The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1 beta/TNF-alpha-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1 beta and TNF-alpha stimulate Ngf and downstream NF-kappa B signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair.

A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone

Negri, Stefano;
2020-01-01

Abstract

The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1 beta/TNF-alpha-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1 beta and TNF-alpha stimulate Ngf and downstream NF-kappa B signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair.
2020
NGF
TrkA
bone healing
calvarial bone
osteogenesis
Animals
Bone Remodeling
Bone and Bones
Disease Models, Animal
Mice
Skull
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2211124720306495-main (1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 6.93 MB
Formato Adobe PDF
6.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1045295
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact