Regulation of signal transduction networks depends on protein kinase and phosphatase activities. Protein tyrosine kinases of the JAK family have been shown to regulate integrin affinity modulation by chemokines and mediated homing to secondary lymphoid organs of human T lymphocytes. However, the role of s in leukocyte recruitment is still elusive. In this study, we address this issue by focusing on protein tyrosine phosphatase receptor type γ (PTPRG), a tyrosine phosphatase highly expressed in human primary monocytes. We developed a novel methodology to study the signaling role of receptor type tyrosine phosphatases and found that activated PTPRG blocks chemoattractant-induced β2 integrin activation. Specifically, triggering of LFA-1 to high-affinity state is prevented by PTPRG activation. High-throughput phosphoproteomics and computational analyses show that PTPRG activation affects the phosphorylation state of at least 31 signaling proteins. Deeper examination shows that JAKs are critically involved in integrin-mediated monocyte adhesion and that PTPRG activation leads to JAK2 dephosphorylation on the critical 1007-1008 phosphotyrosine residues, implying JAK2 inhibition and thus explaining the antiadhesive role of PTPRG. Overall, the data validate a new approach to study receptor tyrosine phosphatases and show that, by targeting JAKs, PTPRG downmodulates the rapid activation of integrin affinity in human monocytes, thus emerging as a potential novel critical regulator of leukocyte trafficking.

Protein Tyrosine Phosphatase Receptor Type γ Is a JAK Phosphatase and Negatively Regulates Leukocyte Integrin Activation

TOFFALI, Lara;MONTRESOR, Alessio;SORIO, Claudio;LAUDANNA, Carlo
2015-01-01

Abstract

Regulation of signal transduction networks depends on protein kinase and phosphatase activities. Protein tyrosine kinases of the JAK family have been shown to regulate integrin affinity modulation by chemokines and mediated homing to secondary lymphoid organs of human T lymphocytes. However, the role of s in leukocyte recruitment is still elusive. In this study, we address this issue by focusing on protein tyrosine phosphatase receptor type γ (PTPRG), a tyrosine phosphatase highly expressed in human primary monocytes. We developed a novel methodology to study the signaling role of receptor type tyrosine phosphatases and found that activated PTPRG blocks chemoattractant-induced β2 integrin activation. Specifically, triggering of LFA-1 to high-affinity state is prevented by PTPRG activation. High-throughput phosphoproteomics and computational analyses show that PTPRG activation affects the phosphorylation state of at least 31 signaling proteins. Deeper examination shows that JAKs are critically involved in integrin-mediated monocyte adhesion and that PTPRG activation leads to JAK2 dephosphorylation on the critical 1007-1008 phosphotyrosine residues, implying JAK2 inhibition and thus explaining the antiadhesive role of PTPRG. Overall, the data validate a new approach to study receptor tyrosine phosphatases and show that, by targeting JAKs, PTPRG downmodulates the rapid activation of integrin affinity in human monocytes, thus emerging as a potential novel critical regulator of leukocyte trafficking.
2015
Protein tyrosine kinases; protein tyrosine phosphatase
File in questo prodotto:
File Dimensione Formato  
Mirenda et al.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/880782
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact