Cancer immunotherapy is a promising strategy based on the ability of the immune system to kill selected cells. In the development of an effective T-cell therapy the non-invasive cell tracking methods play a crucial role. Here we investigate the potentialities of T-cell marked with radionuclides in order to detect their localization with imaging techniques in small animal rodents. A protocol to label T-cells with 32 P-ATP was tested and evaluated. The homing of 32 P-ATP labeled T lymphocytes was investigated by Cerenkov luminescence imaging and radioluminescence imaging The first approach relies on the acquisition of Cerenkov photons produced by the beta particles emitted by the 32 P internalized by lymphocytes; the second one on the detection of photons coming from the conversion of radioactive energy in light done by scintillator crystals layered on the animals. The results show that T-cell biodistribution can be optically observed by both Cerenkov and radioluminescence imaging in small animal rodents in in-vivo and ex-vivo acquisitions. T-cell localization in the tumor mass was definitively confirmed by flow cytometry. This article is protected by copyright. All rights reserved.

T-cell tracking using Cerenkov and radioluminescence imaging

Boschi, F;De Sanctis, F;Ugel, S;
2018-01-01

Abstract

Cancer immunotherapy is a promising strategy based on the ability of the immune system to kill selected cells. In the development of an effective T-cell therapy the non-invasive cell tracking methods play a crucial role. Here we investigate the potentialities of T-cell marked with radionuclides in order to detect their localization with imaging techniques in small animal rodents. A protocol to label T-cells with 32 P-ATP was tested and evaluated. The homing of 32 P-ATP labeled T lymphocytes was investigated by Cerenkov luminescence imaging and radioluminescence imaging The first approach relies on the acquisition of Cerenkov photons produced by the beta particles emitted by the 32 P internalized by lymphocytes; the second one on the detection of photons coming from the conversion of radioactive energy in light done by scintillator crystals layered on the animals. The results show that T-cell biodistribution can be optically observed by both Cerenkov and radioluminescence imaging in small animal rodents in in-vivo and ex-vivo acquisitions. T-cell localization in the tumor mass was definitively confirmed by flow cytometry. This article is protected by copyright. All rights reserved.
2018
ATP; Cerenkov luminescence imaging; T lymphocytes; adoptive cell transfer immunotherapy; cancer imaging; optical imaging; radioluminescence imaging; Animals; Cell Tracking; Mice; Mice, Inbred C57BL; T-Lymphocytes; Luminescence; Optical Imaging
ATP; Cerenkov luminescence imaging; Optical imaging; Radioluminescence imaging; T lymphocytes; adoptive cell transfer immunotherapy; cancer imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/979847
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact