The growing dimension and complexity of the available experimental data generating biological networks have increased the need for tools that help in categorizing nodes by their topological relevance. Here we present CentiScaPe, a Cytoscape app specifically designed to calculate centrality indexes used for the identification of the most important nodes in a network. CentiScaPe is a comprehensive suite of algorithms dedicated to network nodes centrality analysis, computing several centralities for undirected, directed and weighted networks. The results of the topological analysis can be integrated with data set from lab experiments, like expression or phosphorylation levels for each protein represented in the network. Our app opens new perspectives in the analysis of biological networks, since the integration of topological analysis with lab experimental data enhance the predictive power of the bioinformatics analysis.

Finding the shortest path with PesCa: A tool for network reconstruction

Scardoni G.;Tosadori G.;Spoto F.;Laudanna C.
2016-01-01

Abstract

The growing dimension and complexity of the available experimental data generating biological networks have increased the need for tools that help in categorizing nodes by their topological relevance. Here we present CentiScaPe, a Cytoscape app specifically designed to calculate centrality indexes used for the identification of the most important nodes in a network. CentiScaPe is a comprehensive suite of algorithms dedicated to network nodes centrality analysis, computing several centralities for undirected, directed and weighted networks. The results of the topological analysis can be integrated with data set from lab experiments, like expression or phosphorylation levels for each protein represented in the network. Our app opens new perspectives in the analysis of biological networks, since the integration of topological analysis with lab experimental data enhance the predictive power of the bioinformatics analysis.
2016
biological networks , shortest path , pesca , protein protein interaction networks , cytoscape
File in questo prodotto:
File Dimensione Formato  
F1000Research_2.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1044256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact