Biohythane is a hydrogen-methane blend with hydrogen concentration between 10 and 30% v/v. It can be produced from different organic substrates by two sequential anaerobic stages: a dark fermentation step followed by a second an anaerobic digestion step, for hydrogen and methane production, respectively. The advantages of this blend compared to either hydrogen or methane, as separate biofuels, are first presented in this work. The two-stage anaerobic process and the main operative parameters are then discussed. Attention is focused on the production of biohythane from household food wastes, one of the most abundant organic substrate available for anaerobic digestion: the main milestones and the future trends are exposed. In particular, the possibility to co-digest food wastes and sewage sludge to improve the process yield is discussed. Finally, the paper illustrates the developments of biohythane application in the automotive sector as well as its reduced environmental burden

Biohythane is a hydrogen-methane blend with hydrogen concentration between 10 and 30% v/v. It can be produced from different organic substrates by two sequential anaerobic stages: a dark fermentation step followed by a second an anaerobic digestion step, for hydrogen and methane production, respectively. The advantages of this blend compared to either hydrogen or methane, as separate biofuels, are first presented in this work. The two-stage anaerobic process and the main operative parameters are then discussed. Attention is focused on the production of biohythane from household food wastes, one of the most abundant organic substrate available for anaerobic digestion: the main milestones and the future trends are exposed. In particular, the possibility to codigest food wastes and sewage sludge to improve the process yield is discussed. Finally, the paper illustrates the developments of biohythane application in the automotive sector as well as its reduced environmental burden.

Recent developments in biohythane production from household food wastes: A review

David Bolzonella;Federico Battista
;
Cristina Cavinato;Federico Micolucci;Paolo Pavan
2018-01-01

Abstract

Biohythane is a hydrogen-methane blend with hydrogen concentration between 10 and 30% v/v. It can be produced from different organic substrates by two sequential anaerobic stages: a dark fermentation step followed by a second an anaerobic digestion step, for hydrogen and methane production, respectively. The advantages of this blend compared to either hydrogen or methane, as separate biofuels, are first presented in this work. The two-stage anaerobic process and the main operative parameters are then discussed. Attention is focused on the production of biohythane from household food wastes, one of the most abundant organic substrate available for anaerobic digestion: the main milestones and the future trends are exposed. In particular, the possibility to codigest food wastes and sewage sludge to improve the process yield is discussed. Finally, the paper illustrates the developments of biohythane application in the automotive sector as well as its reduced environmental burden.
2018
hydrogen, methane, biohythane, food waste
Biohythane, Anaerobic digestion, Household food wastes, Review, Dark fermentation, Applications, Recirculation
Biohythane is a hydrogen-methane blend with hydrogen concentration between 10 and 30% v/v. It can be produced from different organic substrates by two sequential anaerobic stages: a dark fermentation step followed by a second an anaerobic digestion step, for hydrogen and methane production, respectively. The advantages of this blend compared to either hydrogen or methane, as separate biofuels, are first presented in this work. The two-stage anaerobic process and the main operative parameters are then discussed. Attention is focused on the production of biohythane from household food wastes, one of the most abundant organic substrate available for anaerobic digestion: the main milestones and the future trends are exposed. In particular, the possibility to co-digest food wastes and sewage sludge to improve the process yield is discussed. Finally, the paper illustrates the developments of biohythane application in the automotive sector as well as its reduced environmental burden
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/986160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 97
social impact