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Abstract

Abstract

Physical activity plays an important role against pathological degenerative conditions
and metabolic diseases. In particular, it works as a modulator of the mutually exclusive
osteogenic or adipogenic fates of mesenchymal stem cells through a direct action on
differentiation-related gene expression. On the other hand, it has also been reported
that oxidative stress generated by strenous physical efforts (e.g. marathon running) can
affect cell functions.

The purpose of this study was to investigate the effects induced by a half marathon in
male amateur runners. In particular the investigation focused on: i) serum proteins
modulation in response to the oxidative environment, ii) the modulation of circulating
progenitor cells commitment, monitored in terms of gene expression; iii) progenitor
cells proliferation and homeostasis, monitored through the expression levels of genes
related to telomerase activity and autophagic induction, respectively; iv) the effects of
soluble factors present in runners’ sera on differentiation process in an z vitro cellular
model.

The shotgun proteomic approach applied to runners’ sera confirmed the production
of reactive oxygen species, counteracted by an increased production of detoxifying and
scavenger proteins. Overall, the proteome modulation profile suggests a consequent
positive effect of the trained condition.

Gene expression analyses showed an upregulation of osteogenesis related genes in
Circulating Progenitor cells (CPs) after training, in particular RUNX2 and BMPs. In
addition, chondrogenesis related genes such as SOX9, COMP and COL2A1 were
upregulated after the run. At the same time, the higher expression of BMP3 suggests
a stimulation of CPs proliferation which justifies as well the increased expression of
telomerase-related genes, TERT and TERF1. The enhanced expression of autophagy-
related genes (ATG3 and ULK1) correlates positively with the induction of MSCs
differentition.

Data based on an 7 vitro model (i.e. Bone Marrow-derived MSCs supplemented with
pre- and post-run sera), suggest that intense physical exercise enhances BM-MSC
potential for osteo-chondrogenic commitment at the expense of the mutually exclusive
adipogenesis. The 7 vitro deposition of calcium salts demonstrates mineralization, i.e.
complete maturation of osteoblasts promoted by soluble factors in runners’ sera.

In conclusion, changes induced by physical activity may be considered positive in
terms of: i) oxidative stress management during oxigen reactive species production; ii)
progenitor cells proliferation, under autophagy-mediated positive selection; iii) osteo-
chondrogenic induction of CPs; iv) production of circulating soluble factors which
support complete maturation of committed osteoblasts. All data seem to suggest that
physical activity has positive effects on overall health.
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1. Introduction

1.1. Physical activity

The World Health Organization (WHO) defines physical activity as “any bodily
movement produced by skeletal muscles that requires energy expenditure, including
activities undertaken while working, playing, carrying out household chores, travelling,
and engaging in recreational pursuits”.

The Lancet Global Health has shown that one in four adults are inactive in many
countries, in particular in high income ones P. WHO promotes and recommends
exploiting moderate and vigorous intensity physical activity to improve overall health.
An adequate level of activity is fundamental to: i) maintain a good cardiorespiratory
fitness; i) reduce the onset of many cardiovascular diseases, like hypertension, heart
diseases, stroke; iif) reduce the risk of falls and fractures; iv) improve bone functionality
and prevent bone quality deterioration. In contrast, an insufficient physical activity is
one of the risk factors involved in the global mortality levels worldwide. Inactive
people have an about 25% risk of death compared to active people. In addition, the
onset of chronic diseases, also known as Noncommunicable diseases (NCDs), is linked
to the activity rate and to unhealthy diet. Data from adolescents showed that globally
81% of them are insufficiently active Y. The situation is underestimated wotldwide and
WHO has developed a global action plan scheduled for twelve years to perform
effective and feasible actions to increase physical activity .

The University of Verona and its department of Neurosciences, Biomedicine and
Movement Sciences (DNBM), thanks to an inter-academic organization (Universities
of Turin, Rome, Milan, Brescia, Kent and Jyvaskyla-Finland), promotes yeatly the
“Run For Science” (R4S) event, which is one of the most important scientifically
monitored marathons in Europe. During R4S, male amateur runners were investigated
to evaluate the modulations induced by a half-marathon (21 km), in relation to ageing;
the purpose was to better understand the contribution of sport positive effects on the
ageing process. Athletes were examined for muscular, cardiovascular and metabolic
parameters by a staff of medical doctors during the preliminary training, before and
after the half-marathon run. Moreover, blood samples were collected to assess
biochemical consequences in sera and to isolate circulating mesenchymal stem cells (c-
MSCs). That, to investigate the effects of sport activity on progenitor cells, combined
with ageing. It is known that training promotes the proliferation and mobilization of
stem cells, as it is also known (from animal models) that training influences their
osteogenic potential ). Physical exercise plays a crucial role in maintaining bone
quality, in terms of bone mass I, and it is recommended for the prevention of bone
deterioration . Probably, the enhanced bone quality in trained subjects is due to the

induction of osteo-chondrogenesis and the positive modulation of bone homeostasis
1

1.2. Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) were first discovered in 1970 ", They can be defined
as undifferentiated cells capable of self-renewal, adherent to laboratory plasticware,
presenting a spindle shape. MSCs can be isolated from many adult tissues, such as
bone marrow, placenta, umbilical cord, and others. Circulating MSCs, also known as
Circulating Progenitors (CPs), can also be recovered from peripheral whole blood
thanks to a multi-step enrichment method "'. MSCs do not have specific surface
markers, but they can be selected for the presence of some (in particular, CD44, CD73,
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CD90, CD105) and the absence of others, such the haematopoietic and endothelial
ones (CD45, CD34, CD19, CD31). In most laboratories, the gold standard procedure
for the assessment MSCs identity, is their capability to differentiate in several cell
lineages, such as bone, cartilage and adipose tissue cells. The differentiation of MSCs
is regulated by multiple microenvironmental factors, which promote their
transformation in a two-step stimulation: a first commitment of MSCs to progenitors,
followed by a maturation stage where progenitors develop specific cell type
characteristics. Once the differention induction is completed, gene expression profiles
of MSCs shift towards specific patterns which are to be found in mature cell types.
1.2.1.  Osteo-chondrogenesis

Osteogenesis, the formation, development and maintenance of bone, is a life-long
process. Bone formation is finely regulated by systemic and local factors, which
promote the commitment of MSCs towards osteoblastogenesis. Expression of the
mastergene Runt-related transcription factor 2 (RUNX?2) is the conditio sine qua non for
triggering the osteogenic differentiation "> P! while inhibiting the adipogenic
commitment " of MSCs. The Runt-related transcription factor (RUNX) family
includes three proteins with a DNA-binding domain, called Runt, which works in

cooperation with the transcriptional coactivator core binding factor B (CBEP) to
promote stem cells differentiation. The Runx family members are structurally similar,
but only Runx2 regulates osteogenesis.

RUNX2 gene is the target of several molecular pathways, such as Wingless(Wnt),
Hedgehogs (HH), Bone Morphogenetic Proteins (BMPs) and Bone Morphogenetic
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Figure 1: The lineage-specific differentiation is a multiple-stage and well-coordinated process regulated
by master regulators, such as PPARy for adipogenesis and Runx2 and Osterix for osteogenesis.
Osteogenic differentiation can be staged by measuring RUNX2 gene expression (eatly marker) and
osteocalcin and osteopontin (late markers). Production of lipids are indicators of terminal adipogenic
differentiation. Adapted from [2].

Protein Receptors (BMPRs). Wnt signalling is triggered by the binding of Wnt ligand
to Frizzled receptor complexed with co-receptors LRP5/6. It initiates a signal cascade
resulting in the stabilization and nuclear translocation of the activator, promoting cell
proliferation. Wnt signalling has both pro-osteogenic and antiadipogenic activities
through the PBcatenin-dependent canonical pathway and also a non-canonical one 7.
Bcatenin alone acts on peroxisome proliferator-activated receptor gamma (PPARY, the
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adipogenic commitment master regulator) preventing the adipogenic differentiation

'l: this effect is reciprocal: an upregulation of PPARy inhibits the Bcatenin cascade [
"I, These data are confirmed by many studies which evaluate the effects produced by
the interruption of that pathway: impaired osteogenesis and increased adipogenesis 7
vitro and in vivo "> "%,

Hedgehog signalling occurs when a hedgehog family ligand binds to the receptor
Patched, releasing Smoothened from suppression and allowing it to transduce signals
through G proteins, ultimately leading to nuclear translocation of a Gli zinc finger
transcription factor. Several studies have investigated the HH signalling effects on
MSC differentiation, and have evidenced its crucial role in eatly stages of
osteoblastogenesis | 1, 20 . The osteogenic differentiation effect of HH requires the
cooperation of BMPs 31gnalhng and involves primarily Gli transcriptional factor
activity . The committed cells, in order to complete their differentiation and
maturation, must express other genes such as Osterix (SP7) ®. Only mature
osteoblasts, further on, do express mineralization-related genes: Osteocalcin
(BGLAP), Osteopontin (SPP1) and Osteonectin (SPARC); while at this late
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Figure 2: A number of regulators control MSC lineage fate. Humoral factors like Wnt ligands and BMP
transmit their signals through cognate cell membrane receptors expressed by the differentiating cells.
Transcription factors often govern the final cell lineage decision during MSC differentiation, and their
transcriptional activities are modulated through crosstalk with cell-membrane receptor-mediated
signals. Adapted from [1].

maturation stage, the expression of commitment genes - RUNX2 and SP7 - is switched
off (Fig. 1).
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1.2.2. Adipogenesis
The expression of osteogenesis-related genes and adipogenesis-related ones are
mutually exclusive. The fat tissue master transcription factor PPARy triggers
adipogenic differentiation of MSCs. PPARy is expressed in two isoforms, PPARy1 and
PPARy2, but the second one is predominant in adipose tissue. Evidence from animal

models demonstrates its central role in adipogenesis: PPARY deficient mice show a
reduction in adipocytic commitment and fat storage; at the same time, they present
increased bone mass as a consequence of upregulated osteoblastogenesis . Coherent
evidence can be obtained using PPARy agonists or ligands, which confirm how it
inhibits ostegenesis, while inducing adipogenesis ** *. While Rumx2 must be
downregulated for the accomplishment of osteoblast maturation, complete
differentiation and subsistence of adipocytes, instead, is supported by the continuous
high-level expression of PPARy #!l.
1.2.3.0steogenic-adipogenic balance

The balance between adipogenic and osteogenic commitment of MSCs is regulated by
many molecular cascades and signalling pathways with mutually exclusive effects.
Together, the two processes are controlled by multiple factors. These factors attract
significant attention since their dysregulation is involved in several pathological
conditions. In osteoporosis patients for instance: increased bone marrow adipose
tissue occurs at the expense of reduced osteoblastogenesis from mesenchymal stem
cells . Some of the involved factors, e.g. insulin, dexamethasone and ascorbic acid,
are well known and they are used in 7z vifro models to induce differentiation. Also
physical factors, characteristic of MSCs microenvironment play an important role in
controlling progenitors’ commitment: extra cellular matrix (ECM) and growth
supports influence the differentiation, iz vitro and in vive 7. In fact, many inducing
proprieties of different ECMs are used to improve and control commitment and
differentiation in laboratory studies. Integrins and other mechano-transducer
molecules act in the control of physical property-dependent stimulation, such as the
activation of Runx2 through the mechanical signal transduced by the cytoskeleton
*I'and consequent osteogenic upregulation. The pro-osteogenic effect of mechanical
forces exerts an antiadipogenic effect, confirming the mutual exclusion of the two
processes. In fact, through Fyn/FAK/mTORC2 induced pathways, which enhance
Bcatenin signalling, the stimulated cytoskeleton promotes the osteogenic way ' The
involvement of mTORC in the remodelling skeleton-dependant osteogenesis is
confirmed by the observation that its knockdown in MSCs facilitates the adipogenic
commitment along with an impairment of osteogenesis P?. Osteopontin (OPN), an
organic component of bone which is synthesized by many cell types including
osteocytes, acts on the integrin-mediated signal promoting osteogenesis; in fact, OPN
gene knockdown results in robust adipogenesis at expense of osteogenesisis . In
contrast, other molecular cascades, e.g. the BMP pathways promote both adipogenesis
and osteogenesis of MSCs. BMP4, which induces cartilage and bone formation,
stimulates also the commitment of MSCs to adipogenesis " BMP2, which acts like a
pro-osteogenic factor at high concentrations, promotes adipogenesis at lower ones *
. In addition, mature adipose and bone tissues, behave like endocrine organs, which
secrete active molecules, adipokines and osteokines, respectively, resulting in a
reciprocal modulation .

10
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Figure 3: Signaling pathways and key transcription factors in regulating the adipo-osteogenic
differentiation of MSCs. The fine balance of adipogenic and osteogenic differentiation of MSCs is
achieved by the actions of critical signaling pathways and key transcription factors. MSCs exist in
specific microenvironments or niches, which is composed of various extracellular matrix components,
growth factors, cytokines, and chemokines. Upon interaction with MSCs, these components activate
ot inhibit the lineage commitment of MSCs. In addition, the initiated cellular signaling pathways can
also interfere each other to form a fine regulatory network. Ultimately, this signaling network
maintains a delicate differentiation balance through regulating key transcription factors such as
PPARy and C/EBPs or Runx2 and Osterix for adipogenesis ot osteogenesis respectively. OPN,
osteopontin; FZD, Frizzled receptor; Hh, Hedgehog; Ptc, Patched; Smo, Smoothened. Adapted from
[39].

It is worth mentioning that all the processes, pathways and molecular flows involved
in osteogenesis and/or adipogenesis do not work separately; and that also the
microenvironment plays an essential role in commitment fate.

1.3. Ageing

Ageing is a progressive physiological process, where cellular damage accumulation,
with consequent organ and tissue detetioration, causes the loss of homeostasis .
Effects of ageing are found in the MSC population, whose beneficial functions, such
as self-renewal and multilineage differentiation capacity, result compromised. During
ageing, bone marrow MSCs show a reduction of repair and regenerative capacity: they
have a reduced osteogenic differentiation competence versus an increased adipogenic
one; they show reduced proliferation too " *. Many factors concur to MSCs
senescence, including telomeres shortening and accumulation of reactive oxygen
species [,

Bone tissue undergoes a continuous self-regeneration process, which eliminates old
bone and produces new tissue, called bone remodelling. The final balance is finely
tuned by numerous actors and may be affected by many variables, including age. In
growing adolescents and young adults, bone formation exceeds bone resorption.
Conversely, in elderly people the balance is inverted, causing a reduction in bone

11
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mineral density. Ageing is the process which causes bone quality disruption
accompanied by adipose infiltration in the bone marrow niche; in fact, the lineage
commitment balance shifts from osteogenesis to adipogenesis . In an aged scenario,
expression of the adipogenic transcription factor PPARy is upregulated compared to
a young MSC environment . Furthermore in old animal models the Runx2 co-factor

CbfP is underexpressed; old mice show a decrease in bone density and an adipose
infiltration in marrow *‘, On the other hand, studies have confirmed the effects of
CbfB in osteoblast maintaining and in adipogenesis inhibition, by enhancing
Wnt/Bcatenin signalling *> *1. Interestingly, conditioned media from young bone
marrow aspirates act like “rejuvenating” factors which rescue the age-related decrease
of osteogenesis in 7 vitro experiments **.. Not only soluble factors act in this way: other
results suggest that also old or young ECM plays an essential role in adipogenic vs.
osteogenic fate . The resulting age-related commitment alteration clearly appears in
some pathological conditions, e.g. osteoporosis .

An important and well studied cause for the impairment of MSCs proliferation and
differentiation potential is telomere shortening. This process is continuosly active in
proliferating somatic cells, and erodes linear DNA molecules ends %, In stem cells
the action of telomerase reverse transcriptase (TERT) counteracts chromosomes
shortening by a continous addiction of repetitive elements at their ends. Shelterins,
such as TRF1 and TRF2, cooperate with telomerase in order to prevent age-related
senescence in the progenitors population >,

1.4. Autophagy

Autophagy is a process in which cellular components such as proteins and damaged
mitochondria are engulfed by autophagosomes and delivered to lysosomes to be
degraded and recycled in order to maintain cellular homeostasis .

Variations in cell-intrinsic mechanisms, such as autophagy, epigenetic modifications,
et al.,, contribute to produce the “aged” bone phenotype " A hallmark of ageing is
the reduction of autophagy activity. In fact, a reduction in the elimination of
dysfunctional progenitors causes a decline of MSCs stemness, proliferation and their
osteogenic differentiation capacity *»°". Basal autophagy is a crucial mechanism in the
maintenance of the healthy state of progenitors; failure of autophagy, on the contrary,
causes cell senescence characterized by a decline in number and functionality of MSCs
P81, Recently, the important role of autophagy was confirmed by experiments, where
aged mice restored their bone mineral density after pharmacological stimulation of the
autophagic process ™. Moleculatly, specific genes are expressed during autophagy:
after stimulation, in particular through the mTOR1 axis and Akt/PI3k signalling
cascade, autophagy is triggered by the interaction of Unc-51 Like Autophagy
Activating Kinase 1 (Ulkl) with AMP kinase (AMPK) ). The autophagic cascade
continues with interactions in many pathways, including PI3P-mediated activation of
others autophagy-related proteins (Atg family), such as A#5 and A#7, and LC3
precursor ' In conclusion, the activated I.C3-B promotes a cytosolic activity: the
formation of autophagosome P %,

1.5. ROS
The production of oxygen reactive species (ROS) and consequent induction of
oxidative stress plays a significant role in the adipogenic vs osteogenic fate of MSCs.
The concept that ROS lead to cellular damage in ageing emerged a long time ago ..
ROS production results harmful when it is not regulated; indeed a limited ROS

12
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production is trusted to promote some essential signalling pathways, which control cell
survival, proliferation and differentiation ** ®.. MSCs produce survival factors with
antioxidant properties in ischemic tissue; they are known to have high levels of
intracellular antioxidants and low levels of ROS > ). Numerous recent studies show
the influence of oxidants on MSCs differentiation trough osteo-chondrogenesis or
adipogenesis 7. Many studies employ hydrogen peroxide to investigate the effects
of oxidation on cells; in vitro experiments show that H.Oz decreases alcaline
phosphatase activity in osteogenically-induced hMSCs ""l; abolishes osteogenesis in
osteoblast progenitors ["?; it impairs osteogenesis downregulating Gli protein levels by
Hh signalling inhibition ”; it promotes a general adipogenic induction on MSCs “¥in
a dose-dependent manner ™. Interestingly, intracellular ROS levels increased after
exposure of MSCs to an adipogenic cocktail . On the other hand, by antioxidant
administration, osteogenic differentiation could be restored """, In conclusion, an
excessive amount of ROS prevents osteogenesis; loss or reduction of defence
mechanisms against oxidative stress promotes this phenomenon. In this scenatio, the
balance between oxidative species production and ROS scavenger response must be
evaluated carefully. The signalling pathways involved in the ROS-mediated shift
include Wnt and PPARy 1. ROS production in osteoblasts, together with enhanced
mitochondrial metabolism and glucose intake affect the differentiation balance and
stimulate the adipogenic way; mitochondrion-driven adipogenesis may be switched off
by mitochondrion-targeted antioxidants, which deactivate the adipogenic transcription
factors . In addition, the increased mitochondrial metabolism results necessary for
adipogenesis . Is clear that a positive energy balance promotes the metabolism-
driven adipogenesis at the expense of osteogenesis.

13
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2. Aim of the study

Physical activity is widely recognized as being associated with healthy ageing and
reduced risk for a number of chronic conditions, such as obesity, diabetes, bone
disease, hypertension. Moreover, it is known that training regulates the balance
between bone and fat tissue formation. However, it has also been demonstrated that
strenuous physical exercise may trigger adverse effects since it increases the production
of free radicals, such as reactive oxygen species. This may enhance inflammation and
induce DNA damage.

The aim of this study was to investigate the various aspects of cellular response to
physical exercise (half-marathon performance by amateur male runners).

In particular we intended to:

1. evaluate serum proteins modulation in response to the oxidative products by a
proteomic approach;

2. investigate the effects of physical activity on gene expression profiles in circulating
progenitor cells (CPs) by means of gene array analyses;

3. confirm and investigate further the preliminary data obtained in step 2. concerning:

o cffects of physical activity on osteogenic/chondrogenic/adipogenic
commitment of progenitor cells;

e cffects of physical activity on the autophagic activity in CPs;
e cffects of physical activity on telomerase-related genes;

4. verify the effects of soluble factors present in runners’ sera before and after the
marathon on an z vitro model (using a bone marrow-derived hMSC cell line).

14
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3. Results

3.1. Investigations on sera
3.1.1. Biochemical sera analysis
All runners and controls were evaluated for some biochemical parameters, such as
vitamin D and electrolytes. In particular, sodium, potassium, iron and ferritin levels
appeared significantly increased in post-run condition (Table 1).

Pre Run (baselinevalues) Post Run values

P t P val
arameter (mean +/- sd) (mean +/- sd) vatue
Age (yrs) 4511
Fe 15.15+5.6 21.78 +6.39 P <0.05
Mg 0.84 +0.04 0.72+0.05 P <0.005
P 1.12+0.2 1+0.2 NS
Ca 2.4+0.08 248+0.11 NS
Na 141 +0.87 144 +1.68 P <0.001
K 4.5+0.27 484 +0.33 P <0.05
Cl 103 +1.13 103.8 +2.48 NS
Ferritin 173 +170 198.7 + 194 P <0.05
CTx (ng/ml) -0.3+0.128 0.36 £ 0.09 NS
25-OH vitamin D (ng/ml) 52.7+10.18 - -

Table 1: biochemical analysis on runners’ sera [82].

3.1.2. Modulation of sera proteins
The proteome of all the athletes before and after the half marathon was investigated
for quantitative changes. In order to eliminate possible inter-individual variability
which can affect protein analysis, each athlete was analysed singulatly in pre- and post-
run condition. The analysis identified modulations of many proteins and, to better
understand their molecular function, a gene ontology classification was conducted
(Fig. 4). The two most abundantly represented functions were: catalytic activity (39%)
and binding function (37%), respectively. Proteins associated with antioxidant activity
were also detected (2%). Proteins related to cellular (23%) and metabolic processes
(17%), together with the response to stimulus (9%) were also well represented in the
samples. The gene ontology classification based on protein class showed that enzyme
modulator (13%), hydrolase (10%) and signaling molecule (9%), respectively, were the
three most represented classes (Fig. 4). By analyzing the log fold change of the
regulated proteins we observed that 23 proteins showed variations after the marathon:
9 proteins were underexpressed (K7C9, FCN3, PEXT, K22FE, K2C1, K1C10, FAT1,
HGFIL, HEMO), while 14 proteins were overexpressed ($70A49, PLMN, ANT3,

15
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LZTS2, PLSL, SUCB1, HEP2, PERM, A2AP, IY'WF, FINC, DCD, CO2, MYG) (Fig.
4). In order to reduce individual variability and to highlight the differences between
pre- and post- athletic performance, we compared the proteomic profile of each athlete
before and after the competition.

Common regulated proteins among athletes where then analyzed using gene ontology
classification with the aim to highlight the main molecular functions and biological
processes involved in sport activity. Gene ontology analysis (Fig. 5) showed an up-
regulation of proteins related to catalytic activities, metabolic processes and response
to stimulus, consequent to physical exercise. Conversely, there was a decrease of
proteins related to the immune system processes and to binding functions such as
some coagulation factors.
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Figure 4: Log fold changes of the regulated proteins between the pre- and post- marathon classes (FC
2 1.30 or FC= 0.77; p-value< 0.05) (A). Gene Ontology analysis of regulated proteins from individual
athlete, according to PANTHER classification. Bars represent the percentage of hits (proteins) in the
functional category (some proteins are placed in multiple functional GO categories). The molecular
functions (left) and the biological processes (right) analyses are represented (B).
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Figure 5: gene ontology classification based on protein class.

STRING analysis of regulated proteins between pre- and post-marathon single athletes

showed that detoxification pathway as well as immune response, lipid transport, and
coagulation were affected by physical activity (Fig. 6).
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Figure 6: STRING analysis for the regulated proteins between pre- and post- marathon from
individual athletes.
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In addition, employing Cytoscape software and the ClueGO plug-in, we performed
the Pathway enrichment analysis (Fig. 7). Increased secretion of cytokines, and a
negative regulation of lipid transport could be observed after the half marathon.

underexpressed overexpressed

detoxification

defense response
to Gram-positive
bacterium

negative lation
of lipid tran:

retina homeostasis

positive regulation
spindle assembly of endocytosis

Figure 7: Pathway enrichment analysis through Cytoscape software and the ClueGO plug-in. In the
functionally grouped networks, terms are linked based on x-score (=0.4). Edge thickness indicates the
association strength. Node size corresponds to the statistical significance for each term. Red term
indicates an abundance increase after the half marathon, blue term indicates an abundance decrease
after the half marathon.
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3.2. Circulating progenitors analysis

3.2.1. Osteogenesis
The fold changes of expression (Fig. 8A) disclosed by the osteogenesis array are listed
in Table 2. In order to validate these findings, we performed Real Time RT PCR assays
for several genes. We investigated the expression of SP7, the RUNX2 downstream
gene, as well. Most genes investigated were expressed at higher levels in post-run CPs
compared to pre-run CPs (Fig. 8B). The higher expression levels indicated a strong
commitment of CPs to osteogenic differentiation. In particular, RUNX2 expression in
post-run was >3 fold higher compared to pre-run CPs (p<0.01); RUNX2 downstream
genes: COL1A2 (p<0.05), SPARC (p<0.05), SP7 (p<0.05) and SPP1(p<0.01) in turn
confirmed the osteogenic trend, as their expression was higher too. However, we
observed lower post-run expression levels of BMP4 (p<0.05) and BMPR1A (p<0.05),
compared to pre-run levels. To exclude any bias due to technical procedures, we
enclosed also 10 controls in our study. In control samples obtained at time 0 and 120’
no differences were observed in Array profiles as well as in data obtained by Real time
RT PCR (data not shown).
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Figure 8: Expression variations of 68 genes (fold change) wete evaluated by TagMan™ Human
Osteogenesis Array (A). Real Time PCR Single assay validation of BMP1, BMP3, BMP4, BMPR1A,
COL1A2, COMP, MSX1, RUNX2, SOX9, SPARC and SSP1 (B). Fold change of expressions are
reported as normalized 2—dCT values. *p < 0.05; #p<0.01.
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Gene Symbol Fold Change Gene Symbol Fold Change

ALPL 8 (x2,7) MGP 3,76 (x1,5)
ARSE 1,39 (0,5) MINPP1 1,03 (0,8)
BGLAP 0,84 (20,2) MMP2 1,27 (1)
BMP1 0,62 (20,2) MMP8 1,91 (£1,4)
BMP2 1,25 (0,8) MSX1 4,86 (+2,9)
BMP3 2,23 (1) MSX2 0,29 (0,05)
BMP4 04 (0,1) PDGFA 2,01 (x1,2)
BMP6 1,86 (+1,2) PHEX 1,77 (£1,2)
BMPR1A 0,44 (20,2) RUNX2 3,78 (x1,9)
CALCR 2,6 (x14) SMAD1 1,64 (1)
COL10A1 1,31 (:0,8) SMAD2 1,36 (£1,1)
COL15A1 2,33 (1,5) SMAD3 0,85 (x0,3)
COL16A1 1,28 (0,7) SMAD4 0,8 (x0,2)
COL18A1 1,3 (0,8) SMAD5 1,08 (+0,6)
COL19A1 0,39 (20,1) SMAD6 0,91 (x0,3)
COL1A2 2,36 (x1,4) SMAD? 0,41 (x0,05)
COL4A3 0,8 (0,2) SMAD9 0,73 (20,1)
COL4A4 1,77 (£1) SOST 1,2 (0,9)
COL5A1 1,35 (:0,9) SOX9 1,84 (£1,2)
COL7A1 3,68 (+1,8) SPARC 2,3 (x1,5)
COL9A2 1,08 (0,7) SPP1 3,34 (x14)
COMP 1,89 (£1,2) TFIP11 0,55 (20,2)
CSF2 0,84 (z0,5) TGFB1 1,61 (£1,2)
EGF 2,6 (x1,1) TGFB2 2,28 (+1,3)
EGFR 0,25 (0,09) TGFB3 0,85 (x0,3)
ENAM 1,83 (£1,2) TGFBR1 0,8 (x0,06)
FGF2 2,62 (+1,6) TGFBR2 0,99 (20,2)
FGFR1 1,29 (0,8) TUFT1 0,62 (x0,1)
FGFR2 0,26 (20,1) TWIST1 2,53 (x1,4)
FGFR3 1,79 (£1,1) TWIST2 0,99 (z0,3)
FLT1 2,89 (+1,6) VDR 1,32 (£0,2)
IGF1 0,38 (20,1) VEGFA 1,11 (20,5)
IGFIR 1,09 (20,6) VEGFB 1,13 (+0,2)
IGF2 4,38 (+2,5) VEGFC 2,68 (+1,3)

Table 2: TagMan™ Human Osteogenesis Array results.

3.2.2.Chondrogenesis
To investigate further the chondrogenic commitment in CPs, we analyzed, by Real
Time RT PCR, the expression of COL2A1 and COMP genes, in addition to the
chondrogenic transcription factor SOX9. In particular, the higher expression of
COL2A1 (p<0.01) as well as of COMP (p<0.05) in post-run CPs corroborated clues
from the chondrogenic determinant SOX9 (p<0.05) (Fig. 9).
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Figure 9: Physical activity improved chondrogenic differentiation. Besides SOX 9 upregulation, we
observed also higher expression of COL2A1 and COMP in circulating progenitors after the run.

3.2.3. Adipogenesis
To evaluate CPs adipogenic commitment we analyzed gene expression of the
adipogenic transcription factor PPARy2. Data obtained by Real Time RT PCR showed
that PPARy2 gene expression was higher in post-run CPs (Fig. 10) (p<0.05).
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Figure 10: Adipogenic differentiation. PPARY2 gene expression was higher in post-run cMSCs.
Conversely, the BM-MSC line treated with post-run sera showed a reduced adipogenic differentiation.

3.2.4. Telomerase-related gene expression

Telomerase-associated genes, evaluated by gene array analysis in CPs, were
differentially expressed in CPs after physical activity (p<<0.01) (Fig. 11A). In particular,
Table 3 reports post-run fold changes of expression. Thereafter we performed Real
Time PCR assays to validate array data, which were confirmed as shown in Figure 7B.
Notably both TERT and TERF1 post-run expression levels were higher than pre-run
levels (p<0.01), while post-run expression of several DNA repair genes (e.g. RAD50
and HNRNPAT1), was lower (p<0.05) (Fig.11B).
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Figure 11: Gene expression vatiations are plotted for 19 selected candidates, evaluated by TagMan™
Human Telomerase Array (A). Real Time PCR Single assay validation of HNRNPA1, MRE11A,
RADS50, TERF1 and TERT are shown in B). Fold changes of expression are reported as normalized
2—dCT values. *p < 0.05; #p<0.01.

Gene Symbol Fold Change
HNRNPA1 0,46 (0,1)
HNRNPA2B1 1,17 (x0,6)
HNRNPAB 0,96 (+0,3)
HNRNPC 1,10 (x0,2)
HNRNPD 1,40 (x0,5)
HNRNPF 0,88 (x0,2)
MRE11A 0,85 (x0,3)
NBN 0,55 (+0,02)
POT1 0,62 (+0,2)
RAD50 0,54 (0,1)
TERF1 6,41 (£2,3)
TERF2 0,79 (0,2)
TERF2IP 1,12 (0,7)
TERT 3.5(xL2)
TINF2 0,84 (0,2)
TNKS 0,96 (£0,1)
TNKS2 0,89 (0,1)
XRCC5 0,89 (=0,05)
XRCC6 0,92 (+0,07)

Table 3: TagMan™ Human Telomerase Artray results.
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3.2.5. Autophagy

We analyzed by Real time RT PCR the expression of autophagy related genes in pre-
and post-run CPs in order to investigate autophagy modulation during physical
activity. Autophagy related genes appeared to be upregulated in post-run CPs (Fig.
12A). To confirm these findings, we treated a BM-MSC cell line with pre- and post-
run sera. By immunofluorescence assay we found that cells treated with post-run sera
expressed higher I.C3 levels, compared to cells treated with pre-run sera (Fig. 12B).
Interestingly, we found a positive correlation between ATG3 and SOX9 expression
(R=0.95) as well as ATG3 and RUNX2 expression (R=0.98). Similarly, positive
correlations between ULK1 and SOX9 expression (R=0.96); ULK1 and RUNX2
expression (R=0.97) were observed.
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Figure 12: Physical activity induced the upregulation of autophagy related genes in cMSCs (A). To
confirm this finding, we treated « BM-MSC line with pre- and post-run sera and we analyzed LC3
expression by fluorescence confocal microscopy (magnification 63X). (B) BM-MSCs treated with
post-run sera expressed higher LLC3 levels compared to cells treated with pre-run sera. Scale Bar 20um.
Two representative pictures are shown; the graph summarizes percentage of LC3 + cells.
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3.3. Bone marrow-MSC cell line treated with sera
3.3.1.  Osteogenesis on treated cells

We analyzed the effects of sera obtained from runners before and after the marathon
on a Bone Marrow-derived Mesenchymal Stem Cell line. Findings from the BM-MSC
line culture supplemented with runners’ sera confirmed the data obtained in CPs. In
particular, the gene expression profiles (Fig. 13A) as well as osteocalcin expression
(Fig. 13B) and calcium deposition, evaluated by alizarin red staining (Fig. 13C),
indicated the increased osteogenic differentiation and maturation in cells treated with
post-run sera.
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Figure 13: Effects of sera on a Bone Marrow-derived Mesenchymal Stem Cell line. The gene
expression profiles confirmed the osteogenic commitment observed in circulating progenitors (A);
Osteocalcin expression (Scale Bar 40pm) (B); calcium deposition, evaluated by alizarin red staining,
(Scale Bar 100 pm), (C), indicated the increased osteogenic maturation in cells treated with post-run
sera. Representative cell fields are shown. *p<0.05
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3.3.2. Adipogenesis on treated cells

To evaluate the BM-MSC cell line adipogenic commitment after runners’sera addition,
we analyzed gene expression of the adipogenic transcription factor PPARy2. Data
obtained by Real Time RT PCR showed that PPARy2 gene expression was lower in
post-run sera treated cells, compared to that observed with pre-run sera treatment (Fig.
14A) (p<0.05). These latter data were confirmed by oil red O staining of cells after 14
days culture: a reduction of lipid droplets (Fig. 14B) and a lower expression of the
adipogenic marker Peripilinl, evaluated by immunofluorescence, (Fig. 14C) were
observed.
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Figure 14: the BM-MSC line treated with post-run sera showed a reduced adipogenic differentiation.
In fact, PPARY2 gene expression levels were lower (A) and the number of lipid droplets (B) as well as
PLINT1 expression (C) were reduced in BM-MSCs treated with post-run sera. Representative cell fields
are shown. Scale Bar 40pm\; *p<0.05; #p<0.01.
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4. Discussion

Physical activity is widely considered a promoter of overall health: it reduces the onset
of metabolic pathologies, e.g. diabetes and obesity, and of diseases such as
hypertension and cardiovascular failure . The metabolic regulation has been finely
studied, effects on glucose homeostasis, mitochondrial activity and adipocyte-related
modulation topics have been reviewed extensively ) Therefore exercise is
recommended not only for its prophylactic value, but also as an effective therapy for
many conditions and diseases . Its role in preventing degenerative conditions is
associated to its intrinsic stem cell mobilization capability !, In fact, mesenchymal stem
cells have promising therapeutic potential against diseases caused by unbalanced cell
metabolism/renewal in bone, cartilage and adipose tissue. Clinicians recognize the
phenotypical effects on health induced by sport activity, such as bone mass increment,
which reflects osteocytes viability (WHO). Some bone-related degenerative conditions
(e.g. osteoporisis) represent a substancial burden for the public health service. An
active lifestyle opposed to a sedentary one makes a big difference, since it has been
demonstrated that customary physical activity delays age-related bone deterioration
and bone loss-related fractures *"*L

Comments on biochemical data

We saw an overall electrolyte iperconcentration values due to dehydration in athletes
after the run; that result is characteristic of the high-intensity run condition. In
addition, the analysis highlights an increment in iron and ferritin. The iron release is
probably linked to tissue injuty, which is a typical condition of training ®*. At the
same time, serum ferritin increase is probably consequent to phlogosis induced by the
run P it also suggests its implication in macrophage-mediated autophagy, which is
recorded during exercise .

Comments on proteomic analysis

It is known that physical activity produces not only positive effects on the organism.
In particular, intense training, characterized by an increment of aerobic metabolism,
triggers massive release of free radicals, i.e. reactive oxygen species . To prevent
damages from ROS, the organism reacts with the production of antioxidants, ROS
scavengers and with damage repair mechanisms ”>”’. In this scenario, a thorough
investigation of possible negative effects induced by sport activity is fundamental. The
whole proteomic approach described in this dissertation allowed an extended
evaluation of plasma proteins variations. The upregulation - in terms of protein
expression - of myoglobin, myeloperoxidase and ST00A9 confirmed that, even in the
half-marathon endurance, the body responds to the oxidative challenge with the
production of antioxidants "*'"'l. Tt is appropriate to recall here that exercise causes
damages in muscle tissue cells ""?. In fact, an increased production of myoglobin, along
with complement system proteins, was registered. The inflaimmatory system responds
to exercise in the same way, e.g. stimulating the production of plastin-2 and dermcidin,
as seen. Marathon running stimulates also the coagulation system, modulating the
balance between procoagulant von Willebrand factor, a2-antitripsin, fibronectin and
anticoagulant molecules, such as heparin cofactor II, antithrombin III, plasminogen
119514 " Fibronectin also plays an important role on MSCs: it enhances osteoblastic
differentiation """, The depletion of peroxisome biogenesis factor 1 (PEX1) and
hemopexin, ROS scavenger proteins, is consequent to the response against ROS

26



Discussion

production. Furthermore, PEX1 is a proadipogenic factor through PPARYy signalling
and it results upregulated both in 7z vivo and in vitro experiments ",

Comments on Bone Marrow MSCs data

Physical activity plays a preeminent role in osteogenesis; its mechanical stimulation-
mediated effects on MSCs osteogenic commitment are well known . In order to
assess the stimulating effects of sera from runners and controls, we analyzed gene
expression profiles variations in a Bone Marrow-derived MSC cell line (BM-MSC)
cultured with differentiating media enriched with sera. After seven days culture, BM-
MSCs supplemented with post-run sera showed a significant increase in RUNX2 gene
expression and they showed a significant reduction in PPARy gene expression. These
data confirm that, during sport activity, serum levels of soluble factors involved in
osteogenesis are incremented, at the expense of the adipogenic ones. Further on, in
long term cultures (3 wks) we were able to assess correct osteoblastic maturation and
the initial mineralization process. In fact mineralization-related SPP1 and SPARC
genes expression was increased. Alizarin Red S staining was performed, in order to
measure calcium salts deposition by developing osteoblasts. Stained slides showed an
augmented red-marked calcium deposition in cells treated with post-run sera from
trained subjects; this result confirms the correct 7 vitro mineralization of committed
cells. Furthermore, to better assess osteogenesis in those long-term cultures
immunofluorescent staining for Osteocalcin (BGLAP) was performed. Accordingly,
cells cultured in adipogenic medium were stained with Oil Red O, to highlight the
deposition of oil droplets in the cytoplasmic compartment. From stained slides, the
significant reduction of lipid droplets inside differentiated stem cells treated with post-
run sera confirmed a reduced adipogenic differentiation.

Comments on Circulating Progenitors results

The selection of circulating progenitors from whole blood (CPs) can be used to
evaluate in real time the effects of inducing factors on the Mesenchymal Stem Cells
(MSCs) population. We applied this technique to investigate promptly modulations
occurring during the marathon, comparing post-run data with individual pre-run data
and with sedentary controls data. Using the TagMan™ Human Osteogenesis Array,
we assessed the gene expression modulation of 68 osteogenesis-related genes. Several
genes from the array, evaluated also in single assays, confirmed their expression
modulation towards osteogenic commitment. A similar approach confirmed
upregulation of cartilage-related genes, indicating pro-chondrogenic induction as well.
The gene expression analysis also evidenced some peculiar modulations. We observed,
for instance, lower post-run expression levels of BMP4 and BMPR1A which codes for
its receptor " compared to pre-run levels in CPs. BMPs, in general, do promote
osteogenesis, nevertheless some of them may have a noteworthy double action. BMP4
actually plays an important role during adipogenesis, since it acts switching the
expression of the two isoforms of PPARy. In particular, it shifts the expression of the
second isoform to PPARy7, thus directing progenitors towards white adipocytes
differentiation at the expense of brown adipocytes ''*'"*l. BMP4 downregulation
results associated to PPARy2 increase in CPs. Supposedly it enhances insulin caption
by cells and consequent glucose intake "', BMP4 decrease and PPARy2 upregulation
suggest that, during training, the brown/white adipogenic maturation balance leans
towards the first one ''?. The upregulation of BMP3 gene expression can be associated
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115-

to its ability in promoting MSCs proliferation through Wisp1 signalling pathway !
117]

Progenitors proliferation is also supported by data concerning TERT and TERFT
genes enhanced expression "' Telomere lenght maintainance is required for the
preservation of proliferation and self-renewal of MSCs !"*"'*?. The TagMan™ Human
Telomerase Array showed also a downmodulation of DNA repair-related genes
(RAD50, HNRNPAT), confirmed by single amplification assays. Those repair systems
prevent DNA damage accumulation-mediated induction of apoptosis. On another
hand, they also prevent the elimination of genetically damaged MSCs subpopulations
(125,124 Tn particular, the DNA repair capacity of MSCs is related to their differentiation
stage: commiitted and pre-differentiated cells silence the elevated repair activity of their
progenitors > . Our overall results suggest that physical activity promotes the
proliferation of MSCs and it also fosters a selection of undamaged progenitors.

To prevent the accumulation of damaged organelles, misfolded proteins and other
intracellular anomalies, the quality control system acts regulating the autophagic
process inside the cell. We highlighted the upregulation of autophagy-related genes
(ATG3, ATG7, ULK1) in post-run samples. Supporting data come from the increased
immunofluorescence staining of .C3-B in post-run sera treated cells. Autophagy plays
a crucial role in counteracting oxidative stress effects; its defensive role is necessary for
progenitors’ differentiation properties. Combining these data with telomerase-related
results, we assume that the commitment and differentiation to osteo-chondrogenesis
in a stressful environment is better safeguarded by a system that can rule out defective
progenitors.

In conclusion, we confirm that a production of antioxidants occurs during the half-
marathon endurance. Importantly, our data also suggest that the half-marathon
physical commitment promotes osteogenic and chondrogenic differentiation as well
as autophagy, through a complex biological interplay.

We are aware that our observations, based mainly on gene expression analyses, could
be corroborated by further data on protein products analysis. Paucity of biological
samples due to the low number of circulating progenitors was a factual limitation.
Further technical approaches may hopefully contribute to data implementation
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5. Materials and methods

5.1. Enrollment and samples collection

The study was conducted during a sport event called “Run for Science”, held in Verona
(Italy), which was specifically planned to investigate the effects of distance running on
recreational athletes. Twenty-two amateur male runners (median age 41,4 * 10,1)
carried out a 21.1 Km half marathon. Blood samples, obtained by venipuncture, were
collected before the run and immediately after. For controls, we harvested samples
from ten sedentary male subjects at time 0 and after a half-marathon running-time.
The control samples were used only in differentiating cell culture experiments;
peripheral blood-MSCs gene expression analysis. Proteomic and biochemical
evaluations were performed for runners’ samples only.

Written informed consent was obtained from all participants and the study was
approved by the Ethical Committee of Azienda Ospedaliera Universitaria Integrata of
Verona, Italy (number 1538; 3th December 2012; Local Ethical Committee of AOUI
di Verona).

5.2. Sera collection
Sera were obtained from 6 ml of fresh blood after & centrifugation at 1800g for 15 at
4°C, using a vacutainer-mediated collection. Then, sera were aliquoted and frozen at
—80 °C for further investigations.

5.3. Peripheral blood-circulating progenitors isolation

Circulating Progenitor cells (CPs) were isolated from 25 ml of heparinized blood by a
depletion method including two Ficoll procedures to deplete hematopoietic cells by
antibodies cocktail. Firstly, Peripheral Blood Mononuclear Cells (PBMCs) were
obtained by a gradient centrifugation at 800g for 30 at 20°C (first Ficoll procedure).
Then, to deplete unwanted hematopoietic cells, Rosette-Sep antibodies cocktail was
used against 5 ml of whole blood mixed with the PBMCs obtained by the first Ficoll;
in particular, the antibody cocktail was incubated with samples for 20°, at room
temperature. Then, a second Ficoll procedure was performed to remove the unwanted
CD3, CD14, CD19, CD38 and CDG66b positive cells crosslinked to red blood cells
(glycophorin A) as reported in Valenti et al ". Collected cells were then washed in
phosphate-buffered saline (PBS), pelleted and stored dried at -80°C. To evaluate cell
phenotype we analysed gene expression for CD3, CD14, CD19, CD45, and CD34
markers, as in Valenti et al "7,

5.4. Bone marrow-MSC cell line culture
Sera, obtained from each runner before and after the competition, were pooled in two
groups: pre-run and post-run. To investigate sera effects, we used BM-hMSC (Bone
Marrow-human Mesenchymal Stem Cells, PromoCell) in order to study osteogenic
and adipogenic differentiation, after and before physical activity. Pooled sera were
added to the Mesenchymal Stem Cell Grow Medium (PromoCell) at 10% of final
concentration. Cells were plated at density of 5 X 10* cells per well into 24-well plates
and cultured until 21 days. In particular, the osteogenic differentiation was performed
with osteogenic medium containing osteogenic stimulatory supplements (10%,
StemCell), 10nM dexamethasone, 2mM B-glycerophosphate, 100uM ascorbic acid
(StemCell Technologies Inc). The adipogenic differentiation was performed by using
500nM isobutilmetilxantine, 200 uM indomethacin, 1uM dexamethasone and 10
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pg/ml insulin in basal medium. For both osteogenic and adipogenic differentiation,
the medium was changed every 3 days after initial plating. Pellets from all types of
culture were harvested and stored dried a-80°C after three, seven, fourteen and twenty-
one days of differentiation.

5.5. RNA extraction and reverse-transcription

Pellets from differentiated BM-hMSC cells and from CPCs were collected and stored
at -80°C. Then, nucleic acid extraction was performed using “RNeasy Protect Mini
Kit” by Qiagen, following the manufacturer’s protocol. RNA samples were quantified
by Qubit 3 Fluorometer using “Qubit RNA HS Assay Kit” by Invitrogen. Two
micrograms of the extracted RNAs were reverse transcribed with “High-Capacity
cDNA Reverse Transcription Kit” by ThermoFisher Scientific, according to
producer’s instructions. RNA and cDNA samples obtained were stored at -80°C.

5.6. Gene expression analysis

5.6.1. PCR arrays were performed by using TagMan™ Array Human
Osteogenesis (ThermoFisher, cat# 4414096) and TagMan™ Array Human Telomere
Extension by Telomerase (ThermoFisher, cat# 4414187) according to manufacturer’s
instructions.

5.6.2. Real time PCR analyses were performed in a total volume of 20 pl
containing TagMan Universal PCR Master mix and 2 pl of cDNA from each sample.
Pre-designed, gene-specific primers and probe sets for each gene were obtained from
Assay-on-Demand Gene Expression Products (Applied Biosystems, cat# at 5.6.2.1
section). In order to analyze the autophagy genes expression we used SyBR green
primers (Invitrogen, oligo sequences at 5.6.2.2). Real Time TagMan PCR reactions
were carried out in multiplex. The amplification reaction program included a 10’ at
95°C for the enzyme activation step, followed by 40 cycles at 95°C for 15” and at 60°C
for 1.

Thermocycling and signal detection were performed with ABI Prism 7300 Sequence
Detector (Applied Biosystems). Ct values for each reaction were obtained using
TagMan SDS analysis software. For each amount of RNA tested triplicate Ct values
were averaged. Since Ct values vary linearly with the logarithm of the amount of RNA,
this average represents a geometric mean. In addition, we considered a fold change <
0,5 and> 1,2 to be relevant, even if smaller changes were statistically significant.

5.6.2.1.  TagMan Probes:

CD3, Hs00174158_m1; CD14, Hs02621496-s1; CD19, Hs00174333_m1; CD45,
Hs00174541_ m1; CD34, HS00156373_m1; CD73, Hs00159686_m1, CD105,
Hs00923996_m1; RUNX2, Hs00231692_m1; SP7, Hs00541729_m1; COL1A2,
Hs01028956_m1; SPARC, Hs00234160_m1; SPP1, Hs00167093_m1; BMPI,
Hs00241807-m1; BMP3, Hs00609638-m1; BMP4, Hs03676628-s1; BMPRIA,
Hs1034913-g1;  SOX9, Hs01107818_m1; COMP, Hs004359-m1; MSXI1,
Hs00427183- m1; HNRNPA1, Hs 01656228-s1; MRE11A, Hs00967437-m1; RAD50,
Hs00990023-m1; TERF1, Hs 00819517-m1; TERT, Hs 00972650-m1; COL2A1,
Hs00264051_m1; PPARG2, Hs01115513_m1; B2M, Hs999999_m1; GAPDH,
0802021; by Applied Biosystems (Thermo Fisher corporation, Waltham, MA, USA).
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5.6.2.2. SyBR oligos:
ATG3 (Fw GGAAGAATATGAAGAGAGTGG; Rv CTCATCATAGCCAAACAACC);
ATG7 (Fw AGATTGTCCTAAAGCAGTTG; Rv CCATACATTCACTGAGGTTC);
ULK1 (Fw TCAAAATCCTGAAGGAACTG; Rv ACCAGGTAGACAGAATTAGC);
ACTIN (Fw GATGTATGAAGGCTTTGGTC; Rv TGTGCACTTTTATTGGTCTC); by
Invitrogen (ThermoFisher corporation, Waltham, MA, USA).

5.7. Alizarin Red S staining
To evaluate calcium deposition, we performed the Alizarin Red S staining. Briefly, after
21 days culture in the presence of osteogenic medium, cells were fixed with formalin
for 30°, washed three times with tap water, and stained for 45” with 40 mM Alizarin
red S at pH 4.1. The cells were then gently rinsed three times with distilled water and
visualized under optical microscope.

5.8. Oil Red O staining

The BM-hMSCs, cultured in adipogenic medium in presence of pre-run or post-run
sera, were fixed as in 5.7 then stained with Oil Red O after two washings with distilled
water. Fixed cells were stained with Oil Red O solution for 20°, and then washed three
times with distilled water. Nuclei were stained with Haematoxylin for 1” then cells were
rinsed for additional three times with distilled water and kept in PBS. The total area of
red pixels in the Oil Red O-stained droplets/cell was detected by using the IMAGE ]
image analysis. In particular, the mean =SD of red stained areas, evaluated at 40X
magnification was calculated in three different field/slide and expressed as percentage
with respect to total area.

5.9. Immunofluorescence

After 21 days culture, BM-hMSCs were fixed and processed according to the
manufacturer’s protocols. Primary antibodies were diluted (as reported in the
datasheet) in Antibody Dilution Buffer and incubated overnight at 4°C. To evaluate
osteogenic differentiation and autophagy we used Osteocalcin C-8 antibody (SC74495,
Santa Cruz) and LC-3B (Cat. #2775, Cell Signaling) respectively. For the assessment
of adipogenic stimuli promoted by sera, we tested Perilipin D1D8 (Cat. #12589 Cell
Signaling). Slides were then incubated with secondary antibodies Alexa Fluor® 594
anti rabbit (Cat. # R37117), Alexa Fluor® 488 anti rabbit (Cat. #A-11034), goat mouse
fluorescein coniugated (Cat. AP124F, Millipore). Nuclear staining was performed by
ProLong™ Gold Antifade Mountant with DAPI. Images were recorded using a Leica
TCS SP5 AOBS inverted confocal microscope at 63X.

5.10. Statistical analysis

Results were expressed as mean I S.E. Statistical analysis was assessed by Student's
paired t test. We considered significant differences with p < 0,05. We performed also
correlation analyses by Pearson test to measure a linear dependence between the
expression of a single autophagy gene and the transcription factor RUNX2 or SOX9,
respectively. For in vitro data, analyses were applied to experiments carried out at least
three times. Statistical analyses were performed using SPSS for Windows, version 22.0
(SPSS Inc, Chicago, IL, USA).
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5.11. Proteomic analysis
5.11.1. Sera sample preparation
Twelve microliters of sera were depleted of high abundant proteins using the Seppro
IgY14 spin column kit (Sigma-Aldrich Inc., St. Louis, MO, USA) following the
manufacturer’s protocol. The sample was transferred into an Amicon Ultra-0,5 ml 3
kDa centrifugal filter (Millipore, Billerica, MA, USA) following the manufacturer’s
protocol, to collect the high molecular weight proteins. The sample were then
subjected to I) denaturation with TFE, II) reduction with DTT 200 mM, I1I) alkylation
with TAM 200 mM and IV) the complete protein trypsin digestion with 2 pg of
Trypsin/Lys-C (Promega, Madison, WI, USA). The peptide digests were desalted on
the Discovery® DSC-18 solid phase extraction (SPE) 96-well Plate (25 mg/well)
(Sigma-Aldrich Inc., St. Louis, MO, USA). The adsorbed proteins were eluted with
800 pl of acetonitrile:water (80:20) "**. After the desalting, the sample was vacuum
evaporated and reconstituted with 20 ul of 0,05% formic acid in water. Lastly, 2 pl of
stable-isotope-labeled peptide standard (DPEVRPTSAVAA, Val- 13C5 15N1 at V10,
Cellmano Biotech Limited, Anhui, China) was spiked into the samples before the LC-
MS/MS analysis and used for instrument quality control.
5.11.2. LC-MS/MS analyses

Serum proteins were analyzed with a micro-LC Eksigent Technologies (Eksigent
Technologies, Dublin, CA, USA) system that included a micro LC200 Eksigent pump
with flow module 5-50 pl, interfaced with a 5600+ TripleTOF system (Sciex, Concord,
ON, Canada) equipped with DuoSpray lon Source and CDS (Calibrant Delivery
System). The stationary phase was a Halo C18 column (0.5 A~ 100 mm, 2,7 um;
Eksigent Technologies, Dublin, CA, USA). The mobile phase was constituted with a
mixture of 0,1% formic acid in water (A) and 0,1% formic acid in acetonitrile (B),
eluting at a flow-rate of 15 ul min™" at an increasing concentration of solvent B from
2% to 40% in 30’. The injection volume was 4 pl and the oven temperature was set at
40°C. For identification purposes the samples were subjected to a data dependent
acquisition (DDA): the mass spectrometer analysis was performed using a mass range
of 100-1500 Da (TOF scan with an accumulation time of 0,25”), followed by a
MS/MS product ion scan from 200 to 1250 Da (accumulation time of 5 ms) with the
abundance threshold set at 30 cps (35 candidate ions can be monitored during every
cycle). The ion source parameters in electrospray positive mode were set as follows:
curtain gas (N2) at 25 psig, nebulizer gas GAS1 at 25 psig, and GAS2 at 20 psig,
ionspray floating voltage (ISFV) at 5000V, source temperature at 450°C and
declustering potential at 25V. For the label-free quantification the samples were
subjected to cyclic data independent analysis (DIA) of the mass spectra, using a 25-
Da window: the mass spectrometer was operated such that a 50-ms survey scan (TOF-
MS) was performed and subsequent MS/MS experiments were performed on all
precursors. These MS/MS experiments were performed in a cyclic manner using an
accumulation time of 40 ms per 25-Da swath (36 swaths in total) for a total cycle time
of 1.5408”. The ions were fragmented for each MS/MS experiment in the collision cell
using the rolling collision energy. The MS data were acquired with Analyst TF 1.7
(Sciex, Concord, ON, Canada). Two DDA and three DIA acquisitions were performed

[129, 130]
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5.11.3. Protein database search
The DDA files were analized using Protein Pilot software v. 4.2 (Sciex, Concord, ON,
Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, MA, USA). Trypsin as
digestion enzyme was specified for both the software. For Mascot we used 2 missed
cleavages, the instrument was set to ESI-QUAD-TOF and the following modifications
were specified for the search: carbamidomethyl cysteins as fixed modification and
oxidized methionine as variable modification. A search tolerance of 50 ppm was
specified for the peptide mass tolerance, and 0,1 Da for the MS/MS tolerance. The
charges of the peptides to search for were set to 2+, 3+ and 4+, and the search was
set on monoisotopic mass !l The UniProt Swiss-Prot reviewed database containing
human proteins (version 2015.07.07, containing 42,131 sequence entries) was used and
a target-decoy database search was performed. False Discovery Rate was fixed at 1%
[132]

5.11.4. Protein quantification
The quantification was performed by integrating the extracted ion chromatogram of
all the unique ions for a given peptide. SwathXtend was employed to build an
integrated assay library, built with the DDA acquisitions, using a protein FDR
threshold of 1% "L The quantification was carried out with PeakView 2.0 and
MarkerView 1.2. (Sciex, Concord, ON, Canada). Six peptides per protein and six
transitions per peptide were extracted from the SWATH files. Shared peptides were
excluded as well as peptides with modifications. Peptides with FDR lower than 1%
were exported in MarkerView for the t-test .

5.11.5. Bioinformatics and statistics software
The identified proteins were classified with PANTHER Classification System "%, The
regulated proteins were analyzed by using STRING software ', which is a database
of known and predicted proteinprotein interactions. For functional annotation
clustering and network analysis of proteins, the Cytoscape 3.1.0 plug-ins ClueGO
v2.0.8 was also used ", Graphical representations were performed by Origin 8.0
(OriginlLab, Northampton, MA, USA).
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ARTICLE INFO ABSTRACT

Keywords: Physical activity improves overall health and counteracts metabolic pathologies. Adipose tissue and bone are
RUNX2 important key targets of exercise; the prevalence of diseases associated with suboptimal physical activity levels
PPARG

has increased in recent times as a result of lifestyle changes. Mesenchymal stem cells (MSCs) differentiation in
either osteogenic or adipogenic lineage is regulated by many factors. Particularly, the expression of master genes
such as RUNX2 and PPARy2 is essential for MSC commitment to osteogenic or adipogenic differentiation, re-
spectively. Besides various positive effects on health, some authors have reported stressful outcomes as a con-
sequence of endurance in physical activity. We looked for further clues about MSCs differentiation and serum
proteins modulation studying the effects of half marathon in runners by means of gene expression analyses and a
proteomic approach. Our results demonstrated an increase in osteogenic commitment and a reduction in adi-
pogenic commitment of MSCs. In addition, for the first time we have analyzed the proteomic profile changes in
runners after half-marathon activity in order to survey the related systemic adjustments. The shotgun proteomic
approach, performed through the immuno-depletion of the 14 most abundant serum proteins, allowed the
identification of 23 modulated proteins after the half marathon. Interestingly, proteomic data showed the ac-
tivation of both inflammatory response and detoxification process. Moreover, the involvement of pathways
associated to immune response, lipid transport and coagulation, was elicited. Notably, positive and negative
effects may be strictly linked. Data are available via ProteomeXchange with identifier PXD006704.
Significance: We describe gene expression and proteomic studies aiming to an in-depth understanding of half-
marathon effects on bone and adipogenic differentiation as well as biological phenomena involved in sport
activity.

We believe that this novel approach suggests the physical effects on overall health and show the different
pathways involved during half marathon.

Contents of the paper have not been published or submitted for publication elsewhere. The authors declare no
conflict of interest.

Half marathon
Plasma proteomics

1. Introduction

The half-marathon (HM, 21.1 km) is one of the most popular out-
door recreational activities, attracting an increasing number of parti-
cipants around the globe. The basic reasons for its popularity entail a
lower physiological demand compared to longer distance contests, such
as marathon and ultra-marathon, combined with the renowned benefits
for health and fitness that are typically associated with endurance

exercise [1]. Endurance running has been the basis of human activities
over an extended period of time, determining the natural selection of
the metabolic profiles specifically addressed at satisfying the energetic
requirements [2]. Only very recently, in evolutionary terms, mankind
has turned to a sedentary lifestyle so the energy balance has become
positive. This has led to the exponentially increased prevalence of
several diseases whose pathogenesis is associated with suboptimal
physical activity levels [3]. Physical inactivity has been recognized, by
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the World Health Organization (WHO) as the fourth death cause (5.5%
of deaths globally) following hypertension (12.8%), smoking (8.7%),
and hyperglycaemia (5.8%), and preceding obesity and overweight
(4.8%) [4]. It is well established that an important key target of exercise
is the adipose tissue. Regular exercise decreases the size of adipocytes
and increases their insulin sensitivity [5,6]. Through the secretion of
adipokines, adipocytes exert endocrine and autocrine functions aimed
at modifying insulin sensitivity at the liver and skeletal muscle level, as
well as in the adipose tissue itself. By modulating adipokines expres-
sion, physical activity is a powerful lipolytic stimulus in the visceral
adipose tissue, contributing also to reduce the central adiposity, thus
improving systemic inflammation [7]. Endurance running, among the
few modifiable factors, is also one of the main determinants of bone
mass and bone metabolism. In particular, it is an acknowledged source
of bone turnover and is recommended for preventing osteoporosis and
bone metabolism problems [8]. Cross-sectional studies on BMD and
other bone strength markers have shown runners to be advantaged
when compared to inactive controls [9].

Recently, it has been reported that Mountain Ultra-Marathon
(MUM) increases bone formation rate in runners. In fact, in ultra-
marathon runners, levels of PINP, a serum procollagen I N-terminal
propeptide associated to bone formation, were enhanced; they were
higher in MUM participants than in moderately trained individuals
(control group) [10]. While it is known that a restrained physical ac-
tivity improves health and promotes wellbeing, a stressful physical
activity may trigger adverse effects [11,12]. However, even if previous
studies among runners have shown that muscle, heart as well as kidney
injury may occur [13-15], data related to systemic interactions are
lacking. Interestingly, in a recent study it has been shown that either
marathon or half-marathon activity can affect some inflammation
mediators and, consequently, can induce immune system reactivity in
runners [14]. A limit of the above study was the small sample size:
marathon (n = 4), half-marathon (n = 4); these findings nevertheless
suggested a systemic involvement in response to physical activity.

It has been reported that while a chronic endurance training reduces
telomere shortening thus counteracting the aging process, oxidative
stress due to marathon participation affects telomere length due to DNA
damage [16]. This finding suggests that a single stressful activity can
induce specific molecular pathways which are also activated in some
diseases. Consequently, additional information related to the effects of
intense physical activity is required in order to be aware of and possibly
counteract adverse consequences.

Though in the last years many studies have investigated the effects
of stressful physical activity in runners [14,16], the effects of half-
marathon on osteogenic and adipogenic differentiation as well as the
variations in proteomic profiles are still lacking. The aim of the present
study was to investigate the consequences of half-marathon on osteo-
genic and adipogenic differentiation in order to evaluate the effects of
this physical activity on skeletal and adipose tissue. In addition, for the
first time we have analyzed the proteomic profile changes in runners
after half-marathon activity in order to survey the related systemic
adjustments.

2. Materials and methods
2.1. Subjects and sera collection

The study was conducted during a sport event called ‘Run For
Science’, held in Verona (Italy) in April 2016, which was specifically
planned to investigate the effects of distance running on recreational
athletes. Eleven amateur runners (median age 41,4 + 10,1) carried
out a 21.1 Km half marathon. Blood samples, obtained by venipuncture,
were collected before the run and immediately after. All participants
gave informed consent. Sera, obtained frome collected before the run
and immediately after. All participants gave informed consent. Sera,
obtained from 10 mL of fresh blood by centrifugation at 400 X g., were
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harvested and frozen in aliquots at — 80 °C until use.
2.2. Osteogenic and adipogenic differentiation of mesenchymal stem cells

We used hMSCs (PromoCell) to analyze the effects of sera obtained
from runners before (pre-sera) and after (post-sera) the competition on
adipogenic and osteogenic differentiation. We chose commercial MSCs
in order to avoid confounding effects of different circulating growth
factors as well as cytokines. Sera pools (pre- and post-run, respectively)
were obtained mixing equal serum volumes from all participants.
Serum was added to medium at 10% concentration. Cells were then
plated at a density of 5 x 10* cells per well into 48-well plates and
cultured for 1 week before gene expression analysis.

2.3. Total RNA extraction

Total RNA was obtained by RNAeasy minikit (Quiagen) with DNAse
I treatment. The extracted RNA was quantified by measuring the ab-
sorbance at 260 nm and the purity checked by measuring the 260,/280
absorbance ratio.

2.4. Reverse transcription

First-strand cDNA synthesis was performed with the First Strand
c¢DNA Synthesis Kit (GE Healthcare), by using random hexamers, (GE
Healthcare) and according to the manufacturer's protocol. The product
was then aliquoted in equal volumes and stored at — 80 °C.

2.5. Real time RT-PCR

PCRs were performed in a total volume of 25 pL containing 1 X
Tagman Universal PCR Master mix, no AmpErase UNG and 2.5 pL of
cDNA from each sample; pre-designed, Gene-specific primers and probe
sets for each gene (Runx2, Hs00231692_m1; PPARI'2, Hs01115513_m1;
B2M, Hs999999_m1; GAPDH, 0802021; Applied Biosystems) were ob-
tained from Assay-on-Demande Gene Expression Products (Applied
Biosystems). Real Time PCR reactions were carried out in multiplex. RT
amplifications included 10 min at 95 °C (AmpliTaq Gold activation),
followed by 40 cycles at 95°C for 15s and at 60°C for 1 min.
Thermocycling and signal detection were performed with ABI Prism
7300 Sequence Detector (Applied Biosystems). Ct values for each re-
action were determined using TagMan SDS analysis software. For each
amount of RNA tested triplicate Ct values were averaged. Since Ct va-
lues vary linearly with the logarithm of the amount of RNA, this
average represents a geometric mean. In addition, we considered a fold
change < 0.8 and > 1.2 to be relevant, even if smaller changes were
statistically significant.

2.6. Alizarin red staining

In order to evaluate osteoblastic maturation, cells were cultured for
28 days with pre- and post-sera, subsequently. Fixed with 70% ethanol
and rinsed with deionized water. Then, cells were treated for 5 min
with 40 mM Alizarin red S at pH 4.1, and gently washed with 1 x
phosphate-buffered saline for 15 min.

2.7. Proteomic analysis

2.7.1. Sera sample preparation

Twelve microliters of sera were depleted of high abundant proteins
using the Seppro IgY14 spin column kit (Sigma-Aldrich Inc., St. Louis,
MO, USA) following the manufacturer protocol. The method is used to
bind human serum HSA, IgG, fibrinogen, transferrin, IgA, IgM, hap-
toglobin, alpha2-macroglobulin, alphal-acid glycoprotein, alphal-an-
titrypsin, Apo A-I HDL, Apo A-II HDL, complement C3 and LDL (ApoB)
and thus to increase the identification of low-abundant proteins. The
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sample was transferred into an Amicon Ultra-0.5 mL 3 kDa centrifugal
filter (Millipore, Billerica, MA, USA) following the manufacturer pro-
tocol, to collect the high molecular weight proteins. The sample was
then subjected to denaturation with TFE, to reduction with DTT
200 mM, alkylation with IAM 200 mM and the complete protein trypsin
digestion with 2 pg of Trypsin/Lys-C (Promega, Madison, WI, USA). The
peptide digests were desalted on the Discovery® DSC-18 solid phase
extraction (SPE) 96-well Plate (25 mg/well) (Sigma-Aldrich Inc., St.
Louis, MO, USA). The SPE plate was preconditioned with 1 mL of
acetonitrile and 2 mL of water. After the sample loading, the SPE was
washed with 1 mL of water. The adsorbed proteins were eluted with
800 pL. of acetonitrile:water (80:20) [17]. After the desalting, the
sample was vacuum evaporated and reconstituted with 20 pL of 0.05%
formic acid in water. 2 uL of stable-isotope-labeled peptide standard
(DPEVRPTSAVAA, Val- '3Cs'®N; at V10, Cellmano Biotech Limited,
Anhui, China) was spiked into the samples before the LC-MS/MS ana-
lysis and used for instrument quality control.

2.7.2. LC-MS/MS analyses

The sera proteins were analyzed with a micro-LC Eksigent
Technologies (Eksigent Technologies, Dublin, CA, USA) system that
included a micro LC200 Eksigent pump with flow module 5-50 pL,
interfaced with a 5600 + TripleTOF system (Sciex, Concord, ON,
Canada) equipped with DuoSpray Ion Source and CDS (Calibrant
Delivery System). The stationary phase was a Halo C18 column
(0.5 x 100 mm, 2.7 um; Eksigent Technologies, Dublin, CA, USA). The
mobile phase was a mixture of 0.1% (v/v) formic acid in water (A) and
0.1% (v/v) formic acid in acetonitrile (B), eluting at a flow-rate of
15.0 yL. min~ ! at an increasing concentration of solvent B from 2% to
40% in 30 min. The injection volume was 4.0 uL. and the oven tem-
perature was set at 40 °C. For identification purposes the samples were
subjected to a data dependent acquisition (DDA): the mass spectrometer
analysis was performed using a mass range of 100-1500 Da (TOF scan
with an accumulation time of 0.25 s), followed by a MS/MS product ion
scan from 200 to 1250 Da (accumulation time of 5.0 ms) with the
abundance threshold set at 30 cps (35 candidate ions can be monitored
during every cycle). The ion source parameters in electrospray positive
mode were set as follows: curtain gas (N,) at 25 psig, nebulizer gas
GASI1 at 25 psig, and GAS2 at 20 psig, ionspray floating voltage (ISFV)
at 5000 V, source temperature at 450 °C and declustering potential at
25 V.

For the label-free quantification the samples were subjected to
cyclic data independent analysis (DIA) of the mass spectra, using a 25-
Da window: the mass spectrometer was operated such that a 50-ms
survey scan (TOF-MS) was performed and subsequent MS/MS experi-
ments were performed on all precursors. These MS/MS experiments
were performed in a cyclic manner using an accumulation time of
40 ms per 25-Da swath (36 swaths in total) for a total cycle time of
1.5408 s. The ions were fragmented for each MS/MS experiment in the
collision cell using the rolling collision energy. The MS data were ac-
quired with Analyst TF 1.7 (Sciex, Concord, ON, Canada). Two DDA
and three DIA acquisitions were performed [18,19].

2.7.3. Protein database search

The DDA files were searched using Protein Pilot software v. 4.2
(Sciex, Concord, ON, Canada) and Mascot v. 2.4 (Matrix Science Inc.,
Boston, MA, USA). Trypsin as digestion enzyme was specified for both
the software. For Mascot we used 2 missed cleavages, the instrument
was set to ESI-QUAD-TOF and the following modifications were spe-
cified for the search: carbamidomethyl cysteins as fixed modification
and oxidized methionine as variable modification. A search tolerance of
50 ppm was specified for the peptide mass tolerance, and 0.1 Da for the
MS/MS tolerance. The charges of the peptides to search for were set to
2+, 3+ and 4 +, and the search was set on monoisotopic mass [20].
The UniProt Swiss-Prot reviewed database containing human proteins
(version 2015.07.07, containing 42,131 sequence entries) was used and
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a target-decoy database search was performed. False Discovery Rate
was fixed at 1% [22].

2.7.4. Protein quantification

The quantification was performed by integrating the extracted ion
chromatogram of all the unique ions for a given peptide. SwathXtend
was employed to build an integrated assay library, built with the DDA
acquisitions, using a protein FDR threshold of 1% [21]. The quantifi-
cation was carried out with PeakView 2.0 and MarkerView 1.2. (Sciex,
Concord, ON, Canada). Six peptides per protein and six transitions per
peptide were extracted from the SWATH files. Shared peptides were
excluded as well as peptides with modifications. Peptides with FDR
lower than 1.0% were exported in MarkerView for the t-test [24].

2.7.5. Bioinformatics and statistics software

The identified proteins were classified with PANTHER Classification
System [22]. The regulated proteins were analyzed by using STRING
software [23], which is a database of known and predicted protein-
protein interactions. For functional annotation clustering and network
analysis of proteins, the Cytoscape 3.1.0 plug-ins ClueGO v2.0.8 was
also used [24].

Graphical representations were performed by Origin 8.0 (OriginLab,
Northampton, MA, USA).

2.7.6. Statistical analyses

Results from RT-PCR were expressed as mean *+ S.E. Statistical
analysis was assessed by one-way analysis of variance (ANOVA).
Differences between groups yielding a statistical significance with
p < 0.05 were tested with Bonferroni as a post hoc test. Analyses were
applied to experiments carried out at least three times. Statistical
analyses were performed using SPSS for Windows, version 16.0 (SPSS
Inc., Chicago, IL, USA).

3. Results

3.1. Osteogenic and adipogenic transcription factors expression after the
half-marathon (HM)

In order to evaluate the effects of HM on skeletal and adipogenic
differentiation, we cultured hMSCs with sera obtained from runners
before (pre-sera) and after (post-sera) the competition. MSC lines
treated with post-sera showed a significantly increased gene expression
of the osteogenic transcription factor RUNX2 compared to cells treated
with pre-sera (Fig. 1A). Conversely, the expression of PPARG2 gene, the
key regulator of adipocyte differentiation, was significantly lowered in
cells treated with post-sera (Fig. 1B).

To evaluate the osteoblastic maturation of MSCs treated with pre-
and post-sera, respectively, we monitored calcium deposition after
28 days of culture. Under optical microscope we observed an increased
calcium deposition in cultures treated with post-sera compared to cells
treated with pre-sera (Fig. 1C).

3.2. Proteins identification in sera

Two strategies were employed for data analysis: i) a comparison of
the proteomic profiles of all athletes before and after the half marathon
(Fig. 2A); ii) a comparison of individual proteomic profiles of each
athlete before and after the half marathon (Fig. 2B).

Gene ontology classification was carried out in order to characterize
plasma proteome profiles of the dataset. The two most abundantly re-
presented functions were: catalytic activity (39.20%) and binding
function (37.40%), respectively. Proteins associated with antioxidant
activity were also detected (2.10%). Proteins related to cellular
(23.10%) and metabolic processes (17.10%), together with the response
to stimulus (9.70%) were well represented in the samples. The gene
ontology classification based on protein class showed that the enzyme
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B Fig. 1. A significantly increased gene expression of the
osteogenic transcription factor RUNX2 in MSC lines
treated with post-sera compared to cells treated with
pre-sera was observed (*p < 0.05) (A). PPARG2 gene
expression was significantly lower in cells treated with
post-sera compared to expression in MSCs treated with
post-sera (*p < 0.05) (B). After 28 days of osteogenic
induction, the MSC treated with pre-sera (A) exhibited

* a lower mineralization capacity compared to MSC
treated with post-sera (B) as showed by Alyzarin red
staining (original magnification, 25 x /0.40) (C).
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modulator (13.20%), the hydrolase (10.60%) and the signaling mole-
cule (9.70%), respectively, were the three most represented classes
(Supplementary Fig. 1).

By analyzing the log fold change of the regulated proteins we ob-
served that 23 proteins showed variations after the marathon: 9

PLASMA SAM
PRE and POST

DEPLETION 14 MOST
ABUNDANT
PLASMA PROTEINS

pre HM

MSC CELL CULTURE  GENE EXPRESSION ANALYSIS
Py

LC-HRMS

post HM

proteins were under-expressed (K1C9, FCN3, PEX1, K22E, K2Cl,
K1C10, FA11, HGFL, HEMO), while 14 proteins were overexpressed
(S10A9, PLMN, ANT3, LZTS2, PLSL, SUCB1, HEP2, PERM, A2AP, VWF,
FINC, DCD, CO2, MYG). (Fig. 3A).

In order to reduce subject's variability and to highlight the

Fig. 2. Experimental design of the research:
the serum from athletes before and after the
half marathon was added to cells that were
cultured for 1 week before the gene expres-
sion analysis. The same serum was analyzed
using a shotgun proteomics approach and the
immuno-depletion of the 14 most abundant
serum proteins. The analysis allowed the
identification of 405 proteins and the quanti-
fication of 250 proteins. For the analysis of
the data two strategies were employed: a
comparison of the proteomic profiles of all
athletes before and after the half marathon
(a); a comparison of the proteomic profile of
each individual athlete before and after the
half marathon (b).

BIOINFORMATICS

IDENTIFIED PROTEINS: 405
QUANTIFIED PROTEINS: 250
2 GROUPS: PRE Vs POST SINGLE ATHLETES: PRE Vs POST

PRE POST PRE POST

REGULATED PROTEINS REGULATED PROTEINS
OVER EXPRESSED: 14 OVER EXPRESSED: 54
UNDER EXPRESSED: 9 UNDER EXPRESSED: 42
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0.05) (A). Gene Ontology analysis of regulated
proteins from individual athlete, according to
PANTHER classification. Bars represent the
percentage of hits (proteins) in the functional
category (some proteins are placed in multiple
functional GO categories). The molecular func-
tions (left) and the biological processes (right)
analyses are represented (B).
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differences between pre- and post- athletic performance, we compared
the proteomic profile of each athlete before and after the competition.
The common regulated proteins among athletes where then analyzed
using gene ontology classification with the aim to highlight the main
molecular functions and biological processes involved in sport activity.

Gene ontology analysis showed an up-regulation of proteins related
to catalytic activities, metabolic processes and response to stimulus,
consequent to physical exercise. Conversely, there was a decrease of
proteins related to the immune system processes and to binding func-
tions such as some coagulation factors (Fig. 3B).

STRING analysis of regulated proteins between pre- and post-
marathon single athletes showed that detoxification pathway as well as
immune response, lipid transport, and coagulation are affected by
physical activity (Fig. 4).

In addition, through Cytoscape software and the ClueGO plug-in we
performed the Pathway enrichment analysis (Fig. 5). An increased se-
cretion of cytokines, and a negative regulation of lipid transport could
be observed after the HM.

4. Discussion

A moderate physical activity has been associated to a reduction of
obesity, diabetes, bone disease, hypertension, as well as to other posi-
tive effects which can counteract cancer and aging [25]. Regular phy-
sical activity contributes considerably to the overall health and the
prevention of metabolic pathologies [26]; it has been shown that run-
ning can reduce cardiovascular mortality by 30-45% [25]. It is known
that physical exercise regulates glucose homeostasis and acts on adi-
pose tissue by reducing adipocytes size and upregulating mitochondrial
biogenesis [27].

Many data therefore suggest physical activity as a natural antidote
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against aging drawbacks and metabolic diseases; it has also been re-
ported that physical activity may act on stem cell mobilization [28].
MSCs are multipotent cells able to differentiate in various cell lineages
such as osteocytes, adipocytes and chondrocytes [29]; currently they
represent a promising and powerful tool in the field of regenerative
medicine. Mann and coworkers demonstrated that physical activity can
reduce apoptosis and improve osteocyte viability in human trabecular
bone [30]. In addition, it has been shown that intensive exercise im-
proves bone mass in spine and femur in young individuals; the bio-
mechanical stimulation induced by physical activity therefore plays a
crucial role in maintaining bone quality [31]. Our data concerning the
effects of serum in MSCs confirm these observations. We demonstrate
that the half marathon physical activity increases the osteogenic tran-
scription factor RUNX2 expression and improves osteoblasts matura-
tion/calcification in an in vitro model. Our data demonstrate also a
reduced adipogenic commitment of MSCs after physical activity. In fact,
the adipogenic transcription factor PPARG2 expression decreased in
MSCs treated with post HM sera.

In order to evaluate the “other side of the coin”, that is possible
negative effects of the half marathon, we used a proteomic approach to
identify serum proteins changes after the performance. Only a few
studies have investigated the effects of sport activities on plasma pro-
teins [32-35] and, in particular, the proteomic investigation approach,
which allows to identification and quantification of hundreds of regu-
lated proteins in an untargeted manner, has not been used before.

Depending on the nature, degree and duration of physical activity,
the oxidative stress acts in different ways in the body cells. Physical
exercise increases free radicals (FR) production and taxes the available
antioxidant mechanisms, especially during periods of intensive
training. The most studied FRs are reactive oxygen species (ROS),
which are chemically reactive molecules containing oxygen, normally



L. Dalle Carbonare et al.

LAVP2

SUBLAZ FBX021

=)
N
3 IDH3A
)

Detoxification )

»
we*
-

PEX1

e
-
o * 2T seremag

VASN

v
-

Lipid transport =
S e’
~ (i
Immune response|
< s
. e
e
W
@

e

Journal of Proteomics 170 (2018) 80-87

RNHL

cus @@
8 <
a™
o
s
vz
Iy
_mia
oen
otz
Fooran
D
% CNDP1
b (S
e

\YG@ Immune response

o
caBPA -
€8P
B

= *'@ .

N {lACTGY

.
“tanaans*”

SERPINFL -
*

5y ¥ o

o B4GALT
ylation <
®@ o

Fig. 4. STRING analysis for the regulated proteins between pre- and post- marathon from individual athletes.

produced during aerobic metabolism [36]. Leakage of electrons from
the mitochondrial transport chain is the main source of ROS generated
during strenuous exercise. In order to prevent damages from exposure
to radicals, organisms employ both antioxidant defenses and oxidative
damage repair mechanisms [37]. Myoglobin (MYG), myeloperoxidase
(PERM) and protein S100-A9 (S10A9) are strongly involved in these
mechanisms. Their concentration increases suggest that during physical
effort the body activates antioxidant mechanisms [38-40].

Moreover, it must be considered that the overexpression of myo-
globin observed after the half marathon may be due to muscle cell
damage [41]. It is known that deterioration of the glomerular filtration
rate and oliguria are induced following endurance exercise, and that
intensive endurance exercise may cause rhabdomyolysis-induced acute
renal failure [33]. The rise of the complement protein (CO2) after
marathon is due to tissue damage that activates the complement system
[42]. The increases of plastin-2 (PLSL) and dermcidin (DCD) are related
to inflammation mechanisms as well [43,44]. After the marathon, blood
coagulation is supported by von Willebrand factor (VWF) and alpha-2-
antiplasmin (A2AP) [45-47], while it is contrasted by Heparin cofactor
2 (HEP2), antithrombin-III (ANT3) plasminogen (PLMN) and fi-
bronectin (FINC) [48-50]. The observed increased levels of fibronectin
after half marathon are noteworthy. Fibronectin, an extracellular ma-
trix glycoprotein involved in various processes, is required for the os-
teogenic differentiation of MSCs [51]. Recently, it has been demon-
strated that synthetic fibronectin is able to improve osteogenic
differentiation by acting on a Bone Morphogenic Protein 2-Like sig-
naling pathway [52]. Notably, this finding sustains the increased ex-
pression of RUNX2 observed in post-sera treated MSCs. On the other
hand, the concentration of ficolin-3 (FCN3), a protein involved in the
complement pathway activation, decreases [53]. There is also a de-
crease of two detoxifying proteins, peroxisome biogenesis factor 1
(PEX1) and hemopexin (HEMO) [54,55] which can reduce the presence
of ROS in the blood. Reduced levels of PEX1 observed after half
marathon may contribute to the under-expression of the adipogenic
transcription factor PPARG2 that we observed in in vitro experiments.
In fact, PEX genes responsible of peroxisome biogenesis are upregulated
during adipogenic differentiation as observed in in vitro and in vivo
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models [56,57]; it has also been reported that peroxisomes may be
involved in lipid metabolism [58].

Finally, the analysis of modulated proteins interactions from in-
dividual runners provided a more detailed and exhaustive description
of the biological phenomena involved in sport activity. Along with the
proteins previously discussed, the analysis disclosed additional sig-
nificant proteins such as the coagulation factor XII (F12) and the C
reactive protein (CRP), which belong to the blood coagulation category
[59] and to the immune system, respectively. An increase of CRP in
blood after strenuous exercise had been observed previously [42,60].

In conclusion our findings show the effects of physical activity on
bone and adipogenic metabolism. Tuning of the master transcription
factors involved in alternative MSCs differentiation, i.e. RUNX2 in os-
teogenesis and PPARG2 in adipogenesis, has been demonstrated.
Stimulation of osteogenesis and inhibition of adipogenesis appear as
beneficial effects consequent to physical activity. Other proven effects,
such as oxidative stress, may have a negative impact on body cells;
nevertheless, the resulting proteome modulation appears beneficial for
overall health.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jprot.2017.09.004.
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