x + k.
The third ingredient to obtain different search plans is to let the processes do

best-first search with different heuristic functions. The heuristic functions of [1, 7]
measure the syntactic similarity between an equation and the target theorem(s):
the higher the similarity, the better the heuristic value, since an equation similar
to the goal might reduce it. Peers-mcd.d implements the heuristic functions occ-

nest, CP-in-goal1 and goal-in-CP of [7], except that it uses the measure m0

of [1] for the number of occurrences of a function symbol in a term, to take
into account that AC operators are varyadic, since terms under AC operators
are flattened. When the flag heuristic-search is set, process pk executes the
given-clause algorithm with heuristic function occ-nest if k mod 3 = 0, CP-in-

goal if k mod 3 = 1, and goal-in-CP if k mod 3 = 2. The pair algorithm does not
use these heuristic functions, because they are defined for equations, not pairs.

The search space is subdivided by subdividing the generated equations among
the processes. This is achieved without a top-level scheduler: whenever a process
generates and keeps an equation (i.e., the equation is not deleted by forward
contraction), it gives it a process number, which becomes part of the equation’s
identifier (see [5] for details). This induces a subdivision of inferences, because
each process skips the steps that it knows are done by others based on the
identifiers of the premises. All inferences that generate new clauses, including
backward-contraction, are thus subdivided, while deletions are not. Each pro-
cess broadcasts the equations it has generated and kept after normalization. In
Peers-mcd.d, the parameter decide-owner-strat, that controls the choice of

1 CP stands for critical pair, hence equation.



subdivision criterion, may also have the value no-subdivide, meaning that no
subdivision occurs, and a process broadcasts an equation only if its weight (its
heuristic value if heuristic-search is set) is lower than a given parameter.

In summary, if decide-owner-strat = no-subdivide, and at least one of
diverse-sel, diverse-pick and heuristic-search is set, Peers-mcd.d runs in
pure multi-search mode; if decide-owner-strat 6= no-subdivide, and none of
diverse-sel, diverse-pick and heuristic-search is set, Peers-mcd.d runs in
pure distributed-search mode; if decide-owner-strat 6= no-subdivide, and at
least one of diverse-sel, diverse-pick and heuristic-search is set, Peers-
mcd.d runs in hybrid mode.

2 Proofs of the Moufang identities without cancellation

The first automated proofs of the Moufang identities in alternative (i.e., non-
associative) rings by a general-purpose prover were presented in [2]. They used
AC-UKB, the inequality ordered-saturation inference rule (i.e., superposition of
an un-orientable equation into a goal to generate a new goal which is kept only
if its normal form is not greater or equal than an already existing inequality), in-
ference rules that build the cancellation laws in [8], and the heuristic measures of
[1] to sort equations and delete those whose heuristic value is worse than a given
threshold. These problems are still used as benchmarks (e.g., [3]) and in com-
petitions (e.g., [9]). The TPTP library presents them in different formulations:
some differ from [2] in choice of axioms and/or conjecture; those that follow [2]
include the cancellation laws as implications, so that they are not equational. In
the experiments reported here, the problems were formulated as in [2], but with-

out cancellation laws, since EQP and Peers-mcd.d do not implement the rules
of [8], and they are purely equational provers which cannot handle implications.

In the following tables, the first column tells the mode: D for pure distributed-
search mode and H for hybrid mode. The second column tells the search plan,
given-clause, or pair, or diverse, if diverse-sel was set. The h means that
heuristic-searchwas used. The number at the front is the pick-given-ratio:
x if it was x for all processes, xd, if diverse-pick was set and process pk used
x + k, nothing, if pick-given-ratio was not used. The number in parenthesis
is the value of max-weight, if deletion by weight was used. The times (expressed
in sec) are average CPU times. For each search plan, five subdivision criteria
were tried, and the best result (among the averages) was retained. “T” means
time-out after 3600 sec. The workstations were HP B2000 or C360, with 1G
or 512M of memory, with EQP0.9d running on a B2000 with 1G, and N-Peers

(Peers-mcd.d with N processes) on N workstations, one per process.
The first two problems, moufang1 (Middle Alternative Law) and moufang2

(Skew-Symmetry Relation of the Associator), are too easy for parallelization:
EQP0.9d proved them in 4 and 1 sec, respectively, using the pair algorithm with
pick-given-ratio = 4. However, with the default search plan, namely given-

clause algorithm and no pick-given-ratio, EQP0.9d terminated abnormally2,

2 Some constant in the AC-matching or AC-unification code of EQP was exceeded.



whereas 1-Peer did both problems in 1 sec, due to the heuristic function used by
the given-clause algorithm.

For the Left Moufang Identity (moufang3), EQP0.9d could not find a proof
with the default search plan, while Peers-mcd.d did, thanks to distributed search:

Mode Search plan EQP0.9d 1-Peer 2-Peers 4-Peers 6-Peers 8-Peers

D given(32) T T 598 91 187 40

H given-h(32) T 415 230 57 42 9

D pair(32) 3,215 3,277 551 109 51 83

D 4-pair(32) 956 1,068 126 38 56 58

D 2-pair(32) 88 130 66 39 109 25

H 2d-diverse-h(32) 88 147 84 75 41 25

With heuristic-search on (second row), also 1-Peer found a proof, which
shows the merit of the heuristic function, and all other times improved, up to
a proof in only 9 sec with 8-Peers. EQP found a proof with the pair algorithm
(third row), and the sequential time was reduced with pick-given-ratio =
4 (fourth row), but Peers-mcd.d with more than one node sped-up with these
search plans also, finding a proof in 38 sec with 4 processes. The best sequential
time was obtained with pick-given-ratio = 2 (last two rows): with this value,
the parallel prover behaved more smoothly in hybrid mode.

For the Right Moufang Identity (moufang4), EQP found a proof only with
the pair algorithm and pick-given-ratio = 4:

Mode Search plan EQP0.9d 1-Peer 2-Peers 4-Peers 6-Peers 8-Peers

H given-h(32) T 437 268 162 100 28

D pair(32) T T 865 356 161 105

H 4d-diverse-h(32) 1,558 1,638 75 32 27 47

The problem proved to be elusive for the default search plan, but with
heuristic-search on (first row), Peers-mcd.d solved it, with run-time decreas-
ing down to 28 sec for 8-Peers. With the pair algorithm and pick-given-ratio

not set (second row), 1-Peer did like EQP, since the pair algorithm does not use
the heuristic function, but the parallel prover succeeded. With the hybrid search
plan 4d-diverse-h, Peers-mcd.d exhibited super-linear speed-up for all numbers
of processes, with the best result for 4-Peers: the speed-up was 1, 558/32 = 48.68
and the efficiency 48.68/4 = 12.17.

For the Middle Moufang Identity (moufang5), EQP could not find a proof
within 3,600 sec with the default search plan, and took 572 sec with the pair
algorithm, while Peers-mcd.d was much faster: using the default search plan, but
with heuristic-search on, hence in hybrid mode, 1-Peer found a proof in 16
sec, 2-Peers took 9 sec and 4-Peers only 5 sec.



Problems moufang3, moufang4 and moufang5 were tried also in pure multi-
search mode, with the same search plans tried in hybrid mode, but no subdivision
and equation broadcasting limited by heuristic value. Almost no speed-up was
observed. Thus, distributed search did much better than multi-search on these
problems, and the combination of the two did even better. This suggests that a
key factor in parallel search, possibly even more basic than limiting communi-
cation, is to differentiate the processes, so that they do not overlap and explore
different parts of the search space. The statistics showed that a speed-up is typ-
ically accompanied by a strong reduction in number of equations generated (for
Peers-mcd.d, the sum of the equations generated by all peers), hinting that the
subdivision was effective, and led the processes to generate different searches
and different from the sequential one.

Directions for future work include the development of a Modified Clause-
Diffusion prover for first-order logic with equality, to allow application to a larger
class of problems.
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