Reversible phosphorylation of thylakoid proteins in photosynthetic organisms is a way to cope with changing light conditions. It has been demonstrated that in monocots, as opposed to dicots, upon high light exposure the minor antenna CP29 is phosphorylated enhancing NPQ and reducing singlet oxygen production. The major light-harvesting complex II (LHCII) kinase STN7 and its related phosphatase PPH1/TAP38 have been proven not to be involved in this mechanism in monocots, indicating that a different set of kinases/phosphatases act in regulating this acclimatory response. Recently, we have analyzed an OsSTN8 knockout mutant, kindly provided by the laboratory of CH Lee, in which we determined that in addition to that of the PSII core proteins, CP29 phosphorylation was suppressed as well, thus proving that STN8 is the kinase involved in CP29 phosphorylation in monocots. To further investigate OsSTN8 activity we transformed A.thaliana mutant lines, where CP29 phosphorylation is absent in high light, given the availability of mutant libraries and the ease with which this species is manipulable compared to rice. A.thaliana stn8 and stn7stn8 mutants transformed with OsSTN8 restored phosphorylation of the PSII core proteins, as confirmed through immunoblot analysis. Furthermore, the kinase was able to phosphorylate CP29 under high light conditions, as opposed to the wild type strain. Non-Photochemical Quenching (NPQ) measurements were performed on the transformed lines to assess the effect of the minor antenna phosphorylation on photoprotection, showing a mild increase in NPQ. To better understand the individual contribution of CP29 phosphorylation in transgenic Arabidopsis apart from that of PSII core phosphorylation in high light, knockout lines for Lhcb4 of A.thaliana were co-transformed in order to express OsSTN8 and CP29 either from rice or A.thaliana, both in its native and mutated form at Thr-83, site of phosphorylation in rice. A 6X-Histag was added for improved purification in order to conduct spectroscopic analyses on phosphorylated and unphosphorylated forms of CP29. Transgenic lines were recently obtained and physiological analyses will be performed in the near future, both in vivo and in vitro through purification of the protein. In A.thaliana the phosphatase PBCP was determined to be involved in PSII core dephosphorylation and counteract the effect of STN8. Our recombinant OsPBCP was capable of dephosphorylating in vitro both PSII core proteins and CP29, in thylakoids as well as isolated complexes from a sucrose gradient. In light of these results, we have determined that STN8 and PBCP are respectively the kinase and phosphatase involved in CP29 phosphorylation in monocots, and OsSTN8 retains its activity when expressed in a dicot such as Arabidopsis thaliana.

La fosforilazione reversibile di proteine tilacoidali negli organismi fotosintetici è un meccanismo per far fronte a condizioni di luce variabili. Nelle monocotiledoni, contrariamente a quanto avviene nelle dicotiledoni, è stato dimostrato che la fosforilazione dell’antenna minore CP29, in seguito ad esposizione ad alte intensità luminose, induce un incremento in NPQ e diminuisce la produzione di specie reattive dell’ossigeno (ROS). La chinasi del complesso di antenne maggiori (LHCII), denominata STN7, e la relativa fosfatasi TAP38/PPH1, non partecipano in questo meccanismo, come in precedenza dimostrato nel nostro laboratorio, suggerendo l’ipotesi che un set di chinasi/fosfatasi differente fosse coinvolto nella regolazione di questo fenomeno. Recentemente, abbiamo analizzato un mutante knockout OsSTN8, gentilmente concessoci dal laboratorio di CH Lee, dimostrando che in aggiunta alla fosforilazione del core del Fotosistema II (PSII), anche quella di CP29 era soppressa, così provando che STN8 è la chinasi coinvolta nella fosforilazione di CP29 nelle monocotiledoni. Per meglio analizzare l’attività di OsSTN8 abbiamo trasformato linee mutanti di A. thaliana, dove il meccanismo di fosforilazione di CP29 in alta luce è assente, data la presenza di una libreria di mutanti molto vasta e dalla facilità con cui questa specie è geneticamente manipolabile rispetto a riso. I mutanti di A. thaliana stn8 e stn7stn8 complementati con OsSTN8 mostravano un recupero della fosforilazione del PSII core, come dimostrato tramite analisi Western blot. In aggiunta, la chinasi di riso fosforilava anche CP29 in condizioni di alta luce, contrariamente a quanto osservato nelle linee wild type. Misure di NPQ sono state eseguite sulle linee trasformate al fine di valutare l’effetto della fosforilazione dell’antenna minore sulla fotoprotezione. Un lieve incremento è stato osservato nelle linee trasformate con la chinasi di riso, indicando un possibile contributo di P-CP29 nella fotoprotezione in condizioni di di alta luce. Per meglio discernere il contributo di P-CP29 dalla fosforilazione del PSII core, mutanti Atlhcb4 sono stati co-trasformati con OsSTN8 e CP29 di riso o Arabidopsis, sia nella forma nativa che mutata al sito di fosforilazione Thr-83, ossia il sito identificato in riso come target della chinasi STN8. Un 6X-histag è stato addizionato alle proteine espresse per facilitare i processi di purificazione e permette analisi spettroscopiche delle forme fosforilate e non di CP29. Linee transgeniche sono state recentemente ottenute e misure fisiologiche saranno eseguite, sia in vivo che in vitro a seguito della purificazione della proteina. In A. thaliana la fosfatasi PBCP (Photosystem II Core Phosphatase) è stata dimostrata essere responsabile della defosforilazione del PSII core, controbilanciando l’attività di STN8. La proteina ricombinante OsPBCP da noi ottenuta era in grado di defosforilare in vitro sia le proteine del core che CP29 presenti nei tilacoidi e nelle preparazioni di complessi isolati da gradiente di saccarosio. Alla luce di questi risultati, abbiamo dimostrato che STN8 e CP29 sono, rispettivamente, la chinasi e fosfatasi coinvolte nella fosforilazione di CP29 nelle monocotiledoni, e OsSTN8 conserva la sua attività quando espressa in una dicotiledone come Arabidopsis thaliana.

UNCOVERING A MONOCOT-SPECIFIC MECHANISM OF PHOTOPROTECTION: HIGH LIGHT-INDUCED PHOSPHORYLATION OF THE MONOMERIC ANTENNA PROTEIN CP29

ROSA, ANTHONY
2017-01-01

Abstract

Reversible phosphorylation of thylakoid proteins in photosynthetic organisms is a way to cope with changing light conditions. It has been demonstrated that in monocots, as opposed to dicots, upon high light exposure the minor antenna CP29 is phosphorylated enhancing NPQ and reducing singlet oxygen production. The major light-harvesting complex II (LHCII) kinase STN7 and its related phosphatase PPH1/TAP38 have been proven not to be involved in this mechanism in monocots, indicating that a different set of kinases/phosphatases act in regulating this acclimatory response. Recently, we have analyzed an OsSTN8 knockout mutant, kindly provided by the laboratory of CH Lee, in which we determined that in addition to that of the PSII core proteins, CP29 phosphorylation was suppressed as well, thus proving that STN8 is the kinase involved in CP29 phosphorylation in monocots. To further investigate OsSTN8 activity we transformed A.thaliana mutant lines, where CP29 phosphorylation is absent in high light, given the availability of mutant libraries and the ease with which this species is manipulable compared to rice. A.thaliana stn8 and stn7stn8 mutants transformed with OsSTN8 restored phosphorylation of the PSII core proteins, as confirmed through immunoblot analysis. Furthermore, the kinase was able to phosphorylate CP29 under high light conditions, as opposed to the wild type strain. Non-Photochemical Quenching (NPQ) measurements were performed on the transformed lines to assess the effect of the minor antenna phosphorylation on photoprotection, showing a mild increase in NPQ. To better understand the individual contribution of CP29 phosphorylation in transgenic Arabidopsis apart from that of PSII core phosphorylation in high light, knockout lines for Lhcb4 of A.thaliana were co-transformed in order to express OsSTN8 and CP29 either from rice or A.thaliana, both in its native and mutated form at Thr-83, site of phosphorylation in rice. A 6X-Histag was added for improved purification in order to conduct spectroscopic analyses on phosphorylated and unphosphorylated forms of CP29. Transgenic lines were recently obtained and physiological analyses will be performed in the near future, both in vivo and in vitro through purification of the protein. In A.thaliana the phosphatase PBCP was determined to be involved in PSII core dephosphorylation and counteract the effect of STN8. Our recombinant OsPBCP was capable of dephosphorylating in vitro both PSII core proteins and CP29, in thylakoids as well as isolated complexes from a sucrose gradient. In light of these results, we have determined that STN8 and PBCP are respectively the kinase and phosphatase involved in CP29 phosphorylation in monocots, and OsSTN8 retains its activity when expressed in a dicot such as Arabidopsis thaliana.
2017
CP29, STN8 kinase, protein phosphorylation, NPQ, high light illumination
La fosforilazione reversibile di proteine tilacoidali negli organismi fotosintetici è un meccanismo per far fronte a condizioni di luce variabili. Nelle monocotiledoni, contrariamente a quanto avviene nelle dicotiledoni, è stato dimostrato che la fosforilazione dell’antenna minore CP29, in seguito ad esposizione ad alte intensità luminose, induce un incremento in NPQ e diminuisce la produzione di specie reattive dell’ossigeno (ROS). La chinasi del complesso di antenne maggiori (LHCII), denominata STN7, e la relativa fosfatasi TAP38/PPH1, non partecipano in questo meccanismo, come in precedenza dimostrato nel nostro laboratorio, suggerendo l’ipotesi che un set di chinasi/fosfatasi differente fosse coinvolto nella regolazione di questo fenomeno. Recentemente, abbiamo analizzato un mutante knockout OsSTN8, gentilmente concessoci dal laboratorio di CH Lee, dimostrando che in aggiunta alla fosforilazione del core del Fotosistema II (PSII), anche quella di CP29 era soppressa, così provando che STN8 è la chinasi coinvolta nella fosforilazione di CP29 nelle monocotiledoni. Per meglio analizzare l’attività di OsSTN8 abbiamo trasformato linee mutanti di A. thaliana, dove il meccanismo di fosforilazione di CP29 in alta luce è assente, data la presenza di una libreria di mutanti molto vasta e dalla facilità con cui questa specie è geneticamente manipolabile rispetto a riso. I mutanti di A. thaliana stn8 e stn7stn8 complementati con OsSTN8 mostravano un recupero della fosforilazione del PSII core, come dimostrato tramite analisi Western blot. In aggiunta, la chinasi di riso fosforilava anche CP29 in condizioni di alta luce, contrariamente a quanto osservato nelle linee wild type. Misure di NPQ sono state eseguite sulle linee trasformate al fine di valutare l’effetto della fosforilazione dell’antenna minore sulla fotoprotezione. Un lieve incremento è stato osservato nelle linee trasformate con la chinasi di riso, indicando un possibile contributo di P-CP29 nella fotoprotezione in condizioni di di alta luce. Per meglio discernere il contributo di P-CP29 dalla fosforilazione del PSII core, mutanti Atlhcb4 sono stati co-trasformati con OsSTN8 e CP29 di riso o Arabidopsis, sia nella forma nativa che mutata al sito di fosforilazione Thr-83, ossia il sito identificato in riso come target della chinasi STN8. Un 6X-histag è stato addizionato alle proteine espresse per facilitare i processi di purificazione e permette analisi spettroscopiche delle forme fosforilate e non di CP29. Linee transgeniche sono state recentemente ottenute e misure fisiologiche saranno eseguite, sia in vivo che in vitro a seguito della purificazione della proteina. In A. thaliana la fosfatasi PBCP (Photosystem II Core Phosphatase) è stata dimostrata essere responsabile della defosforilazione del PSII core, controbilanciando l’attività di STN8. La proteina ricombinante OsPBCP da noi ottenuta era in grado di defosforilare in vitro sia le proteine del core che CP29 presenti nei tilacoidi e nelle preparazioni di complessi isolati da gradiente di saccarosio. Alla luce di questi risultati, abbiamo dimostrato che STN8 e CP29 sono, rispettivamente, la chinasi e fosfatasi coinvolte nella fosforilazione di CP29 nelle monocotiledoni, e OsSTN8 conserva la sua attività quando espressa in una dicotiledone come Arabidopsis thaliana.
File in questo prodotto:
File Dimensione Formato  
Ph.D. Thesis Anthony Rosa.pdf

Open Access dal 16/12/2018

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 8.93 MB
Formato Adobe PDF
8.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/965417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact