The spectroscopy of nitrate complexes of Eu(III) and Tb(III) with chiral and racemic imine-based [L1 = (N,N'-bis (2-pyridylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine) and L3 = N, N'-bis(2-quinolylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine] and amine-based [L2 = N,N'-bis(2-pyridylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine) and L4 = N,N'-bis(2-quinolylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine] ligands has been studied under high hydrostatic pressure (above 100 kbar). With the increasing pressure, a reduction of the Tb(III) and Eu(III) luminescence intensity is detected for all the complexes, whilst a significant reduction of the Tb(III) and Eu(III) excited state lifetimes has been observed for all Tb-based complexes [L1Tb(NO3)(3) -> L4Tb(NO3)(3)] and only for the Eu(III) complexes containing the imine-based ligands [L1Eu(NO3)(3) and L3Eu(NO3)(3)]. This behavior has been rationalized taking into account two main aspects: i) the relative position of the energy levels of the ligands and the metal ions and ii) the change of these position upon compression DFT calculations have been also performed to elucidate the nature of the orbitals involved in the UV electronic absorption transitions (NTO orbitals) upstream of the energy transfer process to the metal ion.

Optical properties of Eu(III) and Tb(III) complexes with pyridine- and quinoline- based ligands under high hydrostatic pressure

Piccinelli, Fabio;Rosa, Chiara De;Bettinelli, Marco
2020-01-01

Abstract

The spectroscopy of nitrate complexes of Eu(III) and Tb(III) with chiral and racemic imine-based [L1 = (N,N'-bis (2-pyridylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine) and L3 = N, N'-bis(2-quinolylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine] and amine-based [L2 = N,N'-bis(2-pyridylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine) and L4 = N,N'-bis(2-quinolylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine] ligands has been studied under high hydrostatic pressure (above 100 kbar). With the increasing pressure, a reduction of the Tb(III) and Eu(III) luminescence intensity is detected for all the complexes, whilst a significant reduction of the Tb(III) and Eu(III) excited state lifetimes has been observed for all Tb-based complexes [L1Tb(NO3)(3) -> L4Tb(NO3)(3)] and only for the Eu(III) complexes containing the imine-based ligands [L1Eu(NO3)(3) and L3Eu(NO3)(3)]. This behavior has been rationalized taking into account two main aspects: i) the relative position of the energy levels of the ligands and the metal ions and ii) the change of these position upon compression DFT calculations have been also performed to elucidate the nature of the orbitals involved in the UV electronic absorption transitions (NTO orbitals) upstream of the energy transfer process to the metal ion.
2020
Luminescence spectroscopy; Coordination chemistry; Hydrostatic pressure; DPT calculations; Molecular orbitals; Lanthanide ions
File in questo prodotto:
File Dimensione Formato  
ICA 2020.pdf

accesso aperto

Licenza: Accesso ristretto
Dimensione 4.58 MB
Formato Adobe PDF
4.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1017172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact