L'obesità è un problema mondiale, che colpisce la salute delle persone e gravare sistemi sanitari. Dal punto di vista del biologo è una complessa interazione di endocrine e neurali meccanismi sottostanti assunzione di cibo, in particolare, una delle sue forme patologiche porta all'obesità. È interessante notare che i pazienti così come modelli animali affetti da anomalie di visualizzazione comportamento alimentare nocicezione alterato. Un modello di topo fama per l'obesità è la leptina-carente ob/ob topo, il nostro laboratorio ha dimostrato che l'innervazione prevalentemente eccitatoria dei neuroni esprimono orexin (OX-N) nell'ipotalamo laterale (LH) di topi WT è riorganizzato in favore di gli ingressi inibitori di LH di topi ob/ob. Inoltre, il rilascio delle vescicole dagli ingressi inibitori è soppressa via recettore dei cannabinoidi di tipo 1 (CB1) attivazione. Su depolarizzazione un neurone oressinergico sintetizza e "rilascia" endocannabinoidi (eCBs), molto probabilmente 2-AG, che viaggia retrograda al terminale presinaptico e attiva i recettori CB1 presinaptici, sopprimendo così il rilascio delle vescicole da questi terminali (un meccanismo chiamato: depolarizzazione-indotta soppressione di inibizione o DSI). Qui, ho dimostrato che l'innervazione eccitatoria funzionale di OX-N non differiva tra ob/ob e topi WT. Inoltre, l'attivazione dei recettori CB1 presinaptici soppresso il rilascio delle vescicole da ingressi eccitatori, sia wt e topi ob/ob, nella stessa misura. Lo squilibrio di eccitatori funzionale e ingressi inibitori in ob/ob recettori CB1 presinaptici topi, putativamente, lascia OX-N con una membrana iperpolarizzato potenziale e un'attività di cottura ridotta, su depolarizzazione, tuttavia, eCBs sarebbe sintetizzato e rilasciato, viaggi in e attivare , che si trova principalmente su fattori inibitori, sopprimendo il rilascio delle vescicole e disinibendo quindi OX-N. Neuroni oressinergico possiedono vaste proiezioni in tutto il cervello, i.a. per il sistema della dopamina mesoaccumbal e (HPA) ipotalamo-ipofisi-surrene. L'attivazione di queste due circuiti, putativamente, provoca l'aumentata assunzione di cibo visto in ob/ob mouse. Un'altra area di destinazione di OX-N è il grigio periacqueduttale (PAG), che è noto a svolgere un ruolo chiave nella nocicezione attraverso le vie discendenti antinocicettivi. E 'stato riportato che i pazienti così come modelli animali affetti da comportamento alimentare anormale mostrano anche nocicezione alterata. Inoltre, la somministrazione di orexina A (OX-A) è stata dimostrata per sopprimere le correnti postsinaptiche inibitorie in recettori CB1 modo attivazione mediata, eventualmente, causando una depolarizzazione del potenziale di membrana dei neuroni PAG e, infine, un aumento di cottura attività. Curiosamente, queste osservazioni in vitro si traducono in un comportamento, OX-Un'amministrazione nel PAG elevato la soglia del dolore nei ratti durante il test della coda-flick. ob/ob topo mostravano un elevato livello di OX-A in PAG, simile alla situazione dopo OX-A amministrazione, quindi, abbiamo ipotizzato che i neuroni PAG proiettando al midollo rostroventral (prossimo passo gerarchica dopo PAG nelle vie discendenti antinocicettivi) erano più depolarizzato e hanno un'attività di cottura superiore in topi ob/ob rispetto al peso. Infatti, bloccando il recettore orexina 1 iperpolarizzato il potenziale di membrana e riduce l'attività dei neuroni ob/ob PAG, ma non i neuroni wt PAG. Inoltre, PAG neuroni di topi ob/ob visualizzati potenziale potenziale soglia azione iperpolarizzato rispetto ai topi WT, il che significa che i neuroni ob/ob PAG sono più propensi ad avviare un potenziale d'azione di neuroni WT PAG. Così, suggerendo che l'attivazione dei neuroni PAG dal attivati ingressi oressinergico risultati in una soglia del dolore elevata ulteriormente attivando le vie discendenti antinocicettivi. In conclusione, l'interruttore di innervazione su OX-N a favore di ingressi inibitori, causato dall'assenza di leptina nel ob/ob topo, attiva OX-N inibendo loro ingressi principalmente inibitori dall'attivazione del recettore CB1 BCE-mediata, conseguente la soppressione del rilascio di vescicole (DSI). Questi disinibito OX-N attivare aree di destinazione in tutto il cervello, come il sistema della dopamina mesoaccumbal e asse HPA, modulando in tal modo il comportamento alimentare. Inoltre, le proiezioni oressinergico a PAG depolarizza il potenziale di membrana e aumenta l'attività dei neuroni PAG proiettano al midollo rostroventral, aumentando così la soglia del dolore.

Obesity is a worldwide problem, affecting peoples‘ health and burdening healthcare systems. It is a complex interaction of endocrine and neural mechanisms underlying food intake, in particular, one of its pathological forms leading to obesity. Interestingly, patients as well as animal models suffering from abnormal feeding behavior display altered nociception. A renown mouse model for obesity is the leptin-deficient ob/ob mouse, our laboratory has demonstrated that the mainly excitatory innervation of orexin-expressing neurons (OX-N) in the lateral hypothalamus (LH) of wt mice is rearranged in favor of the inhibitory inputs in LH of ob/ob mice. Furthermore, the vesicle release from the inhibitory inputs is suppressed by endocannabinoids (eCBs) activating cannabinoid receptor type 1 (CB1) activation. The eCBs, most likely 2-AG, originate from the postsynaptic terminals, where they are being synthesized and “released“ as a reaction to depolarization (a mechanism called: depolarization-induced suppression of inhibition or DSI). Here, I demonstrated that the functional excitatory innervation of OX-N did not differ between ob/ob and wt mice. Furthermore, the activation of presynaptic CB1 receptors suppressed the vesicle release from excitatory inputs, in both wt and ob/ob mice, to the same extent. The imbalance of functional excitatory and inhibitory inputs in ob/ob mice, putatively, leaves OX-N with a hyperpolarized membrane potential and a reduced firing activity. Activation of CB1 receptors, mainly located on inhibitory inputs, eventually activate OX-N by disinhibiting them. Orexinergic neurons possess vast projections throughout the brain, i.a. to the mesoaccumbal dopamine system and the hypothalamus-pituitary-adrenal (HPA) axis. The activation of these two circuits, putatively, results in the increased food intake seen in the ob/ob mouse. Another target area of OX-N is the periaqueductal gray (PAG), playing a key role in nociception via the descending antinociceptive pathways. It has been reported that patients as well as animal models suffering from abnormal feeding behavior also display altered nociception. Furthermore, the administration of orexin A (OX-A) has been demonstrated to suppress inhibitory postsynaptic currents in CB1 receptor activation-mediated way, eventually, resulting in a depolarization of the membrane potential of PAG neurons and, finally, in an increase of firing activity. Intriguingly, these in vitro observations translate to behavior, OX-A administration into PAG elevated the pain threshold in rats during the tail-flick test. ob/ob mice displayed an elevated level of OX-A in PAG, similar to the situation after OX-A administration, hence, we hypothesized that the PAG neurons projecting to the rostroventral medulla were more depolarized and have a higher firing activity in ob/ob mice compared to wt. Indeed, blocking the orexin 1 receptor hyperpolarized the membrane potential and reduced the firing activity of ob/ob PAG neurons, but not wt PAG neurons. Furthermore, ob/ob PAG neurons were more likely to initiate an action potential than wt PAG neurons. Thus, suggesting that the activation of PAG neurons by activated orexinergic inputs results in an elevated pain threshold by further activating the descending antinociceptive pathways. In conclusion, the switch of innervation onto OX-N in favor of inhibitory inputs, caused by the absence of leptin in the ob/ob mouse, activates OX-N by inhibiting their mainly inhibitory inputs by eCB-mediated CB1 receptor activation, resulting in the suppression of vesicle release (DSI). These disinhibited OX-N activate target areas throughout the brain, such as the mesoaccumbal dopamine system and HPA axis, thereby modulating feeding behavior. Furthermore, orexinergic projections to PAG depolarizes the membrane potential and increases the firing activity of PAG neurons projecting to the rostroventral medulla, thereby raising the pain threshold.

On the synaptic rearrangement in the hypothalamus and the periaqueductal gray in an animal model of obesity

Becker, Thorsten
2015-01-01

Abstract

Obesity is a worldwide problem, affecting peoples‘ health and burdening healthcare systems. It is a complex interaction of endocrine and neural mechanisms underlying food intake, in particular, one of its pathological forms leading to obesity. Interestingly, patients as well as animal models suffering from abnormal feeding behavior display altered nociception. A renown mouse model for obesity is the leptin-deficient ob/ob mouse, our laboratory has demonstrated that the mainly excitatory innervation of orexin-expressing neurons (OX-N) in the lateral hypothalamus (LH) of wt mice is rearranged in favor of the inhibitory inputs in LH of ob/ob mice. Furthermore, the vesicle release from the inhibitory inputs is suppressed by endocannabinoids (eCBs) activating cannabinoid receptor type 1 (CB1) activation. The eCBs, most likely 2-AG, originate from the postsynaptic terminals, where they are being synthesized and “released“ as a reaction to depolarization (a mechanism called: depolarization-induced suppression of inhibition or DSI). Here, I demonstrated that the functional excitatory innervation of OX-N did not differ between ob/ob and wt mice. Furthermore, the activation of presynaptic CB1 receptors suppressed the vesicle release from excitatory inputs, in both wt and ob/ob mice, to the same extent. The imbalance of functional excitatory and inhibitory inputs in ob/ob mice, putatively, leaves OX-N with a hyperpolarized membrane potential and a reduced firing activity. Activation of CB1 receptors, mainly located on inhibitory inputs, eventually activate OX-N by disinhibiting them. Orexinergic neurons possess vast projections throughout the brain, i.a. to the mesoaccumbal dopamine system and the hypothalamus-pituitary-adrenal (HPA) axis. The activation of these two circuits, putatively, results in the increased food intake seen in the ob/ob mouse. Another target area of OX-N is the periaqueductal gray (PAG), playing a key role in nociception via the descending antinociceptive pathways. It has been reported that patients as well as animal models suffering from abnormal feeding behavior also display altered nociception. Furthermore, the administration of orexin A (OX-A) has been demonstrated to suppress inhibitory postsynaptic currents in CB1 receptor activation-mediated way, eventually, resulting in a depolarization of the membrane potential of PAG neurons and, finally, in an increase of firing activity. Intriguingly, these in vitro observations translate to behavior, OX-A administration into PAG elevated the pain threshold in rats during the tail-flick test. ob/ob mice displayed an elevated level of OX-A in PAG, similar to the situation after OX-A administration, hence, we hypothesized that the PAG neurons projecting to the rostroventral medulla were more depolarized and have a higher firing activity in ob/ob mice compared to wt. Indeed, blocking the orexin 1 receptor hyperpolarized the membrane potential and reduced the firing activity of ob/ob PAG neurons, but not wt PAG neurons. Furthermore, ob/ob PAG neurons were more likely to initiate an action potential than wt PAG neurons. Thus, suggesting that the activation of PAG neurons by activated orexinergic inputs results in an elevated pain threshold by further activating the descending antinociceptive pathways. In conclusion, the switch of innervation onto OX-N in favor of inhibitory inputs, caused by the absence of leptin in the ob/ob mouse, activates OX-N by inhibiting their mainly inhibitory inputs by eCB-mediated CB1 receptor activation, resulting in the suppression of vesicle release (DSI). These disinhibited OX-N activate target areas throughout the brain, such as the mesoaccumbal dopamine system and HPA axis, thereby modulating feeding behavior. Furthermore, orexinergic projections to PAG depolarizes the membrane potential and increases the firing activity of PAG neurons projecting to the rostroventral medulla, thereby raising the pain threshold.
2015
obesity; nociception; patch clamp; electrophysiology; lateral hypothalamus; periaqueductal gray; orexin/hypocretin; orexin 1 receptor; Endocannabinoid System; Cannabinoid CB1 receptor; Epileptic syndromes; ob-ob mouse
L'obesità è un problema mondiale, che colpisce la salute delle persone e gravare sistemi sanitari. Dal punto di vista del biologo è una complessa interazione di endocrine e neurali meccanismi sottostanti assunzione di cibo, in particolare, una delle sue forme patologiche porta all'obesità. È interessante notare che i pazienti così come modelli animali affetti da anomalie di visualizzazione comportamento alimentare nocicezione alterato. Un modello di topo fama per l'obesità è la leptina-carente ob/ob topo, il nostro laboratorio ha dimostrato che l'innervazione prevalentemente eccitatoria dei neuroni esprimono orexin (OX-N) nell'ipotalamo laterale (LH) di topi WT è riorganizzato in favore di gli ingressi inibitori di LH di topi ob/ob. Inoltre, il rilascio delle vescicole dagli ingressi inibitori è soppressa via recettore dei cannabinoidi di tipo 1 (CB1) attivazione. Su depolarizzazione un neurone oressinergico sintetizza e "rilascia" endocannabinoidi (eCBs), molto probabilmente 2-AG, che viaggia retrograda al terminale presinaptico e attiva i recettori CB1 presinaptici, sopprimendo così il rilascio delle vescicole da questi terminali (un meccanismo chiamato: depolarizzazione-indotta soppressione di inibizione o DSI). Qui, ho dimostrato che l'innervazione eccitatoria funzionale di OX-N non differiva tra ob/ob e topi WT. Inoltre, l'attivazione dei recettori CB1 presinaptici soppresso il rilascio delle vescicole da ingressi eccitatori, sia wt e topi ob/ob, nella stessa misura. Lo squilibrio di eccitatori funzionale e ingressi inibitori in ob/ob recettori CB1 presinaptici topi, putativamente, lascia OX-N con una membrana iperpolarizzato potenziale e un'attività di cottura ridotta, su depolarizzazione, tuttavia, eCBs sarebbe sintetizzato e rilasciato, viaggi in e attivare , che si trova principalmente su fattori inibitori, sopprimendo il rilascio delle vescicole e disinibendo quindi OX-N. Neuroni oressinergico possiedono vaste proiezioni in tutto il cervello, i.a. per il sistema della dopamina mesoaccumbal e (HPA) ipotalamo-ipofisi-surrene. L'attivazione di queste due circuiti, putativamente, provoca l'aumentata assunzione di cibo visto in ob/ob mouse. Un'altra area di destinazione di OX-N è il grigio periacqueduttale (PAG), che è noto a svolgere un ruolo chiave nella nocicezione attraverso le vie discendenti antinocicettivi. E 'stato riportato che i pazienti così come modelli animali affetti da comportamento alimentare anormale mostrano anche nocicezione alterata. Inoltre, la somministrazione di orexina A (OX-A) è stata dimostrata per sopprimere le correnti postsinaptiche inibitorie in recettori CB1 modo attivazione mediata, eventualmente, causando una depolarizzazione del potenziale di membrana dei neuroni PAG e, infine, un aumento di cottura attività. Curiosamente, queste osservazioni in vitro si traducono in un comportamento, OX-Un'amministrazione nel PAG elevato la soglia del dolore nei ratti durante il test della coda-flick. ob/ob topo mostravano un elevato livello di OX-A in PAG, simile alla situazione dopo OX-A amministrazione, quindi, abbiamo ipotizzato che i neuroni PAG proiettando al midollo rostroventral (prossimo passo gerarchica dopo PAG nelle vie discendenti antinocicettivi) erano più depolarizzato e hanno un'attività di cottura superiore in topi ob/ob rispetto al peso. Infatti, bloccando il recettore orexina 1 iperpolarizzato il potenziale di membrana e riduce l'attività dei neuroni ob/ob PAG, ma non i neuroni wt PAG. Inoltre, PAG neuroni di topi ob/ob visualizzati potenziale potenziale soglia azione iperpolarizzato rispetto ai topi WT, il che significa che i neuroni ob/ob PAG sono più propensi ad avviare un potenziale d'azione di neuroni WT PAG. Così, suggerendo che l'attivazione dei neuroni PAG dal attivati ingressi oressinergico risultati in una soglia del dolore elevata ulteriormente attivando le vie discendenti antinocicettivi. In conclusione, l'interruttore di innervazione su OX-N a favore di ingressi inibitori, causato dall'assenza di leptina nel ob/ob topo, attiva OX-N inibendo loro ingressi principalmente inibitori dall'attivazione del recettore CB1 BCE-mediata, conseguente la soppressione del rilascio di vescicole (DSI). Questi disinibito OX-N attivare aree di destinazione in tutto il cervello, come il sistema della dopamina mesoaccumbal e asse HPA, modulando in tal modo il comportamento alimentare. Inoltre, le proiezioni oressinergico a PAG depolarizza il potenziale di membrana e aumenta l'attività dei neuroni PAG proiettano al midollo rostroventral, aumentando così la soglia del dolore.
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_Thorsten Becker_2015.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 12.48 MB
Formato Adobe PDF
12.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/915001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact