A Modular Approach to the Specification and
Management of Time Duration Constraints in BPMN

Carlo Combi, Barbara Oliboni, Francesca Zerbato*

Department of Computer Science, University of Verona, Italy

Abstract

The modeling and management of business processes deals with temporal
aspects both in the inherent representation of activities coordination and in the
specification of activity properties and constraints. In this paper, we address
the modeling and specification of constraints related to the duration of pro-
cess activities. In detail, we consider the Business Process Model and Notation
(BPMN) standard and propose an approach to define re-usable duration-aware
process models that make use of existing BPMN elements for representing dif-
ferent nuances of activity duration at design time. Moreover, we show how ad-
vanced event-handling techniques may be exploited for detecting the violation
of duration constraints during the process run-time. The set of process models
specified in this paper suitably captures duration constraints at different levels
of abstraction, by allowing designers to specify the duration of atomic tasks
and of selected process regions in a way that is conceptually and semantically
BPMN-compliant. Without loss of generality, we refer to real-world clinical
working environments to exemplify our approach, as their intrinsic complexity
makes them a particularly challenging and rewarding application environment.

Keywords: Business process modeling, duration constraints, BPMN, modular
process design, duration patterns

1. Introduction

Business process management (BPM) focuses on the modeling and manage-
ment of business processes by using suitable techniques that allow organizations
to be more efficient and flexible in achieving their goals. In this context, a deep
understanding of organizational processes supported by an intuitive design ap-
proach can improve the quality of the business from different viewpoints, such
as costs reduction, resource planning, and increase in competitiveness.

*Corresponding author
Email address: francesca.zerbato@univr.it (Francesca Zerbato)

Preprint submitted to Information Systems March 7, 2019

A very important aspect to consider when dealing with business processes
is time [1, 2, 3, 4, 5]. Temporal coordination is naturally represented and man-
aged during process design. Indeed, a business process is as a collection of
activities related across time and space, that realizes a specific service or busi-
ness goal [6]. Temporal constraints play a crucial role in process execution,
as most real-world processes run under time constraints [4]. Activity perfor-
mance takes time, the scheduling of resources and workforce requires temporal
coordination, and process compliance with deadlines is fundamental in most
application environments [7, 8, 9].

In this paper, we discuss issues related to the modeling and management of
temporal duration of activities and specific process regions.

Activities are used to represent any amount of work carried out within a
process, and thus, they implicitly span over a certain, finite amount of time.
Explicitly representing activity duration in process models is useful whenever
temporal information is crucial for understanding and re-engineering the de-
signed procedures. Furthermore, in many real-world applications, constraining
activity duration becomes essential in order to guarantee the completion of the
overall process within desired time limits, the latter driven by resource avail-
ability and scheduling requirements [10]. Similarly, under a process compliance
perspective, activities need to adhere to regulations and policies that set dead-
lines or limit duration based on best-practices. Actually, it is quite common
that both the execution and results of an activity are affected by its temporal
duration: some tasks and procedures become irrelevant with respect to process
goals if they are not performed within predefined time limits [11].

As an example, let us consider dialysis, whose efficacy is determined by the
overall duration of the treatment. Dialysis is used to purify blood from waste and
extra water and a single treatment session usually lasts 3-5 hours. Despite short
and rapid dialysis is less painful for the patient, rapid fluid-removal can result
in depletion of the circulating volume and in hypotension. The latter, together
with incomplete removal of salt and water, are associated with increased risk of
death [12]. Therefore, treatments briefer than 3 hours are considered ineffective
and dangerous for the patient. Such example shows that, in order to properly
model activity “dialysis”, the representation of defined duration constraints is an
important issue to consider. Indeed, in some cases executing an activity without
observing its duration constraints undermines the validity of its outcomes.

Our contribution lies on the specification and management of duration con-
straints using the well-known Business Process Model and Notation (BPMN)
standard [13]. In general, due to the lack of direct support for time aspects,
modeling and managing temporal constraints in BPMN is quite demanding for
process designers [8]. To overcome this limitation and foster the verification of
time-aware processes, a considerable number of research proposals have focused
on extending the BPMN standard [5, 14, 15, 16, 17].

Compared to these approaches, our proposal starts from existing BPMN
elements and allows the representation of the considered duration constraints
by means of their combination. Despite requiring us some initial modeling
effort, the obtained processes provide a clear conceptualization of duration-

aware process activities and regions, entirely based on the standard BPMN
semantics [13, 18]. This means that we design the proposed duration patterns
directly with BPMN, by taking advantage of the standard semantics of BPMN
itself. The designed duration patterns can also be represented by using a new
kind of task, but the extension of the BPMN standard is not the focus of this
work.

The process models designed in this paper are well-structured and intended
to be used as base building blocks for modeling duration-aware processes. That
is, we do not expect process designers to come up themselves with the proposed
models, but rather provide them with ready-to-use solutions to model duration
constraints in a standard-compliant way. We propose a set of modular process
models that can be used as building blocks, and also define a new task type
representing them. The designer can use both for specifying and managing
duration constraints of tasks belonging to a BPMN process model.

Our proposal focuses on fulfilling the following research requirements.

e Temporal Management. In business process management, temporal as-
pects are a very important issue to consider. Time plays a major role in
activity coordination and temporal constraints satisfaction affects process
results. Thus, representing and managing temporal constraints is needed
during process design and execution.

e Standard-based modeling. In business process representation, the use of
a standard graphical notation facilitates the understanding of business
procedures, internal collaborations, and coordination between activities.

e Designer Support. In business process modeling, designers and analysts
need to be supported in order to be able to easily model business activities
and the related temporal aspects.

e Modularity/Re-usability. In business process modeling, modularity and re-
usability reduce design complexity and improve both readability and man-
agement of complex process models. Having ready-to-use (sub)process
models, and a new task type representing them facilitates the modeling of
complex processes.

This paper deals with the specification of different kinds of duration con-
straints in BPMN and tackles the detection and management of constraint vi-
olations during process run-time [1, 4]. The paper comprehensively extends
previous pieces of work [11, 19]. In [11], we proposed a basic process model for
specifying the duration of a given activity, which is extended for constraining
the duration of selected process regions and for managing duration violations.
Following a similar approach, in [19] we introduced a set of BPMN models for
specifying shifted durations constraints and detecting their violations.

The process model introduced in [11] is the starting point for the novel pro-
cesses that are presented in this paper. As a first step forward, in this paper,
we discuss the possibility of having boundary events influencing the execution
of a constrained activity and propose suitable models for specifying such con-
straints and for discerning different causes of activity interruption. Moreover,
in this paper, we introduce new simplified patterns for constraining either the

minimum or the maximum duration of simple activities.

Moving from simple activities to more complex process parts, we also deal
with the specification of duration constraints of Single-Entry-Single-Exit (SESE)
regions, and of arbitrarily selected Non-Single-Entry-Single-Exit (non-SESE)
regions [20]. Then, we address two variants of simple duration of activities:
(i) one deals with the possibility of dynamically specifying activity duration
after its initiation (deferred duration), while (ii) the other one regards shifted
duration, i.e., a duration that is measured starting only from a relevant moment,
after activity initiation [19]. To complete the picture, we introduce a new task
type for representing the proposed patterns, and suitable techniques that can
be embedded in the proposed process models in order to detect and handle
duration violations.

In this paper, the proposed process models are described in a more formal
way and an exhaustive coverage of related literature is also included. As a
final step, we review our approach and discuss possible evaluation strategies to
validate the execution behavior of the proposed models.

Among various domains suitable for the application of BPM techniques, clin-
ical working environments cover a role of primary importance with respect to
the temporal perspective [4, 21]. Indeed, time is extremely relevant in health-
care processes, as patients lives are involved, resources are limited, and clinical
procedural aspects must be integrated with organizational and administrative
practice [22]. For this reason, we often refer to real clinical examples throughout
the paper, without compromising the generality of the proposed approach.

The structure of the paper is as follows. Section 2 provides the reader with
basic background concepts related to BPMN and time, while Section 3 summa-
rizes the constraints addressed in this paper. Section 4, Section 5, Section 6, and
Section 7 describe the structure and behavior of the introduced process mod-
els. Section 8 presents possible strategies for detecting and handling duration
violations. Section 9 provides an overview of relevant related work. Section 10
discusses the validation of our approach and outlines future work.

2. Background: BPMN, Structured Design, and Temporal Aspects

In this section, we recall the main elements of the Business Process Model
and Notation [13], then we unravel the temporal character of selected BPMN
elements, and discuss the principle of well-structured process design.

2.1. Introducing the Business Process Model and Notation

Among existing process modeling languages, we chose to focus on the spec-
ification of temporal constraints through BPMN; as it is the leading standard
for business process modeling.

In BPMN, a process is defined as sequence of activities or events, connected
by a sequence flow (also called control flow), that denotes their ordering rela-
tions. Routing is realized by gateways, which allow to split the sequence flow
into multiple paths and merge them.

A BPMN process is visualized by means of a graphical diagram, and its
behavior can be represented through tokens that traverse the process flow. In
BPMN, a token is a theoretical concept that is used as an aid for defining the
process behavior when it is performed. The behavior of a process element can be
defined by describing how it interacts with a token as the token ‘traverses’ the
structure of the process. Depending on the semantics of traversed flow element,
the number of tokens in a process can vary, as they are continuously generated
and consumed [13]. As an example, a start event generates a token, while an
end event consumes one.

The basic elements (or flow nodes) of a BPMN process are described below.

Activities identify work that is performed within the process. In BPMN there
are two kinds of activities: tasks that are atomic units of work that cannot be
broken down to a finer level of abstraction, and subprocesses that are compound
activities whose internal details are modeled using other elements. Graphically,
tasks are depicted as rectangles with rounded corners having a label that spec-
ifies their name. Subprocesses can either be represented as collapsed, i.e., as
tasks decorated by a “+” sign, or can be expanded to show internal details.

Events represent facts that occur instantaneously during process execution and
that affect the sequencing or timing of process activities. They are visualized as
circles, which may contain a marker to diversify the kind of event trigger. De-
pending on their behavior and on the type of trigger, events can either throw or
catch a result. The throwing and catching of an event are referred to as event
handling [13]. Usually the (sub)processes that focus on handling events are
called “event handlers”. By convention, start events initiate a process instance,
end events conclude it, while intermediate events indicate where something hap-
pens somewhere between the start and end of a process. When attached to an
activity boundary, interrupting intermediate events interrupt the task they are
attached to, whereas non-interrupting ones initiate an new process path (ezcep-
tion flow), which runs in parallel to activity execution.

Gateways are elements in the process used to control the divergence and con-
vergence of the sequence flow, either according to data-based conditions or event
occurrence. Graphically, they are shown as diamonds with an internal marker
that differentiates their routing behavior. Symbol + denotes parallel gateways,
i.e., AND-split and AND-merge, whereas symbol X identifies a data-based ex-
clusive gateway (XOR-split and XOR-merge), i.e., a point in the process where
a condition must be evaluated in order to choose one path out of more. Finally,
an encircled pentagon denotes an event-based gateway, i.e., a routing point in
the process flow where event occurrence determines which is the path to follow.
In this case, when a process path is chosen, all the others are discarded.

2.2. Temporal aspects in BPMN processes

Although business processes describe sequences of actions that follow an
ordering that is homogeneous to the flowing of time, support of temporal per-
spective of business processes remains limited [2, 8, 16]. Among several design

levels, conceptual modeling is probably the one being mostly affected by this
lack of expressiveness [5], as there exist control and scheduling tools that manage
certain temporal constraints during process run-time.

When modeling business processes from a temporal standpoint the temporal
dimension of the process elements, whenever defined, depends on the modeling
language used and on its semantics. Since many process modeling languages
focus on control flow aspects, designing and visualizing temporal properties in
process models becomes quite challenging, especially because of the lack of a
common, clear temporal semantics.

Usually, it is assumed that the process sequence flow, gateways, and event
triggering are instantaneous, that is, their execution does not consume any time
or it consumes a fixed amount of time, which does not change during process
execution [23]. This allows designers to ignore the temporal contribute brought
by these constructs whenever computing the overall process duration or inferring
temporal dependencies among flow elements.

An exception is represented by catching events that, once enabled, may need
to wait for a certain amount of time prior to being activated by a trigger [13,
24]. For instance, a message event could potentially wait for one second or for
an indefinite amount of time for the corresponding message trigger to arrive.
However, it is reasonable to think that events will be triggered after a finite and
practical amount of time and that any two event instances cannot occur exactly
at the same point in time, assuming sufficient clock precision [23].

Activities take time to be executed. In general, a duration is defined as
“an amount of time with known length, but no specific starting or ending in-
stants” [25]. For example, a duration of “one week” is known to last seven days,
but it can refer to any temporal block of seven consecutive days. It is widely
accepted that duration is non-directional with respect to a timeline, that is, it
is always positive. In this paper, for simplicity, we deal with a discrete time do-
main, i.e., we assume that time is discrete and isomorphic to natural numbers.
As a consequence, the shortest interval has a duration of one time unit.

An activity, being either an atomic task or a compound subprocess, is ex-
pected to last a precise amount of time, within a range delimited by minimum
duration MIN and maximum duration MAX values (d € [MIN, MAX]). Mini-
mum duration specifies that a certain activity must not complete earlier than a
preset time point, that is, it should take at least a specified amount of time to
be performed. A suitable clinical example for describing a minimum duration
constraint is antibiotic therapy, which would result ineffective if administered
for less than a certain number of days. On the other hand, a mazimum duration
constraint is used to set the upper-most time limit after which the activity is
intended to have terminated. For example, the maximum duration for taking
the database systems exam is fixed to 3 hours. Students that do not hand in
their tests within 3 hours will not be evaluated.

Activities are associated to a life-cycle that determines their execution se-
mantics. In this paper, we refer to the life-cycle depicted in Figure 1, adapted
from [6, 13, 23]. When a process is instantiated, all the activities are in state
Inactive. An activity is enabled and becomes Ready for execution when the

—>{ Process Activity }—*

enable Star[end
A
; RUNNING 1
1
[Inactive]—>[Ready]—‘—»[Active]—»[Completing]—’-» Completed
- - - W|thdraw = = —error
\i | \
|
Withdrawn ' Terminated
interrupt

Figure 1: State diagram describing the life-cycle of a BPMN activity, adapted from [6, 13, 23].

number of tokens is available to activate it. When data and allocated resources
are available, the activity changes from Ready to Active, through transition
start. The start of the activity actually corresponds to an event that determines
its beginning [13, 23]. When the activity ends without anomalies, it enters state
Completing, which captures processing steps prior to activity completion, such
as the end of process flows originated from non-interrupting events attached to
its border. Then, the activity switches to state Completed through transition
end. An activity moves from state Ready to Withdrawn, whenever it is placed
on a process branch in the configuration of an event-based gateway that is not
chosen during execution. Finally, any active or completing activity can switch
to state Terminated in case of an execution error.

In this paper, when speaking about activity duration, we refer to the amount
of time during which the activity is RUNNING, i.e., we do not consider the time
span during which the activity is enabled but not yet started [3].

2.8. Well-structured process design

In general, being a graph-oriented process definition language, BPMN allows
combining flow objects almost arbitrarily. However, this often leads to the defi-
nition of hardly-readable and complex process models, often containing semantic
errors difficult to be detected during early process development phases [26]. In
this setting, structural restrictions are desirable for increasing process model
readability and prevent the onset of undesired deadlocks at run-time [27].

Process models are considered structurally sound, when they begin with
exactly one start event, terminate with exactly one end event, and every flow
node lies on a path from the start to the end event [28].

A BPMN process is said to be well-structured if for every node with multiple
outgoing edges, i.e., a split node, it has a corresponding node with multiple
incoming edges, i.e., a join node, such that the set of nodes delimited by the split
and the join nodes form a Single-Entry-Single-Exit (SESE) region, and these
regions within the process are properly nested [20]. Well-structured processes

may be used to enhance modularity and improve local reasoning on large and
complex process models.

A well-structured process is guaranteed to be sound if it is live [29]. The
liveness property derives from the Petri Net context [30], and states that a
Petri net is live if for every reachable state M and every transition ¢, there is
a state M; reachable from M which enables t. Liveness ensures the absence of
deadlocks during process execution. A more detailed discussion regarding Petri
Nets properties can be found in Appendix A.

The soundness property has been defined in the context of workflow nets,
i.e., Petri nets having some peculiar properties [30]. Petri nets having the follow-
ing structural restrictions identify an interesting sub-class of Petri nets, called
workflow nets. A Petri net is a workflow net if and only if (i) it has a distinct
source place (i.e., a single place that is not the target of any arc) and (ii) a
distinct sink place (i.e., a single place that is not the source of any arc), and
(iii) all of its nodes lie on some path from the source place to the sink place.

When adapted to process models, soundness guarantees that: all tasks can
participate in a process instance, each process instance eventually terminates,
and when a process instance terminates there is exactly one token in the end
event [6].

For the reasons discussed, in this paper we prefer to define process models
that are both well-structured and structurally sound, when possible. In partic-
ular, the duration patterns we define satisfy these properties.

However, the presence of exception flows, especially those originating from
non-interrupting events attached to the task whose duration is constrained by
our duration pattern, compromises both the well-structuredness and structural
soundness of the overall process, since BPMN recommends ending each excep-
tion flow originating from a boundary event with its own end event [13]. Thus,
the exception flows in our process models do not satisfy these structural prop-
erties. However, we will exploit BPMN process structural properties as a mean
for guaranteeing that the designed process models are flexible and modular, and
that they can be easily extended by adding new structured process branches,
regions or subprocesses.

3. Business Process Models for Specifying Activity Duration

In this section, we formalize foundational concepts and introduce the differ-
ent kinds of duration constraints addressed in this paper with the help of tables
that summarize their main features and report meaningful examples.

The formal definition of process model used in this paper encompasses se-
lected relevant BPMN elements and is provided below. The semantics of the
introduced elements is assumed to be the one defined by BPMN [13, 18].

Definition 3.1 (Process Model). A process model m = (N,C, «, €, €y,
B, 8, Vr; Vay, L) consists of a finite non-empty set of flow nodes N and a finite
non-empty set C of directed control flow edges. The set N = {AUG U E} of
flow nodes consists of the disjoint sets A of activities, G of gateways, and F

of events. E consists of the disjoint union of start events Fgqr¢, intermediate
events Fj,: including also the set of boundary events Ep (i.e., Eg C FEjint),
and end events E.,q characterizing m, namely E = {Estqrt U Eint U Eena}.
Control flow C C N x N defines a connection between elements of N. Func-
tions o, €, €y, B, 0, Yr, Yy @ssociate a type to the elements of N. Namely,
a: A — {task, subprocess} distinguishes activities into tasks and subprocesses.
e+ E — {throwing, catching} distinguishes events in those that throw a trig-
ger and those that catch a result. It always holds that for each s € FEgq:t
€ir(€) = catching and for each e € Eey,q €,-(e) = throwing. Function ¢,: E —
{none, message, signal, error, timer, conditional, escalation, cancel, multiple,
parallel, multiple, terminate} associates a type to each event of E. 3 : Ep —
{interrupting, non-interrupting} associates the interrupting behavior to bound-
ary events. § : A — 2F8 is a function that associates to each activity a € A
a set of boundary events. v, : G — {split, merge} assigns a gating mechanism
to each gateway of G. v, : G — {parallel, exclusive, event—based} assigns a
routing type to each gateway of G. Finally, £ : N — £ is a function that assigns
a label /, represented as a string, to each flow node in N.

Let 6 be one of functions «, €., €y, B, ¥, and 7. For practicality, in the
remainder of this paper, we write 6({n1,...,n,}) = val, as a shortcut for
Vn; € {n1,...,nm} 0(n;) = val. Moreover, strings returned by labeling function
L are not enclosed in double quotes (e.g. “Task”), but we use a special font style
to denote strings (e.g., Task) to simplify the notation without compromising the
interpretation of the process model.

A process model m having a unique start event s, a unique end event e,
and each node n € {A U G U E;;,;} lies on a path from s to e, is structurally
sound [28]. Despite being a desirable property, we do not require end events
to be always unique as some exception flows, such as those outgoing of non-
interrupting events, shall have with their own end event [13]. Instead, we always
assume to deal with process models having a unique start event.

When composing multiple process parts into a comprehensive one, elements
such as flow nodes or control flow edges may be used to ensure that their flows
are correctly connected and their event handling mechanisms are consistent. We
refer to the collection of such process elements as connecting kit.

Definition 3.2 (Connecting Kit). A connecting kit Ck = (N, C) consists
of a finite set of flow nodes Ny and a finite non-empty set of control flow edges
C, representing a graph not necessarily connected.

As previously mentioned, the main aim of this paper is to capture different
kinds of duration constraints by means of dedicated process models, which we
refer to as duration patterns. As outlined in Figure 2, starting from a process
task (or region) to constrain, we design a duration pattern that captures the
specified duration constraint. The duration pattern is attached to the activity
through a set of additional BPMN flow and connecting elements, forming a
connecting kit that is used to anchor the pattern to the task (or region) and to
refine event handling. The resulting combination of the temporally constrained

task (or region) with the duration pattern realized by the connecting kit, is a
complete duration-aware process model.

Task to Constrain Duration Pattern Connecting Kit Durati
uration-aware process model
G :
+ ® =]
Task ! Connecting
STARTING POINT BPMN-BASED DESIGN OF DURATION CONSTRAINTS RESULT (Expanded)

Figure 2: Starting from a process Task (or region) whose duration needs to be constrained,
we design a (set of) Duration Pattern(s) that is attached to the task/region through suitable
BPMN elements of a Connecting Kit to obtain a complete Duration-aware process model.

Such duration-aware process models may include different duration patterns
depending on the kind of duration constraint that is represented.

In the remainder of the section, tables summarize and exemplify the different
kinds of duration constraints addressed in this paper.

Table 1 describes duration constraints for process activities, considering du-
ration constraints (i) for both upper and lower bounds; (ii) for either the lower
or the upper bound; (iii) for disjoint ranges, i.e., less than the lower bound or
greater than the upper bound. Table 2 introduces simple duration for tasks
having attached boundary events. Table 3 considers the specification of simple
duration for more complex process regions, such as SESE or non-SESE regions.
Table 4 exemplifies some settings that require one to dynamically choose a
proper duration range for an activity, after its initiation (deferred duration).
Finally, Table 5 introduces how to specify a shifted duration for an activity,
considering also resetting the duration count whenever environmental condi-
tions change.

4. Specifying Simple Duration Constraints

In this section, we recall and formalize the structure of the duration-aware
process model formerly proposed in [11] for specifying the simple duration of a
process activity. This initial solution is the basic building block for the modeling
of more complex constraints, addressed later in this work.

The simple duration of an activity can be specified through a well-structured
and structurally sound process model, namely duration pattern ¢gmpie, that is
meant to be suitably combined with the activity through connecting kit Ck;.

Formally, ¢simpie = (N,C, 0, €, €y, B, 8, Vry Yy, L) has the following
structure.

- N ={AUGU E} is the set of flow nodes, where:
A= 9, G = {91, 92, 93, 94, s, 96}7 E = {Estart U B U Eend} where
Egtare = {5}, Eint = {e1, €2, €3, €4, €5, 66}, and Eepg = {e};

10

SIMPLE DURATION OF AN ACTIVITY (TASK OR SUB-PROCESS) Sec. 4

FOrRMAL NOTATION

SimpleDur(ActivityName, MIN, MAX)

DURATION PATTERN AND CONNECTING KIT

Basic pattern: ¢simpie; Connecting kit: Cky

CONSTRAINT DESCRIPTION

The time span during which an activity is executed is restricted by minimum [MIN]
and maximum [MAX] duration bounds.

REAL-WORLD EXAMPLES
e Preparation for the anesthesia in Caesarean section ranges between 8 to 41 min-
utes. [MIN and MAX]

ONE-SIDE DURATION OF AN ACTIVITY (TASK OR SUB-PROCESS) Sec. 4.1

FORMAL NOTATION
MinSimpleDur(ActivityName, MIN), MaxSimpleDur(ActivityName, MAX)

DURATION PATTERN AND CONNECTING KIT
Basic pattern: variant of ¢simpie; Connecting kit: Ckq

CONSTRAINT DESCRIPTION
The time span during which an activity is executed is restricted by minimum [MIN]
or maximum [MAX] duration bounds.

REAL-WORLD EXAMPLES

e The minimum acceptable duration of anticoagulation therapy for venous throm-
boembolism is at least 3 months. [MIN]

e Nimesulide should not be given for periods longer than 7 days in the treatment of
acute pain. [MAX]

OUT-SIDE DURATION OF AN ACTIVITY (TASK OR SUB-PROCESS) Sec. 4.2

FORMAL NOTATION
OutSimpleDur(ActivityName, MIN, MAX)

DURATION PATTERN AND CONNECTING KIT
Basic pattern: variant of ¢simpie; Connecting kit: Ck;

CONSTRAINT DESCRIPTION
The time span during which an activity is executed is restricted by minimum [MIN]
and maximum [MAX] duration bounds. Duration must be less than the minimum or
greater than the maximum.

REAL-WORLD EXAMPLES
e The physical therapy may be applied in a intensive way, and in this case it cannot
last more than 3 weeks. Otherwise, the same physical therapy may be applied in
a standard way, but in this case it has to last more than 2 months to be effective.
[MIN and MAX]

Table 1: Simple, one-side, and outside duration of activities.

11

SIMPLE DURATION OF AN ACTIVITY WITH BOUNDARY EVENTS Sec. 4.3

ForMAL NOTATION
SimpleDurBE(ActivityName, MIN, MAX| El, EN, El_Handler, EN_Handler)

DURATION PATTERN AND CONNECTING KIT
Basic pattern: ¢simpie; Connecting kit: Cko

CONSTRAINT DESCRIPTION
The duration of an activity with boundary interrupting [EI] or non-interrupting [EN]
events is restricted by minimum [MIN] or maximum [MAX] duration bounds.

REAL-WORLD EXAMPLES

e A cardiac Magnetic Resonance Imaging (MRI) scan usually lasts from 20 to 45
minutes, but must be interrupted if the patient has a panic attack or severe emo-
tional distress. [MIN and MAX, EI]

e Aspirin therapy for prevention of thrombotic events should last 28 days. If the
patient experiences any upper gastrointestinal complication, gastro-protective co-
therapy may be initiated. [MIN and MAX, EN]

Table 2: Simple duration of activities with boundary events.

-C = {(5791)7 (glaQQ)a (91393)5 (92761)’ (92362)7 (93’63)7 (93764)7 (64’ 66)7
(e1,€5), (€5,94), (e2, 94), (e3,95), (€4,95), (95,96), (94, 96), (g6, €)} is the set
of control flow edges;

- a=J;

— e ({8, €1,€2,€3,e4}) = catching, e ({es, e, €}) = throwing;

— ey ({s,e}) = none, ey ({e1,es}) = timer, e, ({e2, €4, €5,€6}) = signal;

- =g

- 0=

= ({91, 92, 93}) = split, v ({94, g5, 96 }) = merge;

— Yy({91,96}) = parallel, v, ({94, 95}) = exclusive, and v, ({g2, g3 }) = event—
based,;

— L(s) =S, L(e1) = null, L(e3) = c_EXITED, L(e3) = null, L(e4) = c_EXITED,
L(es) = t-maxViolated, L(eg) = t-minViolated, L(e) = E, L(g1) = G1, L(g2)
= G2, L(g3) = G3, L(g4) = G4, L(g5) = G5, L(gs) = GO6.

Functions «, 8, and § are empty since A = @ and Ep = &. Events es
and ey4 are given the same label to highlight that they have the same triggering
mechanism, i.e., they catch the same trigger.

Connecting kit Ck; = (Ny,,Ck,), where Ny, = {ek} and Cj, = &. Event
ek is an intermediate throwing signal event that triggers both events e; and e4
of Psimpie, whenever they are actively listening (indeed, L(e2) = L(e4)).

The formal construct for specifying that the duration of an activity named
ActivityName has to be between MIN and MAX time units is defined as

SimpleDur(ActivityName, MIN, MAX)

It generates a (sub)process model by using @gimpre and Cky as follows:

12

SIMPLE DURATION OF A SESE REGION Sec. 5.1

FORMAL NOTATION
SimpleDurSESE(EN, EX, MIN, MAX)

DURATION PATTERN AND CONNECTING KIT
Basic pattern: ¢simpie; Connecting kit: Cky

CONSTRAINT DESCRIPTION
The time span during which a sequential [—], parallel [+], or exclusive [X] SESE re-
gion is executed is limited by minimum [MIN] and maximum [MAX] duration bounds.

REAL-WORLD EXAMPLES

e Exercise stress test lasts at least 45 minutes, comprehensive of preparation and
monitoring times. [—, MIN]

e Therapy for H. Pylori eradication combines antibiotics and proton pump inhibitors
for an overall duration of 7-10 days. [MIN and MAX, +]

SIMPLE DURATION OF A NON-SESE REGION Sec. 5.2

FORMAL NOTATION
SimpleDurNonSESE(ENset, EXset, MIN, MAX)

DURATION PATTERN AND CONNECTING KIT
Basic pattern: ¢nsese, dnSESEPred, PnsESEGen; Connecting kit: Cks, Cka

CONSTRAINT DESCRIPTION

The time span during which a non-SESE region is executed is restricted by minimum
[MIN] and maximum [MAX] duration bounds.

REAL-WORLD EXAMPLES
e On-scene time for adults trauma should be less than 10 minutes, during which
airway with cervical spine control, breathing, circulation and disability are checked,
depending on the patient’s gravity and the probability of head trauma [MAX].

Table 3: Simple duration of process regions.

SimpleDur(ActivityName, MIN, MAX) = (N U N, U {a},C U {(g1,0a), (a,e}),
(ef,g6)}, a U {{a + task} or {a — subprocess}}, e U {e¥ + throwing}, e
U {ef = signal}, B, 6, yr, iy, L)

The new labeling function £* extends £ for ey, e4, €§, and a, where L£*(e;) =
MAX, L*(e4) = MIN, L*(e¥) =t EXITED, and L£*(a) = ActivityName.

As outlined in Figure 2, the combination of Ck; and ¢gimpie With a spec-
ified activity results in a complete duration-aware process model returned by
SimpleDur(Task, MIN, MAX).

Such process model can be included within more complex parent processes
and represented as a collapsed subprocess. In other words, a duration-aware
process model can be considered as a subprocess template that designers can
use to specify task duration [11].

Without loss of generality, in Figure 3 the considered activity is a task, i.e.,
a(a) = task and L*(a) = Task.

The designed process allows us to manage three possible Task execution

13

DEFERRED DURATION OF AN ACTIVITY Sec. 6

ForMAL NOTATION
DeferredDur(ActivityName, MIN1, MAX1, MIN2, MAX2, C1, C2)
DURATION PATTERN AND CONNECTING KIT
Basic pattern: ¢geferrea; Connecting kit: Cky
CONSTRAINT DESCRIPTION
An activity can be associated to two duration ranges [mini, maz1] and [ming, mazs],
where a default one can be chosen prior to activity initiation. At run-time only one
range is selected, based on how activity execution evolves. Therefore, the choice of
which duration range applies is deferred with respect to activity initiation.
REAL-WORLD EXAMPLES
e Let us consider the treatment for pharyngitis. If the infection is viral, antibiotic
therapy lasts 5 days, whereas for bacterial pharyngitis it should last 10 days.
As it is hard to distinguish viral and bacterial causes based on symptoms alone,
an empiric treatment is usually initiated, while a throat culture is grown. When
results are obtained, treatment is specialized and continued based on the discovered
nature of the infection.
e Hospitalization following a diagnosis of appendicitis can last 1-2 days if surgery
was routine, or up to 4 days if the removed appendix is found to be ruptured
during the intervention.

Table 4: Deferred duration of an activity: a duration range is chosen while the activity is
being executed.

behaviors with respect to a given duration range: (i) Task is completed within
the allowed duration, thus it lasts longer than the minimum desired time limit
but ends before the maximum one, (ii) Task ends before the minimum time
expected for its completion, thus violating its minimum duration constraint,
(iii) Task is still executing when the maximum time limit allowed for completion
is reached, thus raising a maximum duration violation.

The process begins when its start event S is triggered. The token arrives at
parallel gateway G1, and the flow is split into three branches: two of them are
directed to event-based gateways G2 and G3, while the last one is directed to
Task. Event-based gateway G2 represents a branching point in the process where
only one path is chosen (either flowl or flow2) depending on which one of the
events in its configuration is triggered first, i.e., event MAX on flowl, or event
c_EXITED on flow2. Event-based gateway G3 has the same behavior as G2 but
with respect to events MIN on flow3 and c_.EXITED on flow4. When Task is com-
pleted, the token reaches the following (throwing) signal event t_EXITED, which
is broadcast to be caught by corresponding (catching) signal events c_.EXITED
on flow2 and flow4.

(i) If Task completes within the defined duration range, signal event t_EXITED
is caught only by signal event c_EXITED on flow2, since timer event MIN was
triggered previously and, thus, flow4 was withdrawn.

(ii) If Task completes earlier than the minimum duration allowed signal
event t_EXITED is caught by both events c.EXITED on flow2 and flow4. In this

14

SHIFTED DURATION OF AN ACTIVITY Sec. 7

ForMAL NOTATION

ShiftedDur(ActivityName, MIN, MAX, ME, MAX_START, AltActivity)

DURATION PATTERN AND CONNECTING KIT

Basic pattern: ¢snifteq; Connecting kit: Ck;

CONSTRAINT DESCRIPTION
The duration of a task is restricted by minimum [MIN] or maximum [MAX] duration
bounds, and it is measured starting from a specific (shifted) moment indicating that
a certain property begins to hold. We call this particular moment milestone event.
REAL-WORLD EXAMPLES

e Effective antibiotic therapy for endocarditis should last between 2 and 6 weeks,

which are counted starting from the first day of negative cultures. [MIN and MAX]

SHIFTED DURATION OF AN ACTIVITY WITH RESET Sec. 7

ForMAL NOTATION
ShiftedDurR(ActivityName, MIN, MAX, ME, MAX_START, AltActivity, R)
DURATION PATTERN AND CONNECTING KIT
Basic pattern: ¢spnifires; Connecting kit: Ck:
CONSTRAINT DESCRIPTION
Shifted duration count is reset [R] whenever this property stops holding earlier than
the set minimum duration.
REAL-WORLD EXAMPLES
e Hospitalization must last between 24 and 36 hours, starting from the moment the
patient defervesces (milestone event). If the patient has fever prior to 24 hours,

duration count is reset and will re-start once fever disappears again. [MIN and
MAX, R]

Table 5: Shifted duration of an activity, considering also the possibility of resetting the dura-
tion count.

case, signal event t_minViolated on flow4 is broadcast to indicate that minimum
duration has not been observed.

(i) If Task is still executing when the maximum duration time limit allowed
is reached, signal event t_.EXITED is never caught, as both branches flow2 and
flow4 are withdrawn (i.e., both timer events MIN and MAX are fired). Then,
signal t_maxViolated located on flow?2 is triggered to acknowledge that the max-
imum duration has been violated.

Signal events t_minViolated and t_maxViolated are used to detect violations
and to trigger other processes designed to handle them, as explained in Section 8.

In dealing with task duration specification, we allow designers to use the
proposed BPMN duration-aware process models as a ready-to-use building block
whose timer events may be properly tuned to represent a specific duration.

For example, Figure 4 shows a process model including subprocess Duration-
aware Antibiotic Therapy, generated by SimpleDur(Antibiotic Therapy, 7,10),
that represents task Antibiotic Therapy combined with its duration pattern.

15

~@)

~@)

t_EXITED

Figure 3: BPMN duration-aware process model specifying that the simple duration of Task is
between MIN and MAX.

To make the proposed approach easier to use, we allow designers to also
represent the whole duration-aware subprocess as a simple task characterized
by a specialized icon such as a “clock”, as done in [5, 14]. In particular, we pro-
pose also a new kind of task decorated with a clock flanked by [MIN, M AX]
for representing the combination of the considered task and the related dura-
tion pattern realized through a connecting kit. For the sake of readability, the
considered time unit is explicitly specified only in the BPMN process models
referring to real-world examples, while it is left implicit in the formal notation.

The bottom part of the Figure 4 shows the new task type Antibiotic Therapy
for expressing a simple duration of [7,10]days. In this case, the label of the
task is only Antibiotic therapy, since the notion of “duration-aware” is already
represented by both the iconized clock and temporal range.

Anyhow, being conceptually and semantically defined through BPMN, the
behavior of the underlying duration pattern remains clear, regardless of the
chosen graphical representation.

4.1. Specifying the duration of an activity by constraining only one bound

When specifying a duration constraint, it could be useful to focus on either
only the minimum or only the maximum duration. For these situations, we
considered two different possibilities.

The first one is using the duration-aware process model, described above
and showed in Figure 3, by specifying only the considered value to restrict. As
an example, by specifying a duration range as [MIN,o0] we constrain the task
to last at least MIN. Otherwise, by specifying a duration range as [0,MAX] we
constrain the task to last at most MAX.

16

Schedule
surgery

Ped Therapy N follow-up

-
s P Ss Is the patient
- ~ improved?

o
e :
Duration-aware VES)
O Antibiotic t— »X Proceed with <x>_>o
E

Duration-aware Antibiotic Therapy

WOdays t maxV\o\ated l Schedule

: surgery

<®> > YES _| Proceed with O
7 days) follow-up

<) .<) > /4 Is the patient
. \>G;>\+ O imprgved?

C_EXITED t_ manloIated

Antibiotic
Therapy
t| EXITED

(. J/
N -

S -7 Schedule

~ e surgery

~ -
~ -
~ -
~ -
~ N - [
< @7.101days P z
\A Antibiotic - »X YES Proceed with
™| Therapy g follow-up
s Is the patient

improved?

Figure 4: Process model Duration-aware Antibiotic Therapy obtained through SimpleDur(An-
tibiotic Therapy, 7,10) and depicted (top) as subprocess included in a more complex parent
process and (bottom) as a new task type including a clock icon.

The second possibility is the definition of the following One-Side Simple Du-
ration Patterns, where we consider only the specification of either the minimum
duration or the maximum duration of a task. In Figure 5, we report the designed
BPMN duration-aware process model for constraining the minimum duration
of Task, through the formal construct MinSimpleDur(ActivityName, MIN). For
example, this kind of pattern can be used for specifying that haemodialysis must
last at least 3 hours.

On the other hand, in Figure 6 we report the designed BPMN duration-
aware process model, obtained through MaxSimpleDur(ActivityName, MAX), for
constraining the maximum duration of Task. For example, this pattern can be
used for specifying that Nimesulide should not be administered for longer 7 days
in the treatment of acute pain (cf. Table 1).

The formal construct for the two introduced scenarios stems directly from the
previously presented formalization of simple duration. Indeed, duration pattern
@simple is simplified to consider the process fragment containing the specification
of either the maximum or the minimum allowed duration, respectively.

17

t_EXITED

Figure 6: BPMN duration-aware process model for specifying the maximum duration of Task.

4.2. Specifying the duration of an activity outside of a certain range

In some application cases, activities must last for an amount of time that is
either less than a certain value (called MIN) or more than a greater value (called
MAX), that is, any duration between MIN and MAX is disallowed.

For example, the rehabilitation of a patient requires different levels of treat-
ment, each one administered for a certain amount of time. Restoring functional
ability and quality of life requires the administration of either an intensive treat-
ment, which must end within a given time span (MIN), or of a long-term treat-
ment, that must be given for a time span longer than a specified one (MAX).

The process model depicted in Figure 7 shows the duration-aware pattern
for managing this setting. This case needs to deal with two alternative options:
either Task completes before timer event MIN is triggered, or it must complete
only after an amount of time MAX has passed.

Since the two cases are alternative, but not independent, as “completing after
MIN” may include also the case “completing after MAX”, the process elements
that compose the proposed duration pattern are nested. That is, compared to
duration pattern @simpic, the process branches modeling minimum duration, i.e.,
flowl and flow2 include also the SESE region delimited by G3 and G4, capturing
the upper duration bound. The timer event in the context of G3 measures an
amount of time equal to MAX-MIN since the SESE region delimited by G3 and
G4 is nested and, thus, not enacted in parallel with Task.

The formal construct OutSimpleDur (ActivityName, MIN, MAX) may be spec-

18

C_EXITED constraint
Violated

flow2 »@)

c_EXITED

t_EXITED

Figure 7: BPMN duration-aware process model for specifying that the duration of Task sould
be less than MIN or greater than MAX.

ified by suitably adapting pattern ¢simpie-

4.83. Specifying the duration of an activity with boundary events

In order to provide a complete picture of activity simple duration specifica-
tion, we considered the possibility of having boundary events influencing activity
execution and potentially affecting its overall duration.

When placed on the boundary of a task or subprocess, an intermediate event
is used to represent exception or compensation handling [13]. In accordance
with the BPMN standard [13], in this paper we refer to the (sub)processes that
handle boundary events or originate from them to as “event handlers”.

Once the event occurrence is consumed, the activity can be interrupted if
the event is an interrupting one, or activity execution can continue in parallel
with the event handler, if the event is non-interrupting.

Although multiple interrupting boundary events can be attached to the same
activity, only one of such handlers can be executed at a time, for obvious reasons.
Conversely, an unlimited number of non-interrupting event handlers can be
modeled and executed in parallel, while the activity continues its execution.

In this latter setting, it is important to recall the previously explained se-
mantic states of a process activity, shown in Figure 1. In particular, a BPMN
activity can switch to state Completed only when all the non-interrupting event
handlers attached to its boundary are completed. Indeed, an activity moves
from state Active to state Completing when its execution has finished, but the
attached non-interrupting boundary handlers are still running.

The previously introduced formal construct SimpleDur(ActivityName, MIN,
MAX) can be revisited by considering the addition of both interrupting and
non-interrupting events attached to the boundary of the considered activity.

In detail, we consider having an activity with two intermediate boundary
events I and EN attached to its border, where FT is interrupting and EN is
non-interrupting.

19

Whereas the core duration pattern is again @gimpie, the connecting kit must
be redefined to capture and synchronize also the exception flows originating
from the boundary events. In detail, connecting kit Cky = (Nko, Cks), where
Nky = {e¥, ek ek g¥} and Chy = @.

The formal construct for specifying that the duration of an activity named
ActivityName with attached boundary events El and EN (and respective event
handlers El_Handler and EN_Handler) has to be between MIN and MAX time
units is defined as

SimpleDurBE(ActivityName, MIN, MAX, EIl, EN, El_Handler, EN_Handler)

It generates a (sub)process model by using @simpie and Cksy as follows:

SimpleDurBE(ActivityName, MIN, MAX EI, EN, El_Handler, EN_Handler) = (N
U Nk?z U {a}7 C U Cky U {(917(1), (a7e’f), (€If7glf)7 (ei7€]2€)7 (6157(12), (a27g]1€)=
(g%, 96), (en,ay), (a1,€5)}, a U {{a + task} or {a — subprocess}} U {{ay,as} >
subprocess}, e, U {{e}, e, ek} — throwing} U {{ei,en} — catching}, €, U
{{ek, ekY s signal} U {ef — none} U {e; = t1} U {e, = ta} where ty,t5 €
{signal, message, timer, conditional, escalation}, B U {ei — interrupting} U
{en — non—interrupting}, § U {a — {ei,en}}, v U {g§ — merge}, v, U
{g¥ = exclusive}, L*).

The new labeling function £* extends L for ey, e4, e, €5, ek ei, en, a, a1,
az and g¥, where L*(e1) = MAX, L*(e4) = MIN, L*(ef) = t EXITED, L*(e5) =
t EXITED, L*(e}) = E2, L*(ei) = El, £*(az) = El_Handler, £*(en) = EN,
L*(a) = ActivityName, £*(a;) = EN_Handler, and £*(g¥) = GT7.

Figure 8 shows the duration-aware process model obtained through Simple-
DurBE(Task, MIN, MAX InterruptingE, Non—InterruptingE, InterruptingE Handler,
Non—InterruptingE Handler). Without loss of generality, the considered activity
is represented as a task, i.e., a(a) = task and £*(a) = Task.

As for the type of boundary events, in Figure 8 we employ a none interme-
diate event placed on the activity boundary although this kind of event is not
defined in BPMN as a possible catching event. We chose to use it as a graphical
expedient for the sake of simplicity, as the behavior of the process model gener-
ated by SimpleDurBE(ActivityName, MIN, MAX, El,EN, El_Handler, EN_Handler)
remains the same for any of the following BPMN event triggers: Signal, Timer,
Message, Conditional, and Fscalation.

Specifically, any Signal or Message event can be sent by any external par-
ticipant or process instance. A Conditional event is triggered when a condition
becomes true, whereas an Escalation event triggers a reaction to a specific busi-
ness situation. Timer events are assumed to be triggered at a fixed timeDate,
such as “February 23" 2015”, timeCycle for example “every Monday at 9.00
a.m.” or timeDuration, such as “2 hours” [13]. Of course, when defined with an
absolute timeDate, their triggering depends on when the process is executed.

In the presented solution, the exception flow outgoing from interrupting
event InterruptingE is alternative to the normal flow outgoing from Task. In
this setting, compared to the process of Figure 3, the semantic state of Task
changes to Terminated if the interrupting event is triggered. Therefore, signal

20

flow1 C

T maleoIated

@ O—=X%>-

C_EXITED

O—@

c_EXITED t_minViolated

flowé @
(&) ———<X
flow5 N

t_EXITED
_ @)—>

W) InterruptingE t_EXITED
Non-
InterruptingE

Handler

ExceptionFlow

Non-InterruptingEl,,rn\\‘ InterruptingE
)

Handler

Figure 8: Duration-aware process model representing the duration of a Task having at-
tached interrupting and non-interrupting intermediate boundary events InterruptingE and Non-
InterruptingE.

event t_ EXITED can be replicated within ExceptionFlow to be used in case of
minimum constraint violation caused by early task interruption. Besides this,
no substantial change in the model is required to detect constraint violation, as
the behavior of @gimpre remains unvaried.

Regarding the occurrence of interrupting boundary events and timer events
MIN and MAX; it is worth noticing that an interrupting event may occur either
earlier or later than MIN, conjectured that it occurs before Task is completed.
Conversely, an interrupting event can occur after the maximum duration only
if Task is violating the constraint set by MAX. That said, we can conclude that
interrupting boundary events can directly raise minimum constraint violations
whenever Task is interrupted before the triggering of MIN. However, being de-
signed as an exception, this latter kind of violation is a predictable temporal
exception, properly captured by event handlers in the process model.

Construct SimpleDurBE(ActivityName, MIN, MAX, El, EN, El_Handler, EN_Han-
dler) may be easily adapted to deal with multiple boundary events or to bound-
ary events of only one kind (i.e., either all of kind interrupting or non-interrupting).
When multiple boundary events are attached to the activity border, then process
elements must be properly added to connecting kit C'ks. For each interrupting
event, a signal event (similar to e§) and the edge connecting it to gateway g
must be added to C'kq. For each non-interrupting event, the connecting kit must
include an end event (similar to e%).

As for boundary events of only one kind, consider the process model of
Figure 9, depicting activity cardiac Magnetic Resonance Imaging, which lasts
20-45 minutes.

21

Such process model is generated through SimpleDurBE(Magnetic Resonance
Imaging, 20, 45, Patient is panicking, null, Handle patient panic, null). Regardless
of duration constraints, magnetic resonance imaging must be interrupted any
time the patient experiences a panic attack. This interruption is captured by
boundary conditional event Patient is panicking, which is usually expected to
occur during the first minutes of the exam. If task Magnetic Resonance Imaging
needs to be interrupted, its minimum duration is violated. However, since the
violation is predictable and modeled in the process, planned activities Calm
patient down and Schedule MRI with sedation are enacted as part of event handler

Handle patient panic.
5 mins t_maxViolated l

® -3
© X
G2 C_EXITED G4

©

0 mins /
O—» +— Q)——>(a) \>—>\+>—>O
S G1 G3 c_EXITED t_minViolated G5 G6 E
i »A) »
Magnetic (A Ll
Resonance N \XG7
Imaging t_EXITED

=) Patient is .)
=) panicking | Handle patient panic

(Calm patient (Schedule MRI
down with sedation
t| EXITED

Figure 9: Process model representing minimum and maximum duration constraints of 20 and
45 minutes for Magnetic Resonance Imaging, which is interrupted anytime a Patient is panicking.
Task interruption is handled by subprocess Handle patient panic.

Instead, non-interrupting boundary events do not directly affect the activity
execution with respect to duration constraints. However, the execution of event
handlers may have some repercussion on the overall activity duration.

As previously mentioned, for a BPMN activity to be in state Completed, all
attached non-interrupting event handlers must have reached a completion state.
With respect to activity duration, this translates into a relaxation of the control
over the exact amount of time needed for Task to execute, since an activity that
is completed within the expected duration range might have to wait for its non-
interrupting event handlers to proceed. At the level of abstraction adopted in the
process of Figure 8, there is no means to distinguish if the maximum duration
constraint is violated by the activity itself, thus the activity is still in state
Active, or by the non-interrupting event handlers started by Non-InterruptingE,
i.e., the activity is in state Completing.

22

Additionally, if we consider that exception handlers may themselves be com-
posed of activities, constraining the duration of an activity subjected to the
occurrence of handlers executed in parallel becomes challenging. Similarly, we
may have a case of an activity that completes earlier than its minimum expected
duration, but it remains in state Completing while it waits for attached non-
interrupting event handlers to complete. In this case, its overall duration ap-
pears to be within the desired time constraints. From the discussed scenario we
can evince that, to model the real duration of an activity, any non-interrupting
event handler associated to Task must observe the same maximum duration
bound set for Task in order to avoid delaying activity completion.

5. Specifying Simple Duration Constraints of Process Regions

In this section, we discuss how to specify the simple duration of Single-
Entry-Single-Exit (SESE) process regions composed solely of tasks or delimited
by split and merge parallel or exclusive gateways. Then, we consider specifying
the duration of non-Single-Entry-Sigle-Exit (non-SESE) regions and extend the
set of process patterns presented in [11] to constrain the duration of arbitrarily
selected regions having multiple entry or exit nodes.

5.1. Simple duration of Single- Entry-Single- Exit regions

Well-structuredness is a desirable property of process models, which pro-
motes ease of comprehension and design errors reduction [20]. As explained
in Section 2.3, structured process models are decomposable into Single-Entry-
Single-Exit regions, SESE regions for short.

Formally, a Single-Entry-Single-Exit region R(cp ey = (Vg, Cr), where Ng
is a set of flow nodes and Cg is a set of control flow edges connecting the nodes
of Ng, is a (subset of a) process model delimited by two flow nodes en, ex € Ng
having the following properties [32]: (i) Every path from the start of the process
to ex includes en; (ii) Every path from the end of the process to en includes ex;
(iii) Every cycle containing en also contains ex and vice-versa.

Given a SESE region R(cy, cz), we refer to flow node en as the “entry node”
of the region and to ex as its “exit node”.

Regardless of its internal structure, a SESE region R, cs) delimited by en
and ex can be easily attached to duration pattern ¢s;mpie through connecting
kit Ck; defined in Section 4.

The formal construct for specifying that the duration of a SESE region de-
limited by entry node EN and exit node EX has to be between MIN and MAX
time units is defined as

SimpleDurSESE(EN, EX, MIN, MAX)

It generates a (sub)process model by using ¢gimpie and Cky as follows:
SimpleDurSESE(EN, EX, MIN, MAX) = (N U Ng U Ng,, C U Cr U {(g1,en),
(ex,e), (e¥,g96)}, @, € U {ef — throwing}, e, U {e§ — signal}, B, §, v,

23

Yty, L*). The new labeling function £* extends L for ey, es, and ek, where
L*(e1) = MAX, L*(e4) = MIN, and L*(e¥) = t EXITED. Moreover, L£* assigns
a label to every node of Ny (e.g., L*(en) = EN, L*(ex) = EX).

Figure 10 shows the duration-aware process models obtained by combining

basic kinds of SESE regions with duration pattern ¢g;mpie and connecting kit
Ck.

flow1
/@)
AX t_maxViolated

M,
flow2

G2 ¢ ExiTeD G4

flows &

g Y
O"<+G1 :ow4 M|N +>>O

3 C_EXITED tminViolated ~ G5 KG6 E

[SESEregion

¢_EXITED t_minViolated

fSESE region

,,,,,,,,,,,,,,,,,, J

(b) SESE region R(g, , g,,) delimited by exclusive gateways. | (c) SESE region R..,.c.,) delimited by parallel gateways.

Figure 10: Duration pattern ¢g;mpie applied to different Single-Entry-Single-Exit (SESE)
regions. (a) Sequence of tasks t1,...tn; (b) SESE region delimited by exclusive gateways Gen
and Gez; and (c) SESE region delimited by parallel gateways Gen and Gegz.

Figure 10(a) shows the duration-aware process model designed to specify
the duration of a SESE region composed by a sequence of tasks ¢ ...¢, and
obtained through SimpleDurSESE(ty,t,, MIN, MAX). The simple duration of
R, +,) is the time that elapses from the beginning of the first element of the
sequence ti, i.e., the entry node, to the ending of last one t,, i.e., the exit node.
Signal event ¥ € Ck; (labeled as t EXITED) is placed after the exit node t,.
The design principles illustrated for the sequence of tasks may be generalized
to any sequence of flow nodes other than gateways, i.e., activities and events.

Figure 10(b) shows the duration-aware process model obtained through
SimpleDurSESE(Gen, Gex, MIN, MAX), which captures the simple duration of a
region R(g,, G.,) delimited by exclusive gateways.

Similarly, the process model of Figure 10(c) considers duration of a SESE

24

region delimited by parallel gateways Ge, and Gey.

For readability, Figure 10(b—) depicts only two process branches within
exclusive and parallel blocks, but the discussed solutions hold for SESE regions
enclosing an arbitrary number of internal flow branches.

In general, SESE regions can be trivial (e.g., a single activity) or arbitrarily
complex (e.g., a whole well-structured process model), as they may contain other
nested SESE regions. However, since the proposed solution exploits modularity,
parallel gateway g1 of ¢simpie can always be connected to the entry node of the
SESE region of interest, while the exit node of the region can be connected to
signal event e} of Ck; that leads to parallel gateway gg of Dsimple-

5.2. Simple duration of non-Single-Entry-Single-FExit regions

Compared to dealing with SESE regions, when considering non-Single-Entry-
Single-Exit regions it is important to keep in mind that duration is influenced
by multiple starting and ending points that need to be “synchronized” [11].

In addition, both the structure of the non-SESE region and the way it is
connected to the remaining elements of a process model affect the structure of
the related duration patterns.

For this reason, we start by dealing with basic non-SESE regions and consider
an increasing number of structural features throughout this section, to show how
duration patterns may be adapted to deal with complex non-SESE regions.

As a first step, we derive non-SESE regions from the basic kinds of SESE
regions outlined in Figure 10. Trivially, there is no way of defining a non-SESE
region spanning a sequence of tasks. Similarly, considering non-SESE regions
spanning multiple alternative process branches is nonsense, since only one of
them is executed at a time. Thus, we are interested in non-SESE regions that
span at least two parallel process branches.

By taking the SESE region of Figure 10(c) as a reference, we retrieve four
possible arrangements of activities enclosed within a SESE region R ., a..)
delimited by parallel gateways. We report them in Figure 11 and discuss how
to specify the duration of the non-SESE region composed by such activities.

In Figure 11, process elements located within R, q.,) but not belonging
to the non-SESE region to constrain are represented as collapsed subprocesses
labeled Other process elements. We refer to such process elements as predecessors
or successors, based on their position with respect to the entry and exit nodes
of the considered non-SESE region, framed by a (blue) dash and dotted line.

In particular, Figure 11 shows all the possible arrangements of predecessors
with respect to the entry nodes of the considered non-SESE region.

The non-SESE region of Figure 11(a) is constituted by two tasks ¢; and t;
that do not have predecessors, but both have successors. The entry and exit
nodes of the non-SESE region coincide.

The non-SESE region of Figure 11(b) generalizes the one in Figure 11(a):
it is constituted by groups of tasks ¢;...%¢,, and t;...t, that do not have pre-
decessors, but both have successors. Entry points are ¢; and t¢;, whereas exit
points are t,, and t,,.

25

flow1 @ flow1 @: @
flow2 MAX t_maxViolated MAX t_maxViolated
OW. ¢ g
Q0 =X

)
17

c_EXITED

G3 CEXITED t_minViolated

\
- }.[b }‘»@J e
. it,ExrrEDL e

Non-SESE c_EXITED t_minViolated

|
Other
t; h
i @)—> proc=:
« t_EXITED H
i E
H Other
% F-’H @ o=,
| t_EXITED H

(a) Tasks ¢; and ¢; without predecessors w.r.t.t;, ;. Entry nodes:¢;,¢;;| (b) Group of tasks?; . . . £,y and ¢; . . . £, with no predecessors w.r.t.

o

exit nodes:¢;,t;. Minimal SESE region: R(Gm,GP 2) ti,t;. Entry nodes: ¢, tj;exit nodes: t,,,,. Minimal SESE region:
B(Gon Cen):
flow1 flow1
@—>®—l O @
fow2 MAX t_maxViolated MAX t_maxViolated
ow. fl :
© &) X low2 & /x
fows CEXTED o l W52, cEXTED G4<
o ¥
flowa MIN cSTART |1 L aona MIN Y G6
O—~& & ~<O>—>\/ X— &0 O—@—=X
S G1 G3 CEXITED t_minViolated G5 Q’ P G3 EXITED t minViolated G5

v

flow5

flows ———
Other (Other Other Other
‘?"‘E“ \ i 1 e\ZIﬁéﬁii 1 |em2n§§z
el emems e ements
t EXITED [t STAR]T l EXITED

Gen G .
Other exr Other Omer
el @> P, G| s
l “t_EXITED t STARJT l EXITED

..... ke .

Non-SESE Non-SEsE
(c) Tasks ¢; and t; with predecessors only w.r.t.#;. Entry nodes:;,t;; | (d) Tasks ¢; and ¢; with predecessors w.r.t. t; and t;. Entry nodes:t;,

exit nodes:t;, t;. Minimal SESE region: R, , .,)- t;sexit nodes:t; ,t ;. Minimal SESE region: R(c.,,, G..)

Figure 11: Non-Single-Entry-Single-Exit (Non-SESE) regions distributed across two flow
branches of a SESE region delimited by parallel gateways. (a) Coinciding entry and exit
points, no predecessors; (b) No predecessors; (c) There is at least one entry node without
predecessors; and (d) All entry nodes have predecessors.

The non-SESE region of Figure 11(c) is composed by two tasks ¢; and t;
where only the entry node t¢; has predecessors. The entry and exit nodes of the
non-SESE region coincide, but this case may be generalized to groups of tasks.

Finally, the non-SESE region of Figure 11(d) is composed by two tasks ¢;
and t; that both have predecessors and successors. The entry and exit nodes
of the non-SESE region coincide, but this case may be generalized to groups of
tasks.

When dealing with non-SESE regions, in order to maintain the design well-
structured, duration patterns must be connected to the entry and exit nodes
of the smallest SESE region enclosing the non-SESE region of interest, e.g.,
R., a..) in Figure 11. However, this scenario requires that process elements
preceding and succeeding the entry and exit nodes of the considered non-SESE
region are ignored by the duration pattern and properly managed. Indeed, mul-
tiple exit nodes must be synchronized and the presence of predecessors influences
when the duration pattern must be enacted.

Let us begin with considering only multiple exit nodes. If a non-SESE region
has multiple exit nodes, they shall be synchronized, as the last one to complete

26

determines the completion time of the whole region. Instead, since duration is
calculated starting from the first among all entry nodes being enacted, entry
nodes do not need to be synchronized.

Consider duration pattern ¢gimpie, introduced in Section 4 and used to spec-
ify the duration of SESE regions in Section 5.1. In Figure 10, signal events eq
and e4 of @simpie, both labeled c_.EXITED, are meant to catch the corresponding
signal event t_ EXITED of connecting kit C'k;, placed after the exit point of the
considered region.

By following the same design principles, a throwing signal event t_ EXITED
shall be placed after each one of the exit nodes of the non-SESE region to
capture and synchronize multiple exit nodes. However, in order to achieve
synchronization, events c_.EXITED must be of kind parallel multiple, that is,
they are assigned arbitrary number of triggers and all of them are required for
the event to fire [13]. In this way, events c_.EXITED located in the context of
event-based gateways G2 and G3, respectively, are triggered only when all the
associated t_EXITED events placed on each exit edge of the non-SESE region
have fired.

Minimum duration is violated when all events t_ EXITED are triggered earlier
than MIN, whereas maximum duration is violated when at least one element of
the region lasts longer than the maximum time allowed for completion MAX.

We call ¢,sgsg this variant of duration pattern ¢gimpie, where the only
difference is given by e ({e2,e4}) = parallel multiple.

Let us consider a non-SESE region NR({cn, ens,....enn},{ew1,exs,....cam})
(Nngr,Cng) delimited by a set of entry nodes ENset = {eny,ens,...,en,} €
Nnr and a set of exit nodes EXset = {ex1,exa,...,ex,,} € Nyg, where there
exist a partial order between entry and exit nodes.

Let R(cn ey = (NR, Cr) be the minimal SESE region enclosing N R (gnset, Exset)-
The nodes and edges of R(cp) may always be partitioned into three sets: the
set P = {en,p1,...,pn} of flow nodes preceding the elements of ENset, the set
Nnr, and the set S = {s1, ..., Sm, ex} of flow nodes succeeding the elements of
EXset, i.e., Ng = {P U Nyg U S}, where |P| >0, |[Nyg| > 2, and |S| > 0.

Without loss of generality, let us consider the case of a non-SESE region
having two exit nodes, i.e., |EXset| = 2. For this basic case, connecting kit
Ckz = {Ny,,C, }, where N, = {e},e5} and C = @.

The formal construct for specifying that the duration of a non-SESE region
N R Enset,exset) = (NNRr,Cnr) delimited by a list of entry nodes ENset and a
list of exit nodes EXset with |EXset| = 2, and enclosed within SESE region
R(enex) = (NR, CR) has to be between MIN and MAX time units is defined as

SimpleDurNonSESE(ENset, EXset, MIN, MAX)

It generates a (sub)process model by using ¢,spse and Cks as follows:

SimpleDurNonSESE(ENset, EXset, MIN, MAX) = (N U Ngr U Nj,, C U Cr
U {(glven)v (e‘rlvellc)a (e]fvsl)a (ex?ve§)7 (6§a52)7 (ex»QG)}a o, € U {{ellcveg} =
throwing}, ey, U {{e},e5} — signal}, B, &, vr, Yy, L*).

The new labeling function £* extends L for ey, e4, ¥, and e§ where L*(e;) =
MAX, £*(es) = MIN, £*(e}) = t EXITED, and £*(e) = t. EXITED. As in the

27

previous case, L£* assigns a label to every node of Ng (e.g., L*(en) = EN,
L*(ex) = EX).

Formal construct SimpleDurNonSESE(ENset, EXset, MIN, MAX) can be easily
generalized for dealing with non-SESE regions having more than two exit nodes:
it is sufficient to add one signal event e¥ to connecting kit Cks for each exit node
ex; of EXset, the edge (ex;, e¥) connecting them, and the edge (¥, s;) connecting
the signal event of the connecting kit with the first process successor encountered
after ex;.

Duration pattern ¢, sgsg can be seen in the duration-aware process models
of Figure 11(a)—(c), properly combined through connecting kit Cks with the
non-SESE regions to constrain.

As it can be evinced from Figure 11, ¢,sgsg works properly when there
is at least one entry node of the non-SESE region N R (gnset Exset) that either
corresponds to the entry node of the minimal SESE region Ry e,) enclosing
N R (Enset,Exset) OF it is directly connected to it (i.e., either en and en; coincide,
or control flow edge (en, eny) exists).

When there are process elements lying between the entry node of R(.y cx)
and every entry node of the N Rgnset Exset), duration pattern ¢,spsr must be
slightly modified since the enactment of N R(gnset,Exset) 18 delayed with respect
to the one of Rcp, ex)-

As an example, let us consider Figure 11(d). Starting from Ge,, both entry
nodes t; and tj have predecessors, namely Other process elements 1 and Other
process elements 2.

Since duration pattern ¢,sgsg is anchored to Ge,, there must be a way
of detecting when the first entry node of the constrained non-SESE region is
enacted. To this end, a throwing signal event t START is added to R, G..)
immediately preceding each entry node of the non-SESE region. This event,
delimits the boundary of the non-SESE region and triggers the corresponding
signal event c_ START placed before G1 and used to enable the whole duration
pattern whose core is ¢, s5EsE-

We call ¢, s5sEPreq this variant of ¢, sgsg able to handle predecessors with
respect to the entry points of the considered non-SESE region. ¢,sgsgpreq can
be connected to the minimal SESE enclosing the considered non-SESE through
connecting kit Cky = (Ny,, Cy,), where Ny, contains one throwing signal event
labeled t_.START for each entry node of the non-SESE region having predeces-
sors, and one event t_EXITED for each exit node of the non-SESE region, while
Ck4 =J.

Overall, non-SESE regions having predecessors with respect to each entry
node and multiple exit nodes can be handled by using a combination of signal
events t START and t_EXITED, connected to every entry (respectively exit) node
of the region.

Figure 11(d) shows the duration-aware process model obtained by combining
non-SESE region N R(ti,tj) with duration pattern ¢,sgsgpreqs and connecting kit
Cky composed of four signal events, two labeled as t START and two labeled as
t_EXITED.

28

> A)
g -4
t_maxViolated
X

1

<+G 6
Y
»@)—X

t_minViolated G5 <+>’O

=/ G8
: c
; Other process : Alternative . Other process
s elemgms 1 . task 1 elemgnts 2
s EG1[! t_OTHER
I SIS ! P ——
! e

I
Q_T Task 1 -|—>@ z
t_START . | t_EXITED

Predecessor I Non-SESE
of Task 2 I |

<) H . Other process
Task2 <>'>/>_>/>_> elements 3

EEGZ : t_START l It EXITED]
<®> > Alternative |

task 2
t_OTHER

1

@ Alternative |
task 3

t_OTHER

Figure 12: Duration-aware process model representing duration pattern ¢, sgsgGen combined
with a non-SESE region whose entry nodes have predecessors including exclusive gateways.

So far we have considered predecessors and successors as collapsed sub-
processes, that is, as SESE regions. In this special scenario, all the process
paths that start from the entry point of the minimal SESE R, ¢.) enclosing
the non-SESE region of interest N R(gnset,Exser)y reach also the entry points of
the latter one.

However, when predecessors cannot be collapsed into SESE blocks, it is not
always true that all process paths including en also include elements of ENset.
In particular, when exclusive gateways in R(cy ¢s) precede the entry nodes of
N R(ENset,Exset), Process paths not leading to N R (Enset,Exsery may be chosen at
run-time. Since in this case there is no need to continue with measuring dura-
tion, the duration pattern must be able to allow the process prosecuting its flow
without taking any action.

As an example, consider the duration-aware process model shown in Fig-
ure 12. The non-SESE region N R ({Task1, Task2},{Taskl, Task2}) has multiple process
elements preceding its entry and exit nodes, including exclusive gateways EGL,
EG2, and EG3.

This setting is more challenging than those introduced above, as predecessors
include alternative paths that do not belong to the non-SESE region but may

29

be chosen before reaching the entry nodes of the region (paths outgoing from

EG1, EG2, and EG3 not leading to Alternative Activity 1, Alternative Activity 2,

and Alternative Activity 3). Thus, besides events t_ START, denoting when the

non-SESE regions is enacted, we need to use signal events t OTHER denoting
that a path not belonging to the non-SESE region has been chosen and, thus,
the duration pattern is no more needed.

The following guidelines summarize how to place signal events to delimit the
non-SESE region to constrain in the discussed scenario:

— a throwing signal event t_ START must be placed before every entry node of
the non-SESE region;

— a throwing signal event t_ OTHER must be placed on every edge outgoing from
an exclusive gateway located within the smallest enclosing SESE region and
alternative to the non-SESE region to constrain;

— a throwing signal event t_ EXITED must be placed after every exit node of the
non-SESE region.

The placing of events t_ OTHER is probably the trickiest one, as the concept
of “alternative path” is transitive with respect to all nested exclusive gateways.
That is, all paths that are alternative to the non-SESE region must be marked
with a t_ OTHER event.

As an example, consider again the process of Figure 12. The minimal SESE
region R, c,) contains exclusive gateways EG1, EG2, and EG3 preceding the
entry nodes of N R ({Task1, Task2},{Taskl, Task2})- Since both gateways EG2 and EG3
have outgoing paths that are alternative to Task 2, a t OTHER event must be
placed on each of these paths. Starting from duration pattern ¢,spsgpred,
two catching signal events c_.OTHER, corresponding to all events t OTHER are
placed in the context of event-based gateways g2 and g3 to let tokens flowing
ineffectively through the duration pattern every time an alternative path is
chosen.

We call ¢,s5psEGen this latest variant of duration pattern ¢,sgsgpred as
it is the more general duration pattern for handling duration of SESE regions
having an arbitrary structure. Parallel gateways belonging to predecessors do
not generate such problems, as the all paths outgoing from them are taken.

We intentionally leave out non-SESE regions that include part of looping
structures, as their management is requires a specialized approach [31].

5.8. Composing duration patterns for process regions

Thanks to the composition properties of SESE regions [32], the proposed
modular design approach allows one to (i) easily nest temporally constrained
SESE regions within each other and (ii) specify the duration of any arbitrarily
selected non-SESE region in the process. Indeed, in the worst case, the whole
process would be the minimal enclosing SESE region for a certain multi entry
or exit block.

In this paper we do not deal with duration constraints applied to process
loops and other repetition structures, as their complexity would require a ded-

30

R1(11,78) Dur(24,48)

N A S 1]
R2 g1y {r2. 733y,
Dur:(4,6) 1

I}

1}

I

I

I

T1 - Check
intracranial
hypertension

High
hypertension?

T6 - Check
ventilation
machine
availability

R3(75.15)
Dur:(4,4)

ventilation

mANNTOL

]
]
GLYCEROL 1]

|

| T5-

|| Administer
| Mannitol
L

parenteral?

X I

|
Mannitol or Glycerol? { Oral or ::
|

PARENTERAL ORAL I

|
| I
|]
I T2- 13- I
Administer Administer | 1]
| Glycerol Glycerol "
| (parenteral) (oral)
]
|

T4 - Check
haematology

T8 - Re-check
intracranial
hypertension

T9 - Register
all treatment
data and
parameters

Figure 13: Simple process for the management of intercranial hypertension. SESE region R1
must last 24 to 48 hours; non-SESE region R2 must last 4 to 6 hours; SESE region R3 (task
T5) must last exactly 4 hours.

icated approach. Therefore, the proposed duration pattern for addressing non-
SESE regions does not apply to non-SESE regions containing parts of a loop
beside other process elements. Instead, @gimpie can be used to specify the du-
ration of complete loops forming SESE regions.
As a practical example, consider the process shown in Figure 13 describ-
ing a few basic steps for the management of intracranial hypertension, which
include administration of glycerol, osmotherapy with mannitol, and hyperven-

31

R1(71,18)Dur:(24,48)

T1 - Check
intracranial
hypertension

(]
[}
- . (] R2_t_mjnViolateq
3% R3(75,15) [
RR=1PN ORAL ||
1gke T6 - Check 0
£597° ventilation -
2859 machine Administer |
aSS ?/,&Juv- availability | | Glycerol]
b z :I T5- I (parenteral) [l
Oz | Administer (]
) 58 :' Mannitol |-~ T ¥ - "~~~ ~~ "7
; o -_L_L |
BRI (&) r2_t_ExiTeD @ R2_t_FXITED
T7 - Appl S OL 2,
pply || SOE 2 |
hyper- S]
ventilation %% '
!

T8 - Re-check
intracranial
hypertension

T9 - Register
all treatment
data and
parameters

Figure 14: Example of attachment of duration patterns to process regions R1, R2, and R3.

tilation for treating severe patients [33]. Intracranial hypertension is a common
neurologic complication in critically ill patients, which is usually managed with
sedation, drainage of cerebrospinal fluid, and osmotherapy with mannitol. Man-
nitol should be administered for patients with elevated intracranial hyperten-
sion. Glycerol can also be prescribed and, during administration, haematology
should be systematically checked since it may induce haemolysis.

Let us assume the following duration constraints. R1 is the SESE region
starting with task T1 and ending with task T8 and must last 24 to 48 hours. R2

32

is the non-SESE region starting with T1 and ending with T2 or T3, depending
on which administration route is chosen, and must last 4 to 6 hours. Finally,
R3 is represented by task T5 which should last exactly 4 hours.

In order to specify the duration of R1, R2, and R3 we associate the most
appropriate duration pattern to each region, by making sure that these are an-
chored correctly to the main process and by specializing signal events, so that
the management of one process region does not affect the others. This ap-
proach facilitates the composition of process blocks, without compromising the
generality of our solution. Indeed, the process model maintains the structural
relationships between different regions and, of course, an expert designer can
also decide to reduce the number of used signal events by combining them when
regions share common starting/ending points.

Figure 14 shows where the duration patterns, and the signal events belong-
ing to the related connecting kit can be positioned on the process of Figure 13
(the constructs for constraining R1 and R3 are only sketched in Figure 14, for
clarity reasons). The duration patterns added for duration specification are not
visible to final users as they may be collapsed in duration-aware subprocesses.

6. Specifying Deferred Activity Duration Constraints

In this section, we introduce the modeling of activity duration considering
the case of having multiple duration ranges associated to one activity and as-
suming that the choice of which duration range applies is taken at run-time,
that is, after activity initiation.

______ v’
1 '?‘ i 1
da | v 1
0l H min - Mmary ,
11 H] 1
[man max
_———— o 2 2 -
] 7
start duration
choice
—_—

allowed interval for duration choice

Figure 15: Example showing two different duration ranges di and dg associated with one
activity. The one that applies is chosen after activity initiation but at a moment in time
preceding the smallest between min; and minsg.

In particular, we deal with a process activity that can be subjected to two or
more alternative duration constraints dy,ds, ..., d,. The choice of which among
the constraints applies to the activity is made after its initiation, but prior to
the smallest minimum duration bound among those of dy, ds, . .., d, and cannot
change afterwards. Figure 15 shows the relationship between activity initiation,
duration constraints, and duration choice. We refer to this kind of constraint

33

as deferred duration, meaning that the choice of which duration range applies

is deferred with respect to activity initiation.

As a motivating example, consider the following clinical setting. A patient
is affected by an infection caused by Staphylococcus Aureus, a virulent and life-
threatening bacterium that requires antibiotic treatment. The latter is admin-
istered taking into consideration the patient’s allergies and bacteria resistance
patterns. Typically, the therapy can last either 14 days or 4-6 weeks, depending
on the extent of the infection. In particular, a 14-days therapy is administered
only if fever disappears within 72 hours after treatment initiation and blood
cultures are negative. However, the results of blood analyses are obtained 3 or
4 days after the beginning of the therapy. This means, that the choice of the re-
quired duration of the therapy is taken after empirical antibiotic administration
has started (i.e., 3-4 days after therapy initiation), but earlier than the lowest
minimum duration constraint (i.e., 14 days).

This meaningful example motivates the introduction and modeling of this
novel kind of duration. Below, we formalize the structure of duration pattern
Gde ferred considering two different duration ranges [mini, maz] and [mins, maxs)
associated to the activity to constrain.

Formally, ¢geferreda = (N, C, @, €, €1y, B, 0, Vr, Ty, L£) has the following struc-

ture:

- N ={AUGU E} is the set of flow nodes partitioned in:

A= ; G = {917 92min, 92max;s 93mins 93max, 94, 95, 96, 97, 98, 99, g10, gi1,
912, 913, 914}; E = {Estart) Eint U Eend}’ where Estart = {S}a Eint = {61,
€2, €3, €4, €5, €q, elf, €g, €9, €10, €11, €12, €13, €14, €15, €16, €17, €18, €19, €20,
€21,€22, €23, €24}, and Eeng = {e};

- C= {(5791)7 (glamein)a (glag2maz)a (glngmin); (glag3maz)7 (QSmazv el)a (93maz>
62)a (93mazv 63)» <93min»€4)7 (93min7 65), (QBmin, 66)7 (92ma:m 67); (QQmaza 68);
(92maz>€9)s (G2min;€10); (92min,e11), (e1,96), (g6,€12), (g6;€15), (e12,e13),
(e13,€14), (€14,99), (€15,99), (99,913), (€2,913), (€3,913), (€s,912), (€5, €16),
(e16,912), (€6, 912), (€7,95), (g5, €17), (g5, €20), (€17, €18), (€1s,€19), (€19,98),
(98,911), (920,98), (es,g11), (€9, 911), (€10,94), (94, €21), (94, €23), (e21,e22),
(€22, 97), (€23,97), (97.910), (e11,910), (913,914), (912,914), (911,914); (10,
g14); (g14,€)};

- o=

- €tr({8,61762,63764,65,66767,68769,610,611,61276157617762076217623}) = catch-
ing, €-({€13, €14, €16, €18, €19, €22, €24, €}) = throwing;

— ey ({s,e}) = none, e, ({e1, e4, €7, 10}) = timer, ey, ({e2, €3, €5, €6, €5, €9, €11, €13,
€14, €16, €18, €19, €22, €24}) = signal, ey ({e12, €15, €17, €20, €21, €23}) = condi-
tional;

- =

- 0=

= ({915 G2min, 92maws G3min, I3masw, 94, 95, 96} = split, v-({g7, gs, 9o, g10, 911,
912, 913, 14} = Merge;

- %y({gh 914} = parall€l7 Pyty({QQmin> 92mazsr 93mins 93max; 94, 95, 96} = event—
based iy ({97, gs, 9o, 910, 911, G12, G13} = exclusive;

— L(s) =S, L(g1) = GL, L(gomin) = G2-MIN, L(gomaz) = G2.MAX, L(g3min)

34

= G3_MIN, E(QBmax) = G3_-MAX, 5(94) = G4, L(g5) = G5, ['(96) = G6, L(g7)
= G7, 5(98) = G8, 5(99) = GY, /3(910) = G10, 5(911) = Gl1, L(g12)
G12, L(g13) = G13, L(g14) = G14, L(e1) = null, L(ez) = c_EXITED, L(e3)
= c_cancelMax, L(e4) = null, L(e5) = c_EXITED, L(eg) = c_cancelMin, L(e7)
= null, L(es) = c_EXITED, L(eg) = c_cancelMax, L(e19) = null, L(e11) =
c_EXITED, L(ei2) = null, L(e13) = t_cancelMax, L(e14) = t-maxViolated,
L(e1s) = null; L(e16) = t-minViolated, L(e17) = null, L(e1g) = t-cancelMax,
L(e1g) = t_maxViolated, L(ez0) = null, L(es1) = null, L(ess) = t_cancelMin,
L(eaz) = null, L(e24) = t-minViolated, L(e) = E.

It is worth noticing that the two duration ranges captured by ¢geferreqd are
not required to be disjoint, as only one of them can be chosen at a time.

We reuse connecting kit Ck; = (Ng,,Ck,) where Ni, = {ek} and C = @.
Event e} triggers all four events e, es, e, and €11 of dge ferred Whenever they
are actively listening (indeed L(ez) = L(e5) = L(es) = L(e11))-

The formal construct for specifying that the deferred duration of an activity
named ActivityName has to be either between MIN1 and MAX1 or MIN2 and
MAX2 time units, depending on whether condition C1 or C2 holds is defined as

DeferredDur(ActivityName, MIN1, MAX1, MIN2, MAX2, C1, C2)

It generates a (sub)process model by using ¢ge ferreq and Cky as follows:

DeferredDur(ActivityName, MIN1, MAX1, MIN2, MAX2, C1, C2) = (N U Ny,
U {a},C U {(g1,a), (a,e}), (¥, g14)}, @ U {{a > task} or {a > subprocess}},
e U {e} = throwing}, e, U {ek — signal}, B, 8, Vr, Vey, L)

The new labeling function £* extends L for ey, eq4, €7, €19, €12, €15, €17, €20,
ea1, €23, €¥, and a, where L*(e;) = MAX2, L*(e4) = MIN2, L*(e7) = MAX1,
E*(Glo) = '\/”N].7 E*({615,617,621}) = Cl, L*({Elg,ego,egg}) = C2, ﬁ*(e’f) =
t_.EXITED, and £*(a) = ActivityName.

In the duration-aware process model of Figure 16 the considered activity
is represented as a task, i.e., a(a) = task and L*(a) = Task, without loss of
generality.

For modeling Task deferred duration, we should take four values into con-
sideration, which represent the minimum and maximum extremes of the two
allowed duration values, i.e., d; € [MIN1, MAX1] and dy € [MIN2, MAX2], but
the same solution can be generalized to deal with more than two duration ranges.

The intuition behind the behavior of this process relies on the assumption
that among the four duration extremes MIN1, MAX1, MIN2 and MAX2 there is
always a smallest one, regardless of how the two duration ranges are related to
each other (If MIN1 = MIN2, then we can arbitrarily select one of them). This
lowest minimum duration value is needed for ordering duration ranges based
on the value of their minimum duration since it is crucial to know the latest
time-instant at which Task duration must be chosen.

Without loss of generality, let us suppose that d; is the time length having
the lowest minimum duration (MIN1 in Figure 16).

The behavior of the process can be explained as follows. After start event S
is triggered, parallel gateway G1 splits the flow into five branches, one directed

35

flow11

t_maxViolated

flows8

O——@

t_minViolated

c_cancelMin

T canceIMax

C_ canceIMax

MINT is always the lowest duration value
among the two considered.

\A

~O

c_EXITED

Figure 16: Duration-aware process model for specifying that the deferred duration of Task
may either be di € [MIN1, MAX1] or d> € [MIN2, MAX2]. The choice (e.g., C1 or C2) of which

t_cancelMin $G7
X
¢G1 0
-@
t_minViolated
» Task @
t_EXITED

between d; and dg applies is deferred after task initiation.

36

towards Task and the others ones leading to event-based gateways G2_MIN,
G2_MAX, G3_MIN, and G3_MAX.

From this point on, the process behavior depends on the moment of Task
completion, on which duration range is chosen, and on the kind (if any) of
violated duration (i.e., minimum or maximum).

Duration choice is represented by conditional events which are triggered by
the environment whenever a certain condition is true [13]. In general, anything
can be a condition and conditions are independent of processes. Conditional
events exist only of type catching and are triggered when a data-based condition
evaluates to true [18]. In this paper, we assume that when a conditional event
is enabled by a token, the process checks whether the associated condition is
true and, if so, the event is triggered. Otherwise, the token will remain on the
event (i.e., the event will remain enabled) until the associated condition becomes
true. In particular, if d; is the chosen duration, then the condition associated to
conditional event C1 is true, otherwise the condition associated to conditional
event C2 holds and ds is chosen.

In the described scenario, minimum duration is violated when:

(a) Task completes before its desired duration is chosen;

(b) Task ends before the lowest minimum value set for duration, that is MIN1,

when the chosen duration is d;

(¢) Task completes before MIN2 when the chosen duration is ds.
(a) If Task completes earlier than knowing which is the chosen duration range,
signal event t_ EXITED is thrown to be caught by all the four corresponding
events c_EXITED located on flowl, flow4, flow7, and flow10. Then, the violation
of minimum duration constraint is signaled by both events t_minViolated on
flowl and flow7 before the whole process can complete. Since duration range
has not yet been chosen, all minimum durations are violated.

(b) If Task completes earlier than MIN1, being MIN1 the smallest admissible
duration value, a violation has to be signaled regardless of which is the chosen
duration range. In this case, the process behaves as discussed in (a), as signal
event t_EXITED is caught by all the corresponding listening events.

(c) If Task completes earlier than MIN2, a violation must be signaled only
if the chosen duration range is dy. Event-based gateway G4, enacted right after
event MIN1, differentiates the process behavior with respect to which duration
range has been chosen. If Task duration is d;, no minimum violation is signaled:
signal event t_cancelMin is thrown to trigger the corresponding event c_cancelMin
on flow6, thus discarding timer event MIN2.

If Task duration is do, then a minimum duration violation is observed. In
particular, on flow2 timer event MIN1 has already fired as MIN1 < MIN2. In
the configuration of event-based gateway G4, conditional event C2 is triggered
to let the process flow proceeding until exclusive gateway G7 without further
signaling. The detection of the activity early completion is handled by signal
events c_.EXITED and t_minViolated located within flow7. Similarly, it is worth
noticing that in case d; < da, also event C2 in the scope of G5 is triggered, as
there is no need to check duration MAX1.

For all the discussed cases (a)—(c), the process flows branching from G2_MAX

37

t maxV|oIated

+ O—>\+ ®—> X

t canceIMaxQ

t canceIMax n

\+

t canceIMax 1

t_cancelMaxn—1

c_cancelMax
MIN1 T canceIMlnz A

._ o .
Lcanc.eIMlni

t_cancelMiny,

F—e@)—+ Y
L0 o o

t_cancelMinn,

B> @——

Cn t_cancelMin,

@
t_cancelMin,—1
@ @

Cc_EXITED t_minViolated

. Task @&—

t_EXITED

Figure 17: Complete process combining control structures for capturing deferred duration
which is chosen among an arbitrary number of duration ranges.

38

and G3_MAX have the following behavior. Regardless of which is the maximum
duration considered, if the corresponding timer event has not yet been trig-
gered, then either signal events c_EXITED on flow4 and flowl0 or signal events
c_cancelMax on flow3 and flow9 will be triggered letting the flow proceed without
any further signaling.

When considering violations of maximum duration the process behaves as
follows. Despite durations d; and dy are ordered according to the lowest value
for minimum duration, timer event MAX1 may be assigned a duration value
smaller, equal, or greater than the one of timer event MAX2.

If the chosen duration is d; the condition associated to conditional event C1 is
true. When maximum duration is violated, signal event t_cancelMax following
event-based gateway Gb and event Cl is thrown to “cancel” event handlers
for do. In particular, if MAX1 < MAX2, the triggered signal is caught by
signal event c_cancelMax on flow9. Then, event t_maxViolated on flow5 indicates
that the maximum duration has been violated. If MAX1 > MAX2, then signal
c_cancelMax is never caught as flowll has been chosen.

Besides the discussed cases, we consider the possibility that either (i) MIN1
= MIN2, or (ii) MAX1 = MAX2. We prove that the model behaves soundly for
the mentioned cases as follows.

(i) If MIN1 = MIN2, the lowest minimum can be chosen arbitrarily. A mini-
mum duration violation will involve both dy and ds, as for the previously
discussed case (b).

(if) If MAX1 = MAX2, signal event t_cancelMax, thrown after the timer event
representing the chosen maximum duration limit, is never caught. In
detail, if we choose d; as the preferred Task duration, even if timer event
MAX2 is triggered concurrently to MAX1, conditional events Cl and C2
in the scope of event-based gateway G4 ensure that signal t_maxViolated
is triggered only once. Specular behavior is expected if do is chosen.

When dealing with more than two duration ranges, signal events labeled
t_cancelMin, c_cancelMin, t_cancelMax, and c_cancelMax in Figure 16 must be
specialized into t_cancelMin;, c_cancelMin;, t_cancelMax;, and c_cancelMax; in
order to let the process flow through the branches designed to represent duration
ranges D; that are not chosen by the activity. Besides, one conditional event C;
must be added for each possibly chosen duration d;.

Figure 17 sketches how duration pattern @geferred can be extended with
specialized conditional and signal events to handle more than two duration
ranges.

7. Specifying Shifted Duration Constraints

In this section, we introduce patterns for specifying shifted duration con-
straints that extend and complete the preliminary proposal described in [19].
Shifting the activity duration means that duration is measured only after a
certain condition is met, i.e., the duration of the activity is evaluated starting
from a particular moment in time that is shifted forward in time with respect
to activity initiation.

39

As an example, let us consider the treatment of uncomplicated pneumococ-
cal pneumonia, a common lung infection leading to hospitalization. Antibiotic
therapy must be initiated immediately after the onset of the infection. Then,
depending on the extent of the infection and the patient clinical response, an-
tibiotic administration is continued for 5-7 days after defervescence. The overall
duration of therapy should not exceed 10 days. If the patient does not defervesce
within 3-5 days, antibiotic susceptibility must be revised.

: CHE Review
alternative activities Susceptibility
other events @ MAXSTART | !
i |
0 1 |
activity Antibiotic Therapy ! !
I
:
. I |
milestone event (ME) @NO FEVER z! x|
- = |
. = =
time (days) —t t t — =
0o 1 2 4 5 6 7 819 10
—

shifted duration

Figure 18: Shifted duration exemplified with respect to activity Antibiotic Therapy to treat
pneumococcal pneumonia.

The concept of shifted duration for the introduced example is shown in
Figure 18. Antibiotic Therapy begins, but its duration d € [5, 7] days is measured
starting from milestone event (ME) NO_FEVER. If the latter does not occur
within 5 days (the maximum time allowed for defervescence), event MAX_START
triggers alternative activity Review Susceptibility.

To represent shifted duration of an activity, we designed duration pattern
Oshifted = (N, C, @, €, €y, B, 0, Yr, Vty, L) & process fragment which is formal-
ized as follows:

- N ={AUGU E} is the set of flow nodes, where:
A={a}; G={92, 93, 91, 95, 96 97, 98, 99 }; £ = {Estart UEintUEena} where
Estart = {5}, Eint = {e1, €2, €3, €4, €5, €6, €7, €5, €9, €10}, and E,q = {e};

- C= {(3,91), (91792) (g2a el)a (92,62)7 (923 63)7 (63, 64)3 (64799)7 (61,@1), (alagg)a
(62793)’ (93794)’ (93795)7 (94765)7 (94766)7 (66796)7 (95,67)7 (95768)’ (65769)’

(egagﬁ)a (96798>7 (687610>7 (67797)7 (610797)7 (97798), (gSa 99)5 (997glo)a (.91076)}
is the set of control flow edges;

— afay) = subprocess;

— ({5, e1,e2,e3,€5,¢€6,€7,e8}) = catching, e;.({es, eg, €10, €}) = throwing;

— ey({s,e}) = none, ey ({e1,es5,e7}) = timer, ey ({es, €4, €6, €5, €9, €10}) = sig-
nal, exy({e2}) = conditional;

- B=wo;

- 6=0;

- v({91,92,93,94,95}) = split, v-({gs, g7, g8, 99, g10}) = Mmerge;

40

= Yy({91, 93, 95, 910}) = parallel, v, ({g6, g7, 90}) = exclusive, and vy ({g2, 9a,
gs}) = event— based,;

— L(a1) = null, L(s) =S, L(e1) = null, L(e2) = null, L(e3) = c_EXITED, L
= t_minViolated, L(e5) = null, L(eg) = c_EXITED, L(e7) = null, L(es
c_EXITED, L(eg) = t-maxViolated, L(e19) = t-minViolated, L(e) = E, L(g;
Gl, L(g2) = G2, L(g3) = G3, L(ga) = G4, L(g5) = G5, L(gs) = G6, L(g7
G7, L(gs) = G8, L{go) = G9, L{gro) = G10.

We reuse connecting kit Cky = (Ng,, Cr,), where Ny, = {ek} and Cy, = @.

Event e’f triggers all three events es, es, and eg of @spifiea Whenever they are

actively listening (indeed L(ez) = L(eg) = L(eg)).

€4

N— N
Il

~—

MAX_START
Alternative
Activity

*+| If the milestone event does not occur within this time,
the process performs an alternative activity

flow1
Milestone Event: @
Segin easuring oz M t.maxViolated
T %,
A e c_EXITED
B~ X+>0
G1 G2

c_EXITED t_minViolated

—© @)

C_EXITED t_minViolated | No shifted
duration
flowe Task @
t_EXITED

Figure 19: Duration-aware process model for specifying the shifted duration of a Task.

Below we consider specifying the shifted duration of an activity named Activ-
ityName has to be between MIN and MAX time units, which are counted starting
from the occurrence of milestone event ME. If ME does not occur within a cer-
tain time limit MAX_START, then alternative activity AltActivity is conducted.
The formal construct is defined as:

ShiftedDur(ActivityName, MIN, MAX, ME, MAX_START, AltActivity)

It generates a (sub)process model by using ¢sp; rted and Ck; as follows:

ShiftedDur(ActivityName, MIN, MAX, ME, MAX_START, AltActivity) = (N
U N, U {a},C U {(g1,a), (a,e}), (e¥,g10)}, a U {{a — task} or {a
subprocess}}, € U {ef +— throwing}, ey, U {e¥ — signal}, B, &, vr, Yiy
L*).

41

The new labeling function £* extends £ for a, aj, ey, e, es, er, and e¥,
where £*(a) = ActivityName, £*(a;) = AltActivity, £*(e;) = MAX_START,
L*(e2) = ME, L*(e5) = MAX, L*(e7) = MIN, and £*(e¥) = t_EXITED.

Figure 19 depicts the complete duration-aware process model for specifying
the shifted duration of an activity, obtained through ShiftedDur(Task, MIN,
MAX, ME, MAX_START, AlternativeActivity). Without loss of generality, the
considered activity is represented as a task, i.e., a(a) = task and L*(a) = Task.

It is worth noticing that both patterns ¢gimpie and @spifieq are both attached
to the activity to be constrained through connecting kit Ck;.

The complete duration-aware process model, shown in Figure 19 behaves as
follows. Once the process is started, the flow is split by G1 into two branches:
flow6 is directed towards Task, which can begin its execution, while on the other
branch event-based gateway G2 is enabled. This realizes a race condition be-
tween the occurrence of timer event MAX_START, which ensures that something
alternative is done if the milestone event does not occur, milestone event ME,
and signal event c_EXITED, which handles the case in which Task ends before
any of the other two events has occurred. In this latter “borderline scenario”,
minimum violation occurs, as captured by the follow signal event t_minViolated,
but the measurement of shifted duration has not yet started. As mentioned in
Section 6, conditional event ME can fire when it is enabled by the incoming
token and the associated condition is true.

The detection of shifted duration violations is realized by using a simple
signal-based communication pattern. When Task completes its execution, signal
event t_EXITED is broadcast to be caught by any of the corresponding c_.EXITED
events that are active at the moment of broadcasting. Based on when Task ends,
any of the following mutually exclusive scenarios can occur.

Minimum shifted duration is violated if Task completes earlier than MIN.
In this case, both signals c_.EXITED are triggered, whereas the other process
branches outgoing of event-based gateways G4 and G5 are withdrawn. Then,
signal event t_minViolated, is used to capture the violation. Finally, once syn-
chronization has occurred at G10, the process can conclude.

If Task ends anytime between MIN and MAX no violation occurs and signal
event t_ EXITED is caught only by the corresponding c_EXITED on flow2, as
timer event MIN has already fired.

Maximum shifted duration is violated whenever Task execution lasts longer
than MAX. In this case, right after MAX, signal t_maxViolated is broadcast to
detect that maximum shifted duration has been violated. Trivially, as timer
event MIN had also been triggered before MAX, the process can complete once
synchronization has occurred at G10.

In [19], we also propose a pattern for specifying a shifted duration with reset.
Indeed, ME captures the beginning of a certain condition that must hold for the
whole period of shifted duration. When such condition is not more valid, we
must capture the change and reset shifted duration.

For example, let us consider hospitalization and discharge from hospital.
Discharge criteria require patients to have been afebrile for at least 24 hours

42

to be safely dismissed [19]. This means that, whenever fever (re-)appears the
patient must wait for temperature to lower within normal ranges and, from that
moment, stay in hospital for 24 fever-free additional hours. To specify the shifted
duration of activity “hospitalization”, which should be of at least 24 hours after
“fever disappears”, our milestone event we should consider reset condition “fever
comes back”, which requires physicians to wait until fever disappears again
before re-counting 24 hours.

C® o Alternative
7| Activity

MAX_START @
N flowz MAX t_maxViolated
©
5’4 C_EXITED
ow3

&)

G1 G12

flow7

—0 ~®)— ,
c_EXITED t,minViolated'---Eo shifted
duration

flow8
> Task »(A)
t_EXITED

Figure 20: Process model for specifying the shifted duration of a task with reset.

Formally, the structure of duration pattern ¢sp;fires = (N, C, @, €y, €1y, 5,
3, Yry ey, L) for specifying shifted duration with reset is as follows.
- N={AUGU E} is the set of flow nodes, where:
A={ar}; G = {91, 92, 93, 94, 95, 96,97, 98,99, 910,911, 912}; £ = {Estare U
Eint U Eend} where Fgiqre = {5}7 Einy = {617 €2, €3, €4, €5, €6, €7, €8, €9, €10,
ei1, e12}, and Eepq = {e};
-C = {(8,91), (917912)7 (912,92), (92761)7 (92,62), (92763), (63,64)> (64,99),
(e1,a1), (a1,99), (€2,93), (93,94), (93.95), (9a,€5), (94,€6), (94, €7), (€6, 76),
(e7,96), (5. €8), (95, €9), (95, €10), (€5, €11), (€11, 96), (6, gs), (€9, €12), (€8, g7),

(e12,97), (e10,97), (97,9s), (98:99)s (99, 911), (911, 910), (911,912), (910,€)} is
the set of control flow edges;

— aay) = subprocess;

— € ({s,€1,€2,€3,€5, €6, €7, €8, €9, €10}) = catching, e ({es, €11, €12, €}) = throw-
ing;

— ey({s,e}) = none, ey({e1,e5,es}) = timer, ey ({e3, €4, €6, €9, €11, €12}) =
signal, €y ({ez, e7,€e10}) = conditional;

- B=g;

-0=a;

= ({91, 92,93, 94, 95, 911}) = split, v.({g6: 97: s 99, 910, g12}) = Merge;

43

= Yty({91. 93, 98, 910}) = parallel, viy({g6,97, 99,911, g12}) = exclusive, and
Yy ({92, 94, g5}) = event— based;

— L(ay) = null, L(s) =S, L(e1) = null, L(e3) = null, L(e3) = c_CEXITED, L(e4)
= t_minViolated, L(e5) = null, L(eg) = c_EXITED, L(e7) = null, L(es) =
null; L(eg) = c_EXITED, L(e1o) = null, L(e11) = t-maxViolated, L(e12) =
t-minViolated, L(e) = E, L(g1) = G1, L(g2) = G2, L(g3) = G3, L(g4) = G4,
L(gs) = G5, L(ge) = G6, L(g7) = G7, L(gs) = G8, L(go) = G9, L(g10) = G10,
L(g11) = Reset?, and L(g12) = G12.

We reuse connecting kit Ck; = (Ng,,Ch,), where Ny, = {e¥} and Cy, = @
Event ef triggers all three events es, eg, and eg of ¢ep; ftRes Whenever they are
actively listening (indeed L(eg) = L(eg) = L(eg)).

The formal construct to specify the shifted duration of an activity Activity-

Name with the possibility of resetting the duration count in case of a reset event
R is defined as:

ShiftedDurR(ActivityName, MIN, MAX, ME, MAX_START, AltActivity, R)

It generates a (sub)process model by using ¢sp; rtres and Cky as follows:

ShiftedDurR(ActivityName, MIN, MAX, ME, MAX_START, AltActivity, R) =
(N U N, U {a},C U {(g1,0), (a,e}), (e}, g10)}, a U {{a ~ task} or {a —
subprocess}}, e U {ef — throwing}, e, U {ef — signal}, B, 8, vr, Y1y, L)

The new labeling function £* extends L for a, ay, e1, ea, €5, €7, e, €19, and
ek where L£*(a;) = AltActivity, £*(e;) = MAX_START, £L*(es) = ME, L*(e5) =
MAX, L*(e7) = R, L*(eg) = MIN, L*(e10) = R, and L*(e¥) = t EXITED,

Figure 20 shows the complete duration-aware process model obtained through
ShiftedDurR(Task, MIN, MAX, ME, MAX_START, AlternativeActivity, RESET).
Without loss of generality, the considered activity is represented as a task, i.e.,
a(a) = task and L*(a) = Task.

Figure 20 highlights that, compared to ¢spn;fieq, duration pattern ¢spifires
includes another conditional event RESET, which leads back to ME in order wait
for a new occurrence of the milestone event. We can assume that the condition
associated to event RESET is false when the process begins and changes during
execution, starting after the occurrence of milestone event ME.

8. Detecting and Managing Duration Violations

Whereas a first step towards the management of minimum and maximum
duration constraints can be achieved by detecting constraint violations and by
informing the process engine or the activity performer about potential prob-
lems/delays caused by temporal violations, appropriate constraint management
deals with the specification of (temporal) exception handlers.

However, temporal exception management relies on the semantics and the
nature of the violated constraints, and are strongly dependent upon the kind of
activity being performed.

For instance, when a maximum duration constraint is violated, either sudden
termination can be imposed or a side procedure can be used to expedite activity

44

completion. Indeed, some activities need additional time to be correctly finished
and they cannot be suddenly interrupted even if they violate maximum duration.
As an example, we can think of a surgical intervention which is taking longer
than planned: obviously, the surgeon cannot abandon the operating room, but
additional workforce may be called to speed up the intervention.

Depending on their potential to interrupt activity execution, we distinguish
between weak and strong maximum duration constraints. A weak duration
constraint does not cause immediate activity interruption, but additional side
activities can be performed with the goal of addressing constraint violation.
Conversely, a strong duration constraint causes the sudden interruption of the
on-going activity. For example, whenever drug therapy causes an unexpected
allergic reaction, this must immediately stopped.

The introduced definition of constraint strength does not apply to minimum
duration constraints, as there is no need for activity interruption in such context.

The process models proposed in the remainder of the section, are designed
to manage duration violations at a high level of abstraction, since the nature of
the repairing actions is highly dependent on the kind of task being performed.

To this end, we identify possible general and common actions that duration
violation handlers are entitled to perform (see Table 6). Besides, we can also
consider the following two extreme actions that hold for every constraint, that
is, “Do nothing” (i.e., the handler simply alerts the activity performer that
something went differently from expected) and “Terminate process execution”.

MINIMUM DURATION VIOLATION

Wait The process waits before proceeding to the following element or
a delay is added until minimum duration is observed.

Repeat The whole activity or part of it is repeatedly executed until min-
imum duration is met.

Compensate A compensation handler reverses the effects of the activity. In
BPMN, compensation is used to revert the effects of a Completed
activity that are no more desired [13].

MAXIMUM DURATION VIOLATION (WEAK)

Escalate Dedicated activities are performed to expedite completion. In
BPMN, escalation identifies a situation that presumes some sort
of reaction by the process and it is used to implement measures
to expedite the completion of a process activity [13].

Extra Workforce The activity is assigned to multiple resources that execute parts
of it in parallel.

MAXIMUM DURATION VIOLATION (STRONG)

Skip The activity is interrupted and the remaining is skipped.

Undo The activity is interrupted and its effects are reversed by some
other activity.

Table 6: Possible behaviors of duration handlers, enacted in case of violation.

Regardless of which is the action taken to handle the violation, we assume

45

that handlers are designed to resolve violations without violating other temporal
constraints. That is, a minimum duration handler must resolve minimum du-
ration violations without violating other temporal constraints (e.g., maximum
duration constraints).

In [34], the importance of interrupting activities safely, i.e., by preserving
their context, is discussed. Context preservation refers to the capability of the
system to save data associated with the activity at the right time. In this
direction, duration constraints can be seen as information related to activity
execution, and thus, they must be dealt with when the activity is interrupted.

For both minimum and maximum duration violations, although we did not
detail which activities are executed by the temporal exception handler, we adopt
a modeling level of abstraction sufficient to ensure that handlers are correctly
blended within the process.

8.1. Basic Process Models for Managing Duration Violations

In [11], we discussed different approaches for managing violations of sim-
ple duration constraints in a weak and a strong way. Let us start from the
duration-aware process model depicted in Figure 3. Signal events t_minViolated
and t-maxViolated detect duration violations and are used to trigger the corre-
sponding violation handlers, that may have either a weak or a strong behavior.

For managing minimum duration violations caused by early activity inter-
ruption we used compensation, i.e., a way of undoing steps of a successfully
completed activity whose results are no more desired and must be reversed.
Minimum duration violations are managed by compensation handlers, that are
constituted by a set of activities that are not connected to other portions of
the BPMN model [13]. Instead, maximum duration violations are managed by
event subprocesses. In BPMN, event subprocesses are a specialized kind of sub-
process, that is included within a parent process but it is not part of the control
flow. In other words, event subprocesses are in-line handlers triggered by events
coming from the parent process [13].

In the remainder of this section, we consider the more complex case of ac-
tivities having both interrupting and non-interrupting intermediate boundary
events illustrated in Figure 8 and discuss how violation handlers defined in [11]
have to be extended to deal with such a scenario.

When considering boundary events attached to a running activity, differ-
ent interruption scenarios may occur. We begin with considering an activity
having a weak maximum duration constraint, as depicted in Figure 21. We
distinguish three different violation management behaviors depending on when
Task is interrupted by the boundary event: (i) interruption occurs earlier than
the minimum duration set for Task, (ii) interruption occurs within the expected
duration range of Task or (iii) interruption occurs after the maximum duration
limit set for Task.

For all cases (i), (ii) and (iii), it is necessary to distinguish the interruption of
Task due to boundary event InterruptingE from regular task completion. To this
end, a different signal t INTERRUPT within exceptionFlow2 is added. This is

46

Task with duration management

flow1

t_maxViolated

Handle
MIN duration
violation

4 [

interrupting
Event Handler

exE

t_EXITED

t_stopHandler

InterruptingE
c_maxViolated

exceptionFlow2
~a)—>@)

t_INTERRUPT t_stopHandler

exceptionFlow1

~N—>0

t_startHandler

MAX Duration Handler

c_startHandler

c_stopHandler

MIN Duration Handler

c_minViolated

Handle

MIN duration
violation

t_endMinHandler

Figure 21: Process model for managing minimum and weak maximum duration constraints
of activities having interrupting and non-interrupting intermediate boundary events.

essential to deal with minimum duration violation, as the activity can be either
in state Completed or Terminated. The different name is chosen to highlight
that the end of Task depends on causes other than anticipated completion.

(i) If InterruptingE occurs before the minimum duration set for Task, a tem-
poral exception handling mechanism different from compensation must be en-
acted, as compensation only applies to successfully completed activities. For
this reason, an event subprocess MIN Duration Handler is added to the parent
process Task with duration management. Escalation event t_minViolated within
flow6 is added to trigger the handler. Signal event c_.endMinHandler waits for the

47

event subprocess to complete, before letting the process flow proceed towards
Gb. Signal event t_stopHandler following signal t_ INTERRUPT within exception-
Flow2 has no corresponding listening events on the process branches entitled of
minimum duration management, as it is used for handling maximum durations.

(ii) If InterruptingE occurs within the expected duration range, signal event
t_INTERRUPT is thrown to be caught by the corresponding event c_INTERRUPT,
located on flow3. The signal behaves as previously explained for event c_.EXITED,
as the only difference is the state Terminated of Task. Again, signal t_stopHandler
is thrown ineffectively, as no handler was initiated.

(iii) If InterruptingE occurs after MAX, as the activity is interrupted, we
assume any possibly executing instance of subprocess MAX Duration Handler
is also interrupted by signal event t_stopHandler. This interruption behavior is
strong and, thus, it is in contrast with the notion of weak maximum constraint
that has been addressed so far. However, as external occurrences presuppose
strong interruption, there is no mean to preserve activity execution while the
handler is operating on it.

When the event attached to Task boundary is non-interrupting, neither the
management of minimum nor maximum duration constraints violations is af-
fected. In case of weak maximum duration, we assume that the handler is
designed to expedite Task completion and, thus, takes care of completing all the
related non-interrupting event handlers attached to the activity.

The corresponding model for the management of violations of strong maxi-
mum duration constraints is reported in Figure 22.

In this setting, only two possible process behaviors are expected with respect
to activity interruption: (i) the boundary event interrupts Task before MIN
or (ii) at any moment within the desired time limits set for Task duration.
Indeed, the interrupting nature of signal event c_maxViolated prevents any other
interrupting event from occurring after MAX.

(i) If minimum Task duration is violated, signal event t INTERRUPT is
thrown. The different name is chosen to highlight that the end of Task depends
on causes other than anticipated completion. As already explained, escalation
event t_minViolated within flow6 triggers the corresponding event subprocess
MIN Duration Handler.

(ii) If InterruptingE is triggered within the desired duration range, no du-
ration violation handler is enabled. In this case, signal event t_ INTERRUPT is
thrown to be caught by the corresponding event c INTERRUPT within flow3.
Even if the final state of Task is Terminated, no further action is needed with
respect to duration management.

9. Related Work

Temporal constraints specification and management has become a key aspect
in the context of business process modeling and management, as constraining
time is vital for reliable process actualization and execution [1, 2, 3].

Various proposals have addressed temporal constraint modeling within the
research communities of workflows [1, 2, 3, 7, 8, 23, 35, 36, 37, 38] and BPM [5,

48

Task with duration management
flow1

t_maxViolated

¢_INTERRUPT t_minViolated
flows

t_endMinHandler

flow7

t_EXITED
InterruptingE @

Handle -
MIN duration fGe=======-= . 7 @ exceptionFlow2 g~
violation t_INTERRUPT

c_maxViolated
« -

H——0

t_startHandler c_endHandler

exceptionFlow1

interrupting
Event Handler

exE

SN Handle
{ A ——®» MAX duration —D@
S~ violation

c_startHandler M t_endHandler

MIN Duration Handler
TN Handle
{ A ——» MIN duration —P@
S~ violation

c_minViolated] t_endMinHandler

Figure 22: Process model for managing minimum and strong maximum duration constraints
of activities having interrupting and non-interrupting intermediate boundary events.

49

11, 14, 15, 17, 39], drawing inspiration from approaches grounded in the formal
principles of timed automata [16, 40], time Petri nets [41, 42], and temporal
networks [24] for the verification of timed (process) models.

Time Petri nets are also used in the context of Web Service Composition
for introducing temporal constraints. A model named H-Service-Net has been
proposed in [43] to control and manage temporal consistency, and to support
time constraints and exception handling.

In the remainder of the section, we describe selected relevant approaches
belonging to the field of workflow modeling and, then, focus on proposals that
specifically tackle temporal constraint modeling in BPMN [13]. Finally, we
wrap up and compare our contribution with some of the discussed state-of-the
art approaches, as detailed in Table 7.

9.1. Modeling and verification of temporal constraints in workflows

Early contributions to the representation of temporal information and tem-
poral constraints are summarized in [1, 2]. The authors identify issues related to
poor time consideration and reason on the effects that time violations have on
business process costs and explain how proper time management may increase
organizational competitiveness and improve timely reaction to external events
and changes [10].

Focusing on handling globally distributed business processes, in [38] the au-
thors underline the need of incorporating time-dependent factors, such as tem-
poral order and time differences, into the logic of process activities at build-time.
In detail, they consider activity duration and multiple time axes to represent
different time zones, and define time constraints and process routing in terms
of restrictions on starting and ending times of activities. Last but not least, a
method for checking both the build-time and run-time consistency of the pro-
posed time workflow model is presented.

In [7], the authors introduce a temporal model for conceptually designing
clinical workflows, by addressing the representation of activity duration, delays,
periodic and absolute constraints, and inter-activity constraints such as rela-
tive constraints and absolute delays. Verification of the modeled constraints is
discussed and a Temporal Workflow Analyzer prototype for supporting work-
flow modeling and time management at design time is proposed. TNest, a
new structured workflow language providing full support of temporal constraint
specification during process design, is presented in [35]. The authors consider
two main kinds of temporal constraints, namely activity durations and relative
constraints, and tackle different nuances of the temporal workflow controllability
concept, which was firstly introduced in [36, 37].

A major contribution to the formal specification and operational support of
the temporal perspective in business processes is described in [3, 8, 23]. In [3],
the authors identify a set of ten time patterns to ease the comparison of process-
aware information systems (i.e., information systems that provide process sup-
port functions and separate the process logic from applications) and foster the
choice of appropriate time constraints at design time. Furthermore, in [8] the

50

authors provide an evaluation on the presented time patterns of selected process
modeling approaches coming from both industry and academia, such as, among
others, the BPMN [13] and BPEL standards, and those presented in [2, 7, 38].

Drawing inspiration from [8], when dealing with activity duration we do
not consider the time span between the beginning of the activity and its real
activation, that is we measure the time span between its start and end events.
We also assume that sequence flows, gateways, and events consume a fixed or
null amount of time and that any eventual data required to start the activity
is available and its evaluation does not delay the execution. According to the
evaluation introduced in [8], BPMN is said not to directly support minimum
and range duration specification, whereas maximum duration can be partially
supported by non-interrupting timer events attached to the activity’s boundary.
Additionally, it is highlighted that there is no mean to model the start time of
a BPMN activity.

In [23], a formal temporal semantics is defined in order to avoid ambiguities
and ease the practical use of time patterns proposed in [3, 8]. The authors
exhaustively explore various aspects of the temporal perspective in business
processes, by analyzing the identified patterns with respect to multiple design
features and considering both process and time granularity. The studied tempo-
ral patterns have been extracted from a rich benchmark of business processes,
mostly retrieved from the healthcare domain. BPMN 2.0 is found among the
approaches that have systematically been reviewed with respect to temporal
pattern support and expressiveness, as it will be later discussed. The authors
summarize their previous efforts by providing a complete picture of their work: a
formal semantics is discussed extensively for each time pattern and the ATAPIS
Toolset is used for supporting the design, implementation, and verification of
those temporal patterns mostly used in practice. ATAPIS is also used in [10] to
implement change operations that allow modifying the temporal constraints of
a time-aware process and to check the soundness of the changed processes.

Following the results presented in [23], we focused on evaluating the suitabil-
ity of elements defined in the BPMN standard to represent duration constraints,
by defining different processes called duration patterns and showing how to suit-
ably combine them. Motivated by real case studies, we also considered the effects
of external events on activity execution.

The definition, modeling, and management of temporal constraints encom-
passes the concept of temporal constraints violation. In [4], the authors propose
an approach for managing controlled violations of time constraints in temporal
workflows. Temporal constraints are expressed by means of formal expressions.
However, not all constraints need to be strictly observed as the relaxation of
some of them is allowed, provided that an associated penalty is applied.

Another aspect that is closely related to the one of temporal constraint
violation is that of predictable exception, that is, a deviation that is known
to possibly appear between what is planned and what is actually happening.
In [44], the authors consider a particular kind of predictable exception, namely
deadline escalation, which arises when an organization is not able to meet the
deadlines for one or more instances of a process model. To improve the reaction

o1

to such predictable (temporal) exceptions, the authors propose a set of deadline
escalation strategies to support decision-making and minimize tardiness.

Focusing on the modeling of duration constraints, this paper does not con-
sider other important inter-activity temporal constraints, such as time-lags be-
tween activities and temporal loops [3, 5]. In addition, we do not deal with the
formal verification of temporal constraints, as this would require using other
approaches, such as those proposed in [23, 24, 30, 39, 45].

9.2. Expressing temporal and duration constraints in BPMN

The expressiveness of the Business Process Model and Notation [13] with
respect to the modeling of temporal constraints has been addressed by some
research proposals [5, 14, 15, 16, 24, 39, 40, 45, 46, 47, 48], most of which
aimed to extend the standard in order to improve the specification and formal
verification of temporal aspects.

Time-BPMN [15] is an extension proposed to capture the temporal perspec-
tive of business processes modeled with BPMN 1.2 [49], the previous version
of the standard. The aim of the introduced extension is to simplify the repre-
sentation of temporal constraints and dependencies that are vital for real busi-
ness process enactment. Graphical markers are specified to control the start
and end of activities and temporal constraint attributes are used to detail the
targeted activity, the constraint kind, or additional useful documentation. Al-
though activity start and finish times can be specified as inflexible constraints,
the modeling of activity duration is not explicitly addressed. The weakness of
BPMN to represent the temporal dimension of a process is compared to the
expressiveness of project planning tools in [47]. In particular, the inability to
visually represent the temporal execution order is highlighted, and the need for
representing task duration is observed. BPMN process orchestration is analyzed
and a preliminary representation of tasks with fixed duration is presented.

In [14], the authors extend BPMN 2.0 in order to enable the specification
of temporal constraints and to verify potential violations by means of model
checking approaches. In detail, the authors propose a graphical decorator de-
picting the minimum and maximum desired duration limits for an activity. Sim-
ilarly to [15], constraint attributes are introduced to regulate the behavior and
strength of the expressed duration constraints.

A BPMN extension designed to handle temporal constraints besides resource
and concurrency ones is presented in [16]. The authors propose a mapping from
BPMN elements to Timed Game Automata (TGA) to verify business processes
and avoid design time and exceptions related to temporal and resource aspects.
Flow objects are mapped onto timed automata, relations among them corre-
spond to synchronization patterns between such automata, and process con-
straints are expressed as invariants, guards, and assignments on the timed au-
tomata. Regarding task duration modeling, attributes are added to BPMN tasks
in order to explicitly specify their minimum and maximum execution times. A
similar verification approach based on TGA is adopted also in [40] and applied
to the set of temporal constraints introduced in [14].

92

Overall, the approaches introduced in [14, 16, 40] focus on translating BPMN
into TGA for constraint verification. As a result, the modeling of temporal
constraints in BPMN is mostly based on [15] and temporal aspects are expressed
in terms of non-standard attributes and graphical decorators.

As for simple duration specification, the main difference with the proposals
presented in [14, 16, 17] is the way we deal with duration specification. Design-
ing dedicated processes for the management of duration violations allows us to
specify the constraints in a more flexible way, that is, by allowing the activity
to execute regardless of the defined constraints.

Instead, in the approach introduced in [17], graphical decorators are used to
encode a “strong” duration semantics that enforces the activity to observe the
constraints (both fixed and flexible durations), as interrupting boundary timer
events are used for expressing duration. Moreover, it is not clear if and how
duration of process regions may be expressed with the approaches presented
in [14, 16, 17], especially for non-SESE regions. Only the concept of “combined
duration” introduced in [4] may be close enough to express the duration of a
process region.

Deferred duration and shifted duration are novel concepts, since in both cases
duration depends on the occurrence of some event related to activity execution.
In real-world processes, they are more typical of activities that unfold in time
and are described at a quite high level of abstraction.

In [14] temporal constraints correlated with data constraints are exemplified
by associating two different duration ranges to one activity, one of which is
chosen depending on some data-based condition. However, the authors do not
detail when the choice is made and what happens if conditions change while
activity is being executed.

In [45] the authors propose an encoding of timed business processes into the
Maude language, for automatically verifying some properties, yet considering a
simpler extension of BPMN where only task timeouts and sequence flows delays
can be expressed.

In [48], BPMN is extended for supporting Business Activity Monitoring,
that is, the real-time monitoring and control capabilities during process run-
time. Specifically, with respect to activity duration, a meta-model is proposed
to measure the time span that goes from the moment the activity is assigned to
a resource to the moment it is concluded.

Finally, a recent extension of BPMN considers raising the modeling of tem-
poral control structures, such as temporal loops and temporal XOR-splits, at a
conceptual level [5]. Temporal loops are associated to conditions that specify
an upper temporal bound in addition to a regular loop-condition. That is, a
loop iteration is executed if (i) the regular loop-condition holds and (ii) the time
elapsed from the start of the process and a given time-point is less or equal than
the specified upper temporal bound. Similarly, temporal XOR-splits compare
the time elapsed from the start of the process and a given time-point with a
constant and consequently route the process flow.

A novel relevant meta-model for the integration of temporal aspects in
BPMN processes is presented in [17]. The authors provide a decorator-based

93

epaandag ‘I ‘se101g D
s[ooJ, Suruue[d 399[01J YSnoiyy sessed01g
ssoulsng jo uorjeoymadg [eiodway,

quoy)) *D) ‘oreqIay * ‘oyeussod Y
STOPOJNl SS9D0IJ SSOUISNE 9IeM-OUWIL], UT
SJUSAT PUR SYSB], UOISIIO(] SurSeuey

ZOUN N -zZon3utwo(] ‘| ‘sowey ‘T
‘“euo[essy] [N ‘O[eAdly D
0'C NINdg ut oa1poadsiod owry sesseooid
SSOUISN(9)RISVIUT 0} [OPOWRIOW

TYSTRII] "3 “emeNIysT " ‘TIIyeIem
SIUIRIISUO)) 90IN0S9Y pue [eiodwa], Yiim
S9SS9001J SSoUIsng JO UOIIROYILIDA [RULIO

PPILL, v ‘oused "q
NINdg-owL,

[erewip "N ‘eypnouriany) ‘N

‘[e1red] *S ‘noynoryey) g
0°'C NINdd Ul s9sso001 ssaulsng Jo
SUI[opOW JLIJUSI-dWIL], © PIemo],

OISID IV “BPY [‘WY 'H
$9INJONIYG [013U0)) Juopuado(-owl],
UM S9S89001 SUI[[OPOIA

yoroadde Qo

[47]

7] 24]

[16]

[15]
54

[14]

(5]

v
v

of

Dura-
Dura-
Process

tion Constraint

of Activity
tion Constraint

of
tion Constraint

Simple

Simple

Region
Deferred Dura-
Shifted Dura-
tion Constraint
Inter-Activity
Temporal
Constraint
Temporal loops
Temporal
Constraint
correlated with
resource/data
constraints
Definition
Semantics
Run-time
Evaluation
Extended
BPMN
Notation
BPMN-
compliant
extension
Formal
Verification

Table 7: Comparison between different approaches (v': The considered approach supports the

feature).

extension to the standard, where each constraint is expressed by using BPMN
constructs. However, models proposed for activity duration are utterly different
from those presented in this paper, mostly due to the intended semantics of
event-based gateways [50]. Moreover, whereas the authors constrain activities
to be executed within a fixed or flexible duration, we separate constraint speci-
fication from violation management and consider different levels of flexibility in
both these aspects.

In [39], the authors propose a method to verify the controllability of time-
aware business processes that consider constraints over activity duration. The
approach suggests to specify both the structure and operational semantics of
a process in terms of Constrained Horn Clauses (CHC). Then, also the no-
tions of weak and strong controllability are encoded in CHC. Finally, two novel
algorithms to solve the related strong and weak controllability problems are de-
signed in order to deal with the computational cost given by nested universal
and existential quantifiers.

Still in the context of controllability verification, in [24] the authors present
time-aware BPMN processes and address dynamic controllability. In detail, they
deal with adding temporal features to process elements, by considering the im-
pact of events on temporal constraint management, by characterizing decisions
with respect to when they are made and used within a process, by specifying
and using two novel kinds of decisions based on how their outcomes are man-
aged, and finally by considering intertwined temporal and decision aspects of
time-aware BPMN processes to ensure proper execution.

Formal verification of time constraints is beyond the scope of this work. How-
ever, by guaranteeing that the modeled processes are sound (cf. Appendix A),
we provide a way to evaluate constraints during the process run-time, by raising
the due exceptions through signal events.

In Table 7, we summarize the comparison between this work and the dis-
cussed approaches, by considering both the kinds of addressed temporal con-
straints and the final research goal (e.g., run-time evaluation of temporal con-
straints, formal verification of temporal constraints).

10. Conclusions

In this work, we addressed the modeling of different duration constraints
of activities and process regions, by using the BPMN standard. Structured
and re-usable process models for specifying duration constraints at design time
are proposed in Section 4-7 and they are enriched to provide detection and
management of constraint violations at run-time as explained in Section 8. The
different kinds of duration constraints and process models have been designed
after studying real-world (clinical) settings, whose complex temporal aspects
cannot be captured by simple duration constraints.

The main steps of our approach can be summarized as follows.

— We proposed a set BPMN ready-to-use duration-aware process models enclos-
ing duration patterns for specifying different kinds of duration constraints,

99

and for detecting possible constraint violations occurring at run-time. We
entirely relied on the BPMN standard [13] for the definition of process se-
mantics or on existing literature [18, 27, 23, 51, 52] whenever we considered
that the semantics described in the BPMN standard was underspecified.

— We simulated the obtained processes with the Signavio Business Transforma-
tion Platform [53] to validate the behavior of the proposed models. We were
able to conduct a step-by-step simulation as, to our knowledge, no current
BPM software supports multiple-case simulation of processes having both
event-based gateways and signal events. However, we used Signavio “step
through simulation” to validate process behavior for all the cases introduced
in Section 4 and Section 5. This kind of simulation allows one to decide
which of the process elements ready for execution can be enabled. An exam-
ple of step through simulation for the process model of Figure 3 is shown in
Figure 23.

| flow1 »@ >@

MAX t_maxViolated

N low2
A

flow3

OHe)

>

flow5

t_EAITTED

Figure 23: Example of step through simulation of the duration-aware process model of Fig-
ure 3. Active execution traces are highlighted.

— To validate the semantics of the designed process models in a more formal
way, we manually derived an equivalent representation of the designed process
models in terms of Time Petri Nets [42], considering both the mappings pro-
posed in [27] and in [52], and results obtained on the soundness of workflow
nets. The goal of this last step was to analyze the behavioral aspects of the
derived nets to make sure that the specification of the operational semantics of
the proposed process models was sound. Then, we also used both Romeo [54]
and TINA (TIme Petri Net Analyzer) [55] for checking basic properties such
as boundedness, liveness, and soundness of the obtained nets. In Appendix A,
we describe the mapping of duration patterns onto time Petri nets and our
validation approach.

For future work, we plan to consolidate our modeling approach by evaluat-
ing how the proposed patterns blend with complex real-world process models
including also other kinds of temporal constraints and by simulating the ob-

96

tained time-aware process models directly with BPM tools. Last but not least,
we aim to deal with constraints applied to other modeling elements, first and
foremost sequence flows, gateways, and events. In particular, we plan to inves-
tigate the possibility of having sequence flows that consume time and have the
potential to delay activity activation.

References

1]

J. Eder, E. Panagos, M. Rabinovich, Workflow time management re-
visited, in: Seminal Contributions to Information Systems Engineer-
ing, Springer, Berlin, Heidelberg, 2013, pp. 207-213. doi:10.1007/
978-3-642-36926-1_16.

J. Eder, E. Panagos, M. Rabinovich, Time constraints in workflow systems,
in: International Conference on Advanced Information Systems Engineer-
ing, Springer, 1999, pp. 286-300. doi:10.1007/3-540-48738-7_22.

A. Lanz, B. Weber, M. Reichert, Workflow time patterns for process-
aware information systems, in: Enterprise, Business-Process and Infor-
mation Systems Modeling, Vol. 50 of Lecture Notes in Business Infor-
mation Processing, Springer, Berlin, Heidelberg, 2010, pp. 94-107. doi:
10.1007/978-3-642-13051-9_9

K. Akhil, R. Barton, Controlled violation of temporal process constraints —
models, algorithms and results, Information Systems 64 (2017) 410 — 424.
do0i:10.1016/j.1is.2016.06.003.

H. Pichler, J. Eder, M. Ciglic, Modelling processes with time-dependent
control structures, in: International Conference on Conceptual Mod-
eling (ER), LNCS, Springer, Cham, 2017, pp. 50-58. doi:10.1007/
978-3-319-69904-2_4.

M. Weske, Business process management architectures, in: Business Pro-
cess Management: Concepts, Languages, Architectures, Springer, Berlin,
Heidelberg, 2012, pp. 333-371. doi:10.1007/978-3-642-28616-2.

C. Combi, M. Gozzi, J. Juarez, B. Oliboni, G. Pozzi, Conceptual modeling
of temporal clinical workflows, in: 14th International Symposium on Tem-
poral Representation and Reasoning (TIME ’07), IEEE, 2007, pp. 70-81.
doi:10.1109/TIME.2007.45.

A. Lanz, B. Weber, M. Reichert, Time patterns for process-aware infor-
mation systems, Requirements Engineering 19 (2) (2014) 113-141. doi:
10.1007/s00766-012-0162-3.

M. Makni, S. Tata, M. Yeddes, N. Ben Hadj-Alouane, Satisfaction and
coherence of deadline constraints in inter-organizational workflows, in: On
the Move to Meaningful Internet Systems: OTM 2010, Springer Berlin
Heidelberg, 2010, pp. 523-539. doi:10.1007/978-3-642-16934-2_39.

o7

http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/3-540-48738-7_22
http://dx.doi.org/10.1007/978-3-642-13051-9_9
http://dx.doi.org/10.1007/978-3-642-13051-9_9
http://dx.doi.org/10.1016/j.is.2016.06.003
http://dx.doi.org/10.1007/978-3-319-69904-2_4
http://dx.doi.org/10.1007/978-3-319-69904-2_4
http://dx.doi.org/10.1007/978-3-642-28616-2
http://dx.doi.org/10.1109/TIME.2007.45
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/978-3-642-16934-2_39

[10]

[17]

A. Lanz, M. Reichert, Dealing with changes of time-aware processes,
in: S. Sadiq, P. Soffer, H. Volzer (Eds.), Business Process Manage-
ment, Springer International Publishing, Cham, 2014, pp. 217-233. doi:
10.1007/978-3-319-10172-9_14.

C. Combi, B. Oliboni, F. Zerbato, Modeling and handling duration con-
straints in BPMN 2.0, in: Proceedings of the 32nd Annual ACM Sympo-
sium on Applied Computing, SAC ’17, ACM, New York, NY, USA, 2017,
pp. 727 — 734. doi:10.1145/3019612.3019618

J. T. Daugirdas, Dialysis time, survival, and dose-targeting bias, Kidney
international 83 (1) (2013) 9. doi:10.1038/ki.2012.365.

Object Management Group, Business Process Model and Notation
(BPMN), v2.0.2 (2014).

S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, Toward a time-
centric modeling of business processes in BPMN 2.0, in: Proceedings of
International Conference on Information Integration and Web-based Ap-
plications & Services, ITIWAS 13, ACM, New York, NY, USA, 2013, pp.
154-163. doi:10.1145/2539150.2539182.

D. Gagne, A. Trudel, Time-BPMN, in: IEEE Conference on Commerce
and Enterprise Computing, 2009, IEEE, 2009, pp. 361-367. doi:10.1109/
CEC.2009.71.

K. Watahiki, F. Ishikawa, K. Hiraishi, Formal verification of business pro-
cesses with temporal and resource constraints, in: IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC), 2011, IEEE, 2011, pp.
1173-1180. doi:10.1109/ICSMC.2011.6083857.

C. Arevalo, M. J. Escalona, I. Ramos, M. Dominguez-Mufioz, A metamodel
to integrate business processes time perspective in BPMN 2.0, Information
and Software Technology 77 (Supplement C) (2016) 17-33. doi:10.1016/
j.infsof.2016.05.004.

F. Kossak, et al., A Rigorous Semantics for BPMN 2.0 Process Diagrams,
Springer, 2014. doi:10.1007/978-3-319-09931-6.

C. Combi, B. Oliboni, F. Zerbato, Towards dynamic duration constraints
for therapy and monitoring tasks, in: Proceedings of the 16th Conference
on Artificial Intelligence in Medicine, (AIME), Vol. 10259 of Lecture Notes
in Computer Science, Springer, Cham, 2017, pp. 223-233. doi:10.1007/
978-3-319-59758-4_25.

M. Dumas, L. Garcia-Banuelos, A. Polyvyanyy, Unraveling unstructured
process models, in: Business Process Modeling Notation: Second Interna-
tional Workshop, BPMN 2010, Potsdam, Germany, October 13-14, 2010.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 1-7.
doi:10.1007/978-3-642-16298-5_1.

98

http://dx.doi.org/10.1007/978-3-319-10172-9_14
http://dx.doi.org/10.1007/978-3-319-10172-9_14
http://dx.doi.org/10.1145/3019612.3019618
http://dx.doi.org/10.1038/ki.2012.365
http://dx.doi.org/10.1145/2539150.2539182
http://dx.doi.org/10.1109/CEC.2009.71
http://dx.doi.org/10.1109/CEC.2009.71
http://dx.doi.org/10.1109/ICSMC.2011.6083857
http://dx.doi.org/10.1016/j.infsof.2016.05.004
http://dx.doi.org/10.1016/j.infsof.2016.05.004
http://dx.doi.org/10.1007/978-3-319-09931-6
http://dx.doi.org/10.1007/978-3-319-59758-4_25
http://dx.doi.org/10.1007/978-3-319-59758-4_25
http://dx.doi.org/10.1007/978-3-642-16298-5_1

[21]

[22]

[26]

[27]

[28]

R. Lenz, M. Reichert, It support for healthcare processes - premises, chal-
lenges, perspectives, Data & Knowledge Engineering 61 (1) (2007) 39-58.
doi:10.1016/j.datak.2006.04.007.

P. Dadam, M. Reichert, K. Kuhn, Clinical Workflows — The Killer Applica-
tion for Process-oriented Information Systems?, Springer London, London,
2000. doi:10.1007/978-1-4471-0761-3_3.

A. Lanz, M. Reichert, B. Weber, Process time patterns: A formal founda-
tion, Information Systems 57 (C) (2016) 38-68. doi:10.1016/j.1is.2015.
10.002.

R. Posenato, F. Zerbato, C. Combi, Managing decision tasks and events
in time-aware business process models, in: 16th International Conference
on Business Process Management, BPM, Sydney, Australia, Sept. 9-14,
2018, Vol. 11080 of LNCS, Springer, 2018, pp. 102-118. doi:10.1007/
978-3-319-98648-7_T7.

C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, R. T. Snodgrass, A glossary
of temporal database concepts, ACM Sigmod Record 21 (3) (1992) 35—43.
doi:10.1145/140979.140996.

J. Mendling, H. A. Reijers, W. M. van der Aalst, Seven process modeling
guidelines (7pmg), Information and Software Technology 52 (2) (2010) 127—
136. doi:10.1016/j.infsof.2009.08.004.

R. M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Information and Software Technology 50 (2008)
1281-1294. doi:10.1016/j.infsof.2008.02.006.

B. F. van Dongen, J. Mendling, W. M. van der Aalst, Structural patterns for
soundness of business process models, in: 10th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC’06), IEEE, 2006,
pp. 116-128. doi:10.1109/EDOC.2006.56.

J. Dehnert, A. Zimmermann, On the suitability of correctness criteria for
business process models, in: International Conference on Business Process
Management, Springer, 2005, pp. 386-391. doi:10.1007/11538394_28.

W. M. van der Aalst, Verification of workflow nets, in: Application and
Theory of Petri Nets 1997: 18th International Conference, (ICATPN’97),
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 407-426. doi:
10.1007/3-540-63139-9_48.

M. Ciglic, Time management in workflows with loops, in: On the Move to
Meaningful Internet Systems: OTM 2015 Workshops, Vol. 9416 of Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2015,
pp- 59. doi:10.1007/978-3-319-26138-6_2.

99

http://dx.doi.org/10.1016/j.datak.2006.04.007
http://dx.doi.org/10.1007/978-1-4471-0761-3_3
http://dx.doi.org/10.1016/j.is.2015.10.002
http://dx.doi.org/10.1016/j.is.2015.10.002
http://dx.doi.org/10.1007/978-3-319-98648-7_7
http://dx.doi.org/10.1007/978-3-319-98648-7_7
http://dx.doi.org/10.1145/140979.140996
http://dx.doi.org/10.1016/j.infsof.2009.08.004
http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.1109/EDOC.2006.56
http://dx.doi.org/10.1007/11538394_28
http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/978-3-319-26138-6_2

[32]

[35]

[36]

R. Johnson, D. Pearson, K. Pingali, The program structure tree: Comput-
ing control regions in linear time, in: ACM SigPlan Notices, Vol. 29, ACM,
New York, NY, USA, 1994, pp. 171-185. doi:10.1145/773473.178258.

L. Rangel-Castillo, S. Gopinath, C. S. Robertson, Management of in-
tracranial hypertension, Neurologic clinics 26 (2) (2008) 521-541. doi:
10.1016/j.nc1.2008.02.003.

S. Bassil, S. Rinderle, R. Keller, P. Kropf, M. Reichert, Preserving the
context of interrupted business process activities, in: Enterprise Informa-
tion Systems VII, Springer Netherlands, Dordrecht, 2006, pp. 149-156.
doi:10.1007/978-1-4020-5347-4_17.

C. Combi, M. Gambini, S. Migliorini, R. Posenato, Representing business
processes through a temporal data-centric workflow modeling language: An
application to the management of clinical pathways, IEEE Transactions on
Systems, Man, and Cybernetics: Systems 44 (9) (2014) 1182-1203. doi:
10.1109/TSMC.2014.2300055.

C. Combi, R. Posenato, Controllability in temporal conceptual workflow
schemata, in: Proceedings of the 7th International Conference on Busi-
ness Process Management (BPM 2009), 2009, pp. 64-79. doi:10.1007/
978-3-642-03848-8_6.

C. Combi, R. Posenato, Towards temporal controllabilities for workflow
schemata, in: 17" International Symposium on Temporal Representation
and Reasoning (TIME), 2010, pp. 129-136. doi:10.1109/TIME.2010.17.

H. Zhuge, T. yat Cheung, H. keng Pung, A timed workflow process model,
Journal of Systems and Software 55 (3) (2001) 231 — 243. doi:10.1016/
S0164-1212(00)00073-X.

E. De Angelis, F. Fioravanti, M. C. Meo, A. Pettorossi, M. Proietti, Ver-
ifying controllability of time-aware business processes, in: International
Joint Conference on Rules and Reasoning, Springer, 2017, pp. 103-118.
doi:10.1007/978-3-319-61252-2_8.

S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, Enhancing formal
specification and verification of temporal constraints in business processes,
in: IEEE International Conference on Services Computing (SCC’14), 2014,
pp. 701-708. doi:10.1109/SCC.2014.97.

D. E. Saidouni, N. Belala, R. Boukharrou, A. C. Chaouche, A. Seraoui,
A. Chachoua, Time petri nets with action duration: a true concur-
rency real-time model, International Journal of Embedded and Real-
Time Communication Systems 4 (2) (2013) 62-83. doi:10.4018/jertcs.
2013040104.

60

http://dx.doi.org/10.1145/773473.178258
http://dx.doi.org/10.1016/j.ncl.2008.02.003
http://dx.doi.org/10.1016/j.ncl.2008.02.003
http://dx.doi.org/10.1007/978-1-4020-5347-4_17
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1109/TIME.2010.17
http://dx.doi.org/10.1016/S0164-1212(00)00073-X
http://dx.doi.org/10.1016/S0164-1212(00)00073-X
http://dx.doi.org/10.1007/978-3-319-61252-2_8
http://dx.doi.org/10.1109/SCC.2014.97
http://dx.doi.org/10.4018/jertcs.2013040104
http://dx.doi.org/10.4018/jertcs.2013040104

[42]

[49]

[50]

[53]

B. Berthomieu, M. Diaz, Modeling and verification of time dependent sys-
tems using time Petri nets, IEEE Transactions on Software Engineering
17(3) (1991) 259-273. doi:10.1109/32.75415.

F. Bey, S. Bouyakoub, A. Belkhir, Time-based web service composition,
International journal on Semantic Web and information systems 14 (2)
(2018) 113-137. doi:10.4018/IJSWIS.2018040106.

W. M. van der Aalst, M. Rosemann, M. Dumas, Deadline-based escalation
in process-aware information systems, Decision Support Systems 43 (2)
(2007)4927511.doi:10.1016/j.dss.2006.11.005.

F. Durdn, G. Salatin, Verifying Timed BPMN Processes Using Maude, in:
International Conference on Coordination Models and Languages, Springer,
2017, pp. 219-236. doi:10.1007/978-3-319-59746-1_12

S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, The temporal
perspective in business process modeling: a survey and research chal-
lenges, Service Oriented Computing and Applications 9 (1) (2015) 75-85.
d0i:10.1007/s11761-014-0170-x.

C. Flores, M. Sepilveda, Temporal specification of business processes

through project planning tools, in: Business Process Management Work-

shops: BPM 2010 International Workshops and Education Track, Springer,

Berlin, Heidelberg, 2011, pp. 85-96. doi:10.1007/978-3-642-20511-8\
8.

J.-P. Friedenstab, C. Janiesch, M. Matzner, O. Muller, Extending BPMN
for business activity monitoring, in: 2012 45th Hawaii International Con-
ference on System Sciences, IEEE, 2012, pp. 4158-4167. doi:10.1109/
HICSS.2012.276.

Object Management Group, Business Process Model and Notation
(BPMN), v1.2 (2009).

F. Kossak, C. Illibauer, V. Geist, Event-based gateways: Open ques-
tions and inconsistencies, in: Business Process Model and Notation: Pro-
ceedings of the 4th International Workshop, (BPMN 2012), Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 53-67. doi:10.1007/
978-3-642-33155-8_5.

O. M. Group, BPMN 2.0 by example, version 1.0 non-normative (2010).

M. Kunze, M. Weske, Business Process Models, 1st Edition, Springer
International Publishing, Cham, 2016, pp. 125 -159. doi:10.1007/
978-3-319-44960-9.

Signavio GmbH, Signavio Business Transformation Suite (2017).

61

http://dx.doi.org/10.1109/32.75415
http://dx.doi.org/10.4018/IJSWIS.2018040106
http://dx.doi.org/10.1016/j.dss.2006.11.005
http://dx.doi.org/10.1007/978-3-319-59746-1_12
http://dx.doi.org/10.1007/s11761-014-0170-x
http://dx.doi.org/10.1007/978-3-642-20511-8_8
http://dx.doi.org/10.1007/978-3-642-20511-8_8
http://dx.doi.org/10.1109/HICSS.2012.276
http://dx.doi.org/10.1109/HICSS.2012.276
http://dx.doi.org/10.1007/978-3-642-33155-8_5
http://dx.doi.org/10.1007/978-3-642-33155-8_5
http://dx.doi.org/10.1007/978-3-319-44960-9
http://dx.doi.org/10.1007/978-3-319-44960-9

[54]

[55]

[58]

[59]

[60]

[61]

D. Lime, O. H. Roux, C. Seidner, L.-M. Traonouez, Romeo: A para-
metric model-checker for petri nets with stopwatches, in: International
Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, Springer, Berlin, Heidelberg, 2009, pp. 54-57. doi:
10.1007/978-3-642-00768-2_6.

B. Berthomieu, F. Vernadat, Time petri nets analysis with TINA, in: Pro-
ceedings of the 3rd International Conference on the Quantitative Evalu-
ation of Systems, QEST 06, IEEE Computer Society, Washington, DC,
USA, 2006, pp. 123-124. doi:10.1109/QEST.2006.56.

K. M. van Hee, N. Sidorova, J. M. van der Werf, Business Process Mod-
eling Using Petri Nets, in: K. Jensen, W. M. van der Aalst, G. Balbo,
M. Koutny, K. Wolf (Eds.), Transactions on Petri Nets and Other Models
of Concurrency VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp- 116-161. doi:10.1007/978-3-642-38143-0_4.

A. H. ter Hofstede, W. M. van der Aalst, M. Adams, N. Russell,
Modern Business Process Automation: YAWL and its support en-
vironment, Springer-Verlag Berlin Heidelberg, 2010. doi:10.1007/
978-3-642-03121-2.

W. M. van der Aalst, The application of Petri nets to workflow man-
agement, Journal of circuits, systems, and computers 8(1) (1998) 21-66.
doi:10.1.1.30.3125.

T. Murata, Petri nets: Properties, analysis and applications, Proceedings
of the IEEE 77 (4) (1989) 541-580. doi:10.1109/5.24143.

W. M. van der Aalst, K. M. van Hee, Workflow management: models,
methods, and systems, MIT press, 2004.

N. Lohmann, E. Verbeek, R. Dijkman, Petri Net Transformations for
Business Processes — A Survey, in: K. Jensen, W. M. van der Aalst
(Eds.), Transactions on Petri Nets and Other Models of Concurrency
IT, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 46—63. doi:10.1007/
978-3-642-00899-3_3.

P. Merlin, D. Farber, Recoverability of communication protocols—
implications of a theoretical study, IEEE transactions on Communications
24 (9) (1976) 1036-1043. doi:10.1109/TCOM.1976.1093424.

62

http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1109/QEST.2006.56
http://dx.doi.org/10.1007/978-3-642-38143-0_4
http://dx.doi.org/10.1007/978-3-642-03121-2
http://dx.doi.org/10.1007/978-3-642-03121-2
http://dx.doi.org/10.1.1.30.3125
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-642-00899-3_3
http://dx.doi.org/10.1007/978-3-642-00899-3_3
http://dx.doi.org/10.1109/TCOM.1976.1093424

A. Validating Process Behavior by Means of Time Petri Nets

The goal of this Appendix is to provide an unambiguous operational seman-
tics for the proposed BPMN processes by exploiting more formal time Petri nets
to validate their behavior and prove their correctness.

Born to be understood by different users and to be employed in several or-
ganizational domains, process modeling languages often lack of a fully-specified,
formal semantics. When a formal semantics exists, it is mostly defined in terms
of transition systems or Petri nets [56]. Moreover, process engines such as
YAWTL [57] are based on Petri nets and, more specifically, on a special sub-class
of Petri nets, called workflow nets.

In this context, the execution behavior of a process model can be specified
in terms of Petri Nets, as their formal semantics is particularly suitable for
disambiguating that one of BPMN and to check the correctness of process mod-
els [58]. In general, Petri Nets can be derived from BPMN processes by applying
the mappings introduced in [27] and in [52], which differ from each other on the
level of abstraction used to capture the life-cycle of a process activity.

In this paper, in order to be able to express the temporal dimension asso-
ciated to BPMN activities and timer events, we adapt the mappings presented
in [27, 52] to time Petri nets, that is, Petri nets with a possibly infinite time in-
terval associated to each transition [42]. Thereby, we can capture the temporal
aspects related to BPMN activities and timer events. Time Petri nets have been
previously used in [9] for deadline constraints modeling. Last but not least, we
ensure that the obtained time Petri nets conform to workflow nets, which are
often used to model workflow systems.

The remainder of this appendix is structured as follows. Subsection A.1l
introduces the basic theory of Petri Nets and time Petri nets. Subsection A.2
discusses the mapping of BPMN processes to (time) Petri nets. Finally, Sub-
section A.3 reports the validation results obtained by using time Petri net sim-
ulation and analysis software.

A.1. Petri nets: Basic concepts, notation, and semantics

Petri nets have been introduced as a mean to formally model concurrent
systems, mostly under a control flow perspective. In BPM, they can be suitably
applied to support process semantics specification, structural and behavioral
property verification, and static analysis [58]. Petri nets token-based execution
semantics makes them suitable for reproducing BPMN process execution, as its
expressiveness is sufficient to reproduce the behavior of all the basic routing
constructs of a BPMN process [59]. Besides, Petri nets are useful to provide
an unambiguous graphical representation of business processes, suitable to pre-
vent uncertainties and contradictions, which can easily arise when using other
informal diagramming techniques [60].

A Petri net is a particular kind of directed, bipartite graph, formally defined
as follows [59].

Definition A.1 (Petri Net). A Petri net is a tuple N = (P, T, A, My) where:

63

P is the finite set of places, P # &;

T is the finite set of transitions, T # &;

A C(PxT)U(T x P) is the set of directed arcs from places to transitions
and from transitions to places;

My is the initial state (or marking) of the net, defined as a mapping My :
P — NT that assigns each place a nonnegative integer.

With respect to the definition of Petri net provided in [59], we omit the
weight function on the arcs, since we consider arcs to have a weight equal to 1.

Graphically, places are depicted as circles, whereas transitions are repre-
sented as rectangles. Moreover, it holds that PNT = (). A place p € P is called
an input place for a transition ¢ € T if and only if there exists a directed arc
from p to t. Similarly, a place p € P is called an output place for a transition
t € T if and only if there exists a directed arc from ¢ to p.

Petri nets are traversed by tokens, drawn as black dots, that are collected by
places and enable transitions. Transitions are the active components of a Petri
net and they fire according to a defined firing rule. Specifically, a transition
can fire when at least one token is available in each of its input places (i.e., the
transition is enabled). When a transition fires, it removes one token from each
of its input places and it adds one token to each of its output places.

The state M of a Petri net, sometimes called marking, is the distribution
of tokens over places (i.e., M € P — N). In this paper, we use the multiset
notation to represent states, that is, M = pl(n)...p;(n) denotes that place p;
contains n tokens. At any time, each place can have zero or more tokens and
the number of tokens may change during the execution of the net. Given a Petri
net N, a state M, is said to be reachable from a state My if there exists a firing
sequence o of transitions tg...t,, such that My = M,,.

Petri nets have certain interesting properties that allow one to verify that
the designed net behaves as expected. Here, we consider liveness and bounded-
ness [30].

Definition A.2 (Liveness). A Petri net N = (P, T, A, My) is live if and only
if, for every reachable state My and every transition t € T there is a state Mo
reachable from My which enables t.

Definition A.3 (Boundedness). A Petri net N = (P, T, A, My) is bounded
if and only if for every state reachable from My the number of tokens in each
place p does not exceed a finite number k.

Whereas liveness ensures the complete absence of deadlocks, regardless of
the chosen firing sequence, boundedness guarantees that there are no places in
the net where tokens accumulate.

In general, structural constraints can be applied to Petri nets in order to
better suit domain-specific goals and to promote the application of existing
verification techniques.

In order to model business processes or workflow procedures, Petri nets must
have some peculiar properties [30]. First of all, a Petri net must have a distinct

64

source place (i.e., a single place that is not the target of any arc) and a distinct
sink place (i.e., a single place that is not the source of any arc). Besides, all of
its nodes must lie on some path from the source place to the sink place [61].

These structural restrictions identify an interesting sub-class of Petri nets,
called workflow nets.

Definition A.4 (Workflow Net). A workflow net is a tuple WN = (P, T, A,
My, e, ¢) where:

e (P, T, A, My) is a Petri net;

e ¢ is the initial place;

e c is the final place.
Nodes e and ¢ are defined such that e,c € P or e,c € T. All the other nodes of
the net lie on a directed path from e to c.

Intuitively, a workflow net captures the execution of one instance of a business
process, from its creation up to its completion.
The property of soundness is defined on top of workflow nets as follows.

Definition A.5 (Soundness). A workflow net WN = (P,T,A, My,e,c) is
sound if and only if:

e (Safeness) each place cannot hold multiple tokens at the same time. For-
mally, Vp € P, M(p) < 1.

e (Option to complete) it is always possible to reach the state that marks
the sink place ¢ starting from the source place e and state My. Formally,
Ve 5 M) = (M5 ¢);

e (Proper completion) state ¢ is the only state reachable from state e with
at least one token in place c. All other places must be empty. Formally,
V(e S MAM>c¢) = (M =c);

o (Absence of dead parts) for every transition t in the net, there is a sequence
enabling it. Formally, Yier 3par € — M NV

An interesting structural relation between workflow and Petri nets is re-
ported below.

Theorem A.1. If a Petri net has a source place e and a sink place ¢, by adding
a transition t which connects the sink place to the source place we obtain a
strongly connected net. Since every node n € PUT of the net now lies on a
path from e to c, then the Petri net is a workflow net.

The connection between the sink place and the source place is sometime called
“short-circuit”. As a result, the following property holds.

Theorem A.2. A workflow net is sound if and only if the corresponding short-
circuited Petri net is live and bounded.

Moreover, well-structured process descriptions are guaranteed to be sound if
they are live [29]. In this work, we consider workflow nets, as they result more
intuitive in depicting the structure and execution steps of a business process.

65

However, in order to capture temporal aspects, we consider a particular class of
high level Petri nets, i.e., time Petri nets (TPNs). TPNs have been introduced to
support performance evaluation, safety determination, or behavioral properties
verification in systems where time appears as a quantifiable and continuous
parameter.

A time Petri net is a Petri net with a possibly infinite time interval associated
to each transition [62]. The left extreme of the interval is the minimal time
that must elapse from the time that all the input conditions of a transition
are enabled until this can fire. The right extreme of the interval denotes the
maximum time that the input conditions can be enabled and the transition does
not fire. After this time, the transition must fire.

The formal definition of time Petri net, adapted from [42], is provided below.

Definition A.6 (Time Petri Net). A time Petri net is defined as a tuple
N = (P, T, A, My, I), where:
o (P, T, A, My) is a Petri net;
o [: T — {RY,RT U{oo}} is a firing time function that associates an
interval [I(t),1 I(t)], called static firing interval, to each transition t.

In line with this definition, each transition ¢; € T has an associated time
interval [a, b], where a < b, and such that, once t; has been enabled:

e a (0 < a), is the minimum time that ¢; must remain continuously enabled

until it can fire;

e b (0 <b < o), is the maximum time that ¢; can remain continuously

enabled without firing.

According to this scenario, any Petri net N = (P, T, A, M) can be repre-
sented by an equivalent time Petri net, having an interval [0, co] associated to
each transition t; € T.

In the context of TPNs, the concept of state and of firing rule need to be
revised. In particular, a state S of a time Petri net N is defined as the couple
S = (M, 1S) consisting of:

(i) a marking M, which denotes the distribution of tokens in places and de-
scribes the logical part of the state;

(ii) a firing interval set IS, which is a vector of possible transition firing times
and denotes the timed part of the state. The number of (ordered) elements
of IS corresponds to the number of enabled transitions in M and each
element ¢ € IS is the time interval [a, b] associated to enabled transition
t;.

According to the definition of time Petri net (cf. Def. A.6), transitions are
enabled when every input place for a transition ¢; has at least one token, as
usually done in Petri nets.

However, an enabled transition ¢;, associated to time interval [a, b] cannot fire
before a and later than b. Therefore, the relative firing time 6, which is related
to the absolute enabling time p, must not be smaller than a of transition ¢; and
not greater than the smallest of the b’s of all the transitions enabled by marking
M (i.e., a of t; < 0 < min{b’s of t;}, where k ranges over the set of transitions
enabled in M).

66

As an example, let us consider the TPN depicted in Figure A.24, represented
in state S = (Mo, 1.5)).

Figure A.24: Example of time Petri net, where P = {p1, p2, p3,p4}, T = {¢1,t2,¢3} and initial
marking Mo = p1(1), p2(0), p3(0), p4(0).

To show how the net in Figure A.24 can fire, we need to consider if both
conditions (i) and (ii) hold for the current state S. Given a marking My =
pl(1), p2(0),p3(0),p4(0), as ¢1 is the only enabled transition, 1.5y = {(1,4)},
that is 1 < 0y < 4. Let us suppose that 6; = 2, then
g (10, o [Mo = pL(1), p2(0), p3(0), p4(0) == My = pL(0), p2(1), p3(1), p4(0)

- 1,01
1Sy ={(1,4)} —= IS1 = {(1,5)}

This leads to state S" = (M;,151), where M; = p1(0), p2(1),p3(1), p4(0) and
IS1 = {(1,5)}, where ¢2 is the only enabled transition. If §; = 1, we have that

0
g @20 g, { M, = pL(0),p2(1), p3(1), p4(0) =5 M = pL(1), p2(0), p3(1), p4(1)

18 = {(1,5)} 225 18, = {(1,4),(2,3)}

Now, we obtain S” = (Ma, I.S2), where My = p1(1), p2(0),p3(1),p4(1) and IS
= {(1,4),(2,3)}. In this case, both t1 and t3 are enabled: ¢1 can be fired for
01 € (1,3) and t3 can be fired for 05 € (2, 3).

To summarize, below we show to possible alternative sequences of firings,
one with #; = 3 and the other with 05 = 2.

1,01

S// (t1,01) S/Il My = pl(l),pQ(O),pS(l),pll(l) —— M3 = p1(0)7p2(1),p3(1),p4(1)
’ 182 = {(1,4),(2,3)} =% 1S5 = {(1,5),(0,0)}

g (1363, gnn | M = p1(1),p2(0), p3(1), pA(1) 1395, My = pl(1), p2(0), p3(0), p4(0)
1S, ={(1,4),(2,3)} 2% 18, = {(0,2)}

A.2. Mapping BPMN processes to time Petri nets

Petri nets, and more specifically workflow nets, can be used to disambiguate
the semantics of most BPMN core constructs and to statically check the se-
mantic correctness of process models [58, 56]. In this paper, we use time Petri
nets [42] to provide a formal foundation of the semantics of the proposed BPMN
processes and to exploit existing tools for simulating and validating their exe-
cution.

67

In general, process activities can be modeled with Petri nets according to
two different paradigms, that is, either by transitions or by places [56]. In the
first case, the marking of the net indicates a situation of rest and transitions
model activities that may lead to a new state of “rest”. Oppositely, transitions
can stand for instantaneous events and places may reflect a particular state of
the net.

Within the BPM community, a widely applied mapping approach was pro-
posed in [27]. An activity or an intermediate event is mapped onto a transition
with one input place and one output place that models its execution, as shown
in Figure A.25(a) for BPMN activity A.

BPMN

Petri Net
N N I N
‘__)—"__) “__)_> ()—> eﬁd ‘__)
Ready RUNNING Completed

(a) (b)

Figure A.25: Mapping of a BPMN process activity A onto a Petri net (a) abstracting from
its life-cycle, as presented in [27], and (b) taking into account activity life-cycle, as introduced
in [52]. Places drawn in dashed borders are shared with other net modules, as they are used
as connecting elements.

A start or end event is mapped onto a silent transition, i.e., a transition
whose firing cannot be observed, that signals when the process starts or ends.
Gateways, except event-based and OR-split gateways, are also mapped onto
silent transitions: AND-splits and AND-joins correspond to Petri net forks and
joins, respectively, while BPMN XOR-split and XOR-joins correspond to Petri
nets choice and return modules. In detail, data-driven exclusive gateways, are
modeled as silent transitions having a common place as input and compet-
ing for a single token, so that the choice of which transition will fire is non-
deterministic. For event-based gateways, the race condition between events is
captured by having the corresponding transitions compete for tokens in the net
place corresponding to the input flow of the gateway.

However, the mapping introduced in [27] does not consider the BPMN activ-
ity life-cycle (cf. Figure 1). In some circumstances, it is important to represent
the different states that occur from the creation of an activity to its completion,
as explained in [52]. To this end, each activity can be mapped to a net having
three places corresponding to states Ready, RUNNING, and Completed, respec-
tively. Transitions Agarr and Aeng denote the beginning and ending instants of
the activity.

When a token is put on place Ready, the activity enters the state ready. This
is properly represented by the firing rule of the Petri net: Transition Agtar: can
fire and, then, a token is removed from place Ready and put on place RUNNING.
This token remains on place RUNNING, representing the execution of the activity

68

until transition Aeng fires, thus removing the token from place RUNNING and
putting it on place Completed.

The mapping of BPMN activities to Petri nets by considering their life-cycle
is shown in Figure A.25(b).

In this paper, we start from the mappings introduced in [27, 52] and map
the proposed duration-aware processes onto time Petri nets in order to be able
to express the temporal dimension associated to activities and timer events.
In particular, we consider 1-bounded (or safe) TPNs having a delay-based se-
mantics, as described in Section A.1. That is, the time interval associated to
a transition expresses the minimum and maximum delays before an enabled
transition can fire.

By applying the mapping in [27], we could model activities as transitions
having one input and one output place, and associated to a positive time in-
terval. However, when considering timed transitions, this mapping approach is
imprecise, as the time interval associated to the transition represents the delay
that exists from its enabling to its firing and, thus, it does not capture the
duration of a running activity (i.e., the transition firing is instantaneous).

Therefore, we consider activity states in the obtained time Petri nets and
model an activity A as a time Petri net, having three places (that correspond
to states ready, running, and completing) and two (timed) transitions, whose
firing capture the beginning and ending of the activity. In this way, activity
duration, which is the time span that goes from the firing of Agart to the firing
of Aend, is captured by the time interval [M TN, M AX] associated to the second
transition that captures activity ending. Moreover, as we consider that activity
duration does not cover the time span between the activation and the beginning
of the activity, we consider transition Agarr to be associated to a time interval
of the form [0, 0].

Similarly, timer events are modeled as transitions have one single input and
one single output place and associated to a positive time interval. In detail, as
we consider BPMN timer events that fire once a specified amount of time d has
elapsed from their activation, the corresponding transition on the time Petri net
will be associated to a time interval [a, b] with a,b = d. Figure A.26 shows the
mapping of BPMN activity A and timer event ¢ onto the corresponding time
Petri nets modules.

As for temporal aspects, all the remaining transitions in the net (i.e., tran-
sitions corresponding to gateways or other event types) are assumed to be as-
sociated to a time interval of the form [0, col.

Finally, in order to model in Petri nets throwing and catching events that
interact withing the same process, transitions corresponding to such events must
be properly connected to each other. However, as the catching event may not
be listening when the corresponding throwing event fires, deadlocks can occur
or tokens may remain in the net, unconsumed. This is particularly true for
signal events, due to their broadcast semantics [13, 18]. As unconsumed tokens
prevent the net from completing properly, for each catching signal event in the
BPMN process, two transitions are needed in the TPN: one that captures the
fact that the event is caught, the other one that captures the situation in which

69

BPMN
Time Petri Net

-, -, I‘-\\ I’-
O A —>O—> A {3 (g N e,
N start end N ~= ~=
Ready RUNNING Completed

[0, 0] [MIN, MAX] [d, d]

Figure A.26: Mapping of a BPMN process activity A and of a timer event t onto the corre-
sponding time Petri nets. Places drawn in dashed borders are shared with other net modules,
as they are used as connecting elements.

the event is not caught.

SE—
—> Task
t_EXITED
BPMN l'
Time Petri Net /’
//
o 27 -~
L= A —>O—> A o)
R start end ot
Ready RUNNING Completed
[0, 0] [MIN, MAX]

Figure A.27: Mapping of a BPMN task towards Petri net considering activity life-cycle [52].
Signal event t_EXITED is mapped to transition end_TASK.

Figure A.28 shows the time Petri Net obtained from the duration-aware pro-
cess of Figure 3 as discussed above. As the meaning of signal event t_ EXITED
in the process is to detect Task completion, we map it directly to transition
end_TASK, as shown in Figure A.27. The time interval [a, b] is written near each
transition, but it is omitted for untimed transitions (i.e., when [a, b] = [0, inf[).
Transitions NOT c_EXITED capture the non-catching of event t_EXITED in the
BPMN process, to guarantee proper completion of the net. As transitions
c_EXITED are both in competition with transitions MIN and MAX (i.e., race
condition of event-based gateway), the firing of MIN(MAX) must be related to
the firing of NOT c_EXITED.

A.8. Process validation based on time Petri nets

In order to analyze the time Petri nets obtained from the proposed duration
patterns and complete duration-aware processes and to check their soundness,
we designed and verified the TPNs in Romeo [54] and TINA [55].

Both tools support various abstract state space constructions that preserve
specific properties of state classes, such as absence of deadlocks, linear time
temporal properties, or bisimilarity. Informally, a state class groups all the

70

[d2, d2]

»| CEXITED »{)

NOT
C_EXITED

start_TASK

c_EXITED

MIN

[d1, d1]

Figure A.28: Time Petri net obtained by applying the mapping proposed in [52] to the process
of Figure 3, but considering the theory of time Petri nets [42].

states of a net according to all the possible firing times that are reachable from
a given marking.

For instance, let us consider the net of Figure A.24 and its state S =
(M3, 1855), where My = p1(1), p2(0),p3(1),p4(1) and I.S2 = {(1,4),(2,3)}. In
this setting, state class C2 = (Ma, D5) is given by marking M2 and a domain
D5, which is the union of all firing intervals of the states, i.e., Dy = (1 < 01 <4
U2<65<3).

Besides working on state classes, both Romeo and TINA operate on standard
time Petri nets. Therefore, in order to analyze our nets with respect to the
soundness of workflow nets, we had to provide their short-circuited version.
To do so, we connected the output place of transition E, with the input place
of transition S by means of an additional transition. Figure A.29 shows the
stepper simulation of the obtained short-circuited time Petri net in TINA. In
the depicted scenario, transition end_TASK is expected to fire after transition
MIN and transition MAX.

By assigning different time intervals to transitions end_TASK, MIN, and
MAX, we derived multiple process execution traces that capture all the previ-
ously explained behaviors of the duration-aware process of Figure 3. By stepping
through the net model in TINA and Romeo, we were able to observe that the
time Petri nets reproduced the expected behavior of all the considered process
traces. Romeo’s simulation interface is shown in Figure A.31.

Finally, by analyzing the short-circuited TPN with TINA, we evinced that
the net is live and bound, as reported in Figure A.30. Thus, thanks to theorem

71

delay

date

[5.05.0] p19 maxVIOLATED p22 p24
O O—F-O
MAX 027 p20 p25
o4 P48 . .
° T4 O 7

c_EXITED

[0.0.3.0]

NOT c_EXITED

start TASK

pi12

end_TASK

O3

cExitep P18 p10

MIN o7

O
H

minViolated

[22]

Figure A.29: Short-circuited time Petri net opened in TINA’s stepper simulator. The delay
represents the current relative delay, whereas the black bar on the top right reports the total
execution time of the net. Transition end_TASK is enabled and can be fired within the next

three time units.

72

A.2, we can state that the obtained TPN is sound.

LIVENESS ANALYSIS
possibly live
possibly reversible

0 dead classe(s), 71 live classe(s)
0 dead transition(s), 20 live transition(s)

STRONG CONNECTED COMPONENTS:

0 : 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 76 54 3210

SCC GRAPH:

0 -> T1l6/0, T12/0, T14/0, T21/0, T11/0, t7/0, T13/0, T15/0, T18/0, T10/0, T9/0, T17/0, T5/0, T6/0, T3/0,
T4/0, T8/0, T7/0, T2/0, T1/0

0.000s
ANALYSIS COMPLETED

net taskDuration, 24 places, 20 transitions
bounded, possibly live, possibly reversible
abstraction count props psets dead live
states 71 24 ? 0 71
transitions 149 20 ? 0 20

Figure A.30: An excerpt of TINA’s full textual output analysis results for the time Petri net
shown in Figure A.28.

" = oo | g e smtor SIor°)
Fle Edit Help Fle Edit Help

et | D@0 @/QJT £dt | Smunie | check | conratpanet « Zonebased method
* State ass method

Initialization Functions & Types. Resetsimulation | Step back

MAX (T3) | simulate the sequence: | 1172 15 17 78 19 120 74 117 12 113 118
81 Cotor semantics {con e larged 0 prefrences vindon
Enabled transitions > brown

Tl6 Firaste transitions - oreen
Click on the Tranciion to fire

P16 max_Violated (TIS) pig

2N o <o
v, RN el
~o (ther variables are equal to zer0)
P21
P17 e T in fo, inft
=] = tted stsions 1
~ / i itions
¥ < EXITEDYTY) /
R e
e yd o
) (Girer varisbles are cquat to zer0)
NOT_CEXITED (Ti8)
x b Tin o, imit
B enoted trmsitions : 11
e B Firate tramitions ;11
. e e T T v e s
= © |5t
Bl R 4] . LT sy s | B veistes are st o 200
~ l Erabted transitions : None
N RIELTe traneitions | hone
NOT_¢EXITED (19
?-; CEXITED (15)
5{ ™
min_Violsed (m\ b {
Pl

3 ™
MIN (T6) PG P23 L

12:2)
7 Quitsimulator

Figure A.31: Simulating time Petri net with Romeo [54]. The simulated sequence is reported
at the top right, and the State-class method [42] has been chosen for simulation. As done for
TINA, the short-circuited net has been checked for absence of deadlocks.

73

	Introduction
	Background: BPMN, Structured Design, and Temporal Aspects
	Introducing the Business Process Model and Notation
	Temporal aspects in BPMN processes
	Well-structured process design

	Business Process Models for Specifying Activity Duration
	Specifying Simple Duration Constraints
	Specifying the duration of an activity by constraining only one bound
	Specifying the duration of an activity outside of a certain range
	Specifying the duration of an activity with boundary events

	Specifying Simple Duration Constraints of Process Regions
	Simple duration of Single-Entry-Single-Exit regions
	Simple duration of non-Single-Entry-Single-Exit regions
	Composing duration patterns for process regions

	Specifying Deferred Activity Duration Constraints
	Specifying Shifted Duration Constraints
	Detecting and Managing Duration Violations
	Basic Process Models for Managing Duration Violations

	Related Work
	Modeling and verification of temporal constraints in workflows
	Expressing temporal and duration constraints in BPMN

	Conclusions
	Validating Process Behavior by Means of Time Petri Nets
	Petri nets: Basic concepts, notation, and semantics
	Mapping BPMN processes to time Petri nets
	Process validation based on time Petri nets

