Objectives In the ob/ob mouse model of obesity, chronic absence of leptin causes a significant increase of orexin (OX) production by hypothalamic neurons and excessive food intake. The altered OX level is linked to a dramatic increase of the inhibitory innervation of OX producing neurons (OX neurons) and the over expression of the endocannabinoid 2-arachidonoylglycerol (2-AG) by OX neurons of ob/ob mice. Little is known about the function of the excitatory synapses of OX neurons in ob/ob mice, and their modulation by 2-AG. In the present study, we fill this gap and provide the first evidence of the overall level of activation of OX neurons in the ob/ob mice. Methods We performed in vitro whole-cell patch-clamp recordings on OX neurons located in the perifornical area of the lateral hypothalamus in acute brain slices of wt and ob/ob mice. We identified OX neurons on the basis of their electrophysiological membrane properties, with 96% of concordance with immunohistochemisty. Results We found that OX neurons of ob/ob mice are innervated by less efficient and fewer excitatory synapses than wt mice. Consequently, ob/ob OX neurons show more negative resting membrane potential and lower action potential firing frequency than wt. The bath application of the cannabinoid type 1 receptor agonist WIN55,212-2, depresses both the excitatory and the inhibitory synapses in ob/ob animals, but only the excitatory synapses in wt animals. Finally, the physiologic release of 2-AG induces a prevalent depression of inhibition (disinhibition) of OX neurons in ob/ob animals but not in wt. Conclusions In ob/ob mice, chronic absence of leptin induces a 2-AG mediated functional disinhibition of OX neurons. This helps explain the increase of OX production and, consequently, the excessive food intake of ob/ob mice.

Endocannabinoid-dependent disinhibition of orexinergic neurons: electrophysiological evidence in leptin-knockout obese mice

Becker, Thorsten;FAVERO, Morgana;BUSETTO, Giuseppe
2017-01-01

Abstract

Objectives In the ob/ob mouse model of obesity, chronic absence of leptin causes a significant increase of orexin (OX) production by hypothalamic neurons and excessive food intake. The altered OX level is linked to a dramatic increase of the inhibitory innervation of OX producing neurons (OX neurons) and the over expression of the endocannabinoid 2-arachidonoylglycerol (2-AG) by OX neurons of ob/ob mice. Little is known about the function of the excitatory synapses of OX neurons in ob/ob mice, and their modulation by 2-AG. In the present study, we fill this gap and provide the first evidence of the overall level of activation of OX neurons in the ob/ob mice. Methods We performed in vitro whole-cell patch-clamp recordings on OX neurons located in the perifornical area of the lateral hypothalamus in acute brain slices of wt and ob/ob mice. We identified OX neurons on the basis of their electrophysiological membrane properties, with 96% of concordance with immunohistochemisty. Results We found that OX neurons of ob/ob mice are innervated by less efficient and fewer excitatory synapses than wt mice. Consequently, ob/ob OX neurons show more negative resting membrane potential and lower action potential firing frequency than wt. The bath application of the cannabinoid type 1 receptor agonist WIN55,212-2, depresses both the excitatory and the inhibitory synapses in ob/ob animals, but only the excitatory synapses in wt animals. Finally, the physiologic release of 2-AG induces a prevalent depression of inhibition (disinhibition) of OX neurons in ob/ob animals but not in wt. Conclusions In ob/ob mice, chronic absence of leptin induces a 2-AG mediated functional disinhibition of OX neurons. This helps explain the increase of OX production and, consequently, the excessive food intake of ob/ob mice.
2017
obesity; leptin; orexin; excitatory synapse; endocannabinoid
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2212877817302697-main.pdf

accesso aperto

Descrizione: CC BY-NC-ND 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/962831
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact