We present an extension of the mosaic method aimed at capturing many-dimensional modal logics. As a proof-of-concept, we define the method for logics arising from the combination of linear tense operators with an “orthogonal” S5-like modality. We show that the existence of a model for a given set of formulas is equivalent to the existence of a suitable set of partial models, called mosaics, and apply the technique not only in obtaining a proof of decidability and a proof of completeness for the corresponding Hilbert-style axiomatization, but also in the development of a mosaic-based tableau system. We further consider extensions for dealing with the case when interactions between the two dimensions exist, thus covering a wide class of bundled Ockhamist branching-time logics, and present for them some partial results, such as a non-analytic version of the tableau system.
On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators
VIGANO', Luca;VOLPE, Marco
2013-01-01
Abstract
We present an extension of the mosaic method aimed at capturing many-dimensional modal logics. As a proof-of-concept, we define the method for logics arising from the combination of linear tense operators with an “orthogonal” S5-like modality. We show that the existence of a model for a given set of formulas is equivalent to the existence of a suitable set of partial models, called mosaics, and apply the technique not only in obtaining a proof of decidability and a proof of completeness for the corresponding Hilbert-style axiomatization, but also in the development of a mosaic-based tableau system. We further consider extensions for dealing with the case when interactions between the two dimensions exist, thus covering a wide class of bundled Ockhamist branching-time logics, and present for them some partial results, such as a non-analytic version of the tableau system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.