The distribution of Fos, the protein product of the immediate early gene c-fos, was studied with immunocytochemistry in the adult male rat brain after nerve growth factor (NGF) administration. NGF was injected in the lateral cerebral ventricle through a previously implanted cannula. The total number of Fos-immunoreactive (ir) neurons in the brain was 2-3 times higher after NGF administration than in control animals (untreated or injected with cytochrome c). With respect to control rats, in the NGF-treated cases Fos-ir cells were more numerous in the anterior olfactory nucleus, in the medial prefrontal and anterior cingulate cortices, in the basal forebrain, in the preoptic and ventromedial nuclei of the hypothalamus, as well as anterior hypothalamic area, in the thalamic midline nuclei, and in some brainstem structures, such as the parabrachial nucleus. The relative quantitative increase of Fos-ir neurons varied in the different structures. In addition, Fos-ir neurons were evident after NGF administration in areas devoid of immunopositive cells in control animals. These included: frontoparietal and occipital cortical fields, the hypothalamic arcuate nucleus, and many brainstem structures, such as the dorsal nucleus of the lateral lemniscus, posterodorsal tegmental, medial and lateral vestibular, ventral cochlear, and prepositus hypoglossal nuclei. These findings demonstrate that the intracerebroventricular administration of NGF can induce c-fos expression in neurons in vivo. The distribution of Fos-ir neurons indicates that NGF can induce activation of functionally and chemically heterogeneous neuronal subsets in the brain.

Fos induction by nerve growth factor in the adult rat brain

BENTIVOGLIO FALES, Marina
1993-01-01

Abstract

The distribution of Fos, the protein product of the immediate early gene c-fos, was studied with immunocytochemistry in the adult male rat brain after nerve growth factor (NGF) administration. NGF was injected in the lateral cerebral ventricle through a previously implanted cannula. The total number of Fos-immunoreactive (ir) neurons in the brain was 2-3 times higher after NGF administration than in control animals (untreated or injected with cytochrome c). With respect to control rats, in the NGF-treated cases Fos-ir cells were more numerous in the anterior olfactory nucleus, in the medial prefrontal and anterior cingulate cortices, in the basal forebrain, in the preoptic and ventromedial nuclei of the hypothalamus, as well as anterior hypothalamic area, in the thalamic midline nuclei, and in some brainstem structures, such as the parabrachial nucleus. The relative quantitative increase of Fos-ir neurons varied in the different structures. In addition, Fos-ir neurons were evident after NGF administration in areas devoid of immunopositive cells in control animals. These included: frontoparietal and occipital cortical fields, the hypothalamic arcuate nucleus, and many brainstem structures, such as the dorsal nucleus of the lateral lemniscus, posterodorsal tegmental, medial and lateral vestibular, ventral cochlear, and prepositus hypoglossal nuclei. These findings demonstrate that the intracerebroventricular administration of NGF can induce c-fos expression in neurons in vivo. The distribution of Fos-ir neurons indicates that NGF can induce activation of functionally and chemically heterogeneous neuronal subsets in the brain.
1993
neurotrophin; immediate early gene; neuronal activation; basal forebrain; hypothalamus; auditory system; posterodorsal tegmental nucleus
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/5790
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact