Heparanase (HPSE) is a multitasking protein characterized by enzymatic and non-enzymatic activities. By means of its enzymatic activity, HPSE catalyzes the cutting of the side chains of heparan sulfate (HS) proteoglycans, thereby inducing the remodeling of the extracellular matrix and basement membranes. Thanks to the cleavage of HS, HPSE also promotes the release and diffusion of several HS-linked molecules such as growth factors, cytokines and enzymes. In addition to degrading HS chains, HPSE has non-enzymatic functions that trigger several signaling pathways. This signaling activity is achieved by interacting with transmembrane proteins, activating kinases such as Akt and Src, or modulating the activity of factors such as FGF-2 and TGF-β. Several studies have recently highlighted a possible intracellular activity for HPSE, particularly at nuclear level. While HPSE activity is quite limited in physiological conditions, its demonstrated increasing involvement in various pathological conditions, such as in tumor progression and renal disease, have attracted the attention of a growing number of researchers. The fact that no other molecule is capable of performing the same function as HPSE makes this enzyme an attractive potential target of medical treatment. With this short conceptual overview, we aim to provide an update on current knowledge concerning the HPSE protein in the experimental and clinical settings, paying particular attention to its role in fibrosis, inflammation and cancer.

Recent data concerning heparanase: focus on fibrosis, inflammation and cancer.

MASOLA, Valentina;Zaza, Gianluigi;LUPO, Antonio;Gambaro, G;
2015-01-01

Abstract

Heparanase (HPSE) is a multitasking protein characterized by enzymatic and non-enzymatic activities. By means of its enzymatic activity, HPSE catalyzes the cutting of the side chains of heparan sulfate (HS) proteoglycans, thereby inducing the remodeling of the extracellular matrix and basement membranes. Thanks to the cleavage of HS, HPSE also promotes the release and diffusion of several HS-linked molecules such as growth factors, cytokines and enzymes. In addition to degrading HS chains, HPSE has non-enzymatic functions that trigger several signaling pathways. This signaling activity is achieved by interacting with transmembrane proteins, activating kinases such as Akt and Src, or modulating the activity of factors such as FGF-2 and TGF-β. Several studies have recently highlighted a possible intracellular activity for HPSE, particularly at nuclear level. While HPSE activity is quite limited in physiological conditions, its demonstrated increasing involvement in various pathological conditions, such as in tumor progression and renal disease, have attracted the attention of a growing number of researchers. The fact that no other molecule is capable of performing the same function as HPSE makes this enzyme an attractive potential target of medical treatment. With this short conceptual overview, we aim to provide an update on current knowledge concerning the HPSE protein in the experimental and clinical settings, paying particular attention to its role in fibrosis, inflammation and cancer.
2015
cancer, extracellular matrix, fibrosis, heparanase
File in questo prodotto:
File Dimensione Formato  
Biomol.Concepts 2015 .pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 996.64 kB
Formato Adobe PDF
996.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/930149
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact