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Abstract 

 

Objectives 

To evaluate magnetic resonance (MR)-derived whole-tumor histogram analysis 

parameters in predicting aggressiveness of pancreatic ductal adenocarcinomas 

(PDACs) and neuroendocrine neoplasms (panNENs). 

 

Methods 

Pre-operative MR of 169 consecutive patients with PDAC or panNEN were 

retrospectively analyzed. T1-/T2-weighted images and apparent diffusion 

coefficient (ADC) maps were analyzed. Histogram-derived parameters were 

compared to several pathological features (grade, vascular infiltration, nodal and 

hepatic metastases) using Mann-Whitney U test. Diagnostic accuracy was assessed 

by receiver operating characteristic area under curve (ROC-AUC) analysis; 

sensitivity and specificity were assessed for each histogram parameter. 

 

Results 

No significant differences were found among histogram parameters for prediction 

of PDACs grade. ADCentropy was significantly higher in G2-3 panNENs with ROC-

AUC 0.757; sensitivity was 83.3%. ADCentropy was significantly higher in PDACs 

with vascular involvement (p=.022; AUC=.641), with specificity of 92.2%. 

ADCskewness was significantly higher in PDACs with nodal metastases (p=.027; 

AUC=.642), with 72% specificity. ADCkurtosis was higher in panNENs with vascular 

involvement, nodal and hepatic metastases (p= .008, .021, and .008; ROC-AUC= 

0.820, 0.709, and 0.820); sensitivity and specificity were: 85.7/74.3%; 36.8/96.5%; 

and 100/62.8%. No significant differences between groups were found for other 

histogram-derived parameters (p >.05). 

 

Conclusions 

Whole-tumors histogram analysis of ADC values is a valuable tool for predicting 

aggressiveness of PDACs and panNENs. Our results indicate that histogram 

metrics related to intra-tumor heterogeneity, as ADCentropy, ADCkurtosis and 
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ADCskewness are the most accurate parameters for the identification of PDACs and 

panNENs with higher biological aggressiveness. Further and larger studies are 

needed to incorporate the results of the histogram analysis within decision support 

models and to mine these data to detect possible correlations with genomic patterns. 
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1. Introduction 

 

a) Epidemiology, pathology and molecular/genomic landscape of solid pancreatic 

tumors 

Pancreatic tumors arise from both the exocrine and endocrine parenchyma of the 

gland; however, about 95% occur within the exocrine portion and may arise from 

ductal epithelium, acinar cells, or connective tissue, and only 2% of these exocrine 

tumors are benign. The most common solid pancreatic malignancy is ductal 

adenocarcinoma (PDAC), accounting for about 80% of all pancreatic cancers. 

Pancreatic adenocarcinoma represents the fourth cause of cancer death in Europe 

in both genders, after lung, colorectal, and prostate cancers in men, and after breast, 

colorectal and lung cancers in women [1]. The mortality rate of PDAC in Europe 

has increased by around 20% over the last 10 years [1]; incidence and mortality 

rates are very similar, due to the dismal prognosis of this tumor, with a life 

expectancy of about 5% at 5 years, that has not significantly improved over the last 

20 years [1]. The mean age at diagnosis is 71 and 75 years in men and women, 

respectively. The vast majority (>80%) of PDACs are caused by sporadic occurring 

genetic alterations. The most relevant acquired risk factors for PDAC are cigarette 

smoking (overall relative risk, ORR, 1.74) and obesity (body mass index (BMI) > 

30 kb/m2 ), which is associated with an increase by 20-40% of death from 

pancreatic cancer. Other risk factors include diabetes (ORR for type 1 and type 2 

diabetes: 2.0 and 1.8, respectively) and chronic pancreatitis, that most commonly 

depends, in Europe, by alcohol consumption, which is itself considered a risk factor 

for pancreatic cancer [2]. Additionally, Helicobacter pylori, hepatitis B and human 

immunodeficiency virus infection have been associated with an increase in relative 

risk of pancreatic cancer [2]; between dietary factors, regardless of their role in 

causing obesity, butter, saturated fat, red meat, and processed foods are considered 

risk factors for pancreatic cancer, whereas a high fruit and folate intake may have a 

protective role [3]. Finally, many chemical substances (such as chlorobenzoil, 

chlorinated hydrocarbon, nickel and nickel compounds, chromium compounds, 

silica dust), have been reported to increase the relative risk of developing pancreatic 
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cancer [4]. About 5-10% of PDACs are caused by inherited germline mutations [2], 

and are defined familial PDACs; this condition should be suspected and 

investigated when at least two first-degree relatives have been diagnosed with 

pancreatic cancer. Mutation in BRCA2 is the most common known inherited 

disorder in familial PDAC; germline mutation in other genes, such as p16, ATM, 

STK11, PRSS1/PRSS2, SPINK1, PALB2, and DNA mismatch repair genes, are 

associated with pancreatic cancer risk increase [2]. About two thirds of PDACs (60-

70%) arise in the head of the pancreas, 20-25% in the body and in the tail, and 10-

20% diffusely involve the pancreas. Early symptoms are strictly connected with the 

tumor position within the gland: pancreatic head tumors often present with “mass 

effect” symptoms, such as jaundice or upper gastroduodenal obstruction due to 

compression/invasion of the common bile and/or the pancreatic duct or the 

duodenum; body-tail tumors are generally associated with non-specific symptoms, 

such as abdominal or back pain, weight loss, steatorrhea, and new-onset diabetes 

[5]. Surgical resection is the only potentially curative treatment, leading to a post-

operative 5-year survival rate of about 20%. Unfortunately, only 15-20% of patients 

present with resectable disease at diagnosis, whereas most patients present with 

PDAC in an advanced stage, that ranges from inoperable, locally advanced to 

metastatic disease. The best treatment strategy in each patient needs to be discussed 

by a multidisciplinary team in order to define treatment goals and possible ways to 

achieve them. Locally advanced tumors, defined as neoplasms with no evidence of 

distant metastases but that are not resectable nor borderline resectable, have an 

intermediate prognosis: median overall survival range from 9-12 months in 

untreated patients to 16 months in patients treated with active chemotherapy [6]. 

Chemoradiation is another option in this subgroup; however, it remains unclear 

whether the addiction of radiotherapy leads to superior survival compared to 

chemotherapy alone [6-11]. In the metastatic setting, the main treatment goal is 

palliation. For patients with good performance status (ECOG 0-1), adequate biliary 

drainage and liver function, lengthening of survival is another possible purpose, 

that may be pursued through the use of systemic therapy [12]; however, even with 

the use of polychemotherapy, the prognosis remains poor, with a median OS of 7 

to 11 months according to the treatment received [13,14]. Macroscopically, PDAC 



8 
 
 
  

usually presents as solid, firm mass, with ill-defined margins. Microscopically, 

PDACs are characterized by an intense stromal reaction surrounding tumor cells 

[15]; these may vary from well-differentiated, duct-forming tumor cells, to poorly 

differentiated cells, with epithelial differentiation demonstrable only on 

immunolabelling. Morphological variants of PDAC include colloid carcinoma, 

medullary carcinoma, acinar cell pancreatic cancer (with slightly better prognosis), 

adenosquamous carcinoma and undifferentiated carcinomas with osteoclast-like 

giant cells, the last two associated with a poorer prognosis [16]. Most PDACs 

originate from a precursor lesion called pancreatic intraepithelial neoplasia 

(PanIN), a microscopic (<5mm) mucinous-papillary lesion that evolve to invasive 

carcinoma through an adenoma-carcinoma sequence [17]. Other potential precursor 

lesions are IPMNs and mucinous cystic neoplasms, that can also lead to invasive 

PDAC by stepwise gene alterations. Multiple genetic alterations are commonly 

found in PDACs: mutational activation of oncogenes (predominantly KRAS, found 

in >90% of PDACs), inactivation of tumor suppressor genes (such as TP53, 

p16/CDKN2A, and SMAD4), and inactivation of DNA damage repair genes (such 

as hMLH1 and MSH2) [18]. A recent whole-genome sequencing and copy number 

variation analysis [19] found chromosomal rearrangements as the most common 

event, causing disruption of genes involved in pancreatic cancer initiation and 

progression (TP53, SMAD4, CDKN2A, ARID1A, ROBO2, KDM6A and PREX2). 

According to the patterns of structural variation in chromosomes, a classification 

of PDACs into four subtypes with potential clinical utility has been proposed: 

stable, locally rearranged, scattered, and unstable subtype [20]. 

Pancreatic neuroendocrine neoplasms (panNENs) are the second most frequent 

tumor type arising in the pancreas. Neuroendocrine neoplasms (NENs) are 

classified according to their site of origin, their proliferation index and their 

functional status. The main division depending on NENs proliferation index 

(ki67%) is between well and poorly differentiated tumors, with the former being 

grouped together as grade 1 (ki67 < 3%) and grade 2 (ki67 2-20%) neuroendocrine 

tumor (NETs) and the latter being described as grade 3 (ki67 > 20%) 

neuroendocrine carcinomas (NECs) [20]. Recently, however, it has been pointed 

out that that within these groups there is significant heterogeneity of behavior, and 
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further subdivisions (i.e. highly proliferative but better differentiated tumors with a 

Ki-67 of <50% and truly poorly differentiated tumors with Ki-67 of >50%) may be 

useful to achieve better prognostic and predictive results [21]. According to the 

functional status, NENs are described as functional when signs and symptoms 

consistent with excess hormone secretion are found, regardless of hormone staining 

on immunohistochemical testing [22]. Insulinomas are the most common subtype of 

functioning PanNET, with an annual incidence of 0.5/100000 [23]. 

I n s u l i n o m a s  are usually smaller than 2 cm, solitary, hypervascular, and tend 

to exhibit very low malignant potential. The clinical presentation of insulinomas 

is characterized by the classic “Whipple triad,” consisting of symptomatic 

hypoglycemia, low blood glucose levels, and relief of symptoms after glucose 

administration [24]. Gastrinomas are typically malignant tumors and cause the 

Zollinger-Ellison syndrome, which is characterized by peptic ulceration, 

heartburn, and diarrhea [25]. Vasoactive intestinal polypeptide (VIP) stimulates 

intestinal secretion and inhibits electrolyte and water absorption: consequently, 

VIPomas are associated with profuse, watery diarrhea and electrolyte abnormalities, 

including hypokalemia (Verner-Morrison syndrome) [26]. The clinical 

manifestations of glucagonomas include hyperglycemia, weight loss, venous 

thromboses, glossitis, and an unusual rash called necrolytic migratory erythema, 

likely caused by amino-acid or zinc deficiencies [27] .  Somatostatinomas are 

characterized by the effects of hypersecretion of somatostatin and usually present 

with steatorrhea, achlorhydria, diabetes mellitus, and cholelithiasis. Rarely, pNETs 

may secrete adrenocorticotropic hormone, parathyroid hormone-related peptide, 

growth hormone-releasing hormone, cholecystokinin, and serotonin, giving rise to 

the respective clinical syndromes [28]. However, most (60-90% in recent series) 

PanNENs are silent hormonally, therefore defined as “non-functioning” (NF Pan-

NENs) [29]; additionally, most PanNENs are well to moderately differentiated (G1-

2 NETs) rather than NECs, with a relatively indolent behavior [30,31]. The crude 

annual incidence of NF PanNENs is 1.8 in females and 2.6 in males; their relatively 

good prognosis lead to a higher prevalence [30,32], although NF PanNENs seem 

to have worse prognosis compared with functioning tumors, probably as result of 

late diagnosis. In fact, NF-PanNENs usually become clinically apparent when they 
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reach a size that causes compression or invasion of adjacent organs, or when they 

metastasize: the most common presenting symptoms are abdominal pain (35–78%), 

weight loss (20–35%), anorexia and nausea (45%), whereas less frequent signs are 

intra-abdominal hemorrhage (4–20%), jaundice (17–50%) or a palpable mass (7–

40%) [33-37]. According to SEER data [32], localized, regional, and distant stages 

corresponded to 14, 23, and 54% of cases, respectively. Median overall survival for 

patients with NF PanNENs ranges between 23 months of patients with metastatic 

disease to 70 and 124 of those with locoregional and localized disease, respectively 

[32]. Beyond stage, tumor grade is the main prognostic factor [38-40]: patients with 

G2 and G3 neoplasms have a respective 2- and 10-fold higher risk of death [41]. 

The only known risk factor for PanNENs development is the presence of specific 

hereditary syndromes, such as Multiple Endocrine Neoplasia Type 1 (MEN-1), Von 

Hippel-Lindau Disease (VHL) and Tuberous Sclerosis (TS) [29]. Although only a 

small number of patients with PanNENs have MEN-1 syndrome, these neoplasms 

occur in the 19% of patients diagnosed with MEN1 with an incidence of 3, 34 and 

53% of patients at age 20, 50, and 80 years [42]. The incidence of PanNENs in 

VHL syndrome, instead, ranges from 11 to 17% [43,44]; NENs in VHL have a good 

prognosis although a small fraction of patients have an aggressive disease. 

Microscopically, most NF-NENs are well-differentiated tumors consisting of small, 

monomorphic cells arranged in islets or trabeculae with a “salt-and-pepper” 

chromatin pattern. Conversely, poorly differentiated tumors are often characterized 

as sheets of pleomorphic cells with extensive necrosis [22]. Immunohistochemical 

markers of neuroendocrine differentiation include synaptophysin, chromogranin A 

(CgA), neuron-specific enolase (NSE), and cluster of differentiation 56 (CD56) 

(neural cell adhesion molecule). [22]. As NETs arising in other organs, PanNETs 

are characterized by high-density expression of somatostatin receptors (SSTRs) 

[45]; well-differentiated NETs express SSTRs at an increased frequency and higher 

levels compared with poorly differentiated NECs. Aberrant activation of signaling 

by the mammalian target of rapamycin (mTOR) is a hallmark of NETs, regardless 

of primary site; mTOR modulates cell survival and proliferation, angiogenesis, and 

metabolism, and mutations in the mTOR pathway are observed in approximately 

15% of pNETs [46,47]. NETs are among the most vascularized cancers: tumor 
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neoangiogenesis has been identified as a key event in NET progression, associated 

with overexpression of proangiogenic factors, including vascular endothelial 

growth factor (VEGF), fibroblast growth factor, platelet-derived growth factor 

(PDGF), and their receptors [48,49]. From a genomic point of view, in PanNETs, 

losses of genetic material have been described more often than chromosomal gains 

[50] a whole-genome sequencing study of 102 primary pNETs identified 4 

signaling pathways commonly dysregulated in such tumors: 1) DNA damage 

repair; 2) chromatin remodeling; 3) telomere maintenance; and 4) mTOR 

activation. A higher than expected proportion of germline mutations has been 

demonstrated in clinically sporadic pNETs with mutations of the genes mutY 

homolog (MUTYH), checkpoint kinase 2 (CHEK2), and BRCA2 recurring in 11% 

of patients [47]. Surgery represents the treatment of choice for localized PanNENs 

since it is associated with significant benefits in terms of survival [51]. 

Nevertheless, the improvement of cross-sectional imaging techniques significantly 

increased the detection of small NF-NET and it is now debated if all the small (< 2 

cm) and asymptomatic lesions should be routinely resected [52], since most of 

neoplasms < or = 2 cm are likely benign or intermediate-risk lesions and only 6% 

of NF pancreatic NETs < or = 2 cm are malignant when incidentally discovered 

[53]. The choice of the appropriate management of these small tumors should be 

well balanced with the short- and long-term sequelae of pancreatic resection 

procedures, and a ‘watchful-waiting’ strategy could be a reasonable first approach. 

Many therapeutic options are available for advanced PanNENs, and again, the 

optimal treatment strategy (and the optimal sequence of therapies) should be 

discussed by an expert multidisciplinary board, taking into consideration the final 

treatment goal. Of course, in patients with functioning tumors, palliation of 

hormonal symptoms is the priority. Somatostatin is a hypothalamic hormone with 

wide exocrine, endocrine, paracrine, and autocrine inhibitory effects. Synthetic 

somatostatin analogues (SSAs) octreotide and lanreotide bind with high affinity to 

SSTR2 and with moderate affinity to SSTR5, inducing rapid palliation of symptoms 

in around 90% of patients with carcinoid syndrome, VIPoma and glucagonoma 

[45,54]. SSAs also are effective in palliating symptoms in patients with gastrinoma, 

although high-dose proton pump inhibitors may be even more essential in 
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controlling the gastric acid overproduction. Patients with advanced insulinoma 

respond poorly to SSAs, likely because of low expression of SSTR2 by these 

tumors. Besides symptoms management, inhibition of tumor growth is another, 

fundamental treatment goal. SSAs have a role also in this setting, leading to a 

significant improvement in progression free survival (PFS) and overall survival  

(OS) in patients with well differentiated panNETs [55,56]; other potential therapies 

include radiolabeled somatostatin analogs (PRRT) [22], targeted therapies such as 

everolimus [57] and sunitinib [58], but also chemotherapy and locoregional 

treatments (i.e. transarterial embolization, TAE, or transarterial 

chemoembolization, TACE, cytoreductive surgery and liver transplant in selected 

cases) [22]. Data to guide the best selection of treatment after progression of disease 

on SSAs are scarce; randomized studies comparing active drugs are needed to 

provide additional data on the appropriate sequencing of treatments.  
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b) Imaging 

 

Pancreatic ductal adenocarcinoma usually presents as a solid mass with infiltrative 

and ill-defined margins, causing ductal obstruction with secondary dilation of the 

main pancreatic duct and -when located in the pancreatic head- also of the common 

bile duct (“double-duct sign”). Pancreatic carcinoma is usually hypoechoic on B-

mode ultrasound (US), hypo- or isodense on unenhanced computed tomography 

(CT), hypointense on T1-weighted images and with a variable appearance on T2-

weighted images of magnetic resonance (MR) imaging. On contrast-enhanced 

examinations, PDAC is characterized by a hypoenhancing appearance, especially 

during the arterial phase. On delayed phase of CT and MR examinations, PDAC 

may present a mild pooling of contrast media with a slightly hyperdense/-intense 

appearance, owing to contrast medium retention within desmoplastic fibrosis [59]. 

Neuroendocrine neoplasms have a wide range of possible imaging appearances. 

They usually present as solid masses with well-defined margins, variably associated 

with dilation of the main pancreatic duct and the common bile duct. Larger tumors 

frequently present an inhomogeneous appearance, with coexistence of viable tumor 

tissue, necrosis, calcifications, etc. Neuroendocrine tumors are usually hypoechoic 

on B-mode US, hypo- or isodense on unenhanced CT, hypointense on T1-weighted 

images and hyperintense on T2-weighted images of MR imaging. On contrast-

enhanced examinations, panNENs are typically hyperenhancing during the arterial 

phase; contrast medium retention over time may be present [60]. 

Diffusion-weighted imaging (DWI) is a relatively recent technical improvement of 

MR imaging which has an established role in the evaluation of pancreatic diseases. 

DW sequence can evaluate the diffusion of water molecules (the so-called 

Brownian motions) within biological tissues: all factors that narrow the 

extracellular compartment or modify water exchanges through cell membranes lead 

to an impairment of the diffusion of water molecules, that can be identified by DWI. 

Tissues with restriction of water diffusion present high signal intensity on DW 

images and low signal intensity on the apparent diffusion coefficient (ADC) map; 

diffusion restriction can be also quantified through the calculation of the ADC value 

within specific regions of interest (ROIs). 
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DWI appears to be a promising adjunct for the identification of solid pancreatic 

tumors and for the diagnosis of liver metastases. For example, a previous study [61] 

reported that b800 DWI images provides higher conspicuity of 

panNENs compared to conventional MR sequences, thus leading to higher 

detection rates (93.3 vs. 71%): a probable explanation is that DW images have a 

high contrast resolution thanks to the decay of the MR signal of the pancreas and 

the peripancreatic structures on high b-value images, while pancreatic tumors, 

including panNENs, usually present diffusion restriction, with preservation of the 

MR signal, owing to the coexistence of dense cellularity, fibrosis and structural 

rearrangement that lead to an impaired diffusion of water molecules. As a 

consequence, both visual analysis and quantification of the conspicuity on high-b-

value DW images will provide a better identification of these tumors. Nevertheless, 

previous studies have reported controversial results regarding the performance of 

DWI in terms of the detection of panNENs: a small study conducted by Bakir et al 

[62], comprising 12 panNENs, reported that DWI does not appear to add useful 

additional information to a routine MR imaging protocol in the evaluation of 

panNENs, as the detection rates with DWI and conventional sequences were similar 

(100 and 91.7%, respectively); nevertheless, the authors of this study concluded 

that in patients with clinical suspicion for panNENs with negative or doubtful 

imaging modality outcomes, DWI may provide ancillary findings to the routine 

abdominal MR examination. Some other authors suggested that DWI findings 

might increase the diagnostic accuracy of conventional MR sequences. Brenner et 

al [63] reported that the addition of postprocessed fusion images of T2 and b1000 

DW images when reading MR studies of panNENs significantly increased the 

agreement on and confidence in the diagnosis of this neoplasia. A study by Schmid-

Tannwald et al [64] reported that the detection rate with conventional MR 

sequences was significantly improved by the addition of DW images, increasing it 

from 24.8–39.1 to 60.9–65.2%. Previous studies reported that DWI may provide 

ancillary findings that might be useful for prognostication. Prognosis in patients 

with PDAC is partially influenced by the histopathologic grade; ideally, well-

differentiated PDACs should present higher ADC values as compared to low-grade 

tumors, but some authors reported opposite findings as well as non-significant 
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results. It is reasonable to believe that the main contribution to the restriction of 

water diffusion in PDACs is provided by fibrosis, which is the predominant part of 

this tumor, while the contribution of the cells - even if less differentiated - and the 

perfusion effect provided by blood vessels should be minimal. Wang et al [65] 

reported that PDACs containing dense fibrosis had significantly lower ADC values 

compared to those characterized by abundant neoplastic tubular structures; 

moreover, well/moderately differentiated PDACs with dense fibrosis showed also 

significantly lower ADC values than those with loose fibrosis. Muraoka et al [66] 

reported similar findings: the mean ADC value was significantly higher in PDACs 

with loose fibrosis (1.88± 0.39 ×10-3 mm2/s) than in those with dense fibrosis (1.01 

± 0.29 ×10-3 mm2/s, p<.05). On the other hand, Rosenkrantz et al [67] did not report 

significant difference in mean ADC between poorly and well/moderately 

differentiated tumors. Moreover, Legrand et al [68] reported that mean ADC values 

did not differ significantly between tumors having < 50% of fibrotic stroma and 

those having >50% of fibrotic stroma (p=.94), or between tumors containing dense 

fibrosis and those containing loose fibrosis (p=.81). Some authors have proposed a 

more practical role for DWI, testing correlations with clinical features or outcomes 

(e.g., tumor stage, aggressiveness, or survival) rather than the histopathologic 

grade. Hayano et al [69] reported a significant negative correlation between ADC 

and tumor size (r=-0.59, p=.004) and the number of metastatic lymph nodes (r=-

0.56, p=.007). Tumors with low ADC values had a significant higher tendency to 

show portal system and extra-pancreatic nerve plexus invasion (p=.04 and .01, 

respectively) than those with high ADC. On the contrary, Rosenkrantz et al [67] did 

not report significant difference in mean ADC between tumors with stage T3 vs 

stage T1/T2, or between tumors with and without metastatic peri-pancreatic lymph 

nodes. Fukukura et al [70] reported that the median ADC value of PDACs was not 

associated with significantly differences in survival. Several studies identified 

predictors of aggressiveness by comparing DW and pathological features of 

panNENs, which could be helpful in the prognostication of these tumors. For 

instance, Lotfalizadeh et al [71] and Guo et al [72] reported that the mean ADC 

value tends to decrease as tumor grade increases. Similar results were reported by 

another study [73], which also reported an inverse correlation between the mean 
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ADC and tumor stage. Basing on these results, ADC seems to be correlated with 

aggressiveness in panNENs. 
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c) Radiomics and radiogenomics 

 

The suffix -omics originated in molecular biology disciplines to describe the 

detailed characterization of biologic molecules such as DNA (genomics), RNA 

(transcriptomics), proteins (proteomics), and metabolites (metabolomics). Now, the 

term is also being used in other medical research fields that generate complex high-

dimensional data from single objects or samples. One desirable characteristic of -

omics data is that these data are mineable and, as such, can be used for exploration 

and hypothesis generation. The term radiomics describes the conversion of digital 

medical images into mineable high-dimensional data, and it is motivated by the 

concept that biomedical images contain information that reflects underlying 

pathophysiology and that these relationships can be revealed via quantitative image 

analyses. 

Radiomics is a process designed to extract a large number of quantitative features 

from digital images (density/intensity, shape, size/volume, texture, etc.) which offer 

information on tumor phenotype and microenvironment, place these data in 

databases, and subsequently mine the data for hypothesis generation and/or testing. 

The final objective of radiomics is to develop decision support tools; therefore, it 

involves combining radiomic data with other tumor and patient characteristics 

(aggressiveness, biological behavior, survival, etc.) to increase the power of the 

decision support models. Radiomics appears to offer a nearly limitless supply of 

imaging biomarkers that could potentially aid cancer detection, diagnosis, 

assessment of prognosis, prediction of response to treatment, and monitoring of 

disease status [74]. 

The mining of radiomic data to detect correlations with genomic patterns is known 

as radiogenomics, and it has elicited great interest in the research community. The 

value of radiogenomics stems from the fact that while virtually all patients with 

cancer undergo imaging at some point and often multiple times during their care, 

not all of them have their disease genomically profiled. Furthermore, when genomic 

profiling is performed, it is done one time at one location and is susceptible to 

sampling error. Thus, radiogenomics has two potential uses. First, a subset of the 

radiomic data can be used to suggest gene expression or mutation status that 
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potentially warrants further testing. This is important because the radiomic data are 

derived from the entire tumor rather than from just a sample. Thus, radiomics can 

provide important information regarding the sample genomics and can be used for 

cross-validation. Second, a subset of radiomic features is not significantly related 

to gene expression or mutational data and, hence, has the potential to provide 

additional, independent information. The combination of this subset of radiomic 

features with genomic data may increase diagnostic, prognostic, and predictive 

power. 

While radiomics primarily grew out of basic research, lately it has also elicited 

interest from those in clinical research, as well as those in daily clinical practice. 

For example, visualization of tumor heterogeneity may prove critical in the 

assessment of tumor aggressiveness and prognosis. For example, research has 

already shown the capacity of radiomics analyses to help distinguish prostate cancer 

from benign prostate tissue or add information about prostate cancer aggressiveness 

[75]. In the evaluation of lung cancer, radiomics has been shown to be a tool with 

which to assess patient prognosis [76]. Therefore, radiomics offers important 

advantages for assessment of tumor biology. It is now appreciated that most 

clinically relevant solid tumors are highly heterogeneous at the phenotypic, 

physiologic, and genomic levels [77-79] and that they continue to evolve over time. 

Genomic heterogeneity within tumors and across metastatic tumor sites in the same 

patient is the major cause of treatment failure and emergence of therapy resistance 

[80]. Thus, precision medicine requires not only in vitro biomarkers and companion 

diagnostics but also spatially and temporally resolved in vivo biomarkers of tumor 

biology. A central hypothesis driving radiomics research is that radiomics has the 

potential to enable quantitative measurement of intra- and intertumoral 

heterogeneity. Moreover, radiomics offers the possibility of longitudinal use in 

treatment monitoring and optimization or in active surveillance. 

The tools developed for radiomics can help in daily clinical work, and radiologists 

can play a pivotal role in continuously building the databases that are to be used for 

future decision support. Radiomics analyses epitomize the pursuit of precision 

medicine, in which molecular and other biomarkers are used to predict the right 

treatment for the right patient at the right time. The availability of robust and 
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validated biomarkers is essential to move precision medicine forward. A major 

strength of a radiomics approach for cancer is that digital radiologic images are 

obtained for almost every patient with cancer, and all of these images are potential 

sources for radiomics databases. In the future, it is possible that image interpretation 

for all these studies will be augmented by using radiomics, building an 

unprecedented source of big data that will expand the potential for discovering 

helpful correlations. While radiomics will allow better characterization of patients 

and their diseases through new applications of genomics and improved methods of 

phenotyping, it will also add to the challenges of data management, as we will 

discuss later in this article.  
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d) Imaging evaluation of tumor heterogeneity 

 

Investigating tumor heterogeneity is a key point in cancer research. Tumors are 

highly heterogeneous on the histopathological level, with spatial variation in 

cellularity, angiogenesis, extracellular matrix, and necrosis. Moreover, 

heterogeneity in tumors already exists at the cell level and is highly influenced by 

the genetic background of tumor’s cells as well as the environment where they 

develop [81]. 

Intra-tumor heterogeneity has implications on clinical outcome as well as on the 

development of adequate therapies, as it may limit an adequate diagnosis and is 

involved in tumor resistance to chemo- and radiotherapy. The identification of 

multiple cellular clones within tumors orientated newer therapies towards more 

personalized treatments; therefore, a better and more systematic appreciation of 

intra- and inter-tumor heterogeneity is crucial for drug development as well as for 

the accurate assessment of response to treatment. Thus, a better characterization of 

cancer biology with non-invasive methods in conjunction with an enhanced 

knowledge of the molecular, metabolic and genomic profile of tumors might help 

the development of new clinically relevant biomarkers. 

It is difficult to assess tumor heterogeneity with invasive diagnostic methods as 

fine-needle aspiration or biopsy, as these do not represent the full extent of 

phenotypic or genetic variation within a tumor. On the contrary, imaging 

techniques, including MR imaging, CT and positron emission tomography (PET) 

are the ideal tools to analyze tumor heterogeneity in a non-invasive manner. The 

development of imaging techniques and dedicated software for quantitative and 

qualitative analysis have tremendously improved the evaluation of tumor 

heterogeneity over the last years. The strength of MR imaging compared with other 

imaging modalities resides in its potential to provide a vast array of different image 

contrasts, including T1, T2, contrast enhancement and perfusion, and DWI at a high 

spatial resolution and in a three-dimensional manner, providing unique insight into 

tumor heterogeneity. 

Independently from the technique, there are several modalities for assessing tumor 

heterogeneity with cross-sectional imaging. Among them, histogram analysis is 
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more and more used. This methodology proved its usefulness for investigating the 

distributions of various parameters such as permeability in dynamic contrast-

enhanced MR [82,83] and ADC in DW-MR imaging [84]. 

The histogram of an image is a function showing -for each intensity level- the 

number of pixels in the whole image having the same intensity. Histogram analysis 

uses descriptive parameters to report several quantitative factors, as mean, standard 

deviation, mode, maximum and minimum, kurtosis, skewness, and percentiles, 

entropy, etc. Mean and standard deviation represent average and dispersion of the 

histogram, respectively; kurtosis reflects the peakedness of the distribution and is a 

measure of the shape of the probability distribution; skewness is a measure of 

asymmetry of the probability distribution; entropy is a statistical measure of the 

irregularities in a histogram, allowing the description of the variation of a parameter 

of interest’s distribution; finally, a percentile represents the value below which a 

percentage of observations is calculated. The meaning of these metrics in cancer 

studies is still under investigation; nevertheless, many studies agreed that 

histogram-derived parameters can be significant predictors of prognosis and 

response to treatment in various types of cancers. Most clinical studies using MR 

imaging histogram analysis were performed in the brain, but histogram analysis is 

increasingly used for extra-cranial oncologic imaging. Basing on previous reports, 

kurtosis, skewness and percentiles seem to be promising parameters for 

differentiating between different types of gliomas [85], between pseudo- and early 

progression in glioblastomas [86,87] and between cancer subtypes [88]. Percentiles, 

kurtosis and skewness of ADC distributions allowed grading of endometrial cancer 

[89]. Finally, histogram analysis of MR images showed its added value as predictor 

of response to treatment in various cancers [83,90-92]. 

Histogram analysis of ADC is particularly useful to evaluate tumor heterogeneity 

as it analyzes different microenvironments that may be masked by evaluating mean 

ADC values, as happens during the conventional analysis of DW images. 

Biomarkers estimated from DWI have been related to cancer aggressiveness and 

response to therapy. Nowadays, most studies report histogram investigations of 

ADC in tumors. For example, ADC histograms were found to be able to 

differentiate astrocytomas from oligodendrogliomas by statistical comparisons of 
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mean, mode, peak height, percentiles and skewness [94]; another study found that 

the 75th percentile ADC had the highest AUC (0.791) in differentiating intra-

hepatica mass-forming cholangiocarcinoma from hepatocellular carcinoma, with 

sensitivity and specificity of 69.7% and 77.6%, respectively [94]. Differentiation 

of benign from malignant cervix tumors was possible by evaluating histograms of 

ADC distributions [84,95]: a significant difference was found between squamous 

cell carcinomas and adenocarcinomas in terms of skewness that supposedly reflects 

a more heterogeneous architecture of adenocarcinomas. The skewness and kurtosis 

of ADC histograms predicted response to angiogenic therapy in recurrent high-

grade gliomas showing that patients with increased skewness had a shorter 

progression-free survival compared with patients with stable or decreased skewness 

[96]. Identification of early response in patients with newly diagnosed or recurrent 

ovarian cancer was possible demonstrating significantly decreased ADCskewness and 

ADCkurtosis after a third cycle of therapy [97]. Finally, metrics derived from ADC 

histograms have been also correlated to several immunohistochemical features of 

solid tumors. For example, Meyer et al [98] reported that the ADCmax correlated 

with p53 expression (p = -0.446, p = 0.009) and ADCmode correlated with Her2-

expression (p = -0.354, p = 0.047) in head and neck squamous cell carcinomas. 

Moreover, 25th percentile, 90th percentile and ADCentropy correlated with Hif1-alpha 

(p = -0.423, p = 0.05, p = -0.494, p = 0.019, p = 0.479, p = 0.024, respectively). 

ADCkurtosis correlated with P53 expression (p = -0.466, p = 0.029). Another study 

[99] revealed a strong correlation between EGFR expression and ADCmax (p=0.72, 

P=0.02), an inverse correlation between ADCkurtosis and ADCskewness with p53 

expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively) and between 

ADCmedian and ADCmode with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, 

respectively) in rectal cancer. Moreover, PD1-positive tumors showed statistically 

significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 

0.36 vs 2.32 ± 0.47×10-3mm2/s, p=0.04.  
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2. Aims of the study 

 

To evaluate MR-derived whole-tumor histogram analysis parameters in predicting 

aggressiveness of PDACs and neuroendocrine neoplasms panNENs, by correlating 

them to pathological features.  
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3. Materials and methods 

 

a) Patient cohort 

Between January 2013 and December 2017, 355 consecutive patients with PDAC 

or panNENs who underwent MR within 1 month before surgery at our institution 

were identified through a review of our pathologic and radiologic databases. 

Inclusion criteria were: (a) optimal diagnostic quality MR images without any 

severe motion artifact; (b) unifocal disease; (c) patients who did not undergo local 

or systemic treatments before surgery, except for somatostatin analogues in 

hyperfunctioning panNENs; (d) patients who underwent demolitive surgery with 

standard or extended lymphadenectomy. Exclusion criteria were: (a) suboptimal 

diagnostic quality MR images with motion artifacts; (b) multifocal or diffuse 

disease with difficult delineation of tumor margins; (c) local or systemic treatments 

before surgery; (e) minimally invasive surgery without standard lymphadenectomy. 

 

b) Pathological analysis 

For every patient, an experienced pathologist (S.G., with 15 years of experience in 

pancreatic diseases) reviewed the histological reports and the resection specimens 

and recorded the following features: tumor size; grade, according to the 2010 WHO 

classification [20]; absence (-) or the presence (+) of vascular infiltration (V), nodal 

metastases (N) and liver metastases (M). Vascular infiltration was assessed during 

surgery. Final diagnosis of liver metastases was obtained with percutaneous US-

guided FNA or at pathological analysis of resection specimens. 

 

c) MR Imaging: technical parameters and examination protocol 

All examinations were performed with a 1.5 T unit (Aera, Siemens Medical 

Solutions, Erlangen, Germany) with a multi-channel phased-array torso coil. 

Baseline MR sequences included breath-hold axial, coronal, sagittal and para-

coronal T2-weighted (T2w) imaging with a half-Fourier acquisition single-shot 

turbo spin-echo (HASTE) sequence, axial T2w fat-suppressed (FS) sequence, axial 

T1-weighted (T1w) Dixon sequence; diffusion-weighted imaging using a free-

breathing single-shot echo-planar imaging pulse sequence with b values of 50, 400, 



25 
 
 
  

and 800 sec/mm2, with automatic reconstruction of ADC maps; and a breath-hold 

T1w FS gradient-echo sequence (volume-interpolated breath-hold examination, 

VIBE). Dynamic MR images were obtained by using the FS three-dimensional 

gradient-echo sequence before and after administration of gadopentate 

dimeglumine (Multihance; Bracco, Milan, Italy) at a dose of 0.1 mmol per kilogram 

of body weight at an injection rate of 2 mL/sec. The timing for post-contrast 

imaging was determined by fixed delays (30-45 seconds after the start of contrast 

medium administration for arterial phase imaging; 60-70 seconds  

for portal phase imaging; and >180 seconds for delayed phase imaging). The 

acquisition of three-dimensional gradient-echo data for each phase was acquired 

during breath hold at end expiration. Detailed MR imaging parameters are 

summarized in table 1. 
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Table 1 MR imaging acquisition protocol 

Sequence and 
imaging plane 

TR/TE 
(msec) 

Field of 
View 
(mm) 

Matrix Flip Angle 
(degrees) 

Thickness 
(mm) 

T2w      

Axial ∞/90 400-450 512x384 180 6 
Coronal ∞/90 400-450 364x384 180 6 
Sagittal ∞/90 390-400 253x512 180 4 
Paracoronal ∞/90 400-430 253x512 180 4 

DW axial 6000/59 400-440 192x144 90 6-6.5 
T2w FS axial 2900/82 400-460 384x174 160 6-6.5 

T1w chemical-shift 
axial 

6.69/2.39-
4.77 400-430 320x173 10 3-3.5 

T1w FS      
Axial 6.1/2.4 400-480 320x256 10 3-3.5 
Coronal 6.1/2.4 400-450 187x256 10 3 

2D MRCP ∞/746 300 384x384 180 70 

 

Legend: TR, repetition time; TE, time of echo; T2w, T2-weighted; DW, diffusion-
weighted; FS, fat suppressed; T1w, T1-weighted; MRCP, magnetic resonance 
cholangiopancreatography. 
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d) Image analysis 

 

All MR data were digitally transferred from a picture archiving and communication 

system workstation to a personal computer. Image analysis was performed by two 

radiologists in consensus (R.D. and N.C., with 10 and 8 years of experience in 

abdominal MR imaging) who were blinded to the pathologic results by using a 

software for medical image processing (MevisLab; Mevis Medical Solutions, 

Bremen, Germany) loaded with an in-house graphical user interface. The axial MR 

sequence in whom the tumor showed its highest conspicuity was chosen for tumor 

segmentation; ROIs were manually drawn in every contiguous slice containing the 

tumor and then copied onto the other MR sequences. Tumor boundaries were 

defined by correlating all MR images, including high b-value DW images. The data 

acquired from each slice were then automatically summated to derive volumes of 

interest (VOIs). Each tumor segmentation took a median of 8 minutes (range, 5-20 

minutes). Histograms were obtained from axial Dixon-derived in phase T1w, T1w 

FS, T2w, T2w FS, and postcontrast images, as well as the ADC maps. Histogram 

analysis of the distribution of intensity and ADC values was performed by using 

mathematical analytical software (Matlab 2009a; Mathworks, Natick, USA). 

Several quantitative parameters were derived: skewness, mean, kurtosis, variance, 

entropy, standard deviation (SD), minimum, maximum, median, 25th percentile, 

75th percentile, 95th percentile, interquartile range (IQR) and uniformity. As 

previously reported by Sidhu et al [100], absolute T2 and T1 weighted signal 

intensities are not comparable across patients without standardization, unlike ADC 

maps; therefore, T1 and T2 mean, variance, SD, minimum, maximum, median, 

percentiles and IQR were not analyzed further.  

 

e) Statistical analysis 

All statistical analyses were performed with commercially available software 

(SPSS 23; SPSS, Chicago, USA; and MedCalc 17.9; MedCalc Software, 

Mariakerke, Belgium). For the purpose of statistical analysis, basing on their similar 

biological behavior [30,101], well- and moderately differentiated PDACs as well 

as G2 and G3 panNENs were grouped and considered together. 
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Histogram-derived parameters were then compared among pathological features of 

the tumors (i.e., low vs high grade; V- vs V+; N- vs N+; and M- vs M+) using 

Mann-Whitney U test. 

Receiver operating characteristic (ROC) curves were constructed to determine the 

optimum threshold for each histogram parameter to identify poorly 

differentiate/G2-3, V+, N+ and M+ tumors, and optimal cutoff points were 

individuated according to the Youden’s index, with calculation of sensitivity and 

specificity. Pairwise comparison of ROC curves was performed by calculating the 

standard error of the area under the curve (AUC) and the difference between the 

AUCs, according to the method described by Delong et al [102]. 

For all statistical analyses, a p value less than .05 was considered to indicate a 

significance difference. 
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4. Results 

 

a) Study population 

One hundred-eighty-six patients were excluded from this study for the following 

reasons: suboptimal image quality of MR examinations, with severe motion 

artifacts from limited breath holding (n= 125); enucleation of a tumor smaller than 

1 cm (n= 11; all insulinomas); and previous therapy (n= 50). Finally, 169 patients 

(mean age, 60.5 years; age range, 24-81 years) were included in this study. There 

were 127 PDACs (mean age, 66.2 years; age range, 45-81 years) and 42 panNENs 

(mean age, 54.9 years; age range, 24-75 years). 

 

b) Pathological analysis 

All primary tumors were successfully resected (127 pancreaticoduodenectomies; 

40 distal pancreatectomies; 2 total pancreatectomies). Details are presented in table 

2. 
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Table 2 Clinicopathological data of the study population 
 

Feature PDACs panNENs Total 
Number of cases 127 (75.1%) 42 (24.9%) 169 (100%) 

Age (mean, range) 66.2 (45-81) 54.9 (24-75) 60.5 (24-81) 
Sex 

Male 
Female 

 
77 (60.6%) 
50 (39.4%) 

 
23 (54.8%) 
19 (45.2%) 

 
100 (59.2%) 
69 (40.8%) 

Grade 
WD/G1 
MD/G2 
PD/G3 

 
2 (1.6%) 
114 (89.8%) 
11 (8.6%) 

 
18 (42.8%) 
21 (50%) 
3 (7.2%) 

 
20 (11.8%) 
135 (79.9%) 
14 (8.3%) 

Location 
Head 
Body 
Tail 

 
109 (85.8%) 
15 (11.8%) 
3 (2.4%) 

 
18 (42.9%) 
15 (35.7%) 
9 (21.4%) 

 
127 (75.1%) 
30 (%) 
12 (%) 

Surgery 
PaD 
DP 
TP 

 
109 (85.8%) 
16 (12.6%) 
2 (1.6%) 

 
18 (42.9%) 
24 (57.1%) 
0 (0%) 

 
127 (75.1%) 
40 (23.7%) 
2 (1.2%) 

Vascular infiltration 
No 
Yes 

 
99 (77.9%) 
28 (22.1%) 

 
35 (83.3%) 
7 (16.7%) 

 
134 (79.3%) 
35 (20.7%) 

Nodal metastases 
No 
Yes 

 
25 (19.7%) 
102 (80.3%) 

 
19 (45.2%) 
23 (54.8%) 

 
44 (26%) 
125 (74%) 

Liver metastases 
No 
Yes 

 
127 (100%) 
0 (0%) 

 
35 (83.3%) 
7 (16.7%) 

 
162 (95.9%) 
7 (4.1%) 

 
Data are expressed as number of cases (%), unless otherwise indicated. Legend: 
WD, well differentiated; MD, moderately differentiated; PD, poorly differentiated; 
PaD, pancreaticoduodenectomy; DP, distal pancreatectomy; TP, total 
pancreatectomy. 
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PDACs 

At pathological analysis there were 2 well differentiated (WD) PDACs (1.6%), 114 

moderately differentiated (MD) PDACs (89.8%) and 11 poorly differentiated (PD) 

PDACs (8.6%). Most PDACs were located in the pancreatic head (N=109, 85.8%), 

15 were located in the pancreatic body (11.8%) and 3 (2.4%) in the pancreatic tail. 

Vascular involvement was identified at pre-operative MR in 28 cases (22.1%) and 

confirmed during surgery in all cases. Nodal metastases were diagnosed in 102 

cases (80.3%). None of the patients with PDAC had liver metastases. Mean size of 

PDACs was 27.8 mm (7-60 mm). 

 

panNENs 

Regarding panNENs, there were 18 G1 tumors (42.8%), 21 G2 tumors (50%) and 

3 G3 tumors (7.2%). All panNENs had well differentiated morphology at 

pathological analysis. Eighteen panNENs were located in the pancreatic head 

(42.9%), 15 were located in the pancreatic body (35.7%) and 9 (21.4%) in the 

pancreatic tail. Vascular involvement was identified at pre-operative MR in 7 cases 

(16.7%) and confirmed during surgery in all cases. Nodal metastases were 

diagnosed in 19 cases (45.2%). Seven patients with panNEN had liver metastases 

(16.7%); all patients with liver metastases were correctly identified by MR. The 

pathological confirmation of liver metastases was obtained after surgical resection 

in 4 cases and with pre-operative FNA in 3 cases. Mean size of panNENs was 32.6 

mm (11-105 mm). 

 

c) Histogram analysis 

The results of the Mann-Whitney’s U test for the comparison between histogram-

derived parameters and pathological features are presented in tables 3-8. 
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PDACs 

No significant differences were among histogram-derived parameters of PDACs of 

different grade. The results of ROC analysis for significantly different histogram-

derived parameters in PDACs are presented in tables 3 and 4. 

T2entropy, T2fsentropy, and ADCentropy were significantly higher in V+ PDACs 

compared with V- tumors. At ROC analysis, there were no significant differences 

between the AUCs of T2entropy, T2fsentropy and ADCentropy for the identification of 

PDACs with vascular infiltration (figures 1 and 2), even though ADCentropy reported 

the highest AUC (.641); at a cut-off of 6.65, this parameter identified V+ PDACs 

with 92.9% specificity and 35.3% specificity. 

ADCskewness was significantly higher in N+ PDACs compared with N- tumors 

(AUC=.642; figure 3). At a given cut-off value of 0.52, ADCskewness identified N+ 

PDACs with 53.9% sensitivity and 72% specificity. 

No significant differences between groups were found for other histogram-derived 

parameters (p >.05). 

Table 3 Comparison between histogram-derived parameters and presence of 
vascular involvement in PDACs. 
 
Vascular involvement T2fsentropy T2entropy ADCentropy 

V-a 6.67 ± 0.7 7.47 ± 0.64 6.88 ± 0.89 
V+ a 7.03 ± 0.61 7.58 ± 0.39 7.46 ± 0.89 

P .044 .048 .022 
AUC .626 .623 .641 
 

aData are mean ± standard deviation. 

Table 4 Comparison between histogram-derived parameters and presence of 
nodal metastases in PDACs. 
 
Nodal metastases ADCskewness 

N-a 0.21 ± 0.57 
N+a 0.54 ± 0.69 

P .027 
AUC .642 
 

aData are mean ± standard deviation. 
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Figure 1. Findings in a 62-year-old man with a ductal adenocarcinoma of the 

pancreatic head. (a) On axial portal phase T1-weighted image the tumor is 

homogeneously hypointense; infiltration of the superior mesenteric vein can be 

seen (arrow). (d) Whole-tumor histogram analysis of ADC values provided high 

entropy value (7.50). 

 

 
Figure 2. Comparison of ROC curves of ADCentropy, T2entropy and T2fsentropy for the 

identification of V+ PDACs. 
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Figure 3. ROC curve of ADCskewness for identification of N+ PDACs. 

 

 

PanNENs 

T2skewness, ADCkurtosis, and ADCentropy were significantly higher in G2-3 tumors 

compared with G1 tumors, as well as in V+ compared with V- tumors; ADCuniformity 

was significantly lower in G2-3 tumors compared with G1 tumors and in V+ 

compared with V- panNENs (figures 4 and 5). 

ADCkurtosis and ADCentropy were significantly higher in N+ panNENs compared with 

N- tumors; ADCmedian and ADC75 were significantly lower in N+ compared with N- 

panNENs. Finally, ADCkurtosis and ADCmax were significantly higher in M+ 

compared with M- tumors (figure 6). No significant differences between groups 

were found for other histogram-derived parameters (p >.05). 
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Figure 4 (a-d). Findings in a 54-year-old man with a G2 neuroendocrine tumor of 

the pancreatic head. (a) Resection specimen (pancreaticoduodenectomy; transverse 

cut): at histopathologic examination the tumor shown to a be a G2 (Ki67=5%), N1 

panNEN. (b) On axial T2-weighted image the tumor is inhomogeneously 

hyperintense; upstream chronic obstructive pancreatitis can be seen (arrow). (c) 

Infiltration of the superior mesenteric vein can be seen on postcontrast portal phase 

image (arrow). (d) Whole-tumor histogram analysis of ADC values provided high 

entropy and kurtosis values (9.01 and 4.68). 
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Figure 5 (a-d). Findings in a 55-year-old man with a pancreatic head 

neuroendocrine tumor associated with vascular infiltration. (a) On postcontrast 

arterial phase MR image the tumor is hypointense and present ill-defined margins 

(arrow). (b) Infiltration of the superior mesenteric vein can be seen on postcontrast 

portal phase image (arrow). (c) Histogram of whole-lesion ADC values shows a 

sharp peak, consistent with high kurtosis (5.56); entropy was 8.91. (d) 

Histopathologic examination shown that the tumor was a G2 (Ki67=15%), N1 and 

confirmed tumor infiltration of the superior mesenteric vein (Hematoxylin-eosin 

stain; original magnification, ×100). 
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Figure 6 (a-d). Findings in a 47-year-old man with a pancreatic head 

neuroendocrine tumor associated with liver metastases. (a) Resection specimen 

(pancreaticoduodenectomy; transverse cut); the tumor shown to be a G2 

(Ki67=5%), N1 panNEN. (b) On postcontrast arterial phase MR image the tumor 

shows inhomogeneous enhancement (arrow). (c) Liver metastases can be seen on 

DW image (arrows). (d) Histogram of whole-lesion ADC values demonstrated a 

sharp peak, indicating high kurtosis (4.01); entropy was 9.44. 
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The results of ROC analysis for significantly different histogram-derived 

parameters are presented in tables 5-8. At ROC analysis, ADCentropy had the highest 

AUC for the identification of G2-3 tumors (.757); sensitivity and specificity for the 

identification of G2-3 panNENs were 83.3% (95% CI: 61.2-94.5) and 61.1% (95% 

CI: 36.1-81.7). ADCkurtosis showed the highest AUC under the ROC curve for 

identifying V+, N+ and M+ panNENs (.820, .709, and .820, respectively; figures 

5, 6 and 7); sensitivity and specificity were: 85.7/74.3% (95% CI: 42-99.2 /56.4-

86.9); 36.8/96.5% (95% CI: 17.2-61.4 /76-99.8); and 100/62.8% (95% CI: 56.1-

100/44.9-78.1). 

Pairwise comparison did not show any significant difference between ROC curves 

(figure 7). 

 

 

Table 5 Comparison between histogram-derived parameters and tumor grade 
in panNENs. 

 

Grade T2skewness ADCkurtosis ADCentropy ADCuniformity 
G1a 0.37 ± 0.78 2.95 ± 1.35 5.95 ± 2.34 0.015 ± 0.015 
G2-3a 0.9 ± 0.85 5.95 ± 7.95 7.95 ± 1.55 0.006 ± 0.008 

P .040 .015 .005 .014 
AUC .688 .720 .757 .722 
 

aData are mean ± standard deviation. 

 

Table 6 Comparison between histogram-derived parameters and presence of 
vascular involvement in panNENs. 
 
Vascular 
involvement T2skewness ADCkurtosis ADCentropy ADCuniformity 

V-a 1.37 ± 1.06 3.54 ± 2.37 6.77 ± 2.18 0.011 ± 0.013 
V+ a 0.54 ± 0.75 5.58 ± 2.95 8.70 ± 1.02 0.003 ± 0.002 

P .045 .008 .028 .041 
AUC .688 .820 .763 .747 
 

aData are mean ± standard deviation. 
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Table 7 Comparison between histogram-derived parameters and presence of nodal 
metastases in panNENs. 
 
Nodal 
metastases ADCkurtosis ADCentropy ADCmedian ADC75 

N-a 3.08 ± 1.22 6.31 ± 2.38 1273.5 ± 345.91 1552.81 ± 452.18 
N+a 4.84 ± 3.36 8.04 ± 1.35 1079.45 ± 217.40 1302.59 ± 218.31 

P .021 .027 .042 0.24 
AUC .709 .700 .684 .705 
 

aData are mean ± standard deviation. 

Table 8 Comparison between histogram-derived parameters and presence of liver 
metastases. 
 
Liver metastases ADCkurtosis ADCmax 

M-a 3.26 ± 1.27 2235.63 ± 622.5 
M+ a 6.94 ± 4.75 2832.71 ± 533.01 

P .008 .019 
AUC .820 .784 
 

aData are mean ± standard deviation. 
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Figure 7. Comparison of histogram-derived ROC curves. (a) ROC curves of ADC 

entropy, kurtosis, uniformity and T2skewness for the identification of G2-3 panNENs. 

(b) ROC curves of ADC entropy, kurtosis, uniformity and T2skewness for the 

identification of V+ panNENs. (c) ROC curves of ADC entropy, kurtosis, median 

and 75th percentile for the identification of N+ panNENs. (d) ROC curves of ADC 

kurtosis and maximum value for the identification of M+ tumors. 
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5. Discussion 

 

This study evaluated the diagnostic accuracy of histogram-derived MR parameters 

in predicting grade and aggressiveness in PDACs and panNENs. Previous work 

[103] suggested that histogram analysis of ADC maps can be useful in 

differentiating histologic grades of panNENs. Our results confirm these findings: 

in the present study, ADCentropy was the parameter with the highest accuracy in 

identifying high grade panNENs (AUC=.757), with 83.3% sensitivity. ADCentropy 

was also the parameter with the highest accuracy in identifying PDACs with 

vascular infiltration (AUC=.641, specificity 92.2%). ADCkurtosis was found to be the 

parameter with the highest diagnostic accuracy (AUC= .820, .709, and .820, 

respectively) for the identification of panNENs with vascular infiltration, nodal and 

hepatic metastases: sensitivity and specificity of this parameter were 85.7/74.3%, 

36.8/96.5%, and 100/62.8%, respectively. Finally, ADCskewness was significantly 

higher in PDACs with nodal metastases compared with N- tumors (p=.027; 

AUC=.642), with a reported specificity of 72%. 

Histogram analysis of ADC data can interrogate the biologic heterogeneity of 

tumors by classifying domains of different diffusivity, which may have prognostic 

and predictive implications [74]. Two quantities calculated by using this histogram 

analysis are uniformity and entropy. These parameters characterize the uniformity 

and the irregularity of intra-tumor voxel distribution [104,105]. When histogram 

analysis is performed on solid tumors, entropy and uniformity therefore reflect and 

quantify intratumoral heterogeneity. Kurtosis is a measure of the magnitude of pixel 

distribution, representing how peaked a histogram is; on the ADC histogram 

distribution, kurtosis represents the position of peak height that indicate the ADC 

value of the maximum frequency [85]. Such metrics demonstrated to be reliable 

markers of tumor heterogeneity, with correlation to the structural, physiological, 

molecular and metabolic changes occurring upon tumor progression and during 

therapy [85]. Higher kurtosis and entropy, as well as lower uniformity, are thought 

to represent microstructural and functional heterogeneity and are associated with 

poorer prognosis [85]. Our results confirm this hypothesis, as both ADCentropy and 

ADCkurtosis were significantly higher in panNENs with higher malignancy compared 
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to G1, V-, N- and M- tumors (all p <.05); ADCentropy was also significantly higher 

in PDACs infiltrating peri-pancreatic vessels compared to V- tumors. 

Skewness is another metric of heterogeneity, representing a measure of asymmetry 

of the probability distribution. In the present study, ADCskewness was found to be 

only significant predictor of nodal metastases in PDACs: N+ PDACs had 

significantly higher ADCskewness compared to N- PDACs. 

There are very few studies on MR histogram analysis of pancreatic tumors. 

ADC histograms may be helpful in differentiating between pancreatic cancer and 

focal pancreatitis as well as between PDACs and panNENs. Ma et al [106] found 

that 50th and 100th ADC percentiles can reflect tissue heterogeneity and help 

differentiate normal pancreas from focal pancreatitis and PDAC. Shindo et al [107] 

reported that ADC histogram analysis can help differentiate PDACs from 

panNENs: the mean ADC200 and ADC400 were significantly higher in panNENs 

than in PDACs (P = 0.001 and P = 0.019, respectively); PDACs showed significantly 

higher skewness and kurtosis on ADC400 (P = 0.007 and P = 0.001, respectively) 

and ADC800 (P = 0.001 and P = 0.001, respectively). With all b-value combinations, 

the entropy of ADC values was significantly higher in PDACs (P < 0.001 for 

ADC200; P = 0.001 for ADC400; P < 0.001 for ADC800), and showed the highest 

area under the ROC curve for diagnosing carcinomas (0.77 for ADC200, 0.76 for 

ADC400, and 0.78 for ADC800). 

Histogram-derived parameters may also be helpful in identifying pancreatic tumors 

with higher malignant potential. Pereira et al [103] found that histographic analysis 

of ADC maps on the basis of the entire tumor volume can be useful in 

differentiating histologic grades of panNENs: the mean, 75th, 90th, and 95th 

percentiles were significantly higher in G1 tumors compared to G2 and to G3 

tumors; ADC skewness and kurtosis were significantly different between G1 and 

G3 tumors. Hoffman et al [108] reported that ADCentropy may serve as a biomarker 

for identifying the malignant potential of intraductal papillary mucinous neoplasms 

(IPMNs). In this study, ADC histogram metrics demonstrating significant 

differences between benign and malignant IPMNs were: entropy (5.1 ± 0.2 vs. 5.4 

± 0.2; p = 0.01, AUC = 86%); mean of the bottom 10th percentile (2.2 ± 0.4 vs. 1.6 

± 0.7; p = 0.03; AUC = 81%); and mean of the 10-25th percentile (2.8 ± 0.4 vs. 2.3 
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± 0.6; p = 0.04; AUC = 79%). For ADCentropy, an optimal threshold of >5.3 achieved 

a sensitivity of 100%, a specificity of 70%, and an accuracy of 83% for predicting 

malignancy in pancreatic IPMNs. 

Considering our results and the aforementioned studies, imaging of tumor 

heterogeneity may provide a non-invasive assessment of aggressiveness and 

prognosis in pancreatic tumors. 

The retrospective nature of this study was a limitation. Other limitations are the 

small amount of WD and PD PDACs and G3 panNENs as well as the small number 

of panNENs with vascular infiltration and liver metastases. Moreover,  

the inclusion criteria of this study may have been resulted in a selection bias, as 

unresectable PDACs were excluded; histogram-derived distributions in this group 

of tumors remains to be evaluated. 
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6. Conclusions 

 

Whole-tumors histogram analysis of ADC values may represent a valuable non-

invasive tool in predicting the aggressiveness of PDACs and panNENs. Our results 

indicate that histogram metrics related to intra-tumor heterogeneity, as ADCentropy, 

ADCkurtosis and ADCskewness are the most accurate parameters for the identification 

of PDACs and panNENs with higher biological aggressiveness. Further and larger 

studies are needed to incorporate the results of the histogram analysis within 

decision support models and to mine these data to detect possible correlations with 

genomic patterns. 
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