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ABSTRACT 

Voltage-gated calcium (Ca2+) channels are transmembrane proteins that transduce membrane 

potential changes into intracellular Ca2+ fluxes to initiate cell contraction, synaptic transmission, 

enzyme regulation, gene expression just to mention a few. Accordingly, many pathological conditions 

depend on the altered activity of these proteins and it remains of primary importance understanding 

their mechanisms of action in both the physiological and pathological contexts. The present thesis 

embraces two projects involving two different L-type Ca2+ channels: the cardiac voltage-gated Ca2+ 

channel CaV1.2 and the skeletal CaV1.1. The long-term goals of these two projects is to investigate 

how these proteins control cardiac and skeletal muscle function. This information may help 

developing new therapeutic approaches. 

The goal of the first project aimed to investigate a novel antiarrhythmic strategy that targets the non-

inactivating population of cardiac Cav1.2 channels. 

Cardiovascular disease is the leading cause of mortality in developed countries. In cardiac patients, 

about 50% of deaths are sudden, and typically caused by fatal tachyarrhythmia such as ventricular 

fibrillation (Priori et al., 2015; Al-Khatib et al., 2018). Current therapeutic strategies include 

antiarrhythmic drugs and implantable cardioverter defibrillators, but their efficacy remains limited by 

proarrhythmic side effects (1989; Waldo et al., 1996), and costs and patient eligibility, respectively. 

Thus, a widely applicable, cost-effective strategy, able to avoid the negative inotropic effect of current 

antiarrhythmics, is strongly needed. 

Malfunction of L-type Ca2+ channel has been linked to numerous cardiac diseases. Particularly, Early 

Afterdepolarizations (EADs) which are trigger of Torsades de pointes, polymorphic ventricular 

tachycardia as well as some re-entrant tachyarrhythmias, are defined as transient membrane 

potential oscillations during the plateau phase of the cardiac action potential (AP), (Antzelevitch and 

Burashnikov, 2011). EADs formation is attributed to the L-type calcium channel (LTCC) current (ICa,L), 

as it is the main regenerative current during this phase of the action potential (January et al., 1988; 

January and Riddle, 1989; Xie et al., 2009; Madhvani et al., 2011; Madhvani et al., 2015). Rapid 

activation of LTCC produces a peak ICa,L that is essential for excitation-contraction coupling. 

However, some of these channels remain active producing a late Ca2+ current (late ICa,L) that persists 

towards the end of the AP plateau. In conditions of reduced repolarization reserve, this non-

inactivating component of ICa,L prevails on K+ conductances, resulting in in an abnormal membrane 

potential depolarization from which EADs arise (Xie et al., 2009; Qu and Chung, 2012). As 

demonstrated by dynamic clamp analysis, a small reduction of this late current can potently suppress 

EAD occurrence (Madhvani et al., 2015). Thus, a drug that selectively targets the late ICa,L, should 

efficiently suppress EADs with minimal effect on contractility, overcoming the negative inotropic 

effect typical of class IV antiarrhythmics. Interestingly, roscovitine (Seliciclib, R-roscovitine), a purine 

analog, which is in phase II clinical trials as an anticancer agent, possesses also the ability to 
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accelerate the voltage-dependent inactivation of CaV1.2 LTCCs, preferentially reducing “late ICa,L“ 

(non-inactivating component) over “peak” (Yarotskyy and Elmslie, 2007; Yarotskyy et al., 2010). In 

this work, we applied electrophysiological techniques to demonstrate that reduction of late ICa,L by 

roscovitine, verified both in native and cloned CaV1.2 channels, abolished EADs in rabbit ventricular 

myocytes without compromising contraction efficiency. Furthermore, this reduction suppressed 

and/or prevented EAD-mediated ventricular fibrillation in rabbit and rat hearts. In both isolated 

myocyte and heart experiments, roscovitine effect was independent from the mechanism chosen to 

induce EADs (hypokalemia and/or oxidative stress). These results suggest that 1) limiting 

sustained/anomalous Ca2+ channels function during the plateau phase is an effective and safe 

antiarrhythmic strategy and that 2) roscovitine can be considered as a potential pilot compound for 

a new class of antiarrhythmics that likely would not compromise heart contractility.  

In the second project I have investigated the molecular mechanisms by which the α2δ-1 auxiliary 

subunit differently modulates the L-type Ca2+ CaV1.1 channels compared to their close relative 

CaV1.2 isoform. 

In striated muscle, the voltage-gated Ca2+ channels CaV1.1 and CaV1.2 are the sensors that convert 

the electrical impulse into increases in intracellular Ca2+ levels that allow muscle contraction. Both 

channels possess four positively charged modules, called voltage-sensing domains (VSD I-IV), that 

undergo a conformational change upon membrane depolarization. VSD either open the channel pore 

(CaV1.2) or activate Ca2+ release through the ryanodine receptors from the sarcoplasmic reticulum 

(CaV1.1). Both CaV1.1 and CaV1.2 channels are expressed in the plasma membrane as protein 

complexes formed by the co-assembly of a pore forming subunit (α1) and several modulatory 

subunits (α2δ, β and γ) which modify their voltage dependent properties (Catterall, 2011; Bannister 

and Beam, 2013). In CaV1.2 isoform, the association of α2δ-1 subunit significantly facilitates channel 

activation by remodelling the voltage-dependent properties of three out of four cardiac VSDs, 

allowing the channels to operate at physiological membrane potentials (Savalli et al., 2016). In 

addition, α2δ-1 subunit accelerates activation kinetics of CaV1.2 channels (Platano et al., 2000; 

Savalli et al., 2016), producing the typical fast Ca2+ current observed during a ventricular action 

potential. Interestingly, the same regulatory subunit has opposite effects on the CaV1.1 channels, as 

it slows down their activation kinetics and leaves almost unperturbed the voltage-dependent 

activation of the pore. However, the molecular mechanism by which this auxiliary subunit modulates 

the properties of CaV1.1 VSDs is still unknow.  

To gain a mechanistic insight on this modulation, we overexpressed in Xenopus oocytes, channels 

containing the human pore-forming subunit α1S and the auxiliary subunit β1a in absence or presence 

of α2δ-1. Using the voltage clamp fluorometry technique, we simultaneously recorded the ionic 

current flowing through the pore and the movement of each voltage sensor over a wide range of 

membrane potential to derive both pore and VSDs voltage-dependent relationships. We observed 

that the four CaV1.1 VSDs possess unique properties in terms of kinetics, voltage dependence and 
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sensitivity that might reveal different functional roles. Specifically, the voltage dependence of VSD 

III was compatible with that of Ca2+ release during the skeletal AP, indicating that VSD III might be 

the key VSD that opens the ryanodine receptors. As opposite to CaV1.2, we found that the presence 

of α2δ-1 slowed down the activation kinetics of the human CaV1.1 channels and accelerated the rate 

of channel closure, contributing to reduce Ca2+ influx during depolarization. This auxiliary subunit 

facilitated channel opening by ~ 10 mV shift toward hyperpolarizing membrane potentials, an effect 

that might be assigned to the remodelling of VSD I properties, as VSD I voltage-dependent activation 

shifted ~ 20 mV to more negative membrane potentials. Instead, in the presence of α2δ-1 VSDs II-

IV remain unaffected, suggesting that VSD I could play a major role in channel opening.  
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Project 1 

Roscovitine as a Prototypical Member of a Novel 

Class of Antiarrhythmics that Modify L-type 

Calcium Channel Gating Properties 
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1. INTRODUCTION 

1.1 The electrical activity of the heart 

The heart is a hollow muscular organ that functions as an 

electromechanical two-sided pump. The right side 

comprises the right atrium (RA) and ventricle (RV) and is a 

low-pression system that pumps blood to the lungs. The left 

side, that includes the left atrium (LA) and ventricle (LV), 

works against high pressure to supply the systemic 

circulation with oxygenated blood. The two sides are 

separated by muscular septa. The unidirectionality of the 

blood flow (from the atria to the ventricles) is ensured by the 

atrioventricular valves. 

The electrical impulse is spontaneously generated by specialized cells forming the sinoatrial (SA) 

node in the right atrium (Fig. 1). These cells function as a pacemaker, and set the sinus rhythm, firing 

an electrical stimulus that enables the atrial myocardium to contract. The electrical impulse travels 

from the SA node to the atrioventricular (AV) node, where it slows down. This short delay (20 

milliseconds) ensure the complete contraction of the atria ahead of the ventricles. The atrial and 

ventricular tissues are also electrically isolated from one another by a plane of connective tissue that 

prevents the impulse from spreading directly to the ventricles without passing through the AV node.  

From the AV node the electrical signal is passed to the bundle of His and allows for ventricular 

contraction. The impulse propagates down the conduction pathway that divides into the left and right 

bundle branches before splitting into the Purkinje fibres, to stimulate the right and left ventricles (van 

Weerd and Christoffels, 2016). The depolarization wave, initiated 

by the SA node and terminated in the Purkinje fibres, creates an 

electrical current that can be recorded using surface electrodes 

and displayed as an electrocardiogram (Fig. 2).  

A normal electrocardiogram (ECG) exhibits seven prominent 

points and intervals. 1) The small P wave represents the 

depolarization of the atria. The atria begin contracting 

approximately 25 ms after the start of the P wave. 2) The large 

QRS complex represents the depolarization of the ventricles, 

which begin to contract at the peak of the R wave. The QRS 

complex masks atria repolarization. 3) The T wave represents the 

repolarization of the ventricles. 4) The U wave is not always 

visible, and it might represent the last phase of ventricular or 

Figure 1 – The conduction system 
of the heart. 

Figure 2 - The electrocardiogram. 
Representation of the electrical 
activity of the heart as four 
prominent points (the P wave, the 
QRS complex, the T and U waves) 
together with the major intervals 
(indicated as dashed lines).  
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Purkinje fibers repolarization. 5) The PR interval measures the time from the beginning of atrial 

depolarization to the initiation of the QRS complex and informs about the electrical delay between 

the SA node and the AV node. 6) The QT interval quantifies the time for ventricular activation and 

recovery. 7) The RR interval indicates the heart rate. Deviations from normal ECG intervals, e.g. an 

increased heart rate and prolongation of the QT interval and QRS duration, are therefore indicative 

of conduction dysfunction and are associated with cardiac arrhythmias. 

At the cellular level, the depolarization opens the voltage-dependent Ca2+ channels leading to an 

influx of Ca2+ and contraction after a few milliseconds (Bers, 2002; Ashikaga et al., 2007). This delay 

is instrumental for the Ca2+ to enter the cell and induce the release of Ca2+ from the sarcoplasmic 

reticulum (SR) (Fig. 3). The raise in intracellular Ca2+ concentration engages the sarcomeres which 

shorten myocytes. This event takes places in millions of cells at the same time, ultimately propelling 

blood out of the chambers. Contraction (systole) is followed by muscle relaxation (diastole) to refill 

the heart of blood for the next beat. For diastole to happen, the intracellular Ca2+ concentration must 

decrease. Ca2+ is therefore recycled back by the sarcoplasmic reticulum (SR) through the sarco-

endoplasmic reticulum Ca2+-ATPase (SERCA) pump or extruded outside the cell via Na/Ca-

Figure 3 – Calcium cycling in cardiac myocytes. Schematic representation of the calcium pathways 
that allow for cell contraction (red arrows) and relaxation (green arrows). After membrane depolarization, 
Ca2+ enters cardiomyocytes through voltage-gated calcium channels (orange) and Na+/Ca2+ exchanger 
(NCX, green). The local increase of calcium activates the ryanodyne receptors (RyR, yellow) located on 
the SR, producing a massive extrusion of calcium in the cytoplasm. Here, calcium binds to and remodels 
contractile myofilaments (troponin C, myosin and actin), resulting in cell shortening. To achieve cell 
relaxation, resting calcium concentration is restored by SR Ca2+-ATPase pump (SERCA, purple) and NCX, 
with a small contribution of the sarcolemmal Ca2+-ATPase and mitochondrial Ca2+ uniporter. The inset 
highlights the differences in time between action potential (black line), Ca2+ transient (blue line) and 
contraction (red dotted line) measured in a rabbit ventricular myocyte at 37°C. From (Bers, 2002). 
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exchanger (NCX). In this context, the cell repolarizes before the following stimulus triggers another 

contraction. 

1.2 Ventricular action potential 

All cardiac muscle cells are electrically coupled to one another by structures known as gap junctions 

which allow the action potential (AP) to propagate from one cell to the next. By this mean, the 

spontaneous AP generated by cardiac conductive cells is spread directly to the contractile cells. 

The AP is a transient modification in transmembrane voltage that results from the orchestrated 

activity of multiple voltage-gated ion channels and transporters. In the cardiac tissue, AP shape and 

duration vary from region to region due to different type and density of ion channels and transporters 

expressed.  

In a human ventricular myocyte, the AP lasts ~300 ms and includes 5 phases (indicated by the 

numbers 0 through 4). Its configuration is determined by the balance between the inward 

(depolarizing) and outward (repolarizing) ionic currents schematically sketched in Figure 4. 

 

During phase 0, the activation of voltage-gated sodium channels 

produces a massive influx of sodium (Na+) ions that depolarizes the 

membrane potential from its resting level (~-80 mV) towards Na+ 

electro-chemical equilibrium potential (~40 mV) contributing to the 

upstroke of the AP. The inward Na+ current (INa) is very rapid and 

transient, as the most Na+ channels inactivate within one 

millisecond, thus terminating phase 0. Sub-sequent activation of the 

transient outward K+ current (Ito), by membrane depolarization, 

contributes to a brief repolarization (phase 1) rapidly interrupted by 

phase 2. This phase is also known as the "plateau" phase due to the 

membrane potential remaining almost constant, as the membrane 

very slowly begins to repolarize. This phase is responsible for the 

large duration of the action potential and is essential for 1) the 

engagement of the contraction machinery and 2) the prevention of 

electrical re-excitation and tetanic contraction in the heart, which 

could inhibit relaxation needed for the filling of blood prior to ejection 

(Bers, 2002). The slow repolarization is maintained by a balance 

between an inward Ca2+ current (ICaL) via the L-type Ca2+ channels 

(LTCC), and outward K+ currents (rapid IKr and slow IKs components 

of the delayed rectifier). Other contributors to the plateau phase are 

the late Na+ current and the Na+/Ca2+exchanger (NCX) current. The 

rapid activation of L-type Ca2+ channels produces a peak inward ICaL 

Figure 4 - Ventricular action 
potential and underlining 
currents. Schematic 
representation of a human 
ventricular AP, its phases 
(numbers 0-4) and the 
underlining time course of the 
currents that contribute to 
shape the AP. Adopted from 
(George, 2013). 
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that triggers the opening of the ryanodine receptors located in the sarcoplasmic reticulum (SR) 

inducing the Ca2+ release from the intracellular store, a phenomenon known as Ca2+-Induced Ca2+-

Release (CICR), (Bers, 2002). This massive increase in intracellular Ca2+ raises its concentration 

from 0.1μM up to 1μM to engage contractile filaments and produce mechanical force (Bers, 2002). 

LTCCs then partially inactivate via voltage- and Ca2+-calmodulin-mediated mechanisms (Peterson 

et al., 1999), leading to a residual persistent current (“late ICa,L”) flowing during the plateau phase of 

the cardiac AP. At this point phase 3 starts. The decay of Ca2+ entry allows K+ conductances IKr and 

IKs to govern and repolarize the membrane potential back to -80 mV. To avoid downstream side-

effect of Ca2+ overload, the surplus of the cation is pumped back to either the extracellular medium 

via NCX or the SR though the SERCA pump (Fig. 3). This resets the cell to a diastolic state (phase 

4), during which the myocyte relaxes and prepares for the next electrical activation initiated by the 

SA node. 

1.2 Ventricular arrhythmias 

Ventricular arrhythmias define all conditions in which the electrical activity of the ventricles deviates 

from the normal speed and rhythm of the heart. These conditions range from premature ventricular 

complex (PVC) to ventricular tachycardia (VT) or fibrillation (VF), with a clinical picture that ranges 

from a total lack of symptoms to cardiac arrest (Al-Khatib et al., 2018).  

VF is the most life-threatening ventricular arrhythmia as it is the major immediate cause of sudden 

cardiac death, which accounts for approximately 50% of all cardiovascular deaths every year (Priori 

et al., 2015; Al-Khatib et al., 2018). VF has been defined as rapid, turbulent electrical activity with a 

ventricular rate > 300 beats per minute. During VF, the high heart rate and the uncoordinated 

ventricular contraction prevent an adequate pumping of blood such that the arterial pressure 

suddenly drops to exceedingly low levels, and death usually ensues within less than ten minutes due 

to lack of oxygen delivery to vital organs. On the ECG, VF appears as a completely aperiodic and 

irregular beat-to-beat changes in the QRS complex (Jalife, 2000). 

Mechanisms of ventricular arrhythmias include enhanced normal automaticity, abnormal 

automaticity, triggered activity induced by early or late afterdepolarizations, and reentry (Antzelevitch 

and Burashnikov, 2011; Tse, 2016). 

Automaticity 

Automaticity is the property of cardiac pacemaker cells, to generate spontaneous action potentials. 

Spontaneous activity is the result of diastolic depolarization caused by a net inward current, known 

as “funny” current, during phase 4 of the action potential, which progressively brings the membrane 

potential to threshold for the activation of Ca2+ channels. Abnormal automaticity arises from a 

partially depolarized membrane potential that commonly results from a reduction of ether K+ channel 

conductance or expression, or from an increase in extracellular potassium (Antzelevitch and 
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Burashnikov, 2011). This condition can arise from channel mutations, hypovolemia, ischemia, or 

electrolyte disturbances (Tse, 2016). 

Reentry 

Reentry occurs when an AP fails to extinguish itself and reactivates a region that has recovered from 

refractoriness. It can be classified into two types. Reentry that occurs in the presence of a physical 

obstacle, around which an action potential travels to re-excite the site of origin is called circus-type 

reentry. In circus-type of reentry, all cells recover from excitation one after another so that they can 

be excited again when the next wavefront arrives. Circus-type reentry is the most common 

mechanism of ventricular arrhythmia in the presence of structural heart disease, where the anatomic 

obstacle can be represented, for example, by scar after a myocardial infarct or surgically repaired 

congenital heart disease. If reentry arises without an obstacle is referred to as reflection and phase 

2 reentry. These types of reentry develop in a setting in which each site of reentry differently recovers 

from refractoriness that exists between one site and another. Thus, the latter recovering site function 

as a virtual electrode that excites its already recovered neighbour (Antzelevitch and Burashnikov, 

2011). 

Triggered activity 

The concept of triggered activity was introduced 40 years ago to describe extrasystoles and 

tachycardia events that do not arise from spontaneous or reentry phenomena (Cranefield, 1977; 

January and Moscucci, 1992; Rosen, 2009). Triggered activity develops at the single cell level, from 

abnormal action potentials that are evoked by a preceding action potential and do not arise de novo. 

The abnormal impulses appear as positive oscillations of membrane potential that can either 1) occur 

early during phase 2 or 3 of the action potential (early afterdepolarizations, EADs) or 2) follow the 

completion of the repolarization phase (delayed afterdepolarizations, DADs), (Fig. 5). 

 

EADs and DADs must be sufficiently large to depolarize the cell membrane to its threshold potential, 

in order to trigger extra action potentials (Antzelevitch and Sicouri, 1994). These triggered events 

give rise to premature ventricular complexes (PVCs), which can precipitate in polymorphic ventricular 

tachycardia (PVT), torsades de pointes and ventricular fibrillation (VF), especially in vulnerable tissue 

(Cranefield and Aronson, 1991; Antzelevitch and Burashnikov, 2011; Wit, 2018).  

Multiple conditions predispose to EAD development and include long QT syndromes, hypertrophy, 

hypoxia , acidosis, electrolyte abnormalities, high concentrations of catecholamines, pharmacologic 

agents and antiarrhythmic drugs (Antoons et al., 2007; Antzelevitch and Burashnikov, 2011; George, 

2013; Karagueuzian et al., 2013). DADs and DAD-induced triggered activity are observed in failing 

or hypertrophic hearts, or under conditions that augment intracellular Ca2+, such as after exposure 
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to toxic levels of cardiac glycosides (digitalis), (Rosen et al., 1973) or catecholamines (Priori and 

Corr, 1990).  

The following sections are dedicated to EADs, specifically to the mechanism by which these single-

cell phenomena can trigger arrhythmias at the organ level and to the molecular background 

responsible for EAD upstroke.  

 

1.3 Early after depolarizations 

From single cell events to myocardial arrhythmias  

The mechanism by which one triggered AP at the single cell level, that usually arise from low pacing 

rate, could synchronize with the surrounding tissue and degenerate in myocardial arrhythmias with 

a rapid rate like PVCs or torsades de pointes is still under investigation (Sato et al., 2009; Wit, 2018). 

Few explanations have been proposed combining experimental data and computational simulations.  

Figure 5 - Afterdepolarizations and associated arrhythmias. Ionic current alterations can result in excessive 
depolarizing currents that, in turn, elicit EADs and DADs. A) EADs are membrane voltage oscillations during 
the repolarizing phase of the cardiac action potential (AP) causing an action potential prolongation. Black 
dashed line represents a normal AP. EADs typically result from increased reactivation of voltage-gated L-type 
Ca2+ channels or voltage-gated Na+ channels. B) Illustration of a DAD generated after completion of the action 
potential repolarization (blue line) and a triggered impulse arising from it (grey line). DADs are usually elicited 
either by spontaneous intracellular Ca2+ release from the SR which activates the electrogenic exchanger 
leading to membrane depolarization. C-D) ECG recordings representing arrhythmias commonly associated 
with afterdepolarizations: polymorphic ventricular tachycardia (or torsades de pointes, C) and ventricular 
fibrillation (D). C-D adopted from (George, 2013). 
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In a healthy coupled tissue, an aberrant depolarization developed by an individual myocyte will be 

minimized by the electrotonic potential of the normal-repolarizing neighbors flowing through local 

gap junctions (Xie et al., 2010). In other words, the depolarizing EAD current from the susceptible 

myocyte is “diluted” into too many unsusceptible neighbors to cause a significant depolarization 

(repolarization delay) of the surrounding myocytes. This concept, referred as source-sink mismatch, 

is well demonstrated by coupling two isolated myocytes, one with EADs and the other without EAD, 

via a variable resistor: the greater is the coupling, the smaller is the EAD amplitude (Huelsing et al., 

2000). As consequence, multiple myocytes must exhibit EADs to overcome the surrounding tissue 

and spread. In a 3D structure, the number can be as high as 696,910 (Sato et al., 2010). This number 

drastically decreases by 64% in structural or electrical remodeled heart, where myocytes decoupling 

makes the myocardium more prone to arrhythmogenic events (Xie et al., 2010). Considering that 70 

myocytes can account for a cable of ~10mm, this estimation is still substantial, indicating that the 

source–sink mismatch in intact tissue functions as a protective mechanism against unsynchronized 

EADs triggering PCVs (Weiss et al., 2010). 

Thus, appearance and propagation of EADs imply some grade of synchronization. However, EADs 

tend to occur irregularly at intermediate pacing, with the number of EADs and the duration of each 

AP vary from beat to beat, reducing the probability that all the cells in a given region will develop an 

EAD simultaneously on the same beat. This apparent irregular behavior follows instead, the laws of 

deterministic chaos as demonstrated by Sato and colleagues (Sato et al., 2009). As such, sensitivity 

to initial conditions, which is a property of chaos, guarantees that small differences in AP variables 

(irregularity of EADs) will be rapidly amplified (“butterfly effect”) creating islands of long AP durations 

with EADs to appear next to islands of short AP duration without EADs. These multiple foci can shift 

in space from beat to beat, increasing the risk of a wave break leading to reentry and fibrillation (Sato 

et al., 2009; Weiss et al., 2010). 

Etiology of early afterdepolarizations 

EADs were first identify in 1974 by Cranefield and his colleagues in canine Purkinje fibers as 

oscillatory after-potentials, and subsequently classified as a form of triggered activity that can 

precipitate into asynchronous electrical activity such as VT and VF (Cranefield and Aronson, 1974; 

Cranefield, 1977). 

EADs appear as aberrant fluctuations of the membrane potential that interrupt phase 2 and early 

phase 3 of the AP (Fig. 5a). EADs occur in conditions of prolonged AP duration (APD), when the 

membrane potential fails to repolarize due to a reduced repolarization reserve. APD can be 

prolonged with bradycardia or partial inhibition of K+ channels. The latter condition can be a 

consequence of hypokalemia (which reduces outward IK1 and IKr), pharmacological action (e.g. K 

channel blockers) or congenital long QT syndromes (linked to mutations that alter INa, IKr and IKs) 

(Weiss et al., 2010). However, any condition that sufficiently decrease the net outward current can 
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promote EADs independently from the heart rate (Huffaker et al., 2004). A critical example is the 

Timothy syndrome of long QT 8. In this disorder, CaV1.2 mutations impair channel inactivation, 

producing a greater inward current that overcomes repolarizing K+ conductance prolonging AP 

duration and promoting proarrhythmic events (Splawski et al., 2004).  

A reduced repolarization reserve by itself is not enough to cause an EAD. A second critical factor is 

whether the voltage during the AP plateau lingers for a sufficiently long time in that status leading to 

time- and voltage-dependent recovery of a regenerative inward current. The ventricular AP is shaped 

by three predominant depolarizing currents and all of them have been attributed to EAD genesis: the 

Figure 6 - ICaL window current and its relationship with EADs upstroke. The range of membrane potential 

in which L-type Ca channels operate corresponds to the range of take-off potentials for EADs. A L-type Ca2+ 

current recorded from a mouse ventricular myocyte in voltage-clamp mode. ICa,L starts to activate at ~ -30 mV 

(blue trace) reaching the maximal peak value at 10 mV (red trace). The square pulse given as voltage 

command is reported above the traces. Nifedipine-sensitive ICa,L was isolated by substituting KCl with CsCl in 

the external solution to block contaminant IK current, and by blocking INa with a 50 ms prepulse at -40 mV and 

20 µM tetrodotoxin. B) The current-voltage (I-V) relationship, constructed from the traces in A, displays the 

voltage-dependent activation of L-type Ca2+ channels. Values were normalized to the maximal peak current. 

C) ICa,L voltage-dependent activation and inactivation curves describe the steady state properties of L-type 

Ca2+ channels. The overlap between the two curves, identifies a range of membrane potential (orange) in 

which channels are available to be activated (as they are not inactivated) and generate an inward 

(depolarizing) current. This range of membrane potential from -40 to 10 mV equals the critical membrane 

potentials in which EADs are elicited (orange rectangle in D), making CaV1.2 channels the primary responsible 

for the regenerative current underlining EADs development (D). 
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persistent ICa,L (January and Riddle, 1989; Madhvani et al., 2011), INa (Maltsev et al., 1998; Bengel 

et al., 2017), and INCX (Szabo et al., 1994). The relevance of an increased inward ICa,L in EADs 

upstroke (especially of phase 2) became clear in the 80’s when Marban and colleagues 

demonstrated that increasing open probability of CaV1.2 channels with the Ca2+ channel agonist Bay 

K8644, potentiated EADs, while antagonizing their activity with the Ca2+ channel blocker Nitrendipine 

abolished the triggered activity. These effects on EADs occurrence were not observed either by 

blocking SR Ca2+ release with ryanodine nor chelating intracellular Ca2+ with BAPTA, ruling out the 

intracellular Ca2+ release as the underlying mechanism (Marban et al., 1986). Additional validation 

of ICa,L contribution to EADs came from the discovery that these phenomena (ICa,L and EADs) share 

similar voltage dependence (January and Riddle, 1989). CaV1.2 channels typically activate at -40mV, 

reaching the maximal current at 10mV (Fig. 6A, B). This range of membrane potential corresponds 

to the take off potential of most EADs (Fig. 6D), (Damiano and Rosen, 1984). However, these 

channels undergo voltage-dependent and Ca2+-dependent inactivation at similar voltages. As 

consequence, overlapping the steady-state activation and inactivation curves of ICa,L, identifies a 

“window current” region (or voltage interval) in which a fraction of not inactivated L-type Ca2+ 

channels may be available for reactivation (Fig. 6C) (January and Riddle, 1989; Hirano et al., 1992). 

It means that, as the AP repolarizes into this “window current” region (or voltage interval), some L-

type Ca2+ channels can reactivate and generate an inward ICaL, causing an extra membrane 

depolarization, and thus EADs. Furthermore, January and Riddle demonstrated that EADs and the 

inward current share also similar time-dependent occurrence, showing that lengthening the duration 

of conditioning voltage step used to elicit EADs, results in both EADs and inward current of increasing 

amplitude (January and Riddle, 1989). Another direct confirmation that EADs are highly related to 

the “window current” and biophysical properties of ICa,L was provided by Madhvani and colleagues 

(Madhvani et al., 2011; Madhvani et al., 2015). Using the dynamic clamp technique (a hybrid 

electrophysiological/computational approach), they provided a compelling evidence that reduction of 

ICa,L “window current” by either 1) reducing the non-inactivating (pedestal/late) component, 2) shifting 

the ICa,L steady-state activation in the depolarizing direction by <5 mV, or 3) shifting the steady-state 

inactivation curve in the hyperpolarizing direction by <5 mV, are equally effective strategies to 

suppress EADs (Fig. 7) with an enormous advantage compare to traditional class IV antiarrhythmics. 

That is, these three maneuvers do not block the early peak ICa,L required to maintain normal 

excitation-contraction coupling avoiding the negative inotropic effect of most Ca2+ channel blockers 

(Fig. 7), (Madhvani et al., 2011; Madhvani et al., 2015). 

EADs can also occur during repolarization, or phase 3, when they arise at more hyperpolarized 

membrane potentials (below -40 mV). This type of triggered activity has been attributed to two 

primary mechanisms: 1) recovery from inactivation of the Na+ channels and/or 2) spontaneous Ca2+ 

release, which depolarizes the membrane potential through the electrogenic NCX (Szabo et al., 

1994; Qu et al., 2013; Bengel et al., 2017; Sato et al., 2017). The main reason to exclude L-type 
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Ca2+ current involvement in phase 3 EADs is that Ca2+ channels are not active below -40mV (like 

Na+ channels), and therefore unlikely to contribute to EAD formation.  

 

1.4 L-type calcium channels 

The L-type Ca2+ channels (LTCCs) are high voltage-gated channels that convert an electrical signal 

(membrane depolarization) into an influx of Ca2+. Ca2+ entering the cell down its electrochemical 

gradient serves as the second messenger for multiple intracellular events such as contraction, 

secretion, synaptic transmission, and gene expression (Catterall, 2000). The four members of the 

LTCC family (CaV1.1 - CaV1.4) are distinguished from other Ca2+ channels by their 1) high voltage 

of activation (-40mV), 2) long-lasting (L-type) current, 3) slow voltage-dependent inactivation, 4) 

marked regulation by cAMP-dependent protein phosphorylation pathways, and 5) sensitivity to 

dihydropyridine (such as nifedipine) and other channel blockers (Catterall, 2000).  

The skeletal CaV1.1 was the first Ca2+ channel to be purified (Curtis and Catterall, 1984) and cloned 

(Tanabe et al., 1987), while the molecular identity of the cardiac L-type Ca2+ channel was established 

by Mikami and colleagues from rabbit hearts in the late 1980s (Mikami et al., 1989). 

LTCC CaV1.2 subunit composition 

CaV1 channels exist as multimeric protein complexes consisting of the pore-forming α1 subunit, 

together with auxiliary β, α2δ, and γ subunits. The high resolution CryoEM structure of CaV1.1 (Fig. 

8), which is taken as a model for all the CaV1 isoforms, shows that the skeletal pore-forming subunit 

Figure 7 – Late ICa,L modifications proposed as antiarrhythmic strategies. A) Effect of Class IV 
antiarrhythmics on ICa,L steady-state activation-inactivation (red line): they indiscriminately block LTCCs 
reducing late and peak (red arrow) ICa,L, resulting in the reduction of maximum CaV1.2 open probability and 
impairment of EC coupling. B) ICa,L gating modifications, that specifically reduce ICa,L “window current”, were 
found to potently abolish EADs without affecting maximum CaV1.2 open probability; therefore peak ICa,L 
remains largely preserved. These manoeuvres include: 1) ICa,L non inactivating component reduction (late 
ICa,L,); 2) a 5 mV depolarizing shift of steady-state activation; 3) a 5 mV hyperpolarizing shift of steady state-
inactivation. From (Karagueuzian et al., 2017). 
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(α1S) asymmetrically interacts with these three auxiliary subunits in a 1:1:1:1 ratio (Wu et al., 2016), 

similarly to CaV1.2 channels (α1C) (Walsh et al., 2009).  

All LTCCs derive their voltage dependence properties from the 

structural assets of the α1 pore-forming subunit (Catterall, 

2010). As shown in Figure 9, the α1 subunit consists of four 

homologous, but nonidentical, concatenated repeats (I–IV), 

each composed of six transmembrane segments (S1-S6) that 

form a voltage sensing domain (VSD, S1–S4 helices) and a 

quarter of the pore domain (S5–S6) (Fig. 9A, B). The pore 

domain contains the selectivity filter that confers the channel a 

higher affinity for Ca2+ among all the other extracellular ions. 

Each VSD contains a conserved repeated motif of positively 

charged amino acids at every third position of the S4 helix (Fig. 

9C). The presence of these charges conveys the VSDs the 

ability to “sense” membrane depolarization and rearrange in 

response to it (Catterall, 2010). The movement of S4 segments 

across the membrane is then electromechanically transduced to 

S5-S6 transmembrane segments, causing the opening of the 

Figure 8 – CaV1 channel structure. 
CryoEM structure of a CaV1.1 
macromolecular complex showing the 
transmembrane α1 pore-forming 
subunit (grey) and γ (green), the 
intracellular β subunit (orange) and the 
mostly extracellular α2δ subunit. 
PDB:5jgv (Wu et al., 2016). 

Figure 9 - Topological and structural details of CaV channels A) Topology of the α1 pore-forming subunit 
showing its four tandem repeats (I-IV), each crossing six times (S1-S6) the plasma membrane, the α-
interacting domain (AID) and the isoleucine-glutamine (IQ) motif. B) Top view of the atomic structure of the α1 

pore-forming subunit highlighting the central pore formed by the S5-S6 segments of each repeat, and the 
surrounding voltage sensing domains (VSDs, S1-S4 helices). C) Amino acid sequence alignment of each 
cardiac S4 segment, highlighting the typical R-X-X-R motif of voltage gated channel VSDs. PDB-5GJV, 
structure from Wu et al., 2016. 
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pore and the influx of Ca2+. Recently it has been demonstrated that each of CaV1.2 VSDs possesses 

unique properties differently contributing to channel activation (Pantazis et al., 2014). 

The four repeats are linked through intracellular loops that allocate critical regulatory domains. In the 

long C terminal region, the isoleucine-glutamine (IQ) motif is recognized by both calmodulin (CaM) 

and CaM kinase II in the CaV1.2 channel (Zuhlke et al., 1999). Ca2+/Calmodulin acts as an intrinsic 

Ca2+ sensor modulating Ca2+-dependent inactivation (CDI) and Ca2+-dependent facilitation (CDF), 

that are central for regulating the level of Ca2+ during cardiac AP (Catterall, 2011). In addtion to CDI, 

CaV channels display a slower voltage dependent inactivation (VDI) that is relevant for myocite 

activity as it limits Ca2+ entry during prolonged depolarization, avoiding Ca2+ toxic downstream 

effects. C-terminus is also the target of multiple numerous protein–protein interactions, including 

protein kinase A phosphorylation sites (Striessnig et al., 2014). 

An additional structural determinant of channel function is found in the intracellular linker between 

repeats I and II which contains the α-interaction domain (AID) that binds the β accessory subunits.  

Different mutation in CaV1.2 α1C subunit has been associated with different cardiac pathologies 

associated with abnormal heart rhythm, such as Timothy syndrome, and Brugada syndrome 

(Burashnikov et al., 2010).  

The α2δ subunit is the largest auxiliary subunit of these channels, with a molecular weight of 

~175kDa. The mature protein is formed by two peptides, α2 and δ, which are post-translationally 

cleaved by an unidentified protease probably during its maturation in the trans-Golgi network (Jay et 

al., 1991; Dolphin, 2013) and successively linked together by a disulphide bond. α2 is entirely 

extracellular interacting only with the α1 pore-forming subunit (Wu et al., 2016) while δ, that 

contributes to the C terminal end, anchors the protein to the cell membrane by a glycosyl-

phosphatidylinositol motif (Fig. 10), (Davies et al., 2010). 

The topology of the α2δ comprises four tandem cache domains and one von Willebrand Factor A 

(VWA) domain, which are well organized domains in the three-dimensional space, but intertwined in 

the primary sequence (Fig. 10B, C). The role of each domain is still under investigation. However, 

experimental data collected so far suggest that they are involved in protein-protein interaction and 

trafficking. VWA domains are generally involved in protein-protein interactions via their metal ion-

dependent adhesion site (MIDAS) that coordinates a divalent cation. VWA domain is taught to be 

involved in Ca2+ channels trafficking, since the ability of α2δ to increase the plasma membrane 

expression of CaV1 is compromised by a mutation in MIDAS motif (Hoppa et al., 2012). The role of 

cache domains remains uncertain.  

Four genes encoding for as many α2δ isoforms (α2δ-1, α2δ -2, α2δ-3 and, α2δ -4) have been identified 

in the human genome. Among these, α2δ-1 is the most ubiquitous and represents the main form 

expressed in cardiac tissue, although α2δ-3 has been detected at low levels (Gong et al., 2001). 
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The effect of α2δ on channel function depends on the combination of β and α2δ isoforms within the 

complex (Dolphin, 2013). For CaV1.2 channels, previous experiments in Xenopus oocytes showed 

that co-expression of α2δ in combination with CaV1.2/β2a increased current density suggesting a role 

in enhancing both channel trafficking and open probability (Shistik et al., 1995). Similarly, α2δ-1 was 

reported to shift activation of the CaV1.2/β3 complex toward more negative potentials (Platano et al., 

2000),(Pantazis et al., 2014; Savalli et al., 2016), and increase inactivation kinetics of the current 

(Shirokov et al., 1998; Dolphin, 2013).  

Few mutations in α2δ-1 gene are associated to human cardiac disfunctions, including the short QT 

syndrome (Templin et al., 2011) and the Brugada syndrome (Burashnikov et al., 2010).  

Physiological relevance of this auxiliary subunit is also proven by the fact that α2δ-1 is the target for 

the analgesic drugs gabapentin and pregabalin, two highly effective agents to medicate neuropathic 

pain (Patel and Dickenson, 2016). 

 

The β subunit is a cytosolic protein of 54 kDa that interacts with the α1 subunit, through the α-

interacting domain (AID) located in the loop between repeats I and II of the α1 subunit (Fig. 9A), 

(Pragnell et al., 1994). Upon co-expression of β, Ca2+ currents are increased by orders of magnitude, 

Figure 10 - Topological and structural features of α2δ-1 subunit. A) Schematic representation of a mature 
α2δ-1 protein, cleaved into α2 and δ peptides. The approximate position of the five domains is shown together 
with the inter-subunit disulphide bond between α2 and δ. At the C-terminus of δ peptide a GPI-anchoring 
element is present. B) α2δ-1 topology shows the interlaced nature of the protein domains to which α2 and δ 
differently contribute. The main body of each domain is formed by α2, while δ subunit completes the cache 4 
domain by contributing three β –strands, and extends its ensuing segment to cache1, cache2 and VWA 
domains. C) Structural organization of α2δ-1 subunit showing a domain coloured α2 and a black δ subunit. The 
coordinated calcium cation by MIDAS motif of VWA domain is shown as blue sphere. The same colour code 
of B was used for each domain. B from Wu et al., 2016. 
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due to enhanced channel surface expression (Tareilus et al., 1997; Gao et al., 1999) and increased 

voltage sensitivity (Neely, Olcese et al. 199 Science).  

Besides this primary chaperon function, β subunit facilitates channel opening by shifting the voltage-

dependence of activation to more hyperpolarized potentials (Neely et al., 1993; Gregg et al., 1996; 

Weissgerber et al., 2006), increases open probability at single channel level (Colecraft et al., 2002; 

Dzhura and Neely, 2003), accelerates both VDI and CDI (Buraei and Yang, 2013) and alters both 

channel activation and inactivation kinetics (Singer et al., 1991; Varadi et al., 1991). 

Furthermore, β subunits have been identified as target of lipids, G-proteins, RGK GTPases and other 

signalling proteins (Buraei and Yang, 2010).  

There are four different genes encoding for four distinct β subunits (β1–β4) and their multiple splice 

variants (Buraei and Yang, 2013). Their expression varies with the tissue. In the human heart, β2 

and β3 isoforms predominate (Hullin et al., 2003), with β2b being the most abundant transcript in 

ventricular myocytes (Hullin et al., 1992). In pathological condition, such as failing heart, an 

increased expression of β2a has been observed and associated with pathological membrane 

excitability and cell death in adult cardiomyocytes (Hullin et al., 2007). Among all the splice variants, 

β2a produces the largest ionic current and prevents voltage-dependent inactivation, due to its 

palmytoilated N-terminus that anchors the intracellular subunit to the plasma membrane (Olcese et 

al., 1994; Dzhura and Neely, 2003; Hullin et al., 2003).  

The functional significance of having diverse CaV β isoforms and splice variants in the heart is 

unknown but their expression is critical for embryonic survival and tissue development, as 

demonstrated by β knockout experimental animal models (Weissgerber et al., 2006). On the 

contrary, in adult tissues, it has been reported that a cardiac-specific knock-down of β2 proteins (by 

96%), only moderately decreased ICa,L suggesting that CaV β2 may not be critical for α1C trafficking in 

adult ventricular myocytes (Meissner et al., 2011). This observation was recently confirmed in adult 

transgenic mice carrying a mutation in the AID, which renders the pore-forming α1C subunit incapable 

of binding β subunits. Despite this mutation, the basal function of β-less Ca2+ channels was only 

minimally altered. Instead, it was found that the β subunit was obligatory for transducing β-adrenergic 

signals to cardiac CaV1.2 channels (Yang et al., 2019). 

 

γ subunits are transmembrane accessory proteins that primarily interact with VSD IV of the pore-

forming subunit (Fig. 8), (Wu et al., 2016). There are eight distinct γ isoforms (γ1–γ8), four of which 

(γ4, γ6, γ7, γ8) have been detected in human hearts, with only γ6 confirmed at the protein level in rat 

hearts (Shaw and Colecraft, 2013). At a functional level, γ4 and γ7 slightly left-shift voltage dependent 

activation (α1C/β1/α2δ complex), while γ8 has the greatest impact on voltage dependent inactivation, 

shifting the curve toward more positive membrane potentials by ~10 mV (Yang et al., 2011).  
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1.5 Targeting the Late ICa,L to suppress EADs 

Based on the experimental data reported by Olcese’s Laboratory, and our current mechanistic 

understanding of arrhythmogenesis (Qu and Chung, 2012; Madhvani et al., 2015; Weiss et al., 

2015), we hypothesize that a drug able to preferentially reduce “late ICa,L“ without affecting “peak 

ICa,L” and the EC coupling, will have great antiarrhythmic potential (Fig. 7). 

A potential candidate to explore this hypothesis is represented by roscovitine. Roscovitine (Seliciclib, 

R-roscovitine) is a 2,6,9-trisubstituted purine that was originally developed as a selective blocker of 

cyclin-dependent kinases (Meijer and Raymond, 2003) and is currently in phase II clinical trials as 

an anticancer drug (Benson et al., 2007; Belani, 2012). Further pharmacological characterization of 

this compound led to the discovery that the R-enantiomer operates also as an extracellular ligand of 

α1C pore-forming subunit, since intracellularly-applied (R)-roscovitine failed to affect L-channel 

activity (Yarotskyy and Elmslie, 2007). The resulting interaction has the unique characteristic of 

accelerating the voltage-dependent inactivation of CaV1.2 LTCCs, preferentially reducing “late ICa,L“ 

(non-inactivating component) over “peak” (Yarotskyy and Elmslie, 2007; Yarotskyy et al., 2009; 

Yarotskyy et al., 2010; Yazawa et al., 2011).  

 

In the following sections, I address our hypothesis by studying the biophysical modification of R-

roscovitine on the “late ICa,L“ of L-type CaV1.2 channels, and by investigating the antiarrhythmic effect 

of R-roscovtine on either EADs induced in isolated rabbit ventricular myocytes and EAD-mediated 

VT/VF in isolated perfused rabbit and rat hearts.  

  



27 
 

2. METHODS 

2.1 Ethical approval 

All animal protocols were approved by the UCLA Institutional Animal Care and Use Committee and 

conformed to the Guide for the Care and Use of Laboratory Animals published by the US National 

Institutes of Health.  

2.2 Molecular biology 

cDNA of human α1C (GenBank accession no. CAA84346) (54) α2δ-1 (UniProt accession no. P13806) 

and β2b subunits (UniProt accession no. Q8VGC3), containing a T7 promoter and a poliA tail for 

heterologous expression in Xenopus oocytes, were transcribed in vitro using the AmpliCap-Max™ 

T7 High Yield Message Maker Kit, CELLSCRIPT (for details see Chapter 2). 

2.3 Oocyte preparation 

Xenopus leavis female frogs (NASCO, Modesto, CA) were 

anesthetized with 0.17% tricaine solution pH 7.0 for 20 minutes 

and sacrificed. Ovaries were surgically removed and washed 

from blood contamination in OR-2 solution containing (mM): 82.5 

NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7. To isolate single 

oocytes, lobes were open and digested at room temperature in 

OR-2 supplemented with 207 U/ml Collagenase type I for ~12-

15 minutes in continuous agitation. After rinsing six time to 

remove collagenase excess, oocytes were gradually adapted to 

increasing Ca2+ concentration mixing OR-2 and SOS solutions, with the latter containing (in mM): 

100 NaCl, 1.8 CaCl2, 2 KCl, 1 MgCl2, 5 HEPES, 50 μg/ml gentamycin (Gibco) and 10 mg/ml 

penicillin/streptomycin (Sigma), pH 7. Isolated cells were maintained in SOS solution at 18°C until 

use (Fig. 11). 

2.4 Cut-open oocyte technique 

The cRNA of the different subunits of the cardiac LTCC (α1C+β2b+α2δ-1) was injected into stage VI 

Xenopus oocytes (50 nl at 0.1–0.5 µg/µl). After 3-4 days post-injection, oocytes were voltage-

clamped using the cut-open oocyte technique (for more details see Project 2), (Stefani and Bezanilla, 

1998; Pantazis and Olcese, 2013). The ionic currents were acquired before and after the addition of 

(R)-roscovitine (termed roscovitine throughout the elaborate). Roscovitine (LC Laboratories) was 

dissolved in either ethanol or DMSO (0.02%) and added to the external solution.  

Figure 11 – Mature Xenopus 

oocytes after defolliculation.  
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External solution (mM): 2 Ba-Methanesulfonate (MES), 120 NaMES, and 10 HEPES, pH 7.0, 

supplemented with 0.1 ouabain to eliminate current deriving from endogenous Na/K ATPase (Barish, 

1983). Internal solution (mM): 120 K-glutamate and 10 HEPES, pH 7.0. Pipette solution (mM): 2700 

NaMES, 10 NaCl, and 10 Na-HEPES, pH 7.0. Before experiments, oocytes were injected with 100 

mM BAPTA•4K (100 nl), pH 7.0, to chelate Ca2+/Ba2+ ions and thus prevent activation of endogenous 

Ca2+- and Ba2+-dependent Cl− channels.  

Ionic current was activated by a depolarizing step from -100 to 100 mV for 25 ms (holding potential at -

90 mV). Depolarization was followed by a repolarizing step at -40 mV to elicit tail current. The voltage 

dependence of channel opening (steady-state activation) was thus obtained from the peak tail 

current at −40 mV and plotted against the test potential. The steady state activation was empirically 

characterized by fitting to two Boltzmann functions as: 
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where q is the effective charge, Vhalf is the half-activation potential, Vm is the membrane potential, T 

is the absolute temperature, and F and R are the Faraday and Gas constants, respectively.  

For steady-state inactivation, current was elicited from -100 to +30 mV for 2s and then subjected to 

a 0 mV test pulse for 50 ms. The quasi-steady-state inactivation curves were constructed by plotting 

the normalized peak current during a test pulse at 0 mV at the various membrane potentials tested. 

The steady state inactivation was fitted to Boltzmann function: 

𝑓(V) =  
1−𝑝𝑑𝑒𝑠𝑡

1+exp[(−
𝑞𝐹

𝑅𝑇
)(𝑉ℎ𝑎𝑙𝑓−𝑉𝑚)]

+ 𝑝𝑑𝑒𝑠𝑡  

where pdest is the non-inactivating pedestal of the inactivation.  

Five different batches of oocytes were used. 

2.5 Ventricular myocytes 

For ventricular myocytes isolation, adult (3- to 4-month-old) New Zealand white male rabbits were 

anesthetized by intravenous injection of 1,000 U heparin sulfate and 100 mg/kg sodium 

pentobarbital. Once removed from the chest, hearts were washed from residual blood and perfused 

retrogradely in Langendorff fashion at 37°C with nominally Ca2+-free Tyrode’s solution containing (in 

mM): 136 NaCl, 5.4 KCl, 0.33 NaH2PO4, 1 MgCl2, 10 glucose and 10 HEPES, pH 7.4, and 

supplemented with ≈1.4 mg/mL collagenase (type II; Worthington) and 0.1 mg/mL protease (type 

XIV; Sigma) for 25 to 30 minutes. After washing out the enzyme solution, hearts were removed from 

the perfusion apparatus and swirled in a culture dish to obtain a cell suspension. [Ca2+] was slowly 
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increased to physiological levels (1.8 mM). The cells were stored in Tyrode’s solution at room 

temperature and used within ~8 hours. 

2.6 Patch clamp 

Myocytes were patch-clamped in whole-cell configuration. For voltage clamp recordings, a modified 

AP waive-form from a rabbit ventricular myocyte was used to record ICa,L. The voltage command was 

modified with a prepulse at -40mV to inactivate Na2+ voltage-gated channels. The pipette solution 

contained (in mM): 110 Cs-aspartate, 30 CsCl, 5 NaCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 creatine 

phosphate, 0.05 cAMP, pH 7.2 with KOH. Cells were superfused with a modified Tyrode’s solution 

prepared with (in mM): 136 NaCl, 5.4 CsCl, 0.33 NaH2PO4, 1.8 CaCl2, 1 MgCl2, 10 glucose and 10 

HEPES, pH 7.4 with NaOH. Bath solution was supplemented with 600 µM H2O2 to simulate 

conditions that would produce EADs in ventricular myocytes (Madhvani et al., 2011). Contaminant 

K+ and Na+ conductances were abolished substituting KCl with CsCl and adding 10 μM tetrodotoxin 

(TTX) to the bath solution, respectively. ICa,L was blocked with 20 μM nifedipine. ICa,L was isolated by 

subtracting the current after 20 μM nifedipine from the total current. The effect of roscovitine during 

AP clamp was quantified by normalizing the current in presence of 20 μM roscovitine to the control 

current (before addition of the drug) at 10, 100, 200 ms. All electrophysiological recordings were 

performed using an Axopatch 200B amplifier (Axon Instruments) and acquired using custom-made 

software (G-Patch; Analysis).  

AP (current clamp) recordings were captured with a pipette solution containing (in mM): 110 K-

aspartate, 30 KCl, 5 NaCl, 10 HEPES, 0.05-0.1 EGTA, 5 MgATP, 5 creatine phosphate, 0.05 cAMP, 

pH 7.2 with KOH. Borosilicate pipettes (Warner Instruments) with 1-2 MΩ resistance were used. The 

cells were superfused with Tyrode’s solution containing (mM): 136 NaCl, 5.4 KCl, 0.33 NaH2PO4, 

1.8 CaCl2, 1 MgCl2, 10 glucose and 10 HEPES, pH 7.4 with NaOH. To identify the threshold at which 

cardiomyocytes produce APs, cells were challenged with stimuli of increasing amplitude with square 

pulses of 2 ms duration. Threshold was then doubled in amplitude and injected at a pacing cycle 

length (PCL) of 6 s to elicit regular APs. EADs were induced adding 600 µM H2O2 to the 

superperfusate or reducing the extracellular [K+] from 5.4 to 2 mM (hypokalemia, hypoK) in the 

presence of 100 µM H2O2. To test EADs suppression, 20 µM roscovitine was added to the EAD-

inducing solutions. In the control experiments solution containing the vehicle (0.02% ethanol) was 

perfused. All experiments were performed at 34 to 36°C. Corrections were made for liquid junction 

potentials. Action potential duration at 90% of repolarization (APD90) and EAD occurrence (defined 

as percentage of APs that display a positive voltage deflection (dV/dt) of ≥5 mV) were reported as 

an average of six consecutive action potentials.  

 

Experiments were performed in at least three different cell preparations. Chemicals and reagents 

were purchased from Sigma unless indicated.  
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2.7 Intracellular Ca2+ measurements and cell shortening 

Changes in cytosolic [Ca2+] were recorded in rabbit ventricular myocytes after incubation with the 

Ca2+ indicator 10 μM Fluo-4 AM (Molecular Probes) for ≈20 minutes at room temperature in Tyrode’s. 

The cells were then washed and placed in a heated chamber at 35°C on an inverted microscope 

implemented with a sCMOS camera (Hamamatsu ORCA) operating at ≈50 frames/s.  

Cells were field-stimulated by a pair of platinum electrodes carrying square-wave pulses of 2 ms 

duration, and 2 nA amplitude, injected every 6 s. Baseline fluorescence was acquired exposing 

myocytes to the light for 30 s after 2 min stimulation, needed to reach steady state intracellular Ca2+ 

concentrations. The recording of Ca2+ transients (Cai) was then repeated with the same protocol, 

after addition of roscovitine or vehicle (Tyrode’s solution + DMSO 1:5000). Fluorescence changes 

(ΔF) were defined as ΔF = (Fmax-F0)/F0 where Fmax is the intensity of fluorescence at the peak 

and F0 is the intensity of fluorescence before the stimulation. The values of ΔF in the presence of 

roscovitine or vehicle solution were normalized to the baseline Ca2+ transients.  

Ca2+ transient duration at half maximum was the duration of the Cai at 50% of the peak amplitude. 

Cell shortening was measured by dividing the cell length at maximal shortening during each beat by 

the resting cell length and expressed as percentage. Myocytes from at three different cell isolations 

were used. 

2.8 Isolated perfused heart 

Male New Zealand White rabbits (6–8 months old) or and Fisher344 

rats (3–4 months old were anesthetized and sacrificed as stated before. 

Isolated hearts were cannulated through aorta and mounted in 

Langendorff fashion (Bell et al., 2011). Retrograde perfusion was 

achieved at 37°C with Tyrode’s solution containing (in mM): 125 NaCl, 

24 NaHCO3, 4.5 KCl, 1.8 NaH2PO4,0.5 MgCl2, 1.8 CaCl2, 5.5 glucose, 

pH 7.4 gassed with 95%O2-5%CO2. Arrhythmias were induced by 

oxidative stress (100 µM H2O2) or combining hypokalemia (1 mM K+) 

with 100 µM H2O2. Roscovitine (20 or 50 µM) was added to the solution 

as described below either before or after stressors perfusion. 

Spontaneously beating hearts were continuously monitored to record 

local bipolar left atrial-, right ventricular- electrograms and a pseudo-

electrocardiogram (LA, RV, p-ECG, respectively) as show in Fig. 12.  

2.9 Statistical analysis 

Data are presented as means ± SEM. Paired or unpaired Student’s t tests were used to assess 

statistical significance for ICa,L inactivation and action potential duration (APD) differences. Kaplan-

AORTA

PERFUSION 

CANNULA

LA

RV

PSEUDO 

ECG

Figure 12 - Langendorff 
perfusion setting for 
rabbit heart. Illustration of 
electrodes positioning for 
left atrial-, right ventricular- 
electrograms pseudo-ECG 
recordings. LA = left atrium, 
RV = right ventricle. 
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Meier curves were constructed to compare the time to onset of VT/VF in the absence or presence 

of roscovitine at different [drug], using the log rank (Mantel-Cox) test. Differences were considered 

statistically significant when p value <0.05.  
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3. RESULTS 

3.1 Roscovitine modifies CaV1.2 channels properties, reducing the non-

inactivating component of ICa,L 

To estimate whether roscovitine exclusively affects the non-inactivating channel population of the 

human CaV1.2, we overexpressed in Xenopus oocytes the LTCC complex comprising the human 

α1C pore-forming subunit and the most common auxiliary subunits find in the human ventricular 

tissue, namely α2δ-1 and β2b subunits. Cells expressing the reconstituted CaV1.2 were voltage-

clamped using the cut-open oocyte voltage clamp technique (Stefani and Bezanilla, 1998) and ionic 

currents were recorded as described in material and methods before and after the addition of 

roscovitine to the external solution. Ba2+ was used as a charge carrier to avoid Ca2+-dependent 

inactivation.  

The presence of 100 μM roscovitine in the external solution had a prominent kinetics effect compared 

to the control, accelerating the rate of voltage-dependent inactivation. This caused a reduction of the 

non-inactivating current component (late ICa,L,) with a minimal effect over the maximal current flowing 

at the beginning of the pulse, e.g. the peak current (Fig. 13A).  

The effect was quantified by comparing the normalized steady state inactivation current in control 

and after the addition of the drug. This comparison was made at 0 mV, when CaV1.2 channels 

produce the maximal inward current. Normalized current values were then expressed in percentage. 

On average, 100 μM roscovitine reduced the quasi steady-state, non-inactivating component of ICa,L 

from 27 ± 3% to 15 ± 2%, (p=0.006, N=7, Fig. 13B). Notably, the effect on ICa,L inactivation was not 

a consequence of a shift in voltage dependence of steady state activation and inactivation, which 

remained largely unaffected by roscovitine (Fig. 13B).  

 

This set of experiments establishes that roscovitine modulates the human CaV1.2 channel, 

specifically accelerating channel inactivation, or in other words, reducing the fraction of channels 

that do not inactive and are available for activation (Fig. 13B). As consequence, roscovitine reduces 

the number of L-type channels that are operative in the range of voltage that defines CaV window 

current and is critical for EADs onset, reproducing one of the therapeutic strategies that Madhvani 

and colleagues predicted to be highly effective to suppress EAD-triggered arrhythmias (Fig. 7), 

(Madhvani et al., 2015).  
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3.2 Roscovitine reduces late ICa,L in rabbit ventricular myocytes 

Since roscovitine modulates the human CaV1.2 channel as it does with the rabbit clone with different 

accessory subunits (Yarotskyy and Elmslie, 2007; Yarotskyy et al., 2010), we used freshly 

dissociated ventricular rabbit myocytes to determine the effects of roscovitine on endogenous CaV1.2 

channels, and thus on ICa,L in native conditions. Under AP clamp (Fig. 14), rabbit cardiomyocytes 

were challenged with a voltage command reproducing an AP waveform, previously obtained from a 

ventricular myocyte and modified to include a 50 ms prepulse at −40 mV to inactivate voltage-gated 

Na channels. The Ca2+ current exclusively generated by CaV1.2 channels, defined as nifedipine-

sensitive current, was isolated from the total current to which also T-type channels contribute, by 

subtracting the residual current remaining after the perfusion of the L-type channel blocker nifedipine. 

Nifedipine-sensitive ICa,L was measured before and after exposure to 20 μM roscovitine but in 

constant presence of H2O2 to enhance the ICa,L produced toward the end of the AP and thus simulate 

a borderline condition for EADs (Xie et al., 2009; Madhvani et al., 2011).  

Figure 14A shows that the amplitude of Ca2+ current flowing during the late plateau phase of the AP 

is reduced in presence of roscovitine. To quantify current decrease, we calculated the ratio “late ICa,L” 

/ ICa,L Peak control at three different time points during the AP clamp (Fig. 14A, dotted lines). The 

results are reported in Figure 14B. In average, at 200 ms, the fraction of the persistent current (late 

ICa,L) was reduced by roscovitine by 42% ± 5% (p=0.001, N=4), while at 10ms, representing the peak 

current, the ratio was not significantly affected by the presence of the drug, as the current was 

reduced only by 4% ± 2%, suggesting that the maximal influx of Ca2+ at early stages of the AP does 

Figure 13 - Roscovitine reduces the non-inactivating component of ICa,L . A) Superimposed Ba2+ currents 
from human CaV1.2 channels expressed in oocytes (α1C+β2b+α2δ) before (black) and after 100 μM roscovitine 
(green). B) Average steady-state activation and inactivation curves before and after roscovitine. Smooth lines 
are Boltzmann fits to the activation and inactivation curves. Note the highly-desirable effect of roscovitine 
selectively reducing “late ICa,L“ (N=7). 
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not change in presence of the compound. In principle, this feature should preserve proper EC 

coupling and in turn myocyte contractility.  

 

By contrast, commonly-used antiarrhythmic drugs, such as the LTCC blocker Verapamil, 

dramatically reduced ICa,L peak current in myocytes stimulated with the same AP waveform (Fig. 

14C). This effect is likely consistent with the negative inotropic side-effects reported for Verapamil 

(Rosen et al., 1975). 

These results demonstrate that roscovitine produces a selective reduction of the Ca2+ current flowing 

during the late phase of the AP (late ICa,L ) also in cardiac myocytes, confirming that the potential 

therapeutic effect observed on the heterologously-expressed human CaV1.2 clone (Fig. 13B) is also 

applicable to native cardiac L-type channels.  

3.3 Roscovitine potently suppresses EADs induced by oxidative stress in 

isolated rabbit ventricular myocytes  

Electrophysiological-computational studies postulated that drugs modifying LTCC gating properties 

by reducing late ICa,L by ~ 4%, should potently suppress EADs (Fig. 7), (Madhvani et al., 2015). Since 

roscovitine can pharmacologically produce this beneficial LTCC gating modification in both clone 

and endogenous channels (Figs. 13-14), we tested its effectiveness to reduce EAD susceptibility in 

isolated rabbit ventricular myocytes.  

To induce EADs, a model of oxidative stress at the cellular level was applied using 600 μM H2O2 

which is known to reduce repolarization reserve affecting various ion channels, such as Ito (Zhao et 

al., 2012), the late INa (Ward and Giles, 1997) and ICa,L (Xie et al., 2009).  

Figure 14 - Roscovitine reduces the late (non-inactivating) component of ICa,L in native conditions. A) 
Representative endogenous ICa,L recorded in the presence of 600 μM H2O2 using an action potential waveform 
protocol (voltage-clamp mode) in rabbit ventricular myocyte. ICa,L is recorded in control (black) and in presence 
of 20 μM roscovitine (green). B) Quantification of ICaL measured at different time points of the AP, (N=4). Data 
are mean ± SEM. Roscovitine reduces “late ICa,L“ without affecting the “peak ICa,L”. C) Nifedipine-sensitive ICa,L 
recorded as in A, in control (black) or in presence of 10 μM calcium channel blocker Verapamil (red).  
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Under current clamp, we recorded ventricular APs injecting a current twice the amplitude current 

needed to fire an AP in each specific cell. A pacing cycle length (PCL) of 6 s was applied to reproduce 

the bradycardic stimulation that favors EADs onset and their regular appearance “beat to beat” (Sato 

et al., 2009; Sato et al., 2010; Weiss et al., 2010). We first exposed myocytes to 600 μM H2O2, that 

prolonged the AP duration (APD) and caused the concomitant appearance of a stable EAD regime 

within 6 minutes after stressor perfusion. 

Specifically, EADs developed in 83.2% ± 5.4 of the APs, prolonging the APD measured at 90% 

repolarization (APD90) from 276 ± 43 ms to 860 ± 178 ms. Perfusion of 20 µM roscovitine suppressed 

H2O2-induced EADs in all myocytes tested, despite the continuous presence of H2O2 (Fig. 15) and 

restored a normal APD90 to 232 ± 25 ms (Fig. 15, control vs roscovitine, p=0.354, N=7). In control 

experiments, the perfusion of the vehicle (0.02% ethanol) did not suppress the EAD regime (Fig. 16, 

N=4) or revert the APD90. 

Figure 15 - Roscovitine abolishes H2O2-induced EADs in ventricular myocytes. A) Time course of action 
potential duration (APD90) for a representative experiment. APs (circles) were elicited with 2ms-2nA pulses 
under current clamp conditions in rabbit ventricular myocyte. APD90 dramatically increased after ∼ 6 min 
exposure to 600μM H2O2, exhibiting a robust and stable EAD regime. Addition of 20 μM roscovitine completely 
abolished EAD occurrence and restored the normal APD despite the continuous presence of H2O2 in the bath 
solution. B) Demonstrative APs in control condition (blue), H2O2 (red) and after the addition of roscovitine 
(green) that are highlighted as filled circle in the time course in A. C) Plot summarizing the average changes 
in APD90 and EAD occurrence during experiments performed as in A. Roscovitine abolished EADs and 
restored the normal APD, despite the presence of H2O2 (N=7 cells, mean ± SEM).  
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3.4 Roscovitine strongly suppresses EADs induced by oxidative stress and 

hypokalemia in isolated rabbit ventricular myocytes. 

The ionic background of EADs is usually very complex as multiple ionic currents are required to 

change in order to set the conditions for a reduced repolarization reserve and a prolongation of the 

AP (Weiss et al., 2010). Thus, testing the “anti EADs” effect of roscovitine in a contest where more 

ionic currents are compromised would further confirm the robustness of its potential therapeutic 

effect.  

To increase the strength of the type of stressors used to induce the EAD regime, we combined 

oxidative stress (100 μM H2O2) with a reduction of the external potassium from 5.4 mM to 2 mM. 

Hypokalemia (hypoK) has direct effect on repolarization reserve and contributes to EAD 

development in rabbit ventricular myocytes (Pezhouman et al., 2015; Trenor et al., 2018).  

Under control conditions in normal Tyrode’s solution, isolated ventricular myocytes displayed an 

APD90 of 224 ± 39 ms which quadruplicated up to 827±178 ms (N=5) while perfusing both H2O2 + 

hypoK stressors. This intervention produced a stable regime of EADs in 97.1 ± 2.8% of APs elicited 

within 5-10 mins from stressor application and caused a hyperpolarization of the membrane potential 

from ~-80 mV to ~-110 mV, likely caused by the reduction of external potassium (Fig. 17), (Trenor 

Figure 16 - H2O2-induced EADs regime persists in presence of the vehicle. A) Time course of AP duration 

in rabbit ventricular myocyte perfused with 600 μM H2O2, to which vehicle (0.02% ethanol) was then added. 
B) Representative APs in A (coloured circles) are shown for control (blue), H2O2 (red) and H2O2 + vehicle. C) 
Data quantification shows that the addition of vehicle solution had no effect on APD prolongation and EADs 
development (N=4 cells, mean ± SEM). 
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et al., 2018). As with H2O2-induced EADs, perfusion with 20 µM roscovitine completely prevented 

EADs occurrence, restoring the APD90 to 324 ± 32 ms (Fig. 17; control vs roscovitine, p=0.067, N=5).  

These results indicate that roscovitine which we have shown to selectively reduce late ICa,L (Fig. 14), 

effectively suppressed EADs of different etiology, pointing out that controlling the non-inactivating 

population of CaV1.2 during the AP might be a precious intervention to control aberrant electrical 

activity at tissue level. 

3.5 Roscovitine does not compromise Ca2+ transient (Cai) and cell shortening 

in isolated rabbit ventricular myocytes.  

Early Ca2+ influx is very rapid and massive in phase 1 and 2 of the AP and is essential to maintain a 

functional EC coupling as it is needed to trigger Ca2+ release from the SR (Bers, 2002). This peak 

ICa,L, is not affected by roscovitine (Fig. 14). Therefore, it is reasonable to hypothesize that the Ca2+ 

transient (Cai), representing the total cytoplasmic change of Ca2+ from RyR2 activation to cell 

relaxation, and cell shortening would not be compromised by the compound at the concentration 

used to abolish EADs. 

 

Figure 17 - Roscovitine suppresses Hypokalemia+H2O2-induced EADs in rabbit ventricular myocytes. 
A) Time course of AP duration in rabbit ventricular myocyte perfused first with Hypokalemia (2 mM K+) + 100 
μM H2O2, followed by 20 μM roscovitine. B) Representative APs highlighted in the time course are shown for 
control (blue), Hypoklaemia+H2O2 (orange) and after the addition of roscovitine (green). C) Plot summarizing 
the average changes in APD90 and EAD occurrence during experiments performed as in A (N=5 cells, mean 
± SEM).  
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To measure the pure effect of roscovitine on Ca2+ transients, we quantified fluorescence signal 

produced by the intracellular Ca2+ indicator Fluo-4AM loaded into rabbit ventricular myocytes in 

absence of all stress stimuli. Cells were repeatedly stimulated with square pulses to mimic a regular 

rhythm and induce Ca2+ release from the SR. Recordings reporting the change in intracellular Ca2+ 

are shown in Fig. 18A. Roscovitine did not significantly altered Cai amplitude (Fig. 18B. control 92% 

± 17, roscovitine 86% ± 2 %, n.s) or duration at half maximal amplitude (Fig. 18C, control 232 ± 

23.14 ms, roscovitine 234 ± 30.76 ms, n.s.). In agreement with these findings, cell shortening with 

roscovitine was comparable to control conditions (Fig. 18D, control 7.23% ± 0.81, roscovitine 7.56 

% ± 0.53, n.s.).  

Thus, the potent EAD-suppressing effect of roscovitine seems to occur without perturbing Ca2+ 

signaling and cell shortening at the cellular level, indicating that roscovitine will largely preserve 

cardiac contractility at the modest concentration used to abolish EADs. 

 

Figure 18 - Ca2+ transient and cell shortening in ventricular myocytes are unaffected by roscovitine. A) 
Representative Ca2+ transients from field-stimulated ventricular myocytes loaded with Fluo-4 AM in control 
(grey) or 20 μM roscovitine (green). B) Average change in Ca2+ transient amplitude following control or 
roscovitine addition. C) Average change in transient duration measured at half-maximum amplitude for control 
and roscovitine (control: N=5 cells; roscovitine: N=6). D) Cell contraction ability in control conditions or in 
presence of roscovitine (N=8 each). 
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3.6 Roscovitine suppresses H2O2-induced EADs in ex vivo rat hearts. 

EADs are arrhythmogenic events that appear at the cellular lever. However, upon synchronization 

they can trigger premature ventricular complexes that in turn, might result in ventricular tachycardia 

(VT) or even fibrillation (VF) at tissue level (Sato et al., 2009; Weiss et al., 2010). As consequence, 

roscovitine, which we have shown to suppress H2O2- and/or HypoK-induced EADs in isolated 

ventricular myocytes (Figs. 15, 17), could be equally effective in repressing at the organ level, the 

arrhythmogenic events that are triggered by EADs.  

Thus, we performed ex vivo experiments in isolated rat hearts perfused in Langendorff fashion with 

a modified Tyrode’s solution containing either 100 μM H2O2 or 2 mM K+ (hypoK) to trigger VT/VF. 

Both oxidative stress and hypokalemia are considered pro-arrhythmic. Specifically, H2O2 promotes 

EADs and mixed focal-reentrant VT/VF in aged fibrotic rat hearts (Morita et al., 2009), while low 

extracellular K+ effect is thought to initiate arrhythmias by reducing both K+ conductance, and thus 

repolarization reserve and the activity of the Na+/K+-ATPase, subsequently leading to Ca2+ and Na+ 

overload (Weiss et al., 2017; Skogestad and Aronsen, 2018). Electrical activity of the heart was then 

constantly monitored with Pseudo-electrocardiogram (pECG). As shown in Fig. 19A, H2O2 produced 

a sustained regime of VT/VF in all 8 hearts tested. Perfusion of 20 μM roscovitine effectively 

suppress VT/VF, converting arrhythmias to sinus rhythm in 8 out of 8 rat hearts (p=0.0024) within 

13min ± 2.8 min despite the presence of H2O2 (Fig. 19B).  

Analogously to oxidative stress, K+ deficit produced a sustained VF regime in rat hearts that was 

suppressed by 20 μM roscovitine in 5 out 6 experiments (p=0.045) within 28 ± 9.1 min (Fig. 20).  

These ex vivo experiments demonstrated that roscovitine possesses antiarrhythmic properties on 

the whole organ, producing the proof of concept that reducing the late ICa,L, i.e. reducing the non-

Figure 19 - Roscovitine terminated VT/VF in aged rat hearts. A) A representative experiment of a pseudo-
ECG recordings from right atrial-left ventricular leads (top) and RV (middle) and LA (bottom) bipolar 

electrograms showing the initiation of VT/VF ~ 38 min after exposure to 100 µM H2O2 in an isolated-perfused 

aged rat heart in Langendorff setting. B) Same heart, as in A. VF is suppressed 16 min after the addition of 20 
µM roscovitine to the perfusate in the continuous presence of H2O2. Sinus rhythm was restored by roscovitine 
in 8/8 hearts within 13 ± 2.8 min. 
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inactivating component of CaV1.2 channels, could be effective in suppressing EAD-mediated 

arrhythmogenic events not only at single cell level, but also in the tissue. 

 

3.7 Roscovitine prevents H2O2- and hypokalemia-induced VT/VF in ex-vivo 

perfused rabbit hearts.  

Motivated by the evidence that roscovitine suppresses ventricular arrhythmias in rat hearts (Figs. 

19-20), we investigated whether this drug could have also a preventive action on the onset of EADs 

(rather than abolishing them).  

To test this hypothesis, we used rabbit hearts as their AP displays a more prominent plateau phase 

that resembles the one of humans. Hypokalemic conditions (1mM K+), as well as oxidative stress 

(100 µM H2O2) were used as a model of cardiac arrhythmia (Pezhouman et al., 2015; Pezhouman 

et al., 2018). 

The control group was exposed to hypoK and 100 µM H2O2 which induced VT/VF in 5 out of 5 rabbit 

hearts within 20 ± 11 mins (Fig. 21A, B). In this condition, H2O2- and hypoK-induced arrhythmia did 

not terminate spontaneously. 

The preventive efficacy of roscovitine was tested by arterial perfusion of roscovitine alone 15 minutes 

before adding H2O2 and hypokalemia to the perfusate. Prophylactic perfusion of 50 µM roscovitine 

prevented VT/VF initiation in 4 out 5 hearts (P<0.05) monitored for about one hour in the presence 

of roscovitine and H2O2 and hypokalemia stressors. However, the pretreatment of rabbit hearts with 

20 µM roscovitine only prevented emergence of VT/VF in 2 out of 5 hearts tested (p>0.05), (Fig. 

21D). These results provide substantial compelling evidence that the pharmacological reduction of 

the late ICa,L by roscovitine suppresses and prevents VT/VF induced by hypokalemia and/or oxidative 

stress.  

  

Figure 20 - Roscovitine suppresses hypokalemia-induced VT/VF in aged rat hearts. A) A representative 
experiment showing initiation of VF in a rat heart after 12 min of exposure to hypokalemia (Tyrode’s with 2 mM 
K+) recorded with a pseudo-ECG, bipolar electrograms from the RV and LA. B) Recordings from the same 
heart as in A, showing suppression of VF 8 min after the addition of 20 µM roscovitine to the perfusate in the 
continuous presence of hypokalemia. 
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Figure 21 - Roscovitine prevents Hypokalemia+H2O2-induced VT/VF in isolated rabbit hearts. A) 
Scheme of the experimental protocol showing sequential administration of roscovitine and stressors. B) Left 
panel showing sinus rhythm during normokalemia, as recorded with a pseudo-ECG, bipolar electrograms from 
the RV and LA. Right panel shows initiation of ventricular arrhythmia 14 min after the perfusion of Tyrode’s 
containing 1mM K+ (hypoK) + 100 µM H2O2. C) Representative experiment for preventive effect of 50 µM 
roscovitine. Left, sinus rhythm during normokalemia. Middle panel shows the same heart during 15 min 
pretreatment with roscovitine. Right panel illustrates recordings 60 minutes after the perfusion of HypoK (1 mM 
K+) + 100 µM H2O2 in continuous presence of roscovitine. D) Kaplan–Meier survival curves comparing time to 
onset of VT/VF for hearts perfused with HypoK (1mM K+) + 100 µM H2O2 only (control, black) or pretreated 
with roscovitine 20 µM (red) or 50 µM (blue).  
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4. DISCUSSION 

 

Ventricular tachyarrhythmias are the most common cause of sudden cardiac death worldwide (Priori 

et al., 2015; Al-Khatib et al., 2018). Despite the dramatic improvements over the past decades, 

clinicians and researchers still struggle in identifying therapeutic approaches that are indicated for 

most patients and economically sustainable. A better understanding of the molecular mechanism 

underlying arrhythmias would make progress toward innovative therapies. 

At the cellular level, early after depolarizations (EADs) provide the most common mechanisms for 

ectopic excitation, resulting the primary trigger of arrhythmias at the organ level, especially in long 

QT syndromes and heart failure (Damiano and Rosen, 1984; Cranefield and Aronson, 1991; 

Antzelevitch and Burashnikov, 2011; Wit, 2018). EADs are driven by the regeneration of inward 

currents during plateau phase of the AP, in a setting of reduced repolarization reserve (Weiss et al., 

2010). Since ICa,L is the principal depolarizing current during phase 2 of AP, it can recover from 

inactivation and gain sufficient amplitude to produce a late ICa,L and evoke a triggered beat (January 

and Riddle, 1989; Hirano et al., 1992; Weiss et al., 2010; Madhvani et al., 2011). As recently 

demonstrated by an electrophysiological-computational approach by the Olcese’s Laboratory 

(Madhvani et al., 2015), selectively reducing this EAD-causing current could be one possible strategy 

to successfully prevent EADs formation while preserving the early Ca2+ influx necessary for EC 

coupling (Fig.7). The experimental data here reported, provide evidence that pharmacological 

reduction of the late ICa,L over the peak ICa,L, by roscovitine, is highly effective to suppress EADs. In 

agreement with previous studies (Yarotskyy and Elmslie, 2007; Yarotskyy et al., 2010), roscovitine 

selectively reduced the fraction of non-inactivating component of ICa,L in heterologously-expressed 

human CaV1.2 clone and in rabbit ventricular myocytes, diminishing the persistent current at late 

stage of phase 2 (Figs. 13,14) but leaving EC coupling (e.g. cell contractility) unaffected (Fig.18). 

This action was translated in a potent suppression of EADs and VT/VF, in single ventricular myocytes 

and isolated hearts, respectively (Figs. 15-17, 19, 20), as well as in an effective prevention of 

tachycardia in rabbit hearts (Fig. 21). Moreover, EADs were induced using oxidative stress and/or 

hypokalaemia, which increase Na+ and Ca2+ inward current or decrease K+ conductance, 

respectively (Ward and Giles, 1997; Xie et al., 2009; Zhao et al., 2012). Consequently, roscovitine 

efficacy implies that exclusively targeting the “late ICa,L“ is a very effective strategy regardless of the 

specific ionic mechanism by which EADs were generated. This is also in line with previous reports 

demonstrating that roscovitine restores electrical activity and Ca2+ handling in induced pluripotent 

stem cells (iPSCs)-derived cardiomyocytes that carry a gain-of-function mutation in CaV1.2 

channels that leads to EADs and Timothy syndrome (TmS), (Yazawa et al., 2011; Song et al., 

2015). In addition, we reported that roscovitine was able to recover sinus rhythm in rat hearts and to 
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prevent the arrhythmia in two different species (rabbit and rat, respectively), despite the different 

ionic characteristics of the respective APs (Figs. 19-21). 

 

L-type calcium channels: old targets for new therapeutic strategies 

Since the discovery of Verapamil in the early 70’s, LTCCs have been recognized as interesting 

targets for antiarrhythmic drugs. At present, the Class IV antiarrhythmics includes Ca2+ blockers such 

as Verapamil and Diltiazem that are used for the treatment and prevention of various cardiac 

arrhythmias (Rosen et al., 1975; Grace and Camm, 2000; Szentandrassy et al., 2015). Their 

pharmacological action relays on the overall block of LTCC conductance, indiscriminately reducing 

both “late ICa,L” and “peak ICa,L” (Fig. 14C). Consequently, these drugs suppress EADs at the single 

myocyte level, but also compromise cardiac EC coupling (January et al., 1988; Shimizu et al., 1995; 

Hensley et al., 1997). Thus, their antiarrhythmic action is accompanied by an undesirable negative 

inotropic effect, that limits their therapeutic value especially in patients with compromised cardiac 

function (Rosen et al., 1975).  

By contrast, drugs that selectively target the “late ICa,L“ could be both sufficient and highly potent in 

suppressing EADs of various etiologies and at the same time safe, as they are predicted to preserve 

Ca2+ signalling (Fig. 18), (Madhvani et al., 2011; Madhvani et al., 2015; Bengel et al., 2017).  

Thus, LTCC gating modifiers that selectively reduce “late ICa,L“ could constitute a new Class of 

antiarrhythmic action. Since roscovitine pharmacologically implements selective “late ICa,L“, it stands 

as the archetype for this new class (Karagueuzian et al., 2017).  

Moreover, therapeutic compounds that target the “late INa” are already in development or on the 

market (such as Ranolazine, GS-967), (Antzelevitch et al., 2004; Belardinelli et al., 2013; 

Pezhouman et al., 2014; Bengel et al., 2017; Bossu et al., 2018), suggesting the feasibility of 

developing drugs that selectively reduce “late ICa,L“, given the structural similarity between CaV and 

NaV channels.  

 

Potential off-target effects of roscovitine 

As roscovitine has been described to acts on several proteins, some potential off-target effects of 

our pilot antiarrhythmic compound might be taken into consideration. 

Cycline-dependent Kinases.  

Roscovitine was initially identified as a potent cyclin-dependent kinase (CDK) inhibitor highly 

selective for CDK1, CDK2, CDK5, and CDK7, resulting in cell proliferation arrest and cell apoptosis 

with maximal efficacy at 20 μM after 24h from drug administration (Meijer and Raymond, 2003). At 

the same concentration, but with shorter exposure, roscovitine did not compromise Ca2+ handling 

and successfully recovered APD in cells displaying EADs. Despite no cytotoxic effects were 

observed in our experimental setting, a longer exposure to this compound could result in cell 

damage, hampering its preclinical use as an antiarrhythmic drug, as roscovitine is under phase II 
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clinical trial as an anticancer compound. However, the promising results here reported, make 

roscovitine (or better, its mechanism of action) an appealing prototype drug/strategy to suppress or 

prevent arrhythmogenic events. As consequence, we expect that better pharmacological alternatives 

could be formulated for clinical antiarrhythmic modulation. In this regard, the existence of roscovitine 

analogues with reduced CDK inhibition (Liang et al., 2012; Tarr et al., 2013), suggests that future 

derivative compounds could target more selectively LTCCs. 

HERG. 

 Besides its CDK-inhibition effect, roscovitine remains the only drug available to preferentially reduce 

“late ICa,L“, but in the past few years it has been described to interact with multiple ion channels. In 

particular, roscovitine has been found to block voltage-dependent potassium channels hERG 

(Ganapathi et al., 2009) and KV4.2 channels (Buraei et al., 2007) expressed in heterologous 

systems. In most cases, the block of hERG is associated with an AP prolongation and acquired long 

QT syndrome that can potentially cause lethal ventricular arrhythmia called torsade de pointes 

(Sanguinetti and Tristani-Firouzi, 2006). As opposite, no instances of cardiac proarrhythmia have 

been reported in clinical trials (Fischer and Gianella-Borradori, 2003; Benson et al., 2007). 

Furthermore, our experimental data demonstrate that roscovitine potently suppressed EADs and 

restored APD to normal values in isolated ventricular myocytes overcoming the potential drug-

induced APD prolongation observed by blocking hERG channel or other potassium channels.  

 

In conclusion, our results provide experimental evidence that L-type Ca2+ channel gating modifiers 

could conceptually represent a new Class of antiarrhythmics that suppress EAD-mediated 

arrhythmias by selectively reducing “late ICa,L“ and avoiding the negative inotropy caused by 

traditional CaV channel blockers that belong to Class IV Antiarrhythmics.  
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Project 2 

Differential modulation of L-type CaV1.2 and 

CaV1.1 channels by the α2δ-1 subunit  
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1. INTRODUCTION 

1.1 Excitation-contraction coupling and physiological role of L-type calcium 

channels 

Muscle excitation-contraction (EC) coupling defines the process by which the electrical activation of 

muscle cells leads to the activation of contraction. In its broadest use, EC coupling refers to all the 

events that intervene between action potential (AP) stimulation and cell contraction. In both cardiac 

and skeletal muscle cells these events can be summarized as follow: 1) voltage-dependent activation 

of L-type Ca2+ channels (LTCCs) at the plasma-membrane level to activate the ryanodine receptors 

(RyRs), 2) activation of the RyRs which release Ca2+ from the sarcoplasmic reticulum (SR) into the 

cytoplasm, 3) increase in intracellular Ca2+ that shortens the sarcomere units and induces cell 

contraction, 4) extrusion or SR re-uptake of Ca2+ surplus to favour cell relaxation (Bers, 2002; 

Calderon et al., 2014).  

All these events take places at the dyadic (cardiac) or triadic (skeletal) junctions, where one 

invagination of the sarcolemma, known as T-tubule, encounters one or two cisternae of the SR, 

respectively. Here, the distance between the plasma-membrane and the SR is reduced to few nm 

(~10-15 nm), so that RyRs on the SR are in close proximity to LTCCs channels in the T-tubule 

(Fawcett and McNutt, 1969). The structural organization of these micro-domains has a clear 

functional implication: it increases coupling efficiency between LTCCs and RyRs such that activation 

of LTCCs results in a faster and uniform Ca2+ release from the SR (Eisner et al., 2017).  

However, cardiac and skeletal junctions differ for LTCC and RyR isoforms expressed and for their 

reciprocal distribution at the junctional space. In the dyads, the cardiac LTCC CaV1.2 channels are 

distributed randomly with one channel every 4-10 cardiac RyR (RyR2), while the skeletal triads 

appear to be more rigid, since four CaV1.1 channels forms tetrads that sit above every other RyR1 

(Bers and Stiffel, 1993). This stoichiometric arrangement between the two channels functionally 

explains why in the heart it is the influx of Ca2+ via CaV1.2 that activates the adjacent RyRs (Bers, 

2002). By contrast, in the skeletal muscle, the rigid junctional arrangement favours a mechanical 

interaction between CaV1.1 and RyR1 such that the SR Ca2+ release is not triggered by the entry of 

extracellular Ca2+ like in the heart (Armstrong et al., 1972; Dirksen and Beam, 1999) but requires a 

depolarization-induced rearrangement in CaV1.1 to activate RyR1 (Rios and Pizarro, 1991). In other 

words, cardiac and skeletal muscles engage the SR Ca2+ release by two different mechanisms: the 

former relays on Ca2+-Induced Ca2+-release (CICR) phenomenon, whereas the second exploits a 

Depolarization-Induced Ca2+-release (DICR) process (Fig. 22). The following sections will discuss 

these two mechanisms. 
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CaV1.2 channels role in Ca2+-Induced Ca2+-Release 

Ca2+-induced Ca2+-release (CIRC) was discovered in the heart in the early 70’s (Fabiato et al., 1972; 

Fabiato and Fabiato, 1978), and defined as the process whereby an increase of the intracellular Ca2+ 

concentration causes the release of Ca2+ from the intracellular stores, further rising cytosolic Ca2+ 

concentration (Rios, 2018). Thus, CIRC reflects the ability of intracellular Ca2+ channels, the RYRs, 

to be activated by Ca2+ when it rises above a threshold level. The voltage-dependence of the Ca2+ 

transients, as well as the cell contraction corresponds to that of the L-type current of Cav1.2 (ICa,L), 

(London and Krueger, 1986; Beuckelmann and Wier, 1988). Thus, it generally assumed that the 

activation of CaV1.2 channels is the principal entry pathway of Ca2+ in the heart. As consequence, 

the threshold is reached upon extracellular Ca2+ entry via CaV1.2 channels, which are estimated to 

bring in ~10 μmol/L cytosol of Ca2+ (Sipido et al., 1995; Sham et al., 1998). Under physiologic 

conditions, it is believed that one CaV1.2 should raise the local Ca2+ enough to activate at least one 

RyR2 that, in turn, can recruit more neighbouring RyRs (Bers, 2002). This positive feedback 

increases the local Ca2+ concentration ~100 times and explains why CaV1.2 channels can irregularly 

lie around RyR2 at dyadic junction and properly activate CIRC. The resulting Ca2+ release is not an 

all-or-none or self-sustaining phenomenon, as it might be expected. It is instead graded according 

to the amount of Ca2+ influx, as it is inhibited by high (supra-optimal) levels of external Ca2+ (Bers, 

2002). Moreover, during the late phase 2 of the AP, the current produced by CaV1.2 opening (ICa,L) 

decreases by ~ 50% as the SR release and the contraction get larger. This reduction reflects a Ca2+-

Figure 22 – Excitation-contraction coupling in cardiac and skeletal muscle. A) Schematic representation 
of Ca2+-induced Ca2+ release in cardiac muscle. Cardiac CaV1.2 opens upon membrane depolarization (ΔV). 
The massive calcium (Ca2+) influx through the channel pore activates the proximal RyR2 and start Ca2+ release 
from the SR. D) Depolarization-induced Ca2+ release in skeletal muscle. Upon membrane depolarization, 
CaV1.1 channels undergo a conformational change that is mechanically transduced to RyR1 which in turn 
activates to initiate SR Ca2+ release. 
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dependent inactivation of ICa,L operated by the SR Ca2+ release (Puglisi et al., 1999). As 

consequence, both ICa,L and SR Ca2+ release control each other to limit the positive feedback of the 

CIRC guarantying the refractory period that is necessary to complete contraction before a second 

stimulus is received.  

 

CaV1.1 channels role in Depolarization-Induced Ca2+ Release  

The conclusion that skeletal EC-coupling is mostly voltage-dependent 

rather than reliant on Ca2+ influx, has been inferred from four major 

observations. First, the skeletal muscle can contract for several 

minutes after depletion of Ca2+ from the bath solution (Armstrong et 

al., 1972), which is instead essential for cardiac contraction (Ringer, 

1883). Second, skeletal ICa,L activates so slowly (at room temperature, 

ICa,L peaks after ~ 200 ms while the cardiac ICa,L reaches the peak in 

~5 ms) minimizing Ca2+ influx during the fast (5 ms) skeletal AP 

(Sanchez and Stefani, 1978). Third, RyR1 is less strongly activated 

by Ca2+ alone, and requires more Ca2+ to activate than RyR2 

(Meissner, 2017). Fourth, skeletal myocytes still release Ca2+ from the 

SR when all known ionic currents (including Na2+ and Ca2+) are 

blocked (Fig.23), (Rios and Pizarro, 1988).  

In this condition of “ionic block”, an intramembrane charge movement, 

which is synchronized with the Ca2+ release, is still visible (Fig 24). 

This movement is attributed to CaV1.1 channels gating as 1) 

Dihydropyridine Ca2+ antagonist (nifedipine) inhibits charge 

movement as well as contraction (Lamb and Walsh, 1987; Rios and 

Pizarro, 1988) and 2) dysgenic myotubes lacking the α1s pore-forming 

subunit of CaV1.1 do not display charge movement or signs of 

contraction (Tanabe et al., 1988; Adams et al., 1990). CaV1.1 

channels are thus referred to as the voltage sensors of the skeletal 

EC-coupling (Rios and Pizarro, 1991; Calderon et al., 2014). By 

contrast, the cardiac CaV1.2, even when injected in dysgenic 

myotubes, gates RyR1 opening only in presence of extracellular Ca2+ 

(Tanabe et al., 1990; Garcia et al., 1994; Kasielke et al., 2003). 

Interestingly, CICR is present in developing skeletal muscle. At 

embryonical stages, skeletal EC coupling is governed by an 

alternative splice variant of CaV1.1 channels (CaV1.1e), with faster kinetics and greater conductance, 

resembling those of the cardiac CaV1.2 (Tuluc et al., 2009; Flucher and Tuluc, 2017). The ability to 

Figure 23 - Ca2+ release and 
intramembrane charge 
movement in skeletal 
muscle. Voltage-clamp 
recordings from a frog 
semitendinosus fiber reporting 
A) Ca2+ transient, B) Ca2+ 
release and C) charge 
movement during a 
depolarizing pulse at 0mV 
showed in D. A Ca2+-sensitive 
dye was added to the 
intracellular solution to 
measure Ca2+ transient in A, 
that was used to calculate the 
Ca2+ release flux in B. From 
these experiments, the author 
suggested that charge 
movement during the 
depolarizing pulse could be 
responsible for activating the 
SR Ca2+ release (Schneider 
and Chandler, 1973). From 
(Rios and Pizarro 1988). 
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conduct big and fast Ca2+ current is then lost during muscle maturation, when DICR takes over and 

CaV1.1e channels are replaced with slow activating channels, implying that reducing Ca2+ influx 

might be physiologically relevant for muscle homeostasis (Flucher and Tuluc 2017).  

It is although recognized that the adult CaV1.1 may conduct a small Ca2+ current during long‐lasting 

tetanic stimulation or repeated trains of APs, to refill the SR Ca2+ stores and thus sustain muscle 

performance during prolonged activity (Robin and Allard, 2015). 

 

1.2 CaV1.1 and CaV1.2 interaction with the ryanodine receptor  

DICR implies mechanical interaction between CaV and RyRs, respectively. However, the past 60 

years of experimental data did not completely clarify whether CaV1.1 and RyR1 are directly coupled 

or whether a third protein is needed to mediate their interaction, nor they unravelled the mechanism 

by which CaV1.1 rearrangement gates the opening of the RyR1 receptors (Calderon et al., 2014; 

Bannister, 2016). 

So far, the most concrete evidence of the intermolecular interaction comes from electron freeze-

fracture replicas capturing the highly organized structure of the skeletal tetrads (Block et al., 1988). 

Therefore, any structural element whose absence compromised this rigid organization or the EC 

coupling machinery was proposed as the connecting ring between Cav1.1 and RyR1 channels. 

Among the three auxiliary subunits that form Cav1.1 macromolecular complexes (β1a, γ1, α2δ), only 

β1a displayed such requirements. In absence of β1a auxiliary subunit, the “chessboard“ framework of 

the tetrads becomes irregular and EC-coupling fails to happen, suggesting a critical role of β1a in the 

electromechanical coupling (Gregg et al., 1996; Strube et al., 1996; Schredelseker et al., 2005). 

However, its hypothetical role as a “glue” between the two Ca2+ channels is still controversial since 

its ability to bind RyRs in vitro, independently from the α1s subunit, was not confirmed in vivo (Dayal 

et al., 2010; Rebbeck et al., 2011).  

Areas of direct physical contact between CaV1.1 and RyR1 have also been identified. Chimeric 

approaches based on CaV1.1-CaV1.2 fusion proteins, identified the intracellular CaV1.1 linker 

between the voltage sensing domain (VSD) II and VSD III as the indispensable connecting site for 

skeletal-type EC coupling. In particular, the central residues of this region (720-764/5) were 

considered “critical” for this function (Nakai et al., 1998; Kugler et al., 2004). The same linker was 

found to mediate the interaction with another central protein for the EC coupling, named Stac3, 

confirming the relevance of this sequence as the interface between CaV1.1 and RyR1 (Horstick et 

al., 2013; Nelson et al., 2013; Linsley et al., 2017; Wong King Yuen et al., 2017).  

 

Instead, the emerging picture for the cardiac CaV1.2 and RyR2 channels is of a much less robust 

interaction than in skeletal muscle. That is consistent with the total absence of DICR in the cardiac 

muscle and the stoichiometric arrangement of the two channels at the dyads, where there is a 4-10-
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fold excess of RyR2 over CaV1.2 and no tetradic organization (Bers and Stiffel, 1993). Few reports 

support this weak interaction in the heart. El-hayek and Ikemoto found that a short peptide (Ac-10C) 

in the II-III loop of the cardiac α1C pore-forming subunit could activate the skeletal RyR1 (El-Hayek 

and Ikemoto, 1998), and induce SR Ca2+ release in skinned (permeable) skeletal muscle (Lamb et 

al., 2000). By contrast, in ferret ventricular myocytes, RyR2 opening and spontaneous release of 

Ca2+ were reduced by the presence of Ac-10C (Li and Bers, 2001). Beside the opposing results in 

terms of function, the analogy of this peptide with the skeletal II-III loop suggests that α1C and RyR2 

might interact, but further analysis is surely needed. 

 

1.3 L-type Ca2+ channels voltage-sensing mechanism and generation of gating 

currents 

Beside the different mechanism used to gate RyR, both Cav1.1 and Cav1.2 need to be activated by 

membrane depolarization to fulfil their function. How they sense the change in voltage depends 

either on the structure of their α1 pore-forming subunit and on the electrical nature of the plasma 

membrane. 

As described in the previous project, CaV α1S and α1C 

subunits are formed by four homologous repeats that 

arrange around a central pore (Fig. 24). Each repeat has 

six transmembrane α-helices (S1-S6) that are spatially 

organized to form a voltage sensing domain (VSD, S1-

S4) and to contribute to ¼ of the pore (S5-S6). Each VSD 

is critical for channel operation as it contains multiple 

charged residues concentrated in the S4 segment. All the 

six repeats of α1 subunit are embedded in the 

phospholipid bilayer where they are directly exposed to 

an electric field that is determined by ions diffusing across 

the membrane, down their electrochemical gradient.  

Changes in this electric field can orientate a charge within 

a protein causing a conformational change that may 

affect its function. (Bezanilla, 2008). This charge 

orientation phenomenon takes place also in voltage-

gated ion channels, mainly at their S4 transmembrane segments that are rich in Arg and Lys. Here, 

the translocation of charges during membrane depolarization moves the S4 transmembrane 

segments in concert with the surrounding α-helices to allosterically open the channel pore (Catterall, 

2010). As the S4 charges move across the electric field, they produce a small (but measurable) 

transient current of few milliseconds that always precedes pore opening. For this reason, it is called 

Figure 24 – Topology and structure of α1 
pore-forming subunit of CaV1 channels. 
A) Topology of a1 subunit showing the four 
repeats and their six transmembrane 
helices. The charged helices indicate the S4 
segments. B) Top view of the α1 subunit 
highlighting the central pore and the 
surrounding voltage sensing modules. 
PDB:5gjv, (Wu et al., 2016). 
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gating current. The transient nature of this current is given by the fact that the movement of the S4 

segments is mainly limited to its transmembrane location (Catterall, 2010). Thus, the time course of 

the transient depends on the mobility and the path of the gating charge.  

The S4 movement can be described by a “two-state” model, where the sensor (and the associated 

gating charge) can be in only two positions: the resting and the active state (Bezanilla, 2018). The 

two states are separated by an energy barrier that makes the spontaneous transition from one to 

another energetically unfavourable. To move, the charge must overcome the barrier, which usually 

happens as a transmembrane potential is imposed (Fig. 25).  

As consequence, the strength of the local electric field and the magnitude of the charge influence 

the extent and the kinetics of this charge movement. For example, a weak electric field determines 

a “slow” charge movement that can produce a decaying gating current. By contrast, a fast transition 

can be observed when a charge crosses a high-energy barrier (Bezanilla, 2008).  

Figure 25 - Two-state model of the S4 segment. Top) Schematic representation of the S4 transition from a 
resting state, when membrane potential is at rest (-90 mV), to an active (outward) state during membrane 
depolarization (20 mV). Bottom) Representative trace of the transient gating current at 20 mV generated by 
the movement of the S4 segments in CaV1.1 channels (α1S/β1a) overexpressed in Xenopus oocytes. Gating 
current was isolated blocking the pore conductance with 0.1 mM LaCl3 and 0.5 mM CdCl2.  
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In voltage-gated Ca2+ channels, the gating current is generated by the conformational change 

(movement) of the four homologous but non-identical voltage sensing domain (VSDs), (Fig. 24), 

(Catterall, 2011). Given their structural heterogeneity, each VSD experiences a different electric path 

from its resting to its active state. This path determines the intrinsic properties of the VSDs, such as 

voltage dependence, voltage sensitivity and kinetics.  

In cardiac CaV1.2, VSDs movement accounts only for pore opening, in skeletal CaV1.1, VSDs 

operation might mechanically influence the opening of the RyR1 (Ferreira Gregorio et al., 2017). 

1.4 CaV1.1 and CaV1.2 modulation by auxiliary subunits 

An intensive work over the past decades has established that L-type Ca2+ channels can gain different 

properties, and thus differently sense membrane depolarization, from the interaction with their 

auxiliary subunits (Catterall, 2011).  

The skeletal α1S subunit associates with multiple proteins, analogously to CaV1.2 channels 

(explained in detail in the introduction of Project 1). Specifically, α1S forms macromolecular 

complexes with β1a, α2δ-1 and γ1 subunits, as they are the only variants expressed in skeletal tissue 

(Bannister and Beam, 2013). At this picture, it must be added the non-canonical auxiliary subunit 

Stac3, recently discovered (Horstick et al., 2013; Nelson et al., 2013). 

 

Among the four known α2δ auxiliary subunits, α2δ-1 associates with both CaV1.1 and CaV1.2 

channels. α2δ-1 is an entirely extracellular protein anchored to the plasma membrane that influences 

channel trafficking and/or biophysical properties depending on CaV isoform and subunit composition 

(Dolphin, 2013). In CaV1.2 channels, the presence of α2δ-1 remodels the voltage sensitivity of three 

VSDs out of four, increasing their coupling to pore opening and thus facilitating channel activation 

(Savalli et al., 2016). Moreover, α2δ-1 accelerates ionic current activation kinetics (Bangalore et al., 

1996; Tuluc et al., 2007; Savalli et al., 2016). On the other hand, in CaV1.1 channels, α2δ-1 is 

determinant to confer the typical slow kinetics of the skeletal ICa,L but irrelevant for both channel 

voltage dependent activation and EC coupling (Obermair et al., 2005). In addition, Gach and 

colleagues provide evidence that prolonged depolarization or repetitive stimulations, normally 

occurring in vivo, require the presence of α2δ-1 to sustain an adequate Ca2+ release, suggesting that 

α2δ-1 plays a role in physiological muscle contraction (Gach et al., 2008).  

 

β subunits are intracellular proteins that generally function as chaperones favouring channel 

trafficking to the membrane and modulate the biophysical properties of CaV (Buraei and Yang, 2013). 

CaV1.2 channels interact with different β subunits (Hullin et al., 1992), while CaV1.1 isoform 

exclusively associates with β1a. β1a knockout mice die after birth from ataxia (Gregg et al., 1996). 

Muscle fibers isolated from these animals fail to elicit Ca2+ transient and display a reduced ICa,L 

secondary to an impaired membrane expression of α1S, suggesting that β1a subunit is essential for 
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both EC coupling and channel trafficking (Gregg et al., 1996; Strube et al., 1996). As confirmed later, 

the latter is a function of β1a contribution to tetrads formation (Schredelseker et al., 2005). Besides 

these chaperone-like roles, β1a seems implicated also in CaV1.1 channel activation/inactivation 

(Varadi et al., 1991; Strube et al., 1996). 

γ auxiliary subunits are transmembrane proteins. Eight genes encode for eight distinct γ isoforms. 

In the cardiac tissue, the RNA of γ4, γ6, γ7, γ8 subunits has been detected but their role remains 

uncertain (). In the skeletal muscle, only γ1 is expressed and associates with CaV1.1 channels 

through their VSD IV (Wu et al., 2016). The main modulatory effect of this subunit is to hyperpolarize 

voltage-dependent inactivation (Freise, Held et al. 2000). It has been recently shown that γ1 is also 

important for channel trafficking (Polster et al., 2016).  

Stac3 adaptor protein. Stac3 belongs to a family of src homology 3 (SH3) and cysteine rich domain 

(Stac) proteins. Among the three family members, only Stac3 is expressed in the skeletal tissue and 

localize to T-tubules (Nelson et al., 2013), where it seems to interact with the α1S subunit via the II-

III linker between VSD II and VSD III (Wong King Yuen et al., 2017). Stac3 is a key element of EC 

coupling (Horstick et al., 2013; Nelson et al., 2013; Polster et al., 2016), favouring α1S trafficking 

(Polster et al., 2015) and tetrads assembly (Linsley et al., 2017). Stac proteins, which are not 

essential for membrane trafficking of CaV1.2 channels, were shown to bind to the cardiac isoform 

slowing down the time-dependent properties of inactivation (Polster et al., 2015). 

1.5 Investigating the molecular mechanism of α2δ-1 subunit modulation on L-

type CaV1.1 channels  

L-type voltage-gated Ca2+ channels are expressed in striated muscles (CaV1.1 in skeletal muscle 

and CaV1.2 in cardiac muscle) and play a fundamental role in EC coupling. Both channels share 

~70% sequence similarity (with the highest homology covering the transmembrane segments) and 

associate with β and α2δ auxiliary subunits.  

Despite all these similarities, the modulation by the α2δ-1 auxiliary subunit has striking opposing 

effects on the two channel isoforms: in CaV1.2 channels, α2δ-1 accelerates activation and greatly 

facilitates channel opening (Platano et al., 2000; Savalli et al., 2016); in CaV1.1, α2δ-1 slows down 

activation and has negligible effect on voltage dependence (Obermair et al., 2005). The question as 

how such similar channels are differently modulated by the same α2δ-1 arises spontaneous.  

While it is known that the α2δ-1 subunit facilitates CaV1.2 voltage-dependent activation by 

remodelling voltage sensors activation (Savalli et al., 2016), the molecular mechanisms underlying 

CaV1.1 modulation by α2δ-1 remain unknown.  

In the following section, I address this question by studying the effect of α2δ-1 on the voltage-

dependent activation properties of the voltage sensing apparatus in the human CaV1.1.  
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2. MATERIALS AND METHODS 

2.1 Molecular biology  

The following clone were used for all the experiments: human α1S (NCBI Reference Sequence: 

NP_000060.2), rabbit α2δ-1 (UniProt accession no. P13806), rabbit β1a and mouse Stac3 (kind 

donation from S. Cannon’s Lab, University of California, Los Angeles, CA). 

Mutagenesis: To introduce Cysteines in strategic position of α1s protein, DNA single point mutations 

were generated with the QuikChange Site-Directed Mutagenesis Kit (Stratagene, CA), which allows 

site specific mutation in double-stranded plasmids. Reactions were performed using PfuUltra™ high-

fidelity DNA polymerase and custom-made primers designed with Clone Manager software (© 2016 

Scientific & Educational Software, CO). PCR products were controlled on a 1% agarose gel and then 

transformed into competent XL1-blue bacteria, using the appropriate selective antibiotic. To confirm 

predicted mutations and exclude extra modification, α1s gene was fully sequenced.  

Four Cysteine mutants of α1s pore-forming subunit were generated, one for each VSDs (Fig. 26). 

Positions analogous to those previously published for CaV1.2 channels were chosen (Pantazis et al., 

2014; Savalli et al., 2016). In VSD I, Cysteine substituted a Leucine in position 159 in the S3-S4 loop 

(L159C); for VSD II, Cysteine substituted a Methionine in position 519 in the S3-S4 loop (M519C); 

for VSD III, Cysteine substituted a Valine in position 893 in the S3-S4 loop (V893C); for VSD IV, 

Cysteine substituted a Serine in position 1231 in the S3-S4 loop (S1231C).  

 

Figure 26 – Cysteine position strategy. A) Amino acid sequence alignment of the S4 segment of the four 
CaV1.1 VSD. In bold pink are indicated the amino acids that were substituted with the Cysteine. B, C) Topology 
and top view of the α1S pore forming subunit showing the S4 segment of each repeat in orange and the 
approximative position of the Cysteine (star). PDB: 5gjv from Wu et al., 2016. 
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In vitro transcription: The plasmids carrying cDNAs of Stac3, β1a, α2δ-1 and α1s pore-forming subunit 

(either wild type (WT) or cysteine-mutant channels) were linearized with a specific single-cutter 

restriction enzyme at 37°C overnight: Nhe I (New England Bioloab) for Stac3, β1a, and α1s, and Xho 

I (New England Biolab) for α2δ-1. cDNA digestion was confirmed on 0.8% agarose gel. The linear 

cDNA was then used as the template for the in vitro transcription (1 μg per reaction) to produce 

capped RNA (cRNA) using KIT (AmpliCap-Max™ T7 High Yield Message Maker Kit, CELLSCRIPT). 

cRNA mimics most eukaryotic mRNAs found in vivo, because of a 7-methyl guanosine cap structure 

at the 5' end. The reaction of the in vitro transcription kit includes the cap analogue 

[m7G(5')ppp(5')G], which is incorporated as the first or 5' terminal G of the transcript. The reaction 

ran at 37°C for 3h. After LiCl2 precipitation at -20°C, cRNA was resuspended in RNA storage solution 

(Invitrogen). RNA concentration was assessed measuring absorbance at 260 nm with a 

spectrophotometer prior to confirm RNA quality by 1% agarose gel. cRNA was stored at –80oC in 

aliquots. 

2.2 Oocyte preparation and injection 

Xenopus laevis (NASCO, Modesto, CA) oocytes are an excellent system where to express ion 

channels for electrophysiological studies, as their large size (~1 mm diameter) allows the micro-

injection of cloned RNA into their cytosol, which they readily translate into functional proteins. 

As described in Chapter I, oocytes (stage V-VI) were mechanically and enzymatically defolliculated 

in a Ca2+-free solution. The same day of preparation or the day after, oocytes were injected with 50 

nl of total cRNA (0.01-0.1 μg/μl) encoding for the human pore-forming subunit α1s and the accessory 

subunit β1a and Stac3 with/without α2δ-1 using a Drummond nano-injector. The auxiliary subunits 

were injected in excess molar ratio to completely saturate all α1s proteins available. Injected oocytes 

were maintained at 18oC in an amphibian saline solution containing 50% Leibovitz15 medium 

(Gibco) and 50% distilled water, supplemented with 1 % horse serum (Gibco), kanamycin, penicillin 

and streptomycin (Gibco). Four-five days after injection, oocytes were stained with membrane-

impermeable, thiol-reactive fluorophores, as follows: 5 min on ice with 20 μM (2-((5(6)-Tetramethyl-

rhodamine)carboxylamino)ethyl methanethiosulfonate, MTS-TAMRA - Santa Cruz Biotechnology), 

or 15 min on ice 10 μM II (tetramethylrhodamine-5’-maleimide, TMRM - Molecular Probes, Eugene, 

OR) in a depolarizing K+ solution containing in mM: 120 KMES, 2 Ba(MES)2, and 10 HEPES, pH=7. 

TMRM and MTS-TAMRA stocks (100 mM) were dissolved in DMSO and stored at -20°C. Prior to 

being mounted in the recording chamber, oocytes were thoroughly rinsed in SOS and injected with 

the Ca2+ chelator BAPTA (100nl at 80mM) to prevent activation of endogenous Ca2+- and Ba2+-

dependent Cl− channels (Barish, 1983). 
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2.3 Voltage clamp fluorometry  

Ba2+ current flowing through Cav1.1 complex and its conformational change during different voltage 

steps were recorded using the voltage clamp fluorometry (VCF).  

VCF is a powerful technique to optically track protein conformational rearrangements that are elicited 

by changes in voltage together with the corresponding ionic current. In our specific case, VCF was 

used to track the “outward” and “inward” movement of the voltage sensing membrane segment S4 

during channel activation and deactivation.  

Protein movement can cause a change in the surrounding environment (solvent exposure, for 

example) that can be reported by fluorophores which are sensitive to their local environment 

(Lakowicz, 2006). It is possible to conjugate such fluorophores to a specific protein site and, if this 

area undergoes a motion that results in a change of the fluorophore environment, a deflection in the 

fluorescence emission will be observed. In our case, protein labelling was achieved using malemide-

derived fluorophores that can specifically react with thiol groups present in cysteines, forming stable 

bonds.  

Voltage clamp fluorometry was pioneered in Shaker K+ channels expressed in oocytes clamped by 

two-electrode voltage clamp (Mannuzzu et al., 1996), and was shortly after implemented in the Cut-

open Oocyte Vaseline Gap (COVG) voltage clamp technique(Cha and Bezanilla, 1997).  

The COVG technique (Stefani and Bezanilla, 1998) is a large signal-to-noise, fast clamp technique 

that allows for resolving low magnitude gating currents, rapid ionic current activation, and 

deactivation while controlling the intracellular environment. As schematically shown, the oocyte is 

mounted in a chamber consisting of three compartments. The top and bottom blocks are drilled to 

allocate the oocyte. The hole diameter of the top chamber is ~ 600 µm and isolate ~1/5 of cell surface 

(Fig. 27). The voltage clamp circuit is then assembled around the mounted oocyte by the placement 

of six salt bridges and one intracellular electrode, imposing three simultaneous voltage clamps. The 

three chamber compartments are electrically-isolated by Vaseline gaps. The upper chamber isolates 

the oocyte upper domus and maintains it under clamp. Fluorescence and current are simultaneously 

recorded from the membrane area isolated by this chamber. The middle chamber provides a guard 

shield against leakage currents by clamping the middle part of the oocyte to the same potential as 

the upper chamber. The bottom chamber isolates the bottom domus of the oocyte which is open (cut 

open) by permeabilization. This allows to clamp the intracellular compartment to ground (Gandhi and 

Olcese, 2008). The optical setup consists of a Zeiss Axioscope FS microscope with filters 

appropriate for TMRM excitation/emission (Omega Optical, Brattleboro, VT). The light source is a 

100 W microscope halogen lamp. A TTL-triggered Uniblitz VS 25 shutter (Vincent Associates, 

Rochester, NY) is mounted on the excitation light path. The Objective (Olympus LUMPlanFl, 40×, 

water immersion) has a numerical aperture of 0.8 and a working distance of 3.3 mm (Olympus 

Optical). The emission light is focused on a PIN-08-GL photodiode (UDT Technologies, Torrance, 
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CA). A Dagan Photomax 200 amplifier is used for the amplification of the photocurrent and 

background fluorescence subtraction.  

The external solution contained (mM): 120 NaMES, 2 Ba(MES)2, 10 HEPES, pH=7.0. The internal 

solution contained (mM): 120 K-Glutamate, 10 HEPES, pH=7.0. Pipette solution contained (mM): 

2700 NaMES, 10 NaCl, 10 Na-HEPES, pH=7.0. Bottom dome of the oocyte was permeabilized with 

0.1% saponin dissolved in the internal solution.  

Ionic current was activated by a depolarizing step from -90 to 100 mV for 25 ms (holding potential at -90 

mV). Depolarization was followed by a repolarizing step at -40 mV to elicit tail current. For fluorescence 

recordings, the molecular rearrangement of each VSD was recorded from -160mV to 120mV depolarizing 

steps.  

 

Figure 27 - The cut open voltage clamp fluorometry apparatus. A) Schematic representation of a cut-open 
oocyte set-up implemented for epifluorescence measurements. A labelled oocyte is mounted in the 3-level 
chamber. The light (green), produced by the LED lamp, passes through the excitation filter and is reflected by 
the dichroic, through the objective lens, onto the oocyte upper domus, at the right wavelength. Emitted light 
(brown) passes through the objective, the dichroic and the emission filter, to reach the photodiode detector. 
Structural rearrangements of S4 helix during channel gating are recorded in real time via differences in 
fluorescence emission caused by changes in the probe exposure to solvent (e.g., moving from aqueous to 
lipid phases) and/or to quenching groups. The fluorescence is monitored at a fixed wavelength with a 
photodiode while the gating state of the channel is controlled with a voltage-clamp. A change in protein 
structure near the probe is reported as a dimming or brightening of fluorescence (ΔFs). B) An example of a 
fluorescence trace (red) and the corresponding current (black): the molecular rearrangement of a VSD from 
its resting state to its active state is reported as an increase of fluorescence (unquenching direction). That the 
conformational change of the VSD has either modified the surrounding solvent or moved a quenching group. 
Modified from (Pantazis and Olcese, 2013). 
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Analysis: Experimental data were analysed with a custom-made program developed in in the 

Department of Anesthesiology at UCLA. Fit routines were run using Solver tool in Microsoft Excel. 

The G(V) curves were obtained from the peak tail current at −40 mV and plotted against the test 

potential. Data for the membrane conductance (G(V)) and the fluorescence (F(V)) curves were fitted 

to one (or the sum of two when indicated) Boltzmann distributions of the form: 
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where Gmax and Fmax are the maximal G and F; Fmin is the minimal F; z is the effective valence of the 

distribution; Vhalf is the half-activating potential; Vm is the membrane potential; F, R and T are the 

usual thermodynamic values.  

2.4 Statistical Analysis 

Data are reported as mean ± SEM. Statistical significance was tested using unpaired Student’s t 

test. For p value < 0.05, differences were considered statistically significative. 
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3. RESULTS 

3.1 The co-expression of α2δ-1 subunit decelerates activation kinetics of 

CaV1.1 channels and accelerates deactivation kinetics. 

To gain insights on α2δ-1 subunit modulation on CaV1.1 channels, we expressed, in Xenopus 

oocytes, CaV1.1 complexes containing the pore-forming α1S subunit, and the skeletal accessory 

proteins β1a and Stac3, in the presence or absence of α2δ-1. Oocytes were voltage-clamped using 

the cut-open oocyte technique to record ionic current elicited by increasing depolarizations (Stefani 

and Bezanilla, 1998). Ba2+, instead of Ca2+, was used as the charge carrier to avoid the engagement 

of Ca2+-dependent inactivation.  

We first evaluated the effect of α2δ-1 on the time-dependent properties (kinetics) of CaV1.1 channel 

activation. Channels were activated with a depolarizing step of 200 ms that is needed to reach the 

quasi-steady state where all channels are open. α2δ-1 slowed down channel activation, as 

manifested by the slower activation kinetics than control (NO α2δ-1), (Steccanella et al., 2019). This 

result suggests that the transition from the close to the open state requires more time in the presence 

of the accessory subunit (Fig. 28A-C).  

The effect was quantified at ~20 mV when the inward current reaches its peak. A double-exponential 

function was used to fit the current traces as it better described the channel transition from close to 

open state. In the absence of α2δ-1 (α1S/β1a/Stac3), the time constants τslow (78.5 ± 13.2 ms) and τfast 

(13.2 ± 1.2 ms) equally contributed to the current amplitude (A), accounting for 49 ± 1% and 51 ± 

1% respectively (N=4). The presence of α2δ-1 increased both time constants (τslow 84.9 ± 2.4; τfast 

23.5 ± 2.2 ms; without vs with α2δ-1 pslow= 0.704, pfast=0.023), and changed their relative contribution, 

favouring the slow component over the fast (Aslow, 77 ± 1%, Afast, 23 ± 1%, N=3).  

These findings are consistent with previous studies in mouse dysgenic myotubes and skeletal 

muscle BC3H1 cells, showing that the α2δ-1 subunit mainly modulates activation kinetics properties 

of CaV1.1 channels (Obermair et al., 2005), but are opposite to those studies reporting that the same 

subunit accelerates activation kinetics of CaV1.2 channels (Tuluc et al., 2007). 

A slow activation kinetics could indicate that CaV1.1 channels preferentially populate a closed state 

in the presence of the α2δ-1 subunit. To investigate this possibility, we analysed the deactivation 

kinetics of the tail current. Tail currents are recorded at a fixed voltage at the cessation of the 

depolarizing step and provide information on the time course of the closing of the channels when the 

voltage is returned to rest. In our specific conditions, tail currents were produced by stepping to -40 

mV as voltage command after the depolarizing pulse as shown in Fig. 28D. At this membrane 

potential most of the CaV channels are closed. The presence of α2δ-1 subunit greatly accelerated 

deactivation kinetics. The deactivation time course of the tail currents was fitted with a double-

exponential function to adequately describe the slow and fast components (Fig. 28D).  
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In the absence of the α2δ-1 subunit, the following deactivation kinetics parameters were obtained: 

τslow = 15.8 ± 1.8 ms and τfast = 2.7 ± 0.7 ms, contributing 32 ± 1% and 68 ± 1% to current amplitude, 

respectively (N=3). In cells co-expressing α2δ-1, both time constants became faster than control, and 

the contribution of the fast component to the current amplitude slightly prevailed (τslow 10.0 ± 0.8 ms, 

22 ± 2% and τfast 1.7 ± 0.2 ms, 78 ± 2%, N=3; without vs with α2δ-1 pslow= 0.026, pfast=0.245).  

Figure 28 - The α2δ-1 subunit modifies CaV1.1 ionic current kinetics. A,B) Representative current traces 
from Xenopus oocytes expressing human CaV1.1 channel complexes (α1S+β1a+Stac3) in the absence (A) or 
presence of α2δ-1 auxiliary subunit (B). The voltage protocol used is reported above. C) Representative traces 
of channel activation from a 200ms-depolarizing step at 20 mV in the absence (grey) or presence of α2δ-1 
(red) are shown superimposed. D) Representative traces of channel deactivation kinetic from the same 
voltage-step as in C, repolarizing back to -40 mV. Traces in A and B are normalized to the peak inward current. 
Double exponential fits are shown superimposed as black lines. α2δ-1 subunit decelerates CaV1.1 activation 
while speeds up channel closing.  
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Taken together, these experiments demonstrate for the first time, that the presence of α2δ-1 not only 

slows down channel activation, but also favours channel deactivation. These two kinetics effects 

suggest that in CaV1.1 channels α2δ-1 causes an overall reduction of Ca2+ influx, a result that is the 

opposite of what is observed in CaV1.2 channels modulation by the same subunit. 

 

3.2 In contrast with CaV1.2, α2δ-1 subunit has a relatively small effect on 

CaV1.1 channel voltage dependent activation. 

As α2δ-1 subunit affects how CaV1.1 channels transit from a closed conformation to an open state 

and vice versa (Fig. 28), it could regulate the voltage-dependent activation of the pore. To evaluate 

this hypothesis, the voltage dependence of ionic conductance G(V) of channels with or without α2δ-

1 subunit was extrapolated from the peak of the tail currents at -40 mV, that estimates the fraction 

of channels that were open for any given depolarization step. In the absence of α2δ-1, the voltage 

dependence of channel activation was described by a single Boltzmann function with the following 

parameters for the half activation potential (Vhalf) and the valence (number of charges translocated 

per gating transition, z): Vhalf = 35.4±2.0 mV, z = 1.9±0.02 e0 (Fig. 29; N=3). Co-expression of α2δ-1 

subunits facilitated CaV1.1 channel opening by shifting the Vhalf of the G(V) curve by ∼10 mV toward 

more hyperpolarized potentials (Fig. 29, p=0.0121 at values corresponding to 50% open probability), 

a small shift that was not previously appreciated in data obtained from myotubes and skeletal 

muscle-derived BC3H1 cells (Obermair et al., 2005). 

The effect of α2δ-1 on CaV1.1 was much smaller than that reported for Cav1.2 in the same 

heterologous system (Platano et al., 2000; Savalli et al., 2016). However, also in Cav1.1 channels, 

the addition of α2δ-1 to channel complex introduced a shallow component, such that G(V) curve was 

well described by the sum of two Boltzmann functions with distinct voltage-dependent properties: 

Vhalf1 = 17.8 ± 1.0 mV, z1 = 2.8 ± 0.07 e0, G1 = 62.4 ± 3.2%, Vhalf2 = 48.9 ± 1.4 mV, z2 = 1.5 ± 0.04 e0, 

G2 = 37.6 ± 3.2%; N = 4, where G is the conductance and represents the rate of ion travelling through 

the channel at a specific membrane potential (Fig. 29). The presence of a second component 

indicates that the voltage-dependent mechanism in the presence of α2δ-1 could comprise more than 

one voltage-dependent opening transition.  
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3.3 The α2δ-1 subunit remodels VSD I, leaving the other VSDs largely 

unaffected 

In voltage-gated channels, the pore opening is driven by the VSDs rearrangement while exploring 

different membrane potentials. In the cardiac CaV1.2 isoform, the contribution of each VSD to pore-

opening is extremely different and affected by channel subunit composition (Pantazis et al., 2014; 

Savalli et al., 2016). Given the high sequence similarity between the two CaV channels, we expected 

a similar picture for the skeletal CaV1.1. In particular, we hypothesized that the small but significant 

Figure 29 - The α2δ-1 subunit facilitates activation of CaV1.1 channels. A, B) Representative current traces 
from Xenopus oocytes expressing human CaV1.1 channel complexes (α1S+β1a+Stac3) in the absence (A) or 
presence of α2δ-1 auxiliary subunit (B). The voltage protocol used is reported above. The arrows indicate the 
approximative position where the G(V) was measured. C) G(V) curves constructed from tail currents reported 
in A and B. Data points were fitted to one (NO α2δ-1, ●, N=3) or to the sum of two (with α2δ-1, ■; N=4) 
Boltzmann distributions (smooth lines). Vertical bars ± SEM. 
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shift in voltage-dependent activation produced by the α2δ-1 subunit should involve the modification 

of one or more VSDs.  

To investigate the voltage-dependent activation of each VSD in the presence or absence of α2δ-1 

subunit, we individually tracked the movement of the four S4 segments at different membrane 

potentials, while recording simultaneously the ionic current, using the Voltage Clamp Fluorometry 

(VCF) technique (Gandhi and Olcese, 2008). The α1s pore-forming subunit was engineered by 

substituting a Cysteine residue in strategic positions flanking the S4 segment of each VSD to achieve 

site-directed fluorescent labeling with membrane-impermeant, thiol-reactive fluorophores which are 

sensitive to environmental changes and able to report protein conformational changes (Lakowicz, 

2006). Cysteine positions are indicated in Figure 26. 

Since changes in DNA sequence may result in critical impairment of protein function, we first verified 

if mutant Cysteines compromised channel properties. We compared current kinetics and voltage-

dependent activation G(V) of WT and “mutated” channels, expressing α1s, β1a and Stac3 subunits 

(Fig. 30). Current kinetics, as well as voltage dependent activation, of both Cysteine mutants and 

Figure 30 - Kinetics and voltage-dependent activation are not compromised in engineered Cysteine 
mutants. A) Superimposed ionic current traces recorded from Xenopus oocytes expressing WT channels 
(black) or Cysteine mutants for each voltage sensing domain (VSD, coloured traces) with the indicated subunit 
composition. The voltage command is reported above. B) G(V) curves of WT and Cysteine mutants and 
correspondent Boltzmann fits are reported with the same colour code in A.  
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WT channels were comparable (Fig. 30, Table 1), confirming that the engineered cysteines did not 

altered channel properties. 

 VCF was thus applied to the Cys mutants (labelled with MS-TAMRA or TMRM) to optically track the 

voltage-dependent movements of the individual CaV1.1 VSDs, from their resting state to their active 

state while exploring different membrane potentials. In all four Cys mutants, a change in fluorescent 

signal was detected as either a positive (unquenching) or negative (quenching) deflection (Fig. 31). 

As opposite, no voltage-dependent change in fluorescence was detected in oocytes expressing wild 

type (WT) CaV1.1 channels labelled with MS-TAMRA (Fig. 32), confirming that label conjugation of 

native Cys, if present, did not contaminate voltage-dependent evoked fluorescence in channels with 

introduced Cys.  

Each of the four VSDs exhibited specific activation and deactivation kinetics properties. Specifically, 

VSD I and II displayed both a slow and a fast component (Fig. 31A-B, red and blue) while VSD III 

and IV activated and deactivated fast (Fig. 31A-B, green and yellow). Moreover, in the absence of 

α2δ-1 subunit, fluorescence emitted from labelled VSDs I and III (Fig. 31A, blue and green) 

decreased upon membrane depolarization, suggesting that their S4 segments undergo a voltage-

dependent conformational change that results in quenching of the attached fluorophore. Instead the 

emission of the fluorophore conjugated to VSD II and IV increased at more depolarized membrane 

potential (Fig. 31A, red and yellow), indicating that the fluorescence group is more efficiently 

quenched in the resting state of these domains than in the active state. In this heterogeneous 

scenario, the presence of α2δ-1 subunit dramatically altered VSD I (Fig. 31A, B). Co-expression of 

α2δ-1 reversed the fluorescence sign, suggesting that α2δ-1 may produce a conformational change 

in VSD I that either modifies solvent exposure of the fluorophore or reports the effect of a different 

quenching group. Conversely, VSDs II, III and IV were practically unchanged (Fig. 31A, B). 

  

Table 1 - Boltzmann fitting parameters for the Half Activation Potential (Vhalf) and the effective valence 
(z) of WT channels and Cysteine mutants. 
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Figure 31 - Voltage-dependent rearrangements of the skeletal CaV1.1 VSDs in the presence and 
absence of the α2δ-1 subunit. Representative current traces and the corresponding fluorescence recordings 
from Xenopus oocytes expressing VSD I, VSD II, VSD III or VSD IV (from left to right) cysteine mutant in the 
absence (A) or presence (B) of α2δ-1 auxiliary subunit. Voltage command is reported above. 

Figure 32 - Endogenous 
Cysteines in skeletal CaV1.1 
channels do not interfere with 
thiol-maleimide reaction. Ionic 
current (top) and the corresponding 
fluorescence traces (bottom) 
recorded from maleimide-labelled 
Xenopus oocytes expressing WT 
α1S and β1a/Stac3/α2δ-1 subunits. 
Despite the presence of many native 
thiol groups, wild type channels do 
not generate fluorescent signal once 
labelled with maleimide 
fluorophores. 
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As the fluorescence reports the transmembrane movement of the four charged VSDs from the 

resting to the active state, it can be used to derive the voltage-dependent activation curve (F(V)) of 

each VSD. Fluorescence intensity (ΔF) was measured at the end of the depolarizing pulse and 

plotted against the membrane potential (F(V) curve). Data were fitted to one Boltzmann distribution 

to extrapolate the membrane potentials at which the VSDs reached 50% probability of activation 

(Vhalf) and the sensitivity of each VSD to changes in the membrane potential (valence, z), (Fig. 33 

and Table 2). Independently from the presence of α2δ-1, all F(V) Vhalf ranged from near ~ – 40 mV 

(VSD IV) to ~ +5 mV (VSD II), while z varied between 0.7 e0 (VSD IV) to 3 e0 (VSD I). 

Although the general picture was not dramatically perturbed by the α2δ-1 subunit, its association with 

the channel greatly remodelled voltage dependent-activation of VSD I. As shown in Figure 33A and 

Figure 33 - The α2δ-1 subunit facilitates activation of VSD I, leaving VSD II, III and IV unaffected. A-D) 
The voltage-dependent activation curves for each VSD in the absence (●) or presence (■) of α2δ-1 were 
constructed from fluorescence traces reported in Fig.31, Data point were fitted to a single Boltzmann 
distribution (smooth line) and reported as mean ± SEM. 
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table I, the presence of α2δ-1 produced ~20 mV shift of the F(V) curve toward more hyperpolarized 

potentials (NO α2δ-1: Vhalf = 4.2 ± 0.8 mV, N=6 vs. WITH α2δ-1: Vhalf = -23.2 ± 1.7 mV, N=5; without 

vs with α2δ-1 p<0.001) and decreased VSD I voltage sensitivity from 3.0 ± 0.05 e0 to 1.4 ± 0.05 e0 

(NO α2δ-1 vs. WITH α2δ-1,=5; without vs with α2δ-1 p<0.001). As opposite, the remaining VSDs were 

marginally affected by the presence of α2δ-1 (Fig. 33 and Table 2).  

 

Given that VSD I activation shifts in the same direction of the G(V) in the presence of α2δ-1, these 

data strongly suggest that the remodeling of VSD I is the underlining mechanism by which α2δ-1 

facilitates channel activation, and that VSD I may have a major role in pore opening (Fig. 34).  

Table 2 - Fitting parameters for the Boltzmann functions fitting the fluorescence data reported in Fig. 

33. 

Figure 34 - Voltage-dependent activation of Cav1.1 VSDs in absence or presence of α2δ-1 subunit. 
A) Mean normalized G(V) and F(V) data points from α1S+β1a (A) or α1S+β1a+α2δ-1 (B) channels and the 
corresponding Boltzmann fits are shown superimposed (mean ± SEM). These results suggest that the 
facilitation of voltage-dependent pore activation by α2δ-1 subunits could be mediated by the remodelling 
of VSDs I. 
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4. DISCUSSION 

Voltage-gated Ca2+ channels derive their biophysical properties from their four voltage sensing 

domains (VSDs) and from the association with multiple regulatory subunits (Dolphin, 2016). 

Interestingly, the cardiac CaV1.2 and skeletal CaV1.1 isoforms, despite their high sequence similarity, 

appear to be modulated by the α2δ-1 auxiliary subunit in an opposite manner. Interaction of α2δ-1 

with the cardiac CaV1.2 isoform accelerates channel kinetics and promotes its activation by 

remodelling three out of four VDSs (Savalli et al., 2016). However, the molecular mechanisms 

underlying the α2δ-1 modulation in CaV1.1 channels have not been investigated yet. To biophysically 

characterize the effect of this regulatory subunit on CaV1.1 we reconstituted CaV1.1 macromolecular 

complexes in Xenopus oocytes and applied for the first time the voltage clamp fluorometry technique 

to investigate the biophysical properties of each VSD and how they are affected by α2δ-1 subunits. 

Using the voltage clamp fluorometry technique, we found that each skeletal VSD has unique 

biophysical properties in terms of voltage dependence and kinetics (Figs. 31, 33) and that the co-

assembly with α2δ-1 subunit remodels VSD I, facilitating its activation by ~20 mV shift in the 

hyperpolarizing direction (Figs. 31, 33) that likely explains 3) the small hyperpolarizing shift of the 

voltage-dependent activation of the channel pore (Fig. 29). 

α2δ-1 subunit modulates time-dependent properties of Cav1.2 and CaV1.1 channels in an opposite 

fashion 

In agreement with previous reports in mouse myotubes and muscle cells (Obermair et al., 2005; 

Gach et al., 2008), we found that α2δ-1 subunit is determinant to confer the typical slow activation 

kinetics of the skeletal CaV1.1 isoform, when overexpressed in Xenopus oocytes (Fig. 28A). We also 

observed a faster deactivation rate from the tail current of α2δ-1-expressing channels (Fig. 28B) that 

was not previously described. By contrast, in the same expression system, the same auxiliary 

subunit accelerates cardiac current activation (Platano et al., 2000). Equivalent results can be 

observed in dysgenic myotubes expressing either α1S or α1C, (Kasielke et al., 2003; Tuluc et al., 2007). 

In skeletal myotubes, α1C pore-forming subunit conserves its typical fast kinetics despite the 

presence of skeletal auxiliary subunits (β1a, γ1), (Kasielke et al., 2003), suggesting that the different 

kinetics modulation operated by α2δ-1 on cardiac and skeletal CaVs is not biased by the association 

with different β and/or γ isoforms. Thus, the specific fast and slow current kinetics of cardiac and 

skeletal L-type Ca2+ channels, respectively, relays on the intrinsic properties of the α1 subunits rather 

than on α2δ-1. However, it is the presence of the α2δ-1 subunit to make the activation of skeletal 

current slow and the one of cardiac current fast.  

In skeletal and cardiac channels, current kinetics is principally controlled by VSD I, particularly 

through its S3 segment and S3-S4 loop, as demonstrated by chimeras constructed with either 

CaV1.1/CaV1.2 channels (Nakai et al., 1994; Tuluc et al., 2016) or adult vs embryonal splice variants 

of the skeletal channel (Tuluc et al., 2016), where substitution of the IS3-S4 loop results in a faster 
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activation kinetics. These results suggest that in CaV1.2 channels, α2δ-1 is essential to make ICa,L 

fast enough to ensure an efficient opening of RyRs that are disperse in the dyads, whereas in CaV1.1 

channels, α2δ-1 reduces Ca2+conduction reinforcing the idea that in mature skeletal muscle, ICa,L has 

a nil physiological role for EC coupling (Flucher and Tuluc, 2017).  

α2δ-1 subunit facilitates CaV1.2 and CaV1.1 voltage-dependent activation to a different extent 

We reported that CaV1.1 channels opening is facilitated by ~ 10 mV by α2δ-1 subunit (Fig. 29). 

However, the hyperpolarizing shift is 5-fold larger for the cardiac isoform in similar experimental 

conditions (Savalli et al., 2016) and is physiologically relevant as it ensure CaV1.2 opening at 

membrane potential that are normally explored by myocytes during the AP. Instead, the physiological 

meaning of the small effect on the skeletal ICa,L remains uncertain ad it seems irrelevant for the EC 

coupling. Moreover, previous works on CaV1.1 in dysgenic myotubes and skeletal muscle-derived 

BC3H1 cells, reported that the presence of α2δ-1 seems ineffective at modulating pore activation 

(Obermair et al., 2005; Gach et al., 2008). In these muscle-derived systems, α2δ-1 subunit 

modulation could be compensated by other elements of the EC-coupling apparatus that are not 

present in Xenopus oocytes. By contrast, amphibian cells possess endogenous β3-like subunits that 

have been reported to affect both protein expression and channel opening, as most of the β isoforms 

do (Tareilus et al., 1997). However, we feel confident to exclude these β proteins from interfering 

with CaV1.1 activation since these channels poorly express in absence of skeletal-specific β1a 

subunits (data not show), suggesting a minimal interaction with the endogenous subunit.  

α2δ-1 subunit remodels the voltage-dependent activation of CaV1.1 VSD I, while in CaV1.2 channels 

three VSDs are affected 

VSDs are important determinant of pore function, as they are responsible for sensing changes in 

membrane potential. Consequently, the facilitation in the channel opening observed in the presence 

of α2δ-1 must be explained by a perturbation of one or more VSDs controlling voltage-dependent 

channel opening. Using VCF technique in CaV1.1 channel complexes with or without α2δ-1, we found 

that this auxiliary subunit facilitates VSD I activation (Fig. 33A), explaining the hyperpolarizing shift 

of the G(V) relationship (Fig. 29). By contrast, VSD II, III and IV remain largely unaffected by the 

presence of α2δ-1, suggesting that VSD I contributes to control pore opening in CaV1.1 channels 

(Fig. 32). Although a mathematical model can be used to corroborate this hypothesis, the high 

relevance of VSD I in channel opening is further experimentally supported by a natural-occurring 

mutation that, neutralizing the innermost arginine of VSD I with a tryptophan, impairs the sensor 

causing a depolarizing shift of both G(V) and F(V) curves of ~ 30 mV and reducing its voltage 

sensitivity (valence z) such that the channel is unable to open at physiological membrane potentials 

(Savalli et al., 2019). Recent studies also report the involvement of VSD IV in voltage-dependent 

activation of CaV1.1 channels, (Tuluc et al., 2016). The conclusion was made using the embryonic 

CaV1.1e splice variant that lack of a small amino acid sequence in VSD IV, which is instead present 
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in the adult CaV1.1 channels and may contribute to reduce the relevance of this VSD to channel 

activation.  

By contrast, analogous characterization of CaV1.2 channels in Xenopus oocytes by the Olcese 

laboratory, has demonstrated that the association of α2δ-1 subunit promotes a drastic remodelling 

of the voltage-dependent activation of VSD I, II and III (Fig. 35A, top vs. bottom), (Savalli et al., 

2016). Although the effect on skeletal channel activation resembles that on the cardiac isoform, it is 

more restrained and limited to VSD I (Fig. 33B, top vs. bottom). The different magnitude of the effect 

Figure 35 - The α2δ-1 subunits differently modulates CaV1.1 and CaV1.2 channels. Comparison of 
voltage dependence of activation of cardiac (A) and skeletal (B) LTCC isoforms in absence (top) or 
presence (bottom) of α2δ-1 subunit. Each chart shows the voltage-dependent activation of the pore (black) 
and the four VSDs (color code indicated in the legend at the bottom). A) In CaV1.2, voltage-dependent 
activation of VSD I (blue), II (red) and III (green) is dramatically changed by α2δ-1 (top vs. bottom). This 

remodeling has a great effect on pore opening, shifting its voltage-dependent activation by ~50 mV to more 

hyperpolarized membrane potentials in the presence of α2δ-1 (Savalli et al., 2016). B) In the skeletal 
CaV1.1, α2δ-1 remodels only VSD I (blue, top vs. bottom), which accounts for a small hyperpolarizing shift 
of the voltage dependence of pore opening (black, top vs. bottom). For A, data from Savalli, Pantazis et al. 
2016 with permission. 
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could be explained by a different interaction between the auxiliary subunit and the VSDs in the two 

channels. Specifically, the skeletal cryoEM structure shows that VSD I directly interacts with the 

MIDAS motif of α2δ-1 to coordinate a cation, presumably a Ca2+ ion (Fig. 36A), (Wu et al., 2016). By 

contrast, in a low-resolution structure of Cav1.2, α2δ-1 subunit is seen as a cap that covers ~3/4 of 

the extracellular surface of the α1C, that could correspond to the position occupied by the three VSDs 

remodelled by α2δ-1 (Fig. 36B).  

 

The biophysical properties of CaV1.1 VSD III activation are compatible with voltage dependence and 

kinetics of skeletal Ca2+ release 

Results from VCF recordings show that the four VSDs are heterogeneous for voltage dependence, 

voltage sensitivity and kinetics (Figs. 31, 33). These different biophysical properties suggest that 

VSDs might be enrolled in diverse channel functions, and thus they can be used to gain some 

mechanistic insight about CaV1.1 role in EC coupling. As recently reported for mammal skeletal 

muscle, the voltage dependence of Ca2+ release has a steep voltage-sensitivity and a mid-voltage 

activation (Vhalf) of ~ -30 mV (Ferreira Gregorio et al., 2017). These characteristics exclude the 

participation of VSD I and II to RyR gating, mainly for their slow activation kinetics incompatible with 

the fast time course of the release (Fig. 37, black line vs blu/red). In the case of VSD I, another 

exclusion criterium is provided by the existence of a charge-neutralizing mutation in VSD I, that 

preserve a normal EC coupling, when the mutant channel is expressed in dysgenic myotubes (Eltit 

et al., 2012).  

On the contrary, VSD III and IV possess a fast kinetics and a half activation potential around ~ -30 

mV (Figs. 31, 33, 37 and Table II). However, the voltage sensitivity of VSD IV is not compatible with 

the steepness reported for Ca2+ release, making VSD III the most qualified candidate as the sensing 

“particle” for skeletal EC coupling. This hypothesis may find support from previous works reporting 

Figure 36 - α2δ interaction with CaV1.1 and CaV1.2 channels. Side and top view of CryoEM structures of 
CaV1.1 and CaV1.2 channels, respectively, illustrating the interaction between the pore forming subunit α1 and 
the α2δ-1 subunit in the two channel isoforms. CryoEM data from Wu et al. 2016 (A), and Walsh et al. 2009 
(B). B adopted from Savalli et al. 2016. 
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that the intracellular loop between VSD II and III is a key structural element for skeletal EC coupling 

(Nakai et al., 1998; Kugler et al., 2004; Takekura et al., 2004; Benedetti et al., 2015). 

 

In summary, we used VCF to track the movement of the four voltage sensing domains (VSDs) in 

CaV1.1 channel and shed light on the mechanisms by which α2δ subunit modulates the properties of 

L type CaV1 channels. We found that the four VSDs display a staggering heterogeneity, each with 

specific kinetics and voltage dependence (Fig.30). The co-expression of the α2δ subunit causes a 

change only in VSD I, while the same subunit modifies VSD I, II and III in CaV1.2 channels.  

A neutralization of R174 in CaV1.1 VSD I caused a depolarizing shift of ~ 30 mV in the voltage 

dependence of activation (G(V) curve), which also became shallower, suggesting that this residue 

contribute to CaV1.1. voltage sensing. This hypothesis was confirmed by direct measurement of the 

voltage-dependent activation of VSD I which was found deeply affected by this mutation: its effective 

charge was reduced, and the voltage dependence shifted to the left on the voltage axis. These data 

allow us to reinforce the view that VSD I drives the activation of the CaV1.1 pore. 

Figure 37 - VSD III of CaV1.1 channels has biophysical properties that are potentially compatible with 
those of skeletal Ca2+ release. A) Fluorescence traces recorded at 20 mV from each Cys mutant expressing 
α1S, α2δ-1, β1a and Stac3 proteins. The four VSDs possess different kinetic features. B) CaV1.1 topology 
highlighting the intracellular II-III loop, generally recognized to be important for skeletal EC coupling. C) The 
voltage dependent activation curve of all VSDs from Fig. 31 are superimposed to the Ca2+ release voltage 
dependence (black line), calculated from BALB/c mouse myofiber (Ferreira Gregorio et al., 2017). Fast kinetic 
and voltage dependent activation of VSD III are compatible with the properties of Ca2+ release. 
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However, because of its slow kinetics, VSD I is unlikely to have a significant role in the opening of 

RYR1, since the Ca2+ release is a very fast event that occurs within an action potential of ~ 5 ms. 

Our data suggest that VSD III possesses voltage-dependent and time-dependent properties 

compatible with the one of Ca2+ release and we propose that this VSD is the sensor that open RYR 

during the electrical depolarization of the muscle action potential.  

These data are the first demonstration that the mechanism by which α2δ modulates L-type CaV1 

channels is isoform specific and evolved to maximize Ca2+ influx in CaV1.2, and to minimize it via 

CaV1.1, likely because RyR1 activates without Ca2+ influx during skeletal muscle action potential. 
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