Human liver fatty acid binding protein (hL-FABP) has been reported to act as an intracellular shuttle of lipid molecules, thus playing a central role in systemic metabolic homeostasis. The involvement of hL-FABP in the transport of bile salts has been postulated but scarcely investigated. Here we describe a thorough NMR investigation of glycocholate (GCA) binding to hL-FABP. The protein molecule bound a single molecule of GCA, in contrast to the 1:2 stoichiometry observed with fatty acids. GCA was found to occupy the large internal cavity of hL-FABP, without requiring major conformational rearrangement of the protein backbone; rather, this led to increased stability, similar to that estimated for the hL-FABP:oleate complex. Fast-timescale dynamics appeared not to be significantly perturbed in the presence of ligands. Slow motions (unlike for other proteins of the family) were retained or enhanced upon binding, consistent with a requirement for structural plasticity for promiscuous recognition.

Ligand Binding Promiscuity of Human Liver Fatty Acid Binding Protein: Structural and Dynamic Insights from an Interaction Study with Glycocholate and Oleate

Favretto, Filippo;ASSFALG, Michael;D'ONOFRIO, Mariapina
;
MOLINARI, Henriette
2013-01-01

Abstract

Human liver fatty acid binding protein (hL-FABP) has been reported to act as an intracellular shuttle of lipid molecules, thus playing a central role in systemic metabolic homeostasis. The involvement of hL-FABP in the transport of bile salts has been postulated but scarcely investigated. Here we describe a thorough NMR investigation of glycocholate (GCA) binding to hL-FABP. The protein molecule bound a single molecule of GCA, in contrast to the 1:2 stoichiometry observed with fatty acids. GCA was found to occupy the large internal cavity of hL-FABP, without requiring major conformational rearrangement of the protein backbone; rather, this led to increased stability, similar to that estimated for the hL-FABP:oleate complex. Fast-timescale dynamics appeared not to be significantly perturbed in the presence of ligands. Slow motions (unlike for other proteins of the family) were retained or enhanced upon binding, consistent with a requirement for structural plasticity for promiscuous recognition.
2013
Bile salts; Dynamics; Fatty acids; Intracellular lipid transport; NMR spectroscopy
File in questo prodotto:
File Dimensione Formato  
2013_ChemBioChem_Favretto.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/627567
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact