Automated formal methods and automated reasoning are interconnected, as formal methods generate reasoning problems and incorporate reasoning techniques. For example, formal methods tools employ reasoning engines to find solutions of sets of constraints, or proofs of conjectures. From a reasoning perspective, the expressivity of the logical language is often directly proportional to the difficulty of the problem. In propositional logic, Conflict-Driven Clause Learning (CDCL) is one of the key features of state-of-the-art satisfiability solvers. The idea is to restrict inferences to those needed to explain conflicts, and use conflicts to prune a backtracking search. A current research direction in automated reasoning is to generalize this notion of conflict-driven satisfiability to a paradigm of conflict-driven reasoning in first-order theories for satisfiability modulo theories and assignments, and even in full first-order logic for generic automated theorem proving. While this is a promising and exciting lead, it also poses formidable challenges.

On conflict-driven reasoning

BONACINA, Maria Paola
2018-01-01

Abstract

Automated formal methods and automated reasoning are interconnected, as formal methods generate reasoning problems and incorporate reasoning techniques. For example, formal methods tools employ reasoning engines to find solutions of sets of constraints, or proofs of conjectures. From a reasoning perspective, the expressivity of the logical language is often directly proportional to the difficulty of the problem. In propositional logic, Conflict-Driven Clause Learning (CDCL) is one of the key features of state-of-the-art satisfiability solvers. The idea is to restrict inferences to those needed to explain conflicts, and use conflicts to prune a backtracking search. A current research direction in automated reasoning is to generalize this notion of conflict-driven satisfiability to a paradigm of conflict-driven reasoning in first-order theories for satisfiability modulo theories and assignments, and even in full first-order logic for generic automated theorem proving. While this is a promising and exciting lead, it also poses formidable challenges.
2018
Theorem proving, Satisfiability modulo theory, Model building, Theory combination, Equality reasoning, Satisfiability modulo assignment
File in questo prodotto:
File Dimensione Formato  
AFM2017cdr.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 322.14 kB
Formato Adobe PDF
322.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact