"Plastic antibodies" are nano-sized biomimetics prepared by the molecular imprinting technology, which have the robustness of polymers, but specificity and selectivity alike natural receptors making them ideal for analytical uses. The current challenge is to translate plastic antibodies to in vivo applications for diagnosis, drug delivery, theranostic, therefore it is crucial to evaluate the effect of the biological sample complexity on the selectivity and the formation of protein corona (PCs), which ultimately dictate the fate of circulating nanoparticles.A set (n = 4) of plastic antibodies (nanoMIPs) against different proteins was prepared. Quantitative (iBAC) shotgun proteomics permitted to define the PC composition of nanoMIPs in human plasma, the relative protein abundances, the correlation between PC and the plasma dilution.NanoMIPs showed> 200 proteins PC, while similar to 150 proteins were found on controls, suggesting the imprinting process influences the nanoparticle's structure hence the protein uptake. NanoMIPs and controls shared the 44% of the PC, but PC iBAQ values on nanoMIPs were 10-100 times higher than controls, suggesting PC/nanoMIPs interactions were far stronger than PC/non imprinted particles. PCs were richer in small proteins and in immunoglobulins, indicating a defensive response, while the selectivity was negatively challenged in the crowded plasma sample. Significance: The formation and the composition of the protein corona (PC) is key to decide the fate of nanoparticles when in vivo, therefore there is the strong need to study the composition of the PC.To enable and to support the translation of the use of plastic antibodies (nanoMIPs), prepared by means of the molecular imprinting technique, to the clinical practice and to in vivo uses, the present work evaluates the effects of the complexity of the biological sample (plasma) on nanoMIPs composed of highly crosslinked polyacrylamide and acrylamide derivatives.Proteomic study offers an in depth insight of the protein corona formed in plasma on nanoMIPs. A set of nanoMIPs synthesized and raised to recognize either small or large proteins was tested. The selection abilities of the nanoMIPs when placed in plasma at different dilutions was studied. Quantitative shotgun proteomics allowed to define the composition of the formed protein corona (PC) enabling to detail the protein compositions, the relative abundances, its correlation to the biological sample composition and the correlation between PC and nanoMIP's imprinted template.In plasma, all the nanoMIPs gained a PC composed of more than 200 proteins. Type of protein recruited for the corona, molecular weight and abundance in the PC were studied.The PC on the nanoMIPs appeared to be driven by the protein composition of the plasma, while the template protein, towards which a nanoMIP was imprinted and that was proven to have high affinity for, did not influence the PC.

Does the protein corona take over the selectivity of molecularly imprinted nanoparticles? The biological challenges to recognition

Bossi, Alessandra Maria
;
2020-01-01

Abstract

"Plastic antibodies" are nano-sized biomimetics prepared by the molecular imprinting technology, which have the robustness of polymers, but specificity and selectivity alike natural receptors making them ideal for analytical uses. The current challenge is to translate plastic antibodies to in vivo applications for diagnosis, drug delivery, theranostic, therefore it is crucial to evaluate the effect of the biological sample complexity on the selectivity and the formation of protein corona (PCs), which ultimately dictate the fate of circulating nanoparticles.A set (n = 4) of plastic antibodies (nanoMIPs) against different proteins was prepared. Quantitative (iBAC) shotgun proteomics permitted to define the PC composition of nanoMIPs in human plasma, the relative protein abundances, the correlation between PC and the plasma dilution.NanoMIPs showed> 200 proteins PC, while similar to 150 proteins were found on controls, suggesting the imprinting process influences the nanoparticle's structure hence the protein uptake. NanoMIPs and controls shared the 44% of the PC, but PC iBAQ values on nanoMIPs were 10-100 times higher than controls, suggesting PC/nanoMIPs interactions were far stronger than PC/non imprinted particles. PCs were richer in small proteins and in immunoglobulins, indicating a defensive response, while the selectivity was negatively challenged in the crowded plasma sample. Significance: The formation and the composition of the protein corona (PC) is key to decide the fate of nanoparticles when in vivo, therefore there is the strong need to study the composition of the PC.To enable and to support the translation of the use of plastic antibodies (nanoMIPs), prepared by means of the molecular imprinting technique, to the clinical practice and to in vivo uses, the present work evaluates the effects of the complexity of the biological sample (plasma) on nanoMIPs composed of highly crosslinked polyacrylamide and acrylamide derivatives.Proteomic study offers an in depth insight of the protein corona formed in plasma on nanoMIPs. A set of nanoMIPs synthesized and raised to recognize either small or large proteins was tested. The selection abilities of the nanoMIPs when placed in plasma at different dilutions was studied. Quantitative shotgun proteomics allowed to define the composition of the formed protein corona (PC) enabling to detail the protein compositions, the relative abundances, its correlation to the biological sample composition and the correlation between PC and nanoMIP's imprinted template.In plasma, all the nanoMIPs gained a PC composed of more than 200 proteins. Type of protein recruited for the corona, molecular weight and abundance in the PC were studied.The PC on the nanoMIPs appeared to be driven by the protein composition of the plasma, while the template protein, towards which a nanoMIP was imprinted and that was proven to have high affinity for, did not influence the PC.
2020
molecularly imprinted polymers (MIPs), protein corona, nanoparticles, binding selectivity, human plasma
File in questo prodotto:
File Dimensione Formato  
Capriotti et al J Proteom 2020.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1018732
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact