We present a numerical analysis and preliminary experimental results on one-dimensional Fabry-Perot micro-cavities in Si3N4 waveguides. The Fabry-Perot micro-cavities are formed by two distributed Bragg reflectors separated by a straight portion of a waveguide. The Bragg reflectors are composed of a few air slits produced within the Si3N4 waveguides. In order to increase the quality factor of the micro-cavities, we have minimized, with a multiparametric optimization tool, the insertion loss of the reflectors by varying the length of their first pairs (those facing the cavity). To explain the simulation results, the coupling of the fundamental waveguide mode with radiative modes in the Fabry-Perot micro-cavities is needed. This effect is described as a recycling of radiative modes in the waveguide. To support the modelling, preliminary experimental results of micro-cavities in Si3N4 waveguides realized with the focused ion beam technique are reported.

Photon recycling in Fabry-Perot micro-cavities based on Si3N4 waveguides

Daldosso, Nicola;
2006-01-01

Abstract

We present a numerical analysis and preliminary experimental results on one-dimensional Fabry-Perot micro-cavities in Si3N4 waveguides. The Fabry-Perot micro-cavities are formed by two distributed Bragg reflectors separated by a straight portion of a waveguide. The Bragg reflectors are composed of a few air slits produced within the Si3N4 waveguides. In order to increase the quality factor of the micro-cavities, we have minimized, with a multiparametric optimization tool, the insertion loss of the reflectors by varying the length of their first pairs (those facing the cavity). To explain the simulation results, the coupling of the fundamental waveguide mode with radiative modes in the Fabry-Perot micro-cavities is needed. This effect is described as a recycling of radiative modes in the waveguide. To support the modelling, preliminary experimental results of micro-cavities in Si3N4 waveguides realized with the focused ion beam technique are reported.
2006
Waveguides; photonic crystals; Fabry-Perot micro-cavities; engineered mirrors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/389869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact