Wastewater treatment plants in many countries use anaerobic digesters for biosolids management and biogas generation. Opportunities exist to utilise the spare capacity of these digesters to co-digest food waste and sludge for energy recovery and a range of other economic and environmental benefits. This paper provides a critical perspective for full-scale implementation of co-digestion of food waste and wastewater sludge. Data compiled from full-scale facilities and the peer-reviewed literature revealed several key bottlenecks hindering full-scale implementation of co-digestion. Indeed, co-digestion applications remain concentrated mostly in countries or regions with favourable energy and waste management policies. Not all environmental benefits from waste diversion and resource recovery can be readily monetarised into revenue to support co-digestion projects. Our field surveys also revealed the important issue of inert impurities in food waste with significant implication to the planning, design, and operation of food waste processing and co-digestion plants. Other pertinent issues include regulatory uncertainty regarding gate fee, the lack of viable options for biogas utilisation, food waste collection and processing, impacts of co-digestion on biosolids reuse and downstream biogas utilisation, and lack of design and operation experience. Effort to address these bottlenecks and promote co-digestion requires a multi-disciplinary approach.

Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities

BOLZONELLA, David;
2017-01-01

Abstract

Wastewater treatment plants in many countries use anaerobic digesters for biosolids management and biogas generation. Opportunities exist to utilise the spare capacity of these digesters to co-digest food waste and sludge for energy recovery and a range of other economic and environmental benefits. This paper provides a critical perspective for full-scale implementation of co-digestion of food waste and wastewater sludge. Data compiled from full-scale facilities and the peer-reviewed literature revealed several key bottlenecks hindering full-scale implementation of co-digestion. Indeed, co-digestion applications remain concentrated mostly in countries or regions with favourable energy and waste management policies. Not all environmental benefits from waste diversion and resource recovery can be readily monetarised into revenue to support co-digestion projects. Our field surveys also revealed the important issue of inert impurities in food waste with significant implication to the planning, design, and operation of food waste processing and co-digestion plants. Other pertinent issues include regulatory uncertainty regarding gate fee, the lack of viable options for biogas utilisation, food waste collection and processing, impacts of co-digestion on biosolids reuse and downstream biogas utilisation, and lack of design and operation experience. Effort to address these bottlenecks and promote co-digestion requires a multi-disciplinary approach.
2017
anaerobic digestion, sludge, food waste, biogas, circular economy, bioeconmy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/962670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 250
  • ???jsp.display-item.citation.isi??? 216
social impact