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Abstract Many applications depend on solving the satisfiability of formulæ
involving propositional logic and first-order theories, a problem known as Satis-
fiability Modulo Theory (SMT). This article presents a new method for satisfi-
ability modulo a combination of theories, named CDSAT, for Conflict-Driven
SATisfiability. CDSAT also solves Satisfiability Modulo Assignment (SMA)
problems that may include assignments to first-order terms. A conflict-driven
procedure assigns values to variables to build a model, and performs inferences
on demand in order to solve conflicts between assignments and formulæ. CD-
SAT extends this paradigm to generic combinations of disjoint theories, each
characterized by a collection of inference rules called theory module. CDSAT
coordinates the theory modules in such a way that the conflict-driven reason-
ing happens in the union of the theories, not only in propositional logic. As
there is no fixed hierarchy with propositional logic at the center and the other
theories as satellites, CDSAT offers a flexible framework for model search. We
prove the soundness, completeness, and termination of CDSAT, identifying
sufficient requirements on theories and modules that ensure these properties.
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1 Introduction

A growing trend in automated reasoning is the generalization of conflict-driven
reasoning from propositional to first-order logic (see [4]). A motivation for this
trend is the remarkable success of solvers for propositional satisfiability (SAT)
[19]. While this success depends on several ingredients, a key one is the conflict-
driven clause learning procedure (CDCL) [20] at the heart of these solvers.
CDCL tries to build a model of the input set of clauses by guessing truth
assignments to Boolean variables and propagating their consequences through
the clauses. When a conflict between clauses and assignments arises, CDCL
performs conflict-driven inferences to explain the conflict, learns new clauses,
named lemmas, and solves the conflict. In conflict-driven reasoning, inferences
are applied lazily to respond to conflicts between formulæ and candidate model,
and this is considered a crucial advantage of this paradigm.

Example 1 Given the set of propositional clauses S = {¬a ∨ b, ¬c ∨ d, ¬e ∨
¬f, f ∨ ¬e ∨ ¬b}, say that CDCL guesses a←true. In order to satisfy ¬a ∨ b,
CDCL propagates b←true with justification ¬a ∨ b. Similarly, CDCL guesses
c←true, propagates d←true with justification ¬c ∨ d, guesses e←true, and
propagates f←false (for ¬f←true) with justification ¬e∨¬f . Assignments are
stored in a trail Γ = a←true, b←true, c←true, d←true, e←true, f←false.
Each decision opens a new level: a, b are on level 1; c, d are on level 2; and
e, ¬f are on level 3. Now ¬b ∨ ¬e ∨ f is in conflict with Γ , as all its literals
are false in Γ . CDCL explains the conflict by resolving the conflict clause
¬b∨¬e∨ f with the justification ¬e∨¬f of ¬f , generating resolvent ¬b∨¬e,
still in conflict. The First Unique Implication Point (1UIP) heuristic continues
this process until it generates a conflict clause C where only one literal, say L,
is false at the current decision level [20]. CDCL learns C, truncates the trail at
the smallest decision level where L is unassigned and all other literals of C are
false, and adds L←true with justification C to the trail, solving the conflict.
As only ¬e in ¬b ∨ ¬e is false at level 3, CDCL learns ¬b ∨ ¬e, truncates
the trail at level 1, and adds e←false, yielding Γ = a←true, b←true, e←false.
Lemma ¬b∨¬e tells that S has no model where both b and e are true. Deciding
c←false or d←true lets Γ satisfy all clauses and conclude that S is satisfiable.

The quest for methods that reproduce the success of CDCL beyond SAT
inspired decision procedures for the satisfiability of sets of literals in frag-
ments of arithmetic, that also work by guessing assignments to variables,
propagating consequences, and performing inferences on demand to explain
and solve conflicts (e.g., [16,17], and see [4] for more references). In contrast
to CDCL, these procedures use assignments to first-order variables, not only
Boolean ones, and explain conflicts by inferences producing lemmas that may
contain new (i.e., non-input) atoms. We call these procedures conflict-driven
T -satisfiability procedures where T is the relevant theory.

Example 2 Consider the set R = {−2·x − y < 0, x + y < 0, x < −1} in
linear rational arithmetic (LRA). A conflict-driven LRA-satisfiability procedure
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tries to build a model by guessing a value for a variable, say y←0. Under
this assignment, −2·x − y < 0 yields x > 0, which, together with x < −1,
empties the set of possible values for x. Thus, y←0 caused an LRA-conflict
that the procedure explains by the new atom −y<−2, linear combination of
−2·x− y<0 and x<−1. The formula (−2·x− y<0∧ x<−1) ⊃ −y<−2 is an
LRA-lemma, which excludes all assignments y←c where c ≤ 2. If the procedure
retracts y←0 and guesses y←4, constraints −2·x − y < 0 and x + y < 0 yield
x>−2 and x<−4. The procedure explains this LRA-conflict by the new atom
y<0, linear combination of −2·x−y < 0 and x+y < 0. As y<0 is violated by
y←4, the procedure retracts y←4. Then no assignment to y can satisfy both
−y <−2 and y < 0. This LRA-conflict is explained by the new atom 0<−2
linear combination of −y<−2 and y<0. Since 0<−2 is a contradiction, the
procedure concludes that R is LRA-unsatisfiable.

Most applications query the T -satisfiability of arbitrary quantifier-free for-
mulæ, a problem known as Satisfiability Modulo Theory (SMT). A stan-
dard approach to SMT, named DPLL(T ) [22], augments CDCL with a T -
satisfiability procedure, used as a black-box to detect that a set of truth as-
signments on the trail is T -unsatisfiable (T -conflict), and determine that a
truth assignment follows in T from truth assignments on the trail (T -lemma).
The entailed truth assignment is only for an already existing atom, and the
introduction of new atoms in T -lemmas is not allowed. In most applications of
SMT, T is a combination of theories T1, . . . , Tn, and the T -satisfiability pro-
cedure is obtained from Tk-satisfiability procedures, 1≤ k≤n, by the equality
sharing method, also known as Nelson-Oppen scheme [21,2,18,7,14].
Example 3 Set P ={f(select(store(a, i, v), j))' w, (w+ 1

2 )2' f(u), i' j, u' v}
involves the combination of the quantifier-free fragment of the theory of equal-
ity, known as equality with uninterpreted function symbols (EUF), the theory
of arrays with extensionality (Arr), and (nonlinear) real arithmetic (RA).

Equality sharing requires the theories T1, . . . , Tn to be disjoint, which means
that they do not share symbols other than equality, and stably infinite, which
says that every satisfiable formula has a model with a countably infinite do-
main. Thus, sorts can be interpreted as countably infinite domains, ensuring
that the theories agree on the cardinalities of shared sorts. Equality sharing
combines n Tk-satisfiability procedures (1≤ k≤n) as black-boxes that only
exchange disjunctions of equalities between shared first-order variables. In
DPLL(T ) with equality sharing [2,18], from now on DPLL(T ) for brevity,
CDCL is in charge of splitting these disjunctions as well all disjunctions gen-
erated as T -lemmas, which may contain non-input atoms. However, if conflict-
driven Tk-satisfiability procedures were integrated in DPLL(T ), they would be
treated as black-boxes: their theory-specific conflict-driven mechanisms would
remain private, first-order assignments and new atoms would not be exported
and could not guide the global search.

The problem of integrating CDCL with a single conflict-driven T -satisfia-
bility procedure was solved by MCSAT, for Model-Constructing SATisfiabil-
ity [9]. MCSAT uses assignments to first-order variables on a par with Boolean
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ones, and coordinates the conflict explanation mechanisms at the Boolean and
theory levels in a unified manner, with new atoms produced by T -inferences
on demand to explain T -conflicts. Unlike DPLL(T ), where the conflict-driven
reasoning is only Boolean, MCSAT lifts CDCL to a conflict-driven procedure
for satisfiability modulo a single theory, such as bit-vectors [23] and nonlinear
integer arithmetic [13]. Although an instance of MCSAT for the combination
of EUF and LRA was described [15], and a modular implementation for several
theories was developed [11], MCSAT as a formal system is not a combina-
tion calculus: the conflict-driven combination of a generic range of theories
remained an open problem. Solving this problem is important to leverage
conflict-driven reasoning to SMT and is challenging because it requires:
– A new paradigm for theory combination, where the conflict-driven theory

satisfiability procedures cooperate to build a model by sharing assignments,
and perform inferences on demand to explain conflicts, exporting lemmas
that may include new atoms;

– A way to accommodate also theory satisfiability procedures that are not
conflict-driven and get combined as black-boxes, since some theories may
have very efficient procedures that are not conflict-driven;

– Sufficient conditions that the combined theories and their satisfiability pro-
cedures need to satisfy to ensure soundness, completeness, and termination
of the new combination method, and proofs of these properties.

We address all of these issues by introducing CDSAT, for Conflict-Driven
SATisfiability, the first formal system for conflict-driven theory combination.

2 Overview of CDSAT

CDSAT extends conflict-driven reasoning to generic combinations of disjoint
theories T1, . . . , Tn, solving the problem of combining multiple conflict-driven
and black-box Tk-satisfiability procedures (1≤ k≤n) into a conflict-driven T -
satisfiability procedure, where T is the union of the theories. In the CDSAT
architecture, both propositional and theory reasoning are integrated in a simi-
lar manner. Formulæ are terms of sort prop (for proposition), and propositional
logic, also known as the Boolean theory (Bool), is one of T1, . . . , Tn, with CDCL
as its procedure. With formulæ considered as terms, assignments take center
stage. Problems are presented as assignments: for example, a set {l1, . . . , lm} of
formulæ to satisfy is represented as the assignment {l1←true, . . . , lm←true}.
Assignments are used to represent partial candidate models and inferences
manipulate assignments. First-order assignments assign values to first-order
terms, not only first-order variables. Thus, there are two ways to communi-
cate an equality: making it true and assigning the same value to its sides.

CDSAT works with a trail where all Tk-procedures post assignments, so
that all assignments are public. Every Tk has its theory view of such a mixed
assignment: a Tk-procedure may not interpret Ti-assignments, i 6= k, but it
understands the equalities and inequalities that they imply, thus included in
the Tk-view. Every Tk-procedure can ensure that its model construction en-
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dorses the Tk-view of the trail, where the new notion of endorsement of an
assignment by a model extends that of satisfaction of a formula by a model.

Thanks to its uniform treatment of Boolean and first-order assignments,
CDSAT solves both SMT and SMA problems, where SMA stands for Satis-
fiability Modulo Assignment. In an SMA problem, the input includes assign-
ments of values to first-order terms. SMA problems arise in connection with
optimization [10], which is even more common than satisfiability in applica-
tions. The idea is to approach an optimization problem by solving a series of
SMA problems where each initial first-order assignment contains information
generated by the previous runs, so that the series converges towards an opti-
mal solution. In such a context, first-order initial assignments play a different
role than equational constraints in the input problem, and, since values are
not necessarily part of the language of terms and formulæ, an SMA problem
cannot be straightforwardly expressed as an SMT problem.

In order to combine conflict-driven procedures, CDSAT factors out their
common conflict-driven mechanisms in the form of a transition system, with
transition rules for decisions, deductions, conflict detection, and conflict solv-
ing. Thus, what is left to be combined are n inference systems for T1, . . . , Tn,
here called theory modules, whose inference rules deduce Boolean assignments
from assignments of any kind. Decisions rely on two new notions: the rele-
vance of a term for a theory, and the acceptability of an assignment for a
theory module. Deductions cover both propagations and inferences that ex-
plain theory conflicts. A Tk-satisfiability procedure that is not conflict-driven
is handled by CDSAT as an inference system whose only inference rule invokes
the procedure to detect the Tk-unsatisfiability of a set of assignments. We be-
lieve that the abstraction of viewing combination of theories as combination
of inference systems brings simplicity and elegance.

We prove that the CDSAT transition system is sound, terminating, and
complete.1 Soundness means that if CDSAT returns unsatisfiable, the input
assignment is unsatisfiable. CDSAT is sound provided that the theory modules
are sound, that is, all their inferences preserve endorsement by models. All
CDSAT derivations are guaranteed to terminate, assuming the existence of a
finite global basis that limits new term generation. If each theory module comes
with a finite local basis, a finite global basis can be built. Completeness means
that if CDSAT does not return unsatisfiable, there is a model that endorses
the assignment in the final state of the derivation, hence the input assignment.
For completeness, it does not suffice that every Tk-module is complete with
respect to its theory Tk, because the existence of Tk-models does not imply the
existence of a T -model. CDSAT is complete, provided all Tk-modules are also
complete relative to a leading theory, which has information about all sorts
involved in the combination and their cardinalities. If all theories are stably
infinite, this requirement is satisfied vacuously.

This article is organized as follows. After basic definitions in Section 3, Sec-
tion 4 introduces assignment, theory view, and endorsement. Section 5 presents

1 In fact, it is an inference system in the sense of [12].
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theory modules with the notions of relevance and acceptability. Section 6 de-
scribes theory modules for Bool, LRA, EUF, and Arr, showing how to cover
black-box satisfiability procedures as theory modules. Section 7 gives the CD-
SAT transition system and illustrate its behavior with examples. Section 8
defines sufficient conditions for termination and completeness. Section 9 con-
tains the soundness, termination, and completeness theorems with their proofs.
Section 10 compares CDSAT with related work, summarizes our results, and
outlines directions for future work. A short version of this article appeared [5].
We extended CDSAT with learning and proof generation [6].

3 Preliminary Definitions

A signature Σ is a pair (S, F ), where S is a set of sorts including sort prop
and F is a set of sorted symbols with equality symbols 's : (s×s)→prop for
all s ∈ S. For f ∈F , the notation f : (s1× · · ·×sm)→s says that f has arity m,
input sorts s1, . . . , sm (m ≥ 0) and output sort s. Symbols can be constants
(m = 0), functions, and predicates which have prop as output sort. Equalities
are written in infix notation. We may write 'S for {'s :s×s→prop | s ∈ S},
and ' for 's when s is clear. The connectives ∧, ∨, and ¬, if present, are
seen as symbols whose input and output sorts are prop. Two signatures are
disjoint if they do not share symbols other than equality. We use V = (Vs)s∈S
for a collection of disjoint sets of variables, where Vs is the set of variables of
sort s. If S1 and S2 are sets of sorts with collections of sets of variables V1 and
V2, we write V1 ⊆ V2 if for all sorts s ∈ S1 we have s ∈ S2 and Vs1 ⊆ Vs2 .

Given Σ = (S, F ) and V = (Vs)s∈S , for all s ∈ S, every x ∈ Vs is a
Σ[V ]-term of sort s; and for all f : (s1× · · ·×sm)→s in F , f(t1, . . . , tm) is a
Σ[V ]-term of sort s, if t1, . . . , tm are Σ[V ]-terms of sorts s1, . . . , sm. We use t
and u for Σ[V ]-terms, and l for Σ[V ]-formulæ that are the Σ[V ]-terms of sort
prop. We write tEu if t is a subterm of u, and tCu if tEu and t 6= u. The set
of free variables occurring in a Σ[V ]-term t is defined as usual. The standard
formulæ of multi-sorted first-order logic can be obtained as the closure of Σ[V ]-
formulæ under quantifiers and Boolean connectives; sentences, or Σ-sentences
if the signature is relevant, are those with no free variables.

A Σ[V ]-interpretation M interprets each s ∈ S as a non-empty domain
sM with propM = {true, false}, each v ∈ Vs as an element vM in sM, each
f : (s1× · · ·×sm)→s in F as a function fM from sM1 × · · ·×sMm to sM, and
each 's as the function 'Ms from sM×sM to {true, false} that returns true if
and only if its arguments are the same element. The interpretation M(t) of
a Σ[V ]-term t is defined as usual, and so is the interpretation in M of any
formula of multi-sorted first-order logic whose free variables, if any, are in V .
A Σ-structure is a Σ[∅]-interpretation, where ∅ is a collection of empty sets.

A theory T is defined as a signature-axiomatization pair (Σ,A), where A
is a set of Σ-sentences, the T -axioms, that define properties of symbols in
Σ. Symbols that do not appear in T -axioms are free or uninterpreted. T is
also defined as the class of Σ-structures that satisfy A, called models of T or
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T -models. A T [V ]-model is a Σ[V ]-interpretation that is a T -model when the
interpretation of variables is ignored. Two theories are disjoint if their signa-
tures are. Let T1, . . . , Tn be the disjoint theories to be combined andΣ1, . . . , Σn
their signatures, where ∀k, 1≤ k≤n, Σk = (Sk, Fk). We use T∞ for the union
of T1, . . . , Tn to keep T and Σ generic. T∞ has signature Σ∞ = (S∞, F∞),
where S∞ =

⋃n
k=1 Sk and F∞ =

⋃n
k=1 Fk, and axiomatization

⋃n
k=1Ak, if

Ak is the axiomatization of Tk, ∀k, 1≤ k≤n. Given the collection of sets of
variables V∞ = (Vs∞)s∈S∞ , the T∞-terms are the Σ∞[V∞]-terms, including
T∞-formulæ that are the T∞-terms of sort prop. From now on, variable stands
for variable in V∞, term for T∞-term, and formula for T∞-formula.
Example 4 For Example 2, ΣLRA has sorts SLRA = {prop,Q} and symbols
FLRA = 'SLRA ∪ {(1 : Q), (+ : (Q×Q)→Q), (≤, < : (Q×Q)→prop)} ∪ {(c· :
Q→Q)|c ∈ Q}, where Q and Q are the sort and the set of rational numbers,
respectively, and · is scalar multiplication. For Example 3, ΣRA has sorts SRA =
{prop,R} and symbols FRA = 'SRA ∪{(c :R)|c ∈ Q}∪{(+, · : (R×R)→R)}, where
R is the sort of real numbers, + is addition and · is product. Term (w+ 1

2 )2

in P abbreviates (w+ 1
2 )·(w+ 1

2 ). ΣArr has sorts SArr ={prop, V, I, (I⇒V )} and
symbols FArr = 'SArr ∪ {select : (I⇒V )×I→V, store : (I⇒V )×I×V→(I⇒V )},
where V is the sort of array elements, I that of array indices, and (I⇒V ) that
of arrays. ΣEUF has sorts SEUF ={prop,R, V } and symbols FEUF = 'SEUF ∪ {f :
V→R}, where f ranges from V to R by the first and second equalities in P .

A theory Tk has a partial understanding of a T∞-term u: a subterm of u
whose root symbol is not in Fk is a free variable for Tk. We call such a term
Σk-foreign, or foreign if Σk is understood. The replacement of foreign terms
with new variables in equality sharing [21,1,18,7] is subsumed by defining free
Σ-variables to include Σ-foreign terms [1]. If Σ = (S, F ) is a signature with
F ⊆ F∞, for all sorts s ∈ S, the set fvsΣ(u) of free Σ-variables of sort s in term
u is the set of all C-maximal subterms of u whose root symbol is Σ-foreign.
Example 5 For Example 3, the freeΣRA-variables are f(select(store(a, i, v), j)),
w, f(u), i' j, and u' v, where i' j and u' v are included because they
are ΣRA-foreign, since 'I 6∈ FRA and 'V 6∈ FRA. The free ΣEUF-variables
are select(store(a, i, v), j), w, (w+ 1

2 )2, u, i' j, and v, where i' j is included
as above, whereas u' v is not as 'V ∈ FEUF. The free ΣArr-variables are
f(select(store(a, i, v)), j)' w, (w+ 1

2 )2' f(u), i, j, u, and v.
Then fvΣ(t) =

⋃
s∈S fvsΣ(t) and fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X} for a

set X of terms. We write fv(t) and fv(X) when Σ is Σ∞: as there are no
Σ∞-foreign terms, fv(t) and fv(X) contain only variables x from V∞. If t is a
Σ∞[V∞]-term such that fvΣ(t) ⊆ V , term t can be seen as a Σ[V ]-term and a
Σ[V ]-interpretation M interprets t as M(t).

4 Assignments and Models

CDSAT solves T∞-satisfiability problems presented as assignments of values to
terms, and uses assignments to represent candidate partial models of the input



8 M. P. Bonacina, S. Graham-Lengrand, N. Shankar

problem and reason about them. Assignments, including input assignments,
may contain terms of any sort, and assignable values are not necessarily in the
theories’ signatures (e.g., consider x←

√
2 for the sort R of real numbers). In

order to identify the language of assignable values, we enrich the theories’ sig-
natures with new constant symbols to name whichever values may be necessary
to assign in order to solve the problem. Let ] denote disjoint union.

Definition 1 (Theory extension) Given a theory T = (Σ,A) with signa-
ture Σ = (S, F ), a theory T + = (Σ+,A+) is an extension of T if Σ+ =
(S, F+), F+ = F ]D, D is a set of sorted constant symbols called T -values,
A+ = A ] C, and C is a set of Σ+-sentences.

For all s ∈ S, let Ds be the set of T -values of sort s. If Ds 6= ∅, sort s is
called T -public, as there are T -values that can be assigned to terms of sort
s in a way visible to all theories. Since true and false should be assignable
values, prop is required to be a T -public sort with Dprop = {true, false} and
{true,¬false} ⊆ C. The trivial extension of any theory adds only true and false,
so that D = {true, false} and C = {true,¬false}. We use b for true or false, c
and d for generic values of arbitrary sorts.

Example 6 Let RA+ be the extension of theory RA that adds a new constant
for every algebraic real number. Sort R is RA-public and the RA-values of sort
R are the algebraic reals. The axioms of RA+ are the formulæ that hold in the
standard model of the reals interpreting every RA-value as itself.

Extending the signature with names to denote all individuals in a T -
model’s domain is a standard move in automated reasoning. In such cases
a T -value is both the domain element and the constant symbol that names
it. We do this for Boolean values and theories with an “intended model” such
as the rational or real numbers. For other theories, such as EUF, the trivial
extension suffices (see Section 6 for another approach to EUF). For example,
theories RA and EUF share sort R in problem P : with RA+ as in Example 6
and EUF+ trivial, sort R is RA-public, but not EUF-public.

Definition 2 (Conservativity) Extension T + of theory T with signature Σ
is conservative if every T +-unsatisfiable set of Σ-formulæ is T -unsatisfiable.

A conservative extension does not change a problem in the original signa-
ture: if CDSAT discovers T +-unsatisfiability, the problem is T -unsatisfiable; if
the problem is T -satisfiable, there is a T +-model that CDSAT can build. From
now on, we assume that each theory Tk, 1≤ k≤n, has a conservative extension
T +
k with signature Σ+

k = (Sk, F+
k ) and (possibly empty) sets Ds

k of Tk-values
of sort s for all s ∈ Sk. We assume that the extended theories are still disjoint
except for true and false. The union of T +

1 , . . . , T +
n is an extension T +

∞ of T∞
with signature Σ+

∞ = (S∞, F+
∞), where F+

∞ =
⋃n
k=1 F

+
k , and axiomatization⋃n

k=1A
+
k , if A+

k is the axiomatization of T +
k , for all k, 1≤ k≤n.

In the rest of this section, T , T +, S, Σ and Σ+ stand for either Tk, T +
k ,

Sk, Σk and Σ+
k , for any k, 1≤ k≤n, or T∞, T +

∞ , S∞, Σ∞ and Σ+
∞, so that

the definitions apply to both T∞ and Tk for any k, 1≤ k≤n.
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Definition 3 (Assignment) A set J = {u1←c1, . . . , um←cm} is a T -assign-
ment if, ∀i, 1≤ i≤ m, ui is a T∞-term and ci a T -value of the same sort.

What qualifies J as a T -assignment is that all values are T -values, whereas
the terms are T∞-terms. For instance, if RA as in Example 6 is combined
with a theory featuring a symbol g : R→R and sharing sort R with RA,
{x←

√
2, g(0)←

√
2} is an RA-assignment, even if g is not an RA-symbol. A

T∞-assignment assigns T∞-values to T∞-terms. A Tk-assignment is the spe-
cial case of T∞-assignment that assigns Tk-values to T∞-terms. We use J for
generic T -assignments and reserve H or E for T∞-assignments.

A T -assignment is plausible if for no formula l it contains both l←true
and l←false. The set of terms that occur in J = {u1←c1, . . . , um←cm} is
G(J) = {t | t E ui, 1≤ i≤ m}. A singleton T -assignment {t←c} can be writ-
ten t←c. A T -assignment where all values are Boolean is a Boolean assign-
ment. We use A for generic singleton T -assignments, reserving L for Boolean
ones. The flip of L, written L, assigns the opposite Boolean value to the
same formula. We may abbreviate l←true to l, and then l←false is abbre-
viated to l, while (t's u)←false can also be abbreviated to t 6's u. A T -
assignment where no value is Boolean is a first-order T -assignment. Input
assignments are assumed to be plausible: an SMT problem is a plausible
Boolean assignment (e.g., Examples 2 and 3), and an SMA problem is a plau-
sible assignment with both Boolean and first-order assignments. For instance,
{x←

√
2, g(0)←

√
2, 1·g(0)' g(0), x·y' 1+1} is an RA-assignment and an

SMA problem.
In theory combination, assignments are T∞-assignments, that mix values

from different theories. A theory Tk has its own view of a T∞-assignment H,
determined by what Tk understands of H. The Tk-view of H includes the Tk-
assignments in H, as well as equalities and inequalities between terms of a
Tk-sort that are entailed by first-order assignments in H.

Definition 4 (Theory view) The T -view of a T∞-assignment H is the T -
assignment HT given by the union of the following sets:
– { u←c | u←c is a T -assignment in H}
–

⋃n
k=1{ u1's u2 | u1←c, u2←c are Tk-assignments in H of sort s}

–
⋃n
k=1{ u1 6's u2 | u1←c1, u2←c2 are Tk-assignments in H of sort s, c1 6=c2}

for all s ∈ S\{prop}, where S is the set of sorts of T .

If T is Tk, we have a Tk-view; if it is T∞, we have a T∞-view or global
view. The first-order assignments that put an equality or inequality of sort s
in HTk

are not necessarily Tk-assignments: they can be Ti-assignments for any
i, 1≤i 6=k≤n, if Tk and Ti share sort s. If H is Boolean, any HT is identical
to H, as Boolean assignments are understood by all theories and entail no
equalities or inequalities. If H is not Boolean, HT and H differ in general.
Even the Tk-view JTk

of a Tk-assignment J can be a strict superset of J .

Example 7 If J is the LRA-assignment {y←−1, z←2}, its LRA-view is J ∪
{y 6= z}, and its EUF-view is {y 6= z}. If H is the assignment J ∪ {x >
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1, store(a, i, v) ' b, select(a, j)←red}, where red is an Arr-value of sort V ,
its Bool-view is {x> 1, store(a, i, v) ' b}; its Arr-view is the Bool-view plus
select(a, j)←red; its LRA-view is the Bool-view plus J and {y 6= z}; and its
global view is H ∪ {y 6= z}.

We define next a relation between assignments and models that we call en-
dorsement. Endorsement is defined for T +-models to interpret T -values (e.g.,√

2) consistently with the T +-axioms (e.g.,
√

2·
√

2' 2 holds in RA+ as in
Example 6). In order to define endorsement, we extend the notion of free Σ-
variables to assignments with fvΣ(J) = {u | u ∈ fvΣ(t), (t←c) ∈ J}, and we
write fv(J) when Σ is Σ∞. Then, a model endorses an assignment if the model
interprets the two sides of every pair in the assignment as the same element.

Definition 5 (Endorsement) A T +[V ]-model M endorses a T -assignment
J , written M |= J , if for all (u←c) ∈ J , M(u) = cM, assuming fvΣ(J) ⊆ V .

If J is Boolean, a T -model suffices, and endorsement means that the model
interprets the formulæ in J with the truth values given in J . Endorsement and
theory view work together as follows. If J is a Tk-assignment andM is a T +

k [V ]-
model, M |= JTk

means that (i) M |= J , (ii) M |= u1'u2 for all u1←c and
u2←c in J , and (iii) M |= u1 6'u2 for all u1←c1 and u2←c2 in J with c1 6= c2.
Note that (ii) follows from (i) by definition of endorsement, whereas (iii) does
not. It follows that M |= JTk

is in general stronger than M |= J , as a model
that only endorses J may interpret c1 and c2 as the same element. Indeed, the
new constants added by a theory extension do not necessarily name distinct
domain elements. If they did, an extension would impact cardinality, as a T +-
model would have to interpret a T -public sort s with a domain of cardinality
at least |Ds|. The endorsement M |= JTk

only requires M to distinguish the
Tk-values appearing in J . A Tk-assignment J is satisfiable, if there is a model
M such that M |= JTk

, and unsatisfiable otherwise.
If M is a T +

∞ [V ]-model such that M |= HT∞ , we say that M globally
endorses H, writtenM |=G H. Unlike the one theory case, global endorsement
does not imply that M distinguishes distinct T∞-values, as M may identify
distinct T∞-values coming from extensions of different theories. For example,
let H contain {t←3.1, u←5.4, t←red, u←blue}, where the first two pairs are
Ti-assignments, the last two are Tj-assignments, i6=j, and the sort of t and
u is both Ti-public and Tj-public. A T +

∞ -model M that identifies 3.1 with
red and 5.4 with blue can globally endorse H. Such a model can be obtained
by combining a T +

i -model endorsing HTi
and a T +

j -model endorsing HTj
. A

T∞-assignment is satisfiable, if there is a model that globally endorses it, and
unsatisfiable otherwise. From now on assignment stands for T∞-assignment.

5 Theory Modules

CDSAT models theory reasoning via the notion of theory module, an abstrac-
tion of theory satisfiability procedure, theory solver, or theory plugin. Let theory
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t1←c, t2←c ` t1's t2 if c is a T-value of sort s
t1←c1, t2←c2 ` t1 6's t2 if c1 and c2 are distinct T-values of sort s

` t1's t1 (reflexivity)
t1's t2 ` t2's t1 (symmetry)

t1's t2, t2's t3 ` t1's t3 (transitivity)
where t1, t2, and t3 are terms of sort s.

Fig. 1 Equality inference rules

T with signature Σ be one of T1, . . . , Tn, and let T + be its extension. A theory
module for T , or T -module, is an inference system I that manipulates T -
assignments. Its inferences, called I-inferences, are of the form J `I L, where
a singleton Boolean assignment L is derived from a T -assignment J . It is not
necessary to have a first-order assignment u←c as conclusion, since an inference
can have u ' c as conclusion. Since all theories feature equality, all theory mod-
ules include the equality inferences given by the rules in Figure 1. For example,
{x←

√
2, g(0)←

√
2} `RA x·g(0)' 1+1, {x←

√
2, g(0)←

√
2} `RA g(0)' x, and

{x←
√

3, g(0)←
√

2} `RA g(0) 6' x are RA-inferences.
An I-inference J `I L is sound, if all T +[V ]-models that endorse JT

endorse L, assuming fvΣ(J∪{L}) ⊆ V . If J is Boolean, the soundness of J `I L
implies that all T [V ]-models endorsing J endorse L, as T + is conservative.
Indeed, if there were a T [V ]-model M such that M |= J and M 6|= L, hence
M |= L, by conservativity there would be a T +[V ]-modelM1 such thatM1 |=
J andM1 |= L, henceM1 6|= L, violating soundness. A theory module is sound
if all of its inferences are.

CDSAT works with a T∞-assignment H, of which each theory module Ik
understands the Tk-view HTk

, for 1≤ k≤n. In the rest of this section, T ,
S, and I stand for Tk, Sk, and Ik, for any k, 1≤ k≤n; and definitions are
given for a generic T -assignment J so that they apply to any Tk-assignment
and therefore any HTk

. A basic CDSAT operation consists of adding to H
a singleton T -assignment u←c. The corresponding T -module I determines
which pairs u←c are acceptable for addition, based on its view HT . The first
condition for u←c to be acceptable is that u is relevant to T . The simpler way
to be relevant is if u occurs in J and its sort is T -public, which means that
there are T -values that can be assigned to u. However, an equality u1's u2
that does not necessarily occur in J is still relevant to T , if its sides occur in
J but are not relevant to T because sort s is not T -public.

Definition 6 (Relevance) A term u is relevant to theory T in a T -assignment
J , if (i) either u has a T -public sort and u ∈ G(J), (ii) or u is an equality
u1's u2 of sort s ∈ S such that u1, u2 ∈ G(J) and sort s is not T -public.

In equality sharing the T -satisfiability procedures communicate by ex-
changing equalities between shared variables. In CDSAT this mechanism is
generalized to equalities between terms, and the presence of first-order assign-
ments implies that an equality u1's u2 can be communicated with either the
assignment (u1's u2)←true or an assignment {u1←c, u2←c}. Given two the-
ories sharing sort s, relevance determines which theory uses which way: if u1
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and u2 are relevant by Condition (i) the theory uses {u1←c, u2←c}; if u1's u2
is relevant by Condition (ii) the theory uses (u1's u2)←true.

Example 8 Consider the assignment H = {x←5, f(x)←2, f(y)←3} with x,
y, f(x) and f(y) of sort Q, shared by LRA and EUF. HEUF contains x 6' f(x),
x 6' f(y), and f(x) 6' f(y), while HLRA = H∪HEUF. Terms x and y are relevant
to LRA by Condition (i) of Definition 6, as they occur in HLRA and Q is LRA-
public, but not relevant to EUF, as Q is not EUF-public. Term x'Q y is relevant
to EUF by Condition (ii), as x and y occur in HEUF and Q is not EUF-public,
but not relevant to LRA: Condition (i) does not apply, as x'Q y does not occur
in HLRA, and Condition (ii) does not apply, as Q is LRA-public. Each theory
has a way to fix and communicate equalities between terms of a known sort
such as x and y: EUF can assign a truth value to x'Q y and LRA can assign
values, either the same or different, to x and y.

Definition 7 (Acceptability) A singleton T -assignment u←c is acceptable
for I in a T -assignment J , if (i) u is relevant to T in J , (ii) J does not
assign a T -value to u, and (iii) if u←c is first-order, there are no I-inferences
J ′ ∪ {u←c} `I L for J ′ ⊆ J and L ∈ J .

Condition (ii) prevents adding u←c to an assignment that already contains
it; and prevents adding u←c1 to an assignment that already contains u←c2,
for c1 and c2 distinct Tk-values for the same Tk, which preserves plausibility
if c1 and c2 are true and false. Condition (iii) ensures that the addition of a
first-order assignment, which does not have a flip, does not trigger an inference
causing a contradiction.

6 A Suite of Specific Theory Modules

Let ⊥ stand for the assignment (x'prop x)←false, where x is an arbitrary
variable. For brevity we omit equality symbols from signatures and equality
inference rules from modules. For propositional logic (Bool), ΣBool has sort
prop and symbols ¬ : prop→prop, and ∨,∧ : (prop×prop)→prop, and Bool+ is
the trivial extension. IBool features an evaluation rule that derives the truth
value b of formula l, given truth values b1, . . . , bm of subformulæ l1, . . . , lm,
provided l is in the closure of l1, . . . , lm with respect to the ΣBool-connectives:

l1←b1, . . . , lm←bm `Bool l←b.

Then, IBool includes two rules for negation, two rules for conjunction elimina-
tion, and two rules for unit propagation as in CDCL:
¬l `Bool l l1 ∨ · · · ∨ lm `Bool li l1 ∨ · · · ∨ lm, {lj | j 6= i} `Bool li
¬l `Bool l l1 ∧ · · · ∧ lm `Bool li l1 ∧ · · · ∧ lm, {lj | j 6= i} `Bool li

where 1 ≤ j, i ≤ m. Although the evaluation rule alone is sufficient for com-
pleteness, the other rules are obviously desirable.

For linear rational arithmetic (LRA) with ΣLRA as in Example 4, and LRA+

adding constant q̃ and axiom q̃'Q q·1 for each q ∈ Q, ILRA features an evalu-
ation rule that derives the value b of a formula l from the values q̃1, . . . , q̃m of
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its subterms t1, . . . , tm of sort Q:
t1←q̃1, . . . , tm←q̃m `LRA l←b

provided l is a formula whose reduced form is in the closure of t1, . . . , tm with
respect to the symbols of FLRA. For example, w+2'Q w can be reduced to
2'Q 0 and evaluates to false. Let t1 and t2 be terms of sort Q. The positiviza-
tion rules handle the flip of a disequality, while equality elimination replaces
an equality by disequalities:
t1 < t2 `LRA t2 ≤ t1, t1 ≤ t2 `LRA t2 < t1, t1'Q t2 `LRA t1 ≤ t2, t2 ≤ t1.
Let t0 also be a term of sort Q and x a free ΣLRA-variable of sort Q that is
not free in t0, t1, and t2. Disequality elimination detects a contradiction, while
Fourier-Motzkin (FM) resolution eliminates a variable:

t1 ≤ x, x ≤ t2, t1'Q t0, t2'Q t0, x 6'Q t0 `LRA ⊥,
t1 l1 x, xl2 t2 `LRA t1 l3 t2,

where l1,l2,l3 ∈ {<,≤} and l3 is < if and only if either l1 or l2 is <.
Each premise l in the last two rules stands for any formula reducible to l: FM-
resolution applies to 2·y−x < y and 2·x < 3 as they reduce to y < x and x < 3

2
yielding y < 3

2 . A linear combination e1+z<c1, e2−z<c2 ` e1+e2<c1+c2 is
captured by the FM-resolution step e2−c2<z, z<c1−e1 `LRA e2−c2<c1−e1.

For the theory of equality (EUF) with ΣEUF = (S, 'S ∪ F ), IEUF has rules
(ti' ui)i=1...m, f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF ⊥
(ti' ui)i=1...m `EUF f(t1, . . . , tm)' f(u1, . . . , um)
(ti' ui)i=1...m,i6=j , f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF tj 6' uj

for all f ∈ F . The first rule is sufficient for completeness, as it captures a
lazy approach that does not propagate anything until equalities between ex-
isting terms contradict a congruence axiom [15]. Since IEUF does not use first-
order assignments, no sort needs to be EUF-public, and the only assignments
give truth values to equalities. Alternatively, one may make the sorts in S
EUF-public, with a countably infinite set of EUF-values for each sort and no
axioms. Equality inferences employ assignments of EUF-values to determine
whether terms are equal, using EUF-values as identifiers of congruence classes
of terms. Assume that c1, c2, and c3 are distinct EUF-values: the assignment
{x←c1, y←c1, f(x)←c2} places x and y in congruence class c1, and f(x) in
class c2; if f(y)←c3 is added, two equality inferences and the first rule of IEUF
expose a conflict in the above-mentioned lazy style.

For the theory of arrays with extensionality (Arr) (e.g., [7,8]), given sorts I
for indices and V for elements, the array sort constructor builds the sort I⇒V
of arrays with indices in I and elements in V . For ΣArr = (S, F ), S is the free
closure of a set of basic sorts with respect to the array sort constructor, and
F contains selectI⇒V : (I⇒V )×I→V , storeI⇒V : (I⇒V )×I×V→(I⇒V ), and
diffI⇒V : (I⇒V )×(I⇒V )→I for all (I⇒V ) ∈ S, where diffI⇒V is the Skolem
function symbol arising from turning the extensionality axiom for I⇒V into a
clause. We write select(a, i) as a[i] and store(a, i, v) as a[i]:=v. Let a, b, c, and
d be variables of any I⇒V sort, u and v variables of sort V , and i, j, and k
variables of sort I. IArr has rules capturing congruence axioms, read-over-write
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axioms, and the extensionality axiom:
a' b, i' j, a[i] 6' b[j] `Arr ⊥

a' b, i' j, u' v, (a[i]:=u) 6' (b[j]:=v) `Arr ⊥
a' c, b' d, diff (a, b) 6' diff (c, d) `Arr ⊥

b' (a[i]:=u), i' j, b[j] 6' u `Arr ⊥
b' (a[i]:=u), i 6' j, j' k, a[j] 6' b[k] `Arr ⊥

a 6' b `Arr a[diff (a, b)] 6' b[diff (a, b)]
where the last rule is the only one that can produce new terms. Similar to IEUF,
in order to determine whether equalities hold, one may declare all sorts to be
Arr-public, with infinitely many Arr-values used as identifiers of congruence
classes. Inference rules for eager propagation of equalities can be added.

Assume T is a theory equipped with a T -satisfiability procedure. A black-
box theory module IT comprises the rule

l1←b1, . . . , lm←bm `T ⊥
that fires when the Boolean assignment on the left is found T -unsatisfiable
by invoking the T -satisfiability procedure. As with EUF and Arr, non-Boolean
sorts can be declared T -public to determine equalities. If the T -satisfiability
procedure produces unsatisfiable cores, the above rule can be restricted to
unsatisfiable cores to make conflict resolution more precise. A black-box theory
module can be given for any theory combined by equality sharing.

7 The CDSAT Transition System

CDSAT transforms a trail, denoted Γ , which is a sequence of distinct singleton
assignments that are either decisions, written ?A to convey guessing, or justi-
fied assignments, written H`A. Decisions can be either Boolean or first-order
assignments. The justification H in H`A is a set of singleton assignments that
appear before A in the trail. A theory inference J `Ik

L for some k, 1≤ k≤n,
can justify adding J`L to the trail. Input assignments are justified assignments
with empty justification. Other justified assignments can be placed on the trail
by conflict-solving transitions. All justified assignments are Boolean except for
the input first-order assignments of an SMA problem. A trail can be treated
as an assignment by ignoring the order and the justifications of its elements.

Definition 8 (Level) Given a trail Γ = A0, . . . , Am, the level of singleton
assignment Ai, ∀i, 0≤ i≤m, is levelΓ (Ai) = 1 + max{levelΓ (Aj) | j < i}, if
Ai is a decision, and levelΓ (Ai) = levelΓ (H), if Ai is a justified assignment
with justification H. The level of a set of singleton assignments H ⊆ Γ is
levelΓ (H) = 0, if H = ∅, and levelΓ (H) = max{levelΓ (A) | A ∈ H}, otherwise.

Similarly to MCSAT and in contrast with CDCL and DPLL(T ), the levels
of assignments on a CDSAT trail are not necessarily in increasing order, as
the level of a justified assignment is independent from where it stands on the
trail. H`L of level q may appear after ?A of level z, with z > q, if A 6∈ H. In
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Trail rules
Decide Γ −→ Γ, ?A if A is an acceptable Tk-assignment for Ik in ΓTk

for some k, 1≤ k≤n
The next three rules assume: J `Ik

L, for some k, 1 ≤ k ≤ n, J ⊆ Γ , and L 6∈ Γ .
Deduce Γ −→ Γ, J`L if L 6∈ Γ and L is l←b for some l ∈ B
Fail Γ −→ unsat if L ∈ Γ and levelΓ (J ∪ {L}) = 0
ConflictSolve Γ −→ Γ ′ if L ∈ Γ , levelΓ (J ∪ {L}) > 0, 〈Γ ; J ∪ {L}〉 =⇒∗ Γ ′
Conflict state rules
UndoClear
〈Γ ;E ] {A}〉 =⇒ Γ≤m−1 if A is a first-order decision of level m > levelΓ (E)

Resolve
〈Γ ;E ] {A}〉 =⇒ 〈Γ ;E ∪H〉 if H`A is in Γ and H does not contain a first-order

decision A′ whose level is levelΓ (E ] {A})
Backjump
〈Γ ;E ] {L}〉 =⇒ Γ≤m,E`L if levelΓ (L) > m, where m = levelΓ (E)

UndoDecide
〈Γ ;E ] {L}〉 =⇒ Γ≤m−1, ?L if H`L is in Γ , m = levelΓ (E) = levelΓ (L)

and H contains a first-order decision A′ of level m

Fig. 2 The CDSAT transition system

this case, H`L is called a late propagation. Accordingly, the restriction of Γ to
its elements of level at most m, written Γ≤m, is not necessarily a prefix of Γ .

The state of a CDSAT derivation is either a trail or a conflict state. A
conflict is an unsatisfiable assignment. A conflict state is a pair 〈Γ ;E〉, where
Γ is a trail and E is a conflict such that E ⊆ Γ . The CDSAT transition system
in Figure 2 comprises trail rules denoted −→ and conflict state rules denoted
=⇒ with transitive closure =⇒∗. The system relies on a set B of terms, called
global basis, to limit the range of terms that can be generated. The global basis
depends on the input and is fixed throughout a derivation.

Rule Decide expands a trail Γ with a decision ?A provided A is acceptable
for a theory module Ik in its view ΓTk

of Γ . Assume an inference J `Ik
L is

applicable as J ⊆ Γ . The system distinguishes two cases:
1. If L 6∈ Γ , Deduce expands Γ with L provided its term is in B. Deduce covers

both propagation of assignments and conflict explanation. For the latter,
if the Tk-satisfiability procedure detects a conflict in ΓTk

, and its inference
system Ik makes available an inference J `Ik

L to explain it, Deduce posts
the consequence of this inference on the trail.

2. If L ∈ Γ , the inference J `Ik
L reveals a conflict in Γ , as J ⊆ Γ , J `Ik

L,
and L ∈ Γ . The conflict is given by J ∪ {L}. If levelΓ (J ∪ {L}) = 0, Fail
returns unsat. If levelΓ (J ∪ {L}) > 0, ConflictSolve transfers control to the
conflict state rules and returns the resulting trail Γ ′.

CDSAT searches for a model by performing decisions with Decide transitions
and propagating their consequences with Deduce transitions (Case 1). When a
Tk-satisfiability procedure detects a conflict in its view of the trail, one or more
Tk-inferences encapsulated in Deduce transitions explain the conflict (Case 1),
until an inference J `Ik

L with L ∈ Γ becomes applicable so that the conflict
surfaces on the trail as the contradiction between L and L (Case 2).
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Phase 1
id trail items just lev
0 − 2·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E1: {3, 4} 1

Phase 2
id trail items just lev
0 − 2·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 − y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E2: {4, 5} 1

Phase 3
id trail items just lev
0 − 2·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 − y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E3: {5} 0

Fig. 3 CDSAT derivation in one theory (LRA) for problem R of Example 2

Different conflict state rules apply depending on the conflict. If the conflict
contains a first-order decision A of level m greater than that of the rest of the
conflict, UndoClear undoes A and clears Γ of all assignments of level greater
than or equal to m.2 The removed assignments are not necessarily the most
recent ones, due to late propagations. The resulting trail Γ≤m−1 is new, even
if UndoClear does not add anything: since A was acceptable when decided, it
did not cause a conflict when it was added to the trail. If A is now in a conflict,
it means that some justified assignment L was deduced after decision A even
if levelΓ (L) < m (late propagation): Γ≤m−1 is new because it contains L.

We exemplify the CDSAT rules introduced so far with the derivation in
Figure 3. In figures showing derivations, the trail grows downward and shrinks
upward; the columns list the identifiers of the assignments on the trail, the
assignments, the justifications, if any, as sets of identifiers, and the levels of
the assignments; exits from conflicts break the derivation into phases: in phase
1 the part above the horizontal line is the input; in phase n (n> 1) the part
above the horizontal line is inherited from phase n− 1 after exiting a conflict.

In Figure 3 the CDSAT derivation begins with a Decide step that places
y←0 on the trail. The LRA-procedure detects that {−2·x−y<0, x<−1, y←0}
is a conflict and explains it by inferring −y<−2 from {−2·x−y<0, x<−1}
by FM-resolution. Deduce places −y < −2 on the trail. The ILRA-evaluation
inference y←0 ` −y<−2 reveals conflict E1 on the trail. Since levelΓ (E1) > 0,
ConflictSolve fires and UndoClear removes y←0 to solve E1: y←0 is A and −y<
−2 is the late propagation in the above discussion of UndoClear. In phase 2,
Decide tries y←4. The LRA-procedure finds that {−2·x−y<0, x+y<0, y←4}
is a conflict and explains it by inferring y<0 from {−2·x−y<0, x+ y<0} by
FM-resolution. Deduce adds y < 0 to the trail. The ILRA-evaluation inference
y←4 ` y<0 uncovers conflict E2 that UndoClear solves by removing y←4.
In phase 3, the LRA-procedure sees that {−y <−2, y < 0} is a conflict and
explains it by inferring 0 < −2 by FM-resolution. Deduce puts 0 < −2 on
the trail. The ILRA-evaluation inference ∅ ` 0<−2 discovers conflict E3. As
levelΓ (E3) = 0, Fail returns unsat.

Resuming with the CDSAT transition system (see Figure 2), rule Backjump
applies if the conflict contains a Boolean assignment L whose level is greater

2 UndoClear is a renaming of Undo [5].
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Phase 1
id trail items just lev
0 ¬a ∨ b {} 0
1 ¬c ∨ d {} 0
2 ¬e ∨ ¬f {} 0
3 f ∨ ¬e ∨ ¬b {} 0
4 a 1
5 b {0, 4} 1
6 c 2
7 d {1, 6} 2
8 e 3
9 f {2, 8} 3

conflict E1: {3, 5, 8, 9} 3
conflict E2: {2, 3, 5, 8} 3

Phase 2
id trail items just lev
0 ¬a ∨ b {} 0
1 ¬c ∨ d {} 0
2 ¬e ∨ ¬f {} 0
3 f ∨ ¬e ∨ ¬b {} 0
4 a 1
5 b {0, 4} 1
6 e {2, 3, 5} 1
7 d 2

Fig. 4 CDSAT derivation in one theory (Bool) for problem S of Example 1

than that of the rest E of the conflict: the system jumps back to the level
of E and adds E`L to the trail. Since E ] {L} is a conflict, L is justified
by E. Assignment L is a Unique Implication Point (UIP) [20]. Rule Resolve
unfolds a conflict by replacing a justified assignment A in the conflict with
its justification H. Assignment A can be either Boolean or first-order. As
the only first-order justified assignments are input assignments with empty
justification, if A is first-order, Resolve only removes it from the conflict (not
from the trail). Resolve requires that H does not include a first-order decision
A′ of the same level as that of the conflict. This condition avoids a loop. Assume
that A is {A′}`L, A′ is first-order, levelΓ (A′) = m, levelΓ (E ] {A}) = m, and
levelΓ (E) < m: if Resolve unfolds E ] {A} into E ] {A′}, UndoClear removes
A′, Decide reiterates A′, and Deduce adds {A′}`L, the system falls back in the
same conflict. This kind of loop can arise only with first-order assignments: if
A′ is Boolean and Resolve unfolds E ] {A} into E ] {A′}, Backjump applies
with A′ as UIP and puts E`A′ on the trail, preventing Decide from retrying
A′. The point is that a first-order assignment has no flip, as its complement
may be an infinite set of values.

We illustrate Backjump and Resolve in the Boolean case, where CDSAT
reduces to CDCL, with the CDSAT derivation in Figure 4: it begins with three
Decide and Deduce pairs of steps that bring the system to conflict E1, made of
the first CDCL conflict clause f ∨¬e∨¬b and the flips of its literals. Backjump
does not apply to E1, because it contains two elements of level 3, namely e and
f . Thus, Resolve applies and transforms E1 into E2, by replacing f with its
justification {e, ¬e∨¬f}. This Resolve transition encodes the resolution step
that infers the second CDCL conflict clause ¬e∨¬b from f∨¬e∨¬b and ¬e∨¬f :
clause ¬e ∨ ¬b can be read off E2 as the negation of its subset (conjunction)
{e, b}. Since E2 has only one element of level 3, namely e, Backjump applies
to E2 and opens phase 2 by placing e on the trail with the rest of E2 as
justification. Another decision suffices to find that S is satisfiable.

Whenever CDCL resolves conflict clause L1 ∨ . . . ∨ Lk with justification
¬L1 ∨ B1 ∨ . . . ∨ Bq of ¬L1 to generate conflict clause C = L2 ∨ . . . ∨ Lk ∨
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B1 ∨ . . . ∨ Bq, CDSAT unfolds conflict E = {L1 ∨ . . . ∨ Lk, L1, . . . , Lk} with
justified assignment {¬L1 ∨ B1 ∨ . . . ∨ Bq, B1, . . . , Bq} ` L1 to get conflict
E′ = {L1∨. . .∨Lk, L2, . . . , Lk,¬L1∨B1∨. . .∨Bq, B1, . . . , Bq}, where C can be
read off E′ as the negation of its subset (conjunction) {L2, . . . , Lk, B1, . . . , Bq}.

Phase 1
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 (w+ 1

2 )2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u←c 1
5 v←c 2
6 (a[i]:=v)[j]←c 3
7 w←0 4
8 f((a[i]:=v)[j])←0 5
9 f(u)← 1

4 6
10 u' (a[i]:=v)[j] {4, 6} 3
11 f(u) 6' f((a[i]:=v)[j]) {8, 9} 6

conflict E1: {10, 11} 6

Phase 2
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 (w+ 1

2 )2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u←c 1
5 v←c 2
6 (a[i]:=v)[j]←c 3
7 u' (a[i]:=v)[j] {4, 6} 3
8 f(u)' f((a[i]:=v)[j]) {7} 3
9 f(u)' w {0, 8} 3

10 (w+ 1
2 )2' w {1, 9} 3

conflict E2
1 : {10} 3

conflict E2
2 : {1, 9} 3

conflict E2
3 : {0, 1, 8} 3

conflict E2
4 : {0, 1, 7} 3Phase 3

id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 (w+ 1

2 )2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u 6' (a[i]:=v)[j] {0, 1} 0
5 u←c 1
6 v←c 2
7 (a[i]:=v)[j]←d 3
8 v 6' (a[i]:=v)[j] {6, 7} 3

conflict E3: {2, 8} 3

Phase 4
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 (w+ 1

2 )2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u 6' (a[i]:=v)[j] {0, 1} 0
5 v' (a[i]:=v)[j] {2} 0

conflict E4: {3, 4, 5} 0

Fig. 5 CDSAT derivation in three theories (EUF, Arr, and RA) for problem P of Example 3

We demonstrate the behavior of CDSAT on a combination problem with
the derivation in Figure 5: it starts with a series of decisions, from u←c
through f(u)← 1

4 , where c is an Arr-value of sort V , and v←c is the only
acceptable choice given u' v and u←c. The pair v←c is a decision, not
a deduction, because theory module inferences only deduce Boolean assign-
ments. The EUF-procedure sees that u←c, (a[i]:=v)[j]←c, f((a[i]:=v)[j])←0,
and f(u)← 1

4 form a conflict, and explains it by equality inferences gener-
ating u' (a[i]:=v)[j] and f(u) 6' f((a[i]:=v)[j]). Deduce puts them on the
trail and IEUF reveals conflict E1 as E1 `IEUF ⊥. Backjump solves E1 with
f(u) 6' f((a[i]:=v)[j]) as L: the system jumps back to levelΓ (u' (a[i]:=v)[j]) =
3 with f(u)' f((a[i]:=v)[j]) on the trail justified by u' (a[i]:=v)[j] (phase
2). The RA-procedure finds that (w+ 1

2 )2' f(u), f(u)' f((a[i]:=v)[j]), and
f((a[i]:=v)[j])' w make a conflict, and explains it by inferring by transitivity
f(u)' w from {f(u)' f((a[i]:=v)[j]), f((a[i]:=v)[j])' w} and (w+ 1

2 )2' w
from {(w+ 1

2 )2' f(u), f(u)' w}. Deduce adds them to the trail. IRA reveals
conflict E2

1 as (w+ 1
2 )2' w reduces to w2+ 1

4 ' 0 and {w2+ 1
4 ' 0} `RA ⊥ in
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Phase 1
id trail items just lev
0 (x>1) ∨ (y<0) {} 0
1 (x<−1) ∨ (y>0) {} 0
2 x←0 1
3 x>1 {2} 1
4 x<−1 {2} 1
5 y<0 {0, 3} 1
6 y>0 {1, 4} 1
7 0<0 {5, 6} 1

conflict E1: {7} 1
conflict E2: {5, 6} 1

conflict E3: {0, 3, 6} 1
conflict E4: {0, 1, 3, 4} 1

Phase 2
id trail items just lev
0 (x>1) ∨ (y<0) {} 0
1 (x<−1) ∨ (y>0) {} 0
2 x>1 1
3 x←2 2
4 x<−1 {3} 2
5 y>0 {1, 4} 2
6 y←1 3
7 y<0 {6} 3

Fig. 6 CDSAT derivation in two theories (Bool and LRA)

any IRA. Three Resolve steps transform conflict E2
1 into conflict E2

4 . Resolve
does not apply to u' (a[i]:=v)[j] in E2

4 because its justification contains
(a[i]:=v)[j]←c which is first-order and has level 3, the same as E2

4 . Then
Backjump solves E2

4 by jumping back to level 0 and flipping u' (a[i]:=v)[j]
into u 6' (a[i]:=v)[j] of phase 3, whose justification was built by Resolve steps.
Phase 3 opens with three decisions, where v←c is forced by u' v and u←c, and
another Arr-value d of sort V is used for (a[i]:=v)[j], since u 6' (a[i]:=v)[j] and
u←c exclude c. The Arr-procedure catches that {i' j, u' v, u 6' (a[i]:=v)[j]}
is a conflict and explains it by the equality inference yielding v 6' (a[i]:=v)[j],
that Deduce places on the trail. Since i' j, v 6' (a[i]:=v)[j] `Arr ⊥, module
IArr exposes conflict E3. Backjump solves E3 by jumping back to level 0 and
flipping v 6' (a[i]:=v)[j] into v' (a[i]:=v)[j] of phase 4. Conflict E4 violates
transitivity of equality, and because its level is 0, Fail halts the derivation.

We complete the description of the CDSAT transition system in Figure 2
with rule UndoDecide.3 This rule applies to a conflict containing a Boolean
justified assignment L (no UndoClear) whose level is the same as that of the
rest of the conflict (no Backjump), and whose justification includes a first-
order decision A′ whose level is the same as that of the conflict (no Resolve).
UndoDecide undoes A′ and replaces it by a Boolean decision on L. UndoClear
and UndoDecide have no match in CDCL or DPLL(T ), where the conflict-
driven reasoning is only propositional without first-order assignments.

In order to elucidate the application of UndoDecide, we consider the CD-
SAT derivation in Figure 6, which begins with one Decide and four Deduce
transitions doing propagations. The LRA-procedure sees conflict {y<0, y>0}
and explains it by inferring 0<0 that Deduce puts on the trail. Three Resolve
steps turn conflict E1 into E4, which contains two Boolean justified assign-
ments x>1 and x<−1 that fit with UndoDecide: both have level 1 and are
justified by first-order decision x←0 of level 1. UndoDecide chooses to flip x>1
and the derivation proceeds to find the problem satisfiable.

3 UndoDecide replaces T-backjump-decide [9] or Semantic split [15].
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l0 :−2·x− y < 0
l1 : x+ y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .

Fig. 7 A diverging series of inferences in linear rational arithmetic

8 Theory Module Requirements for Termination and Completeness

Since a motivation for CDSAT is combining conflict-driven theory satisfiability
procedures that may introduce new terms, theory module inferences need to
have this capability: J `I L may introduce in L new terms that occur neither
in J nor in the input. The generation of new terms can jeopardize termination,
as shown in Figure 7 where FM-resolution generates an infinite series of steps
from problem R of Example 2. The known solution is to restrict inferences to
draw new terms from a finite basis [2,9]. In this section we apply this approach
to CDSAT modules in order to extend it to theory combination. We begin by
saying that a set X of terms is closed if (i) for all u ∈ X, t C u implies
t ∈ X, and (ii) for all t, u ∈ X of sort s other than prop, (t's u) ∈ X. The
first property will be used to capture all terms in G(H) for an assignment H,
and the second one to capture equalities in theory views of H and relevant
equalities. The closure of a set X of terms, denoted ⇓X, is the smallest closed
set containing X. The closure operation is idempotent, as ⇓(⇓X) = ⇓X, and
monotone: if X ⊆ Y then ⇓X ⊆ ⇓Y . Then a local basis for a theory module
I is a function basisI that maps any finite set X of terms to the finite set of
terms that I-inferences may introduce from an input whose terms are in X.

Definition 9 (Local basis) A local basis for signature Σ is a function basis
from sets of terms to sets of terms, such that for all sets X and Y of terms:
– X ⊆ basis(X) (extensiveness),
– If X is finite then basis(X) is finite (finiteness),
– basis(X) = basis(⇓X) = ⇓basis(X) (closure),
– If X ⊆ Y then basis(X) ⊆ basis(Y ) (monotonicity),
– basis(basis(X)) = basis(X) (idempotence), and
– fvΣ(basis(X)) ⊆ fvΣ(X) ∪ V∞ (no additional free Σ-variables),

where the last requirement excludes the introduction of foreign terms.

All theory modules Ik, 1 ≤ k ≤ n, must be equipped with a local basis
named basisIk

or basisk (e.g., we write basisLRA for basisILRA). Local bases only
play a role in the proof of termination of CDSAT and in the completeness
requirement for theory modules, and it is not necessary to implement them.
The divergence in Figure 7 can be avoided by assuming a total precedence
<LRA on free ΣLRA-variables [15], and taking as basisLRA the function that
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adds to its argument all the terms generated by positivization inferences and
FM-resolution inferences t1 l1 x, x l2 t2 `LRA t1 l3 t2, where x is the <LRA-
maximum free ΣLRA-variable in both t1 l1 x and xl2 t2. For Figure 7, assume
that y <LRA x. Then l3, generated by −y < 2·x, 2·x<−2 `LRA −y <−2, is in
the local basis, whereas l4, generated by x<−y, −y <−2 `LRA x<−2, is not,
so that the series of inferences halts. For the rest of this section, let theory T
with signature Σ be one of T1, . . . , Tn, and let T + be its extension. Towards
completeness, we define how a T -module expands a T -assignment.

Definition 10 (Assignment expansion) A T -module I with local basis
basisI expands a T -assignment J by adding either (1) a T -assignment A that
is acceptable for J and I, or (2) a Boolean assignment l←b derived by an
I-inference J ′ `I (l←b) from a T -assignment J ′, J ′ ⊆ J , such that (l←b) /∈ J
and l ∈ basisI(J).

Case (1) covers Decide and Case (2) covers Deduce, Fail, and ConflictSolve.
Local bases contribute to completeness by providing enough terms in Case (2).

Definition 11 (One-theory-consistency) Given theory T and extension
T +, a T -assignment J is consistent with T if there exists a T +[V ]-model M
such that M |= J , assuming fvΣ(J) ⊆ V .

For a T -module to be complete with respect to its own theory it suffices
to be capable of expanding any plausible assignment that is not consistent.

Definition 12 (One-theory-completeness) Given theory T , a T-module
I is complete for T, if, for all plausible T -assignments J , either J is consistent
with T or I can expand J .

Note that expanding a consistent assignment is not needed for complete-
ness. For theory combination, completeness requires a stronger property, as
the existence of a model for each theory does not guarantee the existence of a
model for their union: for disjoint theories, the models have to agree on equali-
ties between shared terms and on the cardinalities of the domains interpreting
shared sorts. In equality sharing the only shared terms are variables and the
theories are stably infinite, so that the domains are assumed to be countably
infinite for all shared sorts except prop. However, combinations involving non-
stably infinite theories are useful: consider combining the theory of arrays with
a theory that shares the sort of array elements and requires it to be finite.

CDSAT generalizes equality sharing in at least two ways. First, CDSAT
integrates conflict-driven satisfiability procedures whose communication is not
limited to equalities between shared variables, as they have full access to the
trail. Thus, we consider equalities between shared terms. Second, CDSAT han-
dles also non-stably infinite theories, such as the theory of bitvectors, by requir-
ing that one of the theories in the combination, called leading theory, knows all
sorts. Let T1 be the leading theory, so that S1=S∞. For a T∞-model to endorse
globally an assignment H, it suffices that there are a T1-model endorsing HT1 ,
and, for all other theories Tk, a Tk-model endorsing HTk

and agreeing with the
T1-model on equalities between shared terms and cardinalities of shared sorts.
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Definition 13 (Leading-theory-compatibility) Let T1 be the leading the-
ory, T and S stand for Tk and Sk, 2≤ k≤n, and N be a set of terms.
A T -assignment J is leading-theory-compatible with T sharing N , if for all
T +

1 [V1]-modelM1 such thatM1 |= JT1 with fvΣ1
(J ∪N) ⊆ V1, there exists a

T +[V ]-model M with fvΣ(J ∪N) ⊆ V , such that (i) M |= J , (ii) for all sorts
s ∈ S, |sM| = |sM1 |, and (iii) for all s ∈ S and terms u, u′ ∈ N of sort s,
M(u) =M(u′) if and only if M1(u) =M1(u′).

Definition 14 (Leading-theory-completeness) For all nonleading theo-
ries T , a T -module I is leading-theory-complete for T , if for all plausible T -
assignments J , either J is leading-theory-compatible with T sharing G(J) or
I can expand J .

In a combination of stably infinite theories, the leading theory is a theory
TN, whose models interpret all sorts except prop as domains with the cardinality
of N, the set of the natural numbers. In practice, TN is not included in the
combination. In other cases, a leading theory is either present or added.

Example 9 Suppose T2 and T3 share sort s, |sM2 | ≤ 4 for all T2-models M2,
and |sM3 | ≥ 2 for all T3-modelsM3. The leading theory T1 has 2 ≤ |sM1 | ≤ 4
for all T1-models M1. Its theory module I1 includes a rule {ui 6' uj | 1 ≤ i 6=
j ≤ 5} `⊥, where u1, . . . , u5 are any five distinct terms of sort s. If |sM3 | ≥ 5
for all T3-models M3, the leading theory is the inconsistent theory with false
as axiom and `⊥ as only inference, so that CDSAT returns unsat for all inputs.

Example 10 Suppose T2 is the theory of bitvectors and T3 has a unary injective
function f : s → bv[2] from a sort s unknown to T2 into the sort bv[2] of
bitvectors of length 2. The leading theory T1 knows all sorts and for all its
modelsM1, |(bv[k])M1 | = 2k and |sM1 | ≤ 4. Its theory module has the 5-term
rule of Example 9 and a similar 2k-term rule for each bv[k]. A black-box theory
module for bitvectors and a theory module with rules x ' y, f(x) 6' f(y) `⊥
(congruence) and x 6' y, f(x) ' f(y) `⊥ (injectivity) for T3 are leading-
theory-complete.

9 Soundness, Termination, and Completeness of CDSAT

9.1 Soundness of CDSAT

We begin with soundness, for which it suffices that all theory modules are
sound. We write T +

∞ -model for a T +
∞ [V ]-model such that fv(J) ⊆ V for all in-

volved assignments J , and in all statements global endorsement by a T +
∞ -model

can be replaced by endorsement by a T∞-model if all involved assignments are
Boolean. The first lemma follows from soundness of the theory modules.

Lemma 1 For all k, 1≤ k≤n, Ik-inferences J `Ik
L, and T +

∞ -model M, if
M |=G J then M |= L.
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Proof Let M be a T +
∞ [V ]-model, with fv(J ∪ {L}) ⊆ V , such that M |=G J ,

which meansM |= JT∞ . Since J is a Tk-assignment,M |= JT∞ is equivalent to
M |= JTk

. Let V ′ = fvΣk
(J ∪{L}). Since Σk ⊆ Σ∞, fv(V ′) = fv(J ∪{L}) ⊆ V .

Let M′ be the Σ+
k [V ′]-interpretation defined by: sM′=sM for all s ∈ Sk,

fM
′=fM for all f ∈ F+

k , and tM
′=M(t) for all terms t ∈ V ′. M′ interprets

Σ+
k [V ′]-terms and Σ+

k -sentences (for T +
k -axioms) like M. Thus, M |= JTk

impliesM′ |= JTk
. By soundness of Ik, it follows thatM′ |= L, which implies

M |= L by construction.

Then, we define soundness of justified assignments, trails, and states, and
we show that CDSAT transforms sound states into sound states.

Definition 15 (Sound states) For all input assignments H0 and states Γ
or 〈Γ ;E〉 derived by CDSAT from H0: (1) a justified assignment (H`A) ∈ Γ
is sound if for all T +

∞ -model M, M |=G H0∪H implies M |= A; (2) a trail or
state Γ is sound if all its justified assignments are; and (3) a state 〈Γ ;E〉 is
sound if Γ is sound and H0∪E is unsatisfiable.

Lemma 2 For all input assignments H0 and states Γ or 〈Γ ;E〉 derived by
CDSAT from H0, (1) if 〈Γ ;E〉 is sound and 〈Γ ;E〉 =⇒∗ Γ ′, then Γ ′ is sound;
(2) if Γ is sound and Γ −→ Γ ′, then Γ ′ is sound.

Proof Claim (1) is proved by induction on the length of 〈Γ ;E〉 =⇒∗ Γ ′. The
base case covers UndoClear, UndoDecide, and Backjump. For UndoClear we have
〈Γ ;E ] {A}〉 =⇒ Γ≤m−1, and Γ≤m−1 is sound, because Γ is. For UndoDecide
we have 〈Γ ;E ] {L}〉 =⇒ Γ≤m−1, ?L: Γ≤m−1 is sound, because Γ is, and
Γ≤m−1, ?L is sound as decisions do not affect soundness. For Backjump we
have 〈Γ ;E ] {L}〉 =⇒ Γ≤m,E`L: Γ≤m is sound because trail Γ is; since
H0∪(E]{L}) is unsatisfiable, if M |=G H0∪E then M |= L, and E`L is also
sound. The induction step covers a derivation starting with a Resolve replacing
H`A in the conflict with its justification: 〈Γ ;E]{A}〉 =⇒ 〈Γ ;E∪H〉 =⇒∗ Γ ′.
We show that if 〈Γ ;E ] {A}〉 is sound then 〈Γ ;E ∪H〉 is sound, and then Γ ′
is sound by induction hypothesis. Since Γ does not change, it suffices to show
that H0∪E∪H is unsatisfiable. By way of contradiction, assume that M |=G

H0∪E∪H for a T +
∞ -model M. Since (H`A) ∈ Γ and Γ is sound, it follows

thatM |=G H0∪(E]{A}) contradicting the soundness of 〈Γ ;E]{A}〉. Claim
(2) is vacuously true for a Decide or Fail transition. A Deduce or ConflictSolve
transition relies on an inference J `Ik

L: for Deduce, the claim follows from
Lemma 1; for ConflictSolve, by Lemma 1, if M |=G J then M |= L, so that
H0∪J∪{L} is unsatisfiable. Thus, 〈Γ ; J ∪ {L}〉 is sound, and Γ ′ is sound by
the first part of this lemma.

The next lemma is used in the soundness theorem.

Lemma 3 For all input assignments H0, trails Γ derived by CDSAT from
H0, and T +

∞ -models M, if M |=G H0 then M |=G Γ≤0.
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Proof For all trails Γ derived by CDSAT from H0, a singleton assignment in
Γ≤0 is either an assignment in H0 or a Boolean justified assignment H`L,
due to either a theory inference or a Backjump transition, and such that
levelΓ (H) = 0. The proof is by induction on the inference depth of justified
assignments. An assignment with inference depth 0 is an input assignment,
for which the claim is trivially true. Assume the claim is true for inference
depth z. Let (H`L) ∈ Γ≤0 have inference depth z + 1. For all T +

∞ -models M,
M |=G H0 implies M |=G H by induction hypothesis, and M |=G H0∪H
implies M |= L because H`L is sound by Lemma 2.

Theorem 1 (Soundness) For all input assignments H, if a CDSAT deriva-
tion from H reaches state unsat, assignment H is unsatisfiable.

Proof By way of contradiction, assume that there is a T +
∞ [V ]-model M with

fv(H) ⊆ V such that M |=G H. Let Γ −→ unsat be the last step of the
derivation: it is a Fail transition based on an inference J `Ik

L, for some Ik,
1≤ k≤n, such that J ⊆ Γ , L ∈ Γ , and levelΓ (J ∪{L}) = 0 (see Figure 2). By
picking at random elements in the domains ofM to interpret the variables in
fv(Γ ) \ fv(H), we get a model M′ that interprets all variables in fv(Γ ) and
such that M′ |=G H. By Lemma 3, M′ |=G Γ≤0, which includes M′ |=G J
and M′ |= L, as levelΓ (J ∪ {L}) = 0. Since J `Ik

L, by Lemma 1 it follows
that M′ |= L, a contradiction.

9.2 Termination of CDSAT

We begin the proof of termination with two preliminary lemmas.

Lemma 4 For all input assignments H, trails Γ derived by CDSAT from
H, theories Tk (1≤ k≤n), terms t, and Tk-values c1 and c2 with c1 6=c2, if
(t←c1)∈Γ and (t←c2)∈Γ , then (t←c1)∈H and (t←c2)∈H.

Proof By induction on the length of the CDSAT derivation: the base case is
trivial, and the induction hypothesis is that Γ satisfies the claim. For the in-
duction step, only Decide, Deduce, Backjump, or UndoDecide add assignments,
but none adds a t←c2 if t←c1 with c1 6=c2 is in Γ : Decide only adds acceptable
assignments; Deduce adds a Boolean assignment provided its flip is not in Γ ;
and Backjump and UndoDecide add a Boolean assignment removing its flip.

It follows as a corollary that CDSAT preserves plausibility. We say that an
assignment H is in B if (t←c) ∈ H implies t ∈ B. If B is closed, H is in B
implies G(H) ⊆ B. If B is finite, the length of derived trails is upper bounded:

Lemma 5 For all input assignments H and trails Γ derived by CDSAT from
H with a closed global basis B, if H is in B then Γ is in B.

Proof By induction on the length of the CDSAT derivation, H is in B by hy-
pothesis (base case), Γ is in B (induction hypothesis), and for the induction
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step, only Decide and Deduce may introduce new terms. Deduce requires the
new formula to belong to B. Decide requires the assignment to be acceptable,
hence that the assigned term is relevant: it is either a term u ∈ G(Γ ) or an
equality u1 ' u2 with u1, u2 ∈ G(Γ ). In the first case, u ∈ B by induction hy-
pothesis as B is closed. In the second case, u1, u2 ∈ B by induction hypothesis
as B is closed, and then (u1 ' u2) ∈ B because B is closed.

Corollary 1 For all input assignments H and trails Γ derived by CDSAT
from H with a closed finite global basis B, if H is in B then |Γ | ≤ |H|+n·|B|.

Proof Lemma 4 prevents distinct assignments to the same term, except from
any inherited from H, hence the |H| in the upper bound. As Lemma 5 ensures
that all terms come from B, the result follows as there are n theory modules.

Let max = |H|+ n·|B|. A first-order decision is bad for a level, if it would
be unacceptable should the trail roll back to that level:

Definition 16 (Bad decision) A decision ?A in Γ is bad for level i, if it is
a first-order Tk-assignment that is not acceptable for Ik in (Γ≤i)Tk

.

Decision ?A is bad for level i if (Γ≤i)Tk
contains late propagations that

make ?A unacceptable. In Figure 3, UndoClear solves conflict E1 by undoing
y←0, and y←0 is bad for level 0 because level 0 contains the late propagation
−y < −2. Given a trail Γ the measure of its decision ?A of level i is the triple
MAi = (soΓi , wΓi , badΓi ), where soΓi = 0 if ?A is Boolean, soΓi = 1 if ?A is first-
order; wΓi = max−|Γ≤i|; and badΓi is the number of decisions in Γ that are bad
for level i. Note that wΓ0 and badΓ0 are defined. The measure of a trail Γ with m
decisions is the 3·max-tuple Tuple(Γ ) = (wΓ0 , badΓ0 , NA1, . . . , NAm, 2, . . . , 2),
where for all i, 1 ≤ i ≤ m, NAi is MAi stripped of parentheses. The measure
of a trail Γ is a tuple of length 3·max, because the decision measure is a triple.
By convention, the measure of unsat is a 3·max-tuple filled with 0’s. Let >
denote the well-founded ordering on N and>lex its lexicographic extension. The
ordering on trails is defined by Γ � Γ ′ if and only if Tuple(Γ ) >lex Tuple(Γ ′).
A conflict state is safe, if all decisions that could trigger UndoClear are bad:

Definition 17 (Safe conflict state) A conflict state 〈Γ ;E〉 is safe if, for all
first-order ?A ∈ E with levelΓ (?A) > i = levelΓ (E\{?A}), ?A is bad for level i.

The key lemma simultaneously shows that CDSAT transitions reduce trails
with respect to the trail ordering and keep conflict states safe.

Lemma 6 If 〈Γ ;E〉 =⇒∗ Γ ′ and 〈Γ ;E〉 is safe then Γ ′ ≺ Γ ; if Γ −→B Γ ′

then Γ ′ ≺ Γ .

Proof The first claim is proved by induction on the length of the derivation
〈Γ ;E〉 =⇒∗ Γ ′. The base case covers UndoClear, UndoDecide, and Backjump.
For UndoClear we have 〈Γ ;E ] {A}〉 =⇒ Γ≤m−1, where A is the undone first-
order decision and Γ ′ is Γ≤m−1 with m=levelΓ (A). Let i=levelΓ (E), where
i < m. Since 〈Γ ;E ] {A}〉 is safe, A is bad for level i. We have: ∀j, 1 ≤
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j ≤ i, soΓ ′

j =soΓj ; ∀j, 0 ≤ j ≤ i, wΓ ′

j =wΓj ; ∀j, 0 ≤ j < i, badΓ
′

j ≤ badΓj , as
removing assignments may make decisions acceptable. Γ ′ ≺ Γ follows from
either badΓ

′

j < badΓj for some j < i or badΓ
′

i < badΓi as A is undone. For
UndoDecide we have 〈Γ ;E ] {L}〉 =⇒ Γ≤m−1, ?L. Let A′ be the undone first-
order decision; Γ ′ is Γ≤m−1, ?L with m=levelΓ (E)=levelΓ (L)=levelΓ (A′). We
have: ∀j, 1≤j≤m−1, soΓ ′

j =soΓj ; ∀j, 0≤j≤m−1, wΓ ′

j =wΓj and badΓ
′

j ≤badΓj .
Γ ′ ≺ Γ follows from either badΓ

′

j < badΓj for some j ≤ m−1 as before or
soΓ ′

m =0 < soΓm=1 as L is Boolean while A′ is first-order. For Backjump we have
〈Γ ;E]{L}〉 =⇒ Γ≤m,E`L, and Γ ′ is Γ≤m,E`L with m=levelΓ (E). We have:
∀j, 1≤j≤m, soΓ ′

j =soΓj ; ∀j, 0≤j≤m−1, wΓ ′

j =wΓj and badΓ
′

j ≤badΓj . Γ ′ ≺ Γ

follows from either badΓ
′

j <badΓj for some j≤m−1 as before or wΓ ′

m <wΓm as L
is added to level m in Γ ′. The induction step covers a derivation starting with
Resolve unfolding H`A in the conflict: 〈Γ ;E ] {A}〉 =⇒ 〈Γ ;E ∪H〉 =⇒∗ Γ ′.
We show that if 〈Γ ;E ] {A}〉 is safe then 〈Γ ;E ∪ H〉 is safe. Then Γ ′ ≺ Γ
follows by induction hypothesis. Let A′ be any first-order decision in E ∪ H
such that levelΓ (A′) > i = levelΓ ((E ∪H)\{A′}). A′ is not A because A 6∈ E
and A 6∈ H, and A′ 6∈ H by the side-condition of Resolve. Thus, A′ ∈ E and
i=levelΓ ((E]{A})\{A′}). Since 〈Γ ;E]{A}〉 is safe, A′ is bad for level i. The
second claim is trivially true for Fail. For Decide we have Γ −→ Γ, ?A and Γ ′

is Γ, ?A. Let m be the number of decisions in Γ , so that levelΓ (A)=m+ 1. We
have: ∀j, 1≤ j≤m, soΓ ′

j =soΓj ; ∀j, 0≤ j≤m, wΓ ′

j =wΓj . Since A is acceptable,
for no level j, 0 ≤ j ≤m, A is bad. Thus, ∀j, 0 ≤ j ≤m, badΓ

′

j =badΓj , and
Γ ′ ≺ Γ as soΓ ′

m+1 < 2. For Deduce we have Γ −→ Γ, J`L and Γ ′ is Γ, J`L.
Let i be levelΓ (L). We have: ∀j, 1≤ j ≤ i, soΓ ′

j =soΓj ; ∀j, 0≤ j < i, wΓ ′

j =wΓj
and badΓ

′

j =badΓj . The addition of J`L gives wΓ
′

i < wΓi , so that Γ ′ ≺ Γ .
For ConflictSolve we have Γ −→ Γ ′, provided 〈Γ ; J∪{L}〉 =⇒∗ Γ ′, where
J `Ik

L and L ∈ Γ . We prove that 〈Γ ; J∪{L}〉 is safe. Let A be any first-
order decision in J with levelΓ (A) > i=levelΓ ((J∪{L})\{A}). Since L ∈ Γ
and i=levelΓ ((J∪{L})\{A}) we have L ∈ (Γ≤i)Tk

. Since J `Ik
L, A is not

acceptable for (Γ≤i)Tk
, and therefore it is bad for level i. Thus, 〈Γ ; J∪{L}〉 is

safe, and Γ ′ ≺ Γ by the first claim.

Thus, we can say that a state is CDSAT-reducible, if a CDSAT transition
rule applies, and CDSAT-irreducible otherwise.

Theorem 2 (Termination) For all input assignments H, if the global basis
B is finite, closed, and such that H is in B, then all CDSAT derivations from
H are guaranteed to halt.

9.3 Completeness of CDSAT

Completeness requires that there is a leading theory T1, that its module I1
is complete for T1, and that all other modules Ik’s, 2≤ k≤n, are leading-



CDSAT: Transition System and Completeness 27

theory-complete. The latter property is defined in terms of leading-theory-
compatibility, which involves a shared set N of terms. Definition 14 is con-
cerned only with the relation of Tk and Ik (2≤ k≤n) with T1, and therefore
it instantiates N to G(J) for a Tk-assignment J . We instantiate N with the
set of shared terms for a T∞-assignment H, defined inductively as follows.

Definition 18 (Shared terms) The set of shared terms for an assignment
H, denoted Vsh(H), is the smallest set N closed under the following rules
(t←c)∈H
t ∈ N

u, u′ ∈ N, t ∈ fvΣi
(u)∩ fvΣj

(u′), i6=j
t ∈ N

u ∈ N, t ∈ fvΣk
(u)\V∞

t ∈ N
where 1 ≤ i, j, k ≤ n; also, Vssh(H) is the set of shared terms of sort s, s ∈ S∞.

The inductive rules add shared variables and foreign terms, with shared
foreign terms added by both rules. Note that fv(Vsh(H)) = fv(H) holds.

Example 11 For problem P of Example 3, the base of the inductive construc-
tion of Vsh(P ) is that f(select(store(a, i, v), j))' w, (w+ 1

2 )2' f(u), i' j, and
u' v are shared. The third rule adds f(select(store(a, i, v), j)) and f(u) as
they are ΣRA-foreign, (w+ 1

2 )2 and w+ 1
2 as they are ΣEUF-foreign. The sec-

ond rule adds w, as it is a free ΣEUF-variable and ΣRA-variable, and u and
v, as they are free ΣEUF-variables and ΣArr-variables. The third rule adds
select(store(a, i, v), j) as it is ΣEUF-foreign. In contrast, store(a, i, v), a, i, j,
and 1

2 are not shared: the first four are seen only by Arr and 1
2 only by RA.

Definition 19 (Model-describing assignment) Let T1 be the leading the-
ory. An assignment H is model-describing if HT1 is consistent with T1 and for
all k, 2≤ k≤n, HTk

is leading-theory-compatible with Tk sharing Vsh(H).

For completeness, we require the global basis B to be stable, meaning that
for all k, 1≤ k≤n, basisk(B) ⊆ B. A stable B is also closed: for all k, 1≤ k≤n,
B ⊆ basisk(B) holds by extensiveness of basisk, which, together with stability,
implies basisk(B) = B, so that B is closed by the closure property of basisk
(see Definition 9).

Theorem 3 For all input assignments H, if the global basis B is stable and
H is in B, whenever a CDSAT derivation from H halts in a state Γ other
than unsat, Γ is model-describing.

Proof Since B is closed, by Lemma 5, all trails Γ derived by CDSAT fromH are
in B. We prove the claim by showing that all states 〈Γ ;E〉 with levelΓ (E) > 0
and all states Γ such that Γ is not model-describing are CDSAT-reducible.
Consider a conflict state 〈Γ ;E〉 with i = levelΓ (E) > 0. Since i > 0, E 6= ∅. If
there is only one assignment A of level i in E, either Backjump or UndoClear
apply. Otherwise, let A and A′ be two assignments of level i in E. If Resolve
applies to either of them, we are done. Otherwise, each of them is either the
decision of level i, or a Boolean justified assignment L whose justification
contains the decision of level i, which is first-order (otherwise Resolve applies).
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Since there is only one decision of level i, either A or A′ is such an L, to which
UndoDecide applies. Consider next a state Γ . If it is not model-describing, there
is a k, 1≤ k≤n, such that either k = 1 and ΓT1 is not consistent with T1, or
k > 1 and ΓTk

is not leading-theory-compatible with Tk sharing Vsh(Γ ). For
this k, either ΓTk

6⊆ Γ or ΓTk
⊆ Γ . If ΓTk

6⊆ Γ , there is an L = ((t1's t2)←b),
s 6= prop, such that L ∈ ΓTk

, but L 6∈ Γ . Since every Ik features the equality
inference rules, there is an inference J `Ik

L for some J ⊆ Γ . If L ∈ Γ , either
Fail or ConflictSolve applies. If L 6∈ Γ , Deduce applies, provided (t1's t2) ∈ B,
which is the case: t1, t2 ∈ Γ hence t1, t2 ∈ B; by extensiveness of basisk,
t1, t2 ∈ basisk(B); by closure of basisk, (t1' t2) ∈ basisk(B); and by stability of
B, (t1' t2) ∈ B. If ΓTk

⊆ Γ , then ΓTk
is plausible since Γ is. By completeness

of Ik (see Definition 12 for k=1 and Definition 14 for k>1), Ik can expand ΓTk

(see Definition 10). If Ik can expand ΓTk
with an acceptable Tk-assignment,

Decide applies. If Ik can expand ΓTk
with an inference J `Ik

L, then J ⊆ ΓTk
⊆

Γ and L is a Boolean assignment for a formula in basisk(ΓTk
) ⊆ basisk(Γ ) ⊆

basisk(B) ⊆ B (by monotonicity of basisk and stability of B). If L 6∈ Γ , Deduce
applies, if L ∈ Γ , either Fail or ConflictSolve applies.

The following technical lemma is used by the next theorem.

Lemma 7 For all assignments H, fv(H) ⊆
⋃n
k=1 fvΣk

(Vsh(H)).

Proof By way of contradiction, suppose that there is a variable x such that
x ∈ fv(H), but x 6∈

⋃n
k=1 fvΣk

(Vsh(H)). From x ∈ fv(H) it follows that x
occurs in some term t0 such that (t0←c) ∈ H. By structural induction on
t0, there is a term t ∈ fvΣk

(t0), for some k, 1≤ k≤n, such that x E t E t0.
By the first rule of Definition 18, t0 ∈ Vsh(H), and therefore the set Y = {t |
xEt, t ∈

⋃n
k=1 fvΣk

(Vsh(H))} is not empty. For all terms t ∈ Y , let d(t) denote
the distance between the root position of t and the position of the leftmost
occurrence of x in t. Let t ∈ Y be such that d(t) is minimal. If x = t we have
a contradiction and we are done. If xC t, then certainly t /∈ V∞. By definition
of Y , t ∈ fvΣk

(u) for some u ∈ Vsh(H) and k, 1≤ k≤n. In words, t is a foreign
subterm of u. Therefore, t ∈ Vsh(H) by the third rule of Definition 18. The fact
that xC t also means that t has a root symbol g ∈ Fj for some j, 1 ≤ j ≤ n,
and there is a t′ ∈ fvΣj

(t) such that xE t′C t (if there is no Σj-foreign symbol
on the path from the root symbol to x in t, then t′ = x). Therefore we have
t′ ∈ Y with d(t′) < d(t), contradicting the assumption that d(t) is minimal.

Moreover, for all k, 1≤ k≤n, fvΣk
(HTk

) = fvΣk
(H) ⊆ fvΣk

(Vsh(H)) (∗),
so that fvΣk

(HTk
∪ Vsh(H)) = fvΣk

(Vsh(H)) (∗∗).

Theorem 4 If an assignment H is model-describing, there exists a T +
∞ [fv(H)]-

model M such that M |=G H.

Proof We structure the proof in several steps.
1. Existence of a leading-theory model M1: by Definitions 19 and 11, there

exists a T +
1 [V1]-model M′1, with fvΣ1

(H) ⊆ V1, such that M′1 |= HT1 .
Since fvΣ1

(H) ⊆ fvΣ1
(Vsh(H)) by (∗), we pick arbitrary elements in the
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domains of M′1 to interpret terms in fvΣ1
(Vsh(H)) \ V1, if any, and we

extend M′1 into a T +
1 [fvΣ1

(Vsh(H))]-model M1 such that M1 |= HT1 .
2. Existence of the other Tk-modelsMk: by Definitions 19 and 13, ∀k, 2≤ k≤n,

there exists a T +
k [Vk]-model Mk, with fvΣk

(Vsh(H)) ⊆ Vk (see (∗∗)), such
that (i) Mk |=HTk

, (ii) for all s∈Sk, |sMk |=|sM1 |, and (iii) for all s∈Sk
and u, u′∈Vssh(H), Mk(u)=Mk(u′) if and only if M1(u)=M1(u′).

3. Bijection between any Mk and M1: ∀k, 1≤ k≤n, and for all s ∈ Sk, we
establish a bijection φsk : sMk → sM1 such that φs1 is identity, and ∀k,
2≤ k≤n, φsk(Mk(t)) =M1(t) for all shared terms t ∈ Vssh(H) of sort s.

4. Construction of a T +
∞ [fv(H)]-model M: first, M adopts the domains of

M1 and interprets all sorts and shared variables as M1 does:
(a) For all sorts s ∈ S∞: sM = sM1 ;
(b) For all variables x ∈ fv(H) such that x ∈ Vsh(H): xM = xM1 .
Second, M interprets everything else as in the appropriate Mk, using the
bijection φsk or its inverse (φsk)−1 to reach elements in its domains:
(c) For a non-Boolean T +

k -value c: cM = φsk(cMk );
(d) For all variables x ∈ fvs(H) such that x 6∈ Vsh(H): xM = φsk(xMk ), for

the unique k, 1≤ k≤n, for which x ∈ fvΣk
(Vsh(H)); such a k exists by

Lemma 7, and it is unique, otherwise x ∈ Vsh(H) by Definition 18;
(e) For all non-equality symbols f : (s1× · · ·×sm)→s (m ≥ 0) in signature

Σk, where k is unique as the theories are disjoint:
fM(a1, . . . , am) = φsk(fMk ((φs1

k )−1(a1), . . . , (φsm

k )−1(am))).
5. M and Mk agree on terms, if they agree on their shared free Σk-variables:
∀k, 1≤ k≤n, if t is a term of sort s ∈ Sk such that:

(h1) Its free Σk-variables occur in shared terms: fvΣk
(t)⊆ fvΣk

(Vsh(H)), and
(h2) M andMk agree on the shared freeΣk-variables of t: for all sorts r ∈ Sk

and all terms u ∈ fvrΣk
(t) ∩ Vrsh(H) it holds that M(u) = φrk(Mk(u)),

then M(t) = φsk(Mk(t)). The proof is by structural induction.
– If t ∈ fvΣk

(t) ∩ Vsh(H), the claim holds by (h2).
– If t ∈ fvΣk

(t)\Vsh(H), then by (h1) we get t ∈ fvΣk
(Vsh(H)), and t ∈ V∞

must hold, otherwise from t ∈ fvΣk
(Vsh(H)), the third rule of Defini-

tion 18 would conclude t ∈ Vsh(H). Then from t ∈ fvΣk
(Vsh(H))) and

t ∈ V∞, we have t ∈ fv(Vsh(H)) = fv(H), and by Item (d) in the
construction of M we have M(t) = φsk(Mk(t)).

– If t is a term f(t1, . . . , tm) with f : (s1× · · ·×sm)→s (m ≥ 0) from Fk,
for some k, 1≤ k≤n, then Item (e) in the construction of M gives
M(f(t1, . . . , tm)) = φsk(fMk ((φs1

k )−1(M(t1)), . . . , (φsm

k )−1(M(tm)))).
The induction hypothesis is that ∀i, 1≤ i≤m,M(ti) = φsk(Mk(ti)), so
that (φsk)−1(M(ti)) =Mk(ti). It follows that
M(f(t1, . . . , tm)) = φsk(fMk (Mk(t1), . . . ,Mk(tm))) = φsk(Mk(t)).

6. M and M1 agree on shared terms: for all t ∈ Vsh(H) it holds thatM(t) =
M1(t). The proof is by structural induction. If t ∈ V∞ then by Item (b)
in the construction of M we have M(t) =M1(t). For the induction step,
assume t is a term with root symbol f ∈ Fk, for some k, 1≤ k≤n, with
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arity m (m ≥ 0) and output sort s. We prove that t satisfies (h1) and
(h2). (h1) follows from t ∈ Vsh(H). For (h2), consider a u ∈ fvrΣk

(t) ∩
Vrsh(H) for any r ∈ Sk. Since f ∈Fk, it is u C t. Since u C t, by induction
hypothesisM(u)=M1(u). From u∈Vrsh(H) it follows by definition of φ that
M1(u)=φrk(Mk(u)). By transitivity,M(u)=φrk(Mk(u)). Then, by Part (5)
of this proof, M(t)=φsk(Mk(t)). Since t ∈ Vssh(H), by definition of φ, we
have M1(t)=φsk(Mk(t)), hence M(t)=M1(t) by transitivity.

7. M and Mk agree on terms in extended signatures: ∀k, 1≤ k≤n, for all
Σ+
k [fvΣk

(Vsh(H))]-terms t of sort s ∈ Sk, it holds thatM(t) = φsk(Mk(t)).
As before, the proof is by structural induction.
– If t is a freeΣ+

k -variable in fvΣk
(Vsh(H)), the result follows from Part (5)

of this proof provided (h1) and (h2) hold for t. (h1) follows from
fvΣk

(t) = {t} ⊆ fvΣk
(Vsh(H)). For (h2), by applying Parts (6) and (3)

of this proof to any term u ∈ fvrΣk
(t) ∩ Vrsh(H) with r ∈ Sk, we get

M(u) =M1(u) = φrk(Mk(u)).
– If t is a non-Boolean T +

k -value, then by Item (c) in the construction of
M, we have M(t) = φsk(Mk(t)).

– If t is a term f(t1, . . . , tm) with f : (s1× · · ·×sm)→s (m ≥ 0) in Fk, for
some k, 1≤ k≤n, then by Item (e) in the construction of M
M(f(t1, . . . , tm)) = φsk(fMk ((φs1

k )−1(M(t1)), . . . , (φsm

k )−1(M(tm)))).
The induction hypothesis is that ∀i, 1≤ i≤m,M(ti) = φsk(Mk(ti)), so
that (φsk)−1(M(ti)) =Mk(ti). It follows that
M(f(t1, . . . , tm)) = φsk(fMk (Mk(t1)), . . . ,Mk(t1)) = φsk(Mk(t)).

8. Global endorsement: we show thatM|=GH by showing that for all (u←c)∈
HT∞ it holds that M(u)=cM. For all (u←c)∈HT∞ , either (u←c)∈H, or
u is an equality t1's t2 and c is a Boolean value b. If (u←c)∈H, then c
is a T +

k -value for some k, 1≤ k≤n, and (u←c)∈HTk
: the assigned value

determines to which Tk-view u←c belongs. If u is an equality t1's t2, the
sort s of the equality determines to which Tk-view u←b belongs. Sort s
must belong to at least one of the signatures: say that s∈Sk for some k,
1≤ k≤n; then (u←b)∈HTk

. Either way, by Part (1) of this proof, if k = 1,
or by Part (2) of this proof, if 2≤ k≤n, we have (i) Mk(u) = cMk . Let
r be the sort of term u. By Part (7) of this proof, we have (ii) M(u) =
φrk(Mk(u)). By Item (c) of Part (4) of this proof, it is (iii) φrk(cMk ) =
cM. Thus, by chaining (ii), (i), and (iii), one gets M(u) = φrk(Mk(u)) =
φrk(cMk ) = cM, which means that M endorses the assignment.

Theorem 5 (Completeness) For all input assignments H, if the global basis
B is stable and H is in B, whenever a CDSAT derivation from H halts in a
state Γ other than unsat, there exists a T +

∞ [fv(Γ )]-modelM such thatM |=G Γ
hence M |=G H (input assignments never quit the trail).

Theorems 3 and 5 cover a worst-case scenario as CDSAT can reach a model-
describing Γ before reaching a CDSAT-irreducible state, and Tk-procedures
can notify the center as soon as Γ is leading-theory-compatible with Tk.
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10 Discussion

We conclude with related work, directions for future research, and a summary.

10.1 Relation of CDSAT with DPLL(T ) and Equality Sharing

DPLL(T ) with equality sharing [22,2,18] is the special case of CDSAT that
CDSAT reduces to if the combination of theories only involves the theory Bool
and stably infinite theories T1, . . . , Tn with black-box modules I1, . . . In. The
leading theory is TN (see Section 8), and IBool, I1, . . . In are leading-theory
complete. Since only sort prop is public, all decisions are Boolean decisions
about atoms from the input set of clauses S or relevant equalities. The set of
shared terms is the set Vsh(S) of shared terms for S, because no new terms
are shared by black-box theory modules.

CDSAT simulates CDCL by making decisions for atoms in the trail Γ and
using Deduce for Boolean Clausal Propagation (BCP), while each Tk-module
fires its inference rule if Boolean assignments in Γ are Tk-inconsistent. CD-
SAT subsumes equality sharing by making decisions about equalities between
terms in Vsh(S), and applying equality inferences to propagate entailed equal-
ities and inequalities. In equality sharing, a set of equalities and inequalities
that determines which shared variables are equal and which are not is called
arrangement (e.g., [7], Ch. 10). CDSAT builds incrementally a partial arrange-
ment of terms in Vsh(S), and tries by backjumping different (partial or full)
arrangements until it finds one for which Γ is model-describing: Γ contains
a (possibly partial) Boolean assignment for atoms in S and a (possibly par-
tial) arrangement for terms in Vsh(S), such that S is satisfied, and there are
Tk-models of the literals in Γ that agree with the arrangement in Γ and all
its completions. Since Γ can be model-describing without a full arrangement,
Theorem 4 generalizes the Nelson-Oppen completeness theorem (e.g., [7], Ch.
10): if the arrangement in Γ is complete, the two theorems concur; if it is par-
tial, Theorem 4 still holds, as the Tk’s do not care about unassigned equalities
between terms in Vsh(S). For the same reason, CDSAT can emulate the sharing
is caring technique [14], as care functions can be employed to focus CDSAT on
decisions about cared-for equalities. The definition of a care function involves
the preservation of satisfiability for all completions of a partial arrangement,
an idea captured in CDSAT by the notion of leading-theory-compatibility.

10.2 Relation of CDSAT with MCSAT

CDSAT generalizes MCSAT [9,15,23,13] to theory combination. MCSAT [9]
is the special case of CDSAT that CDSAT reduces to if the combination only
involves the theory Bool and another theory T1 with a conflict-driven satisfia-
bility procedure, hence CDSAT modules IBool and I1. MCSAT stores clauses
in a set, so that an MCSAT state is given by a pair 〈trail, set〉. An MCSAT
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trail is similar to a CDSAT trail where justified assignments are generated
only by BCP or conflict analyses where T1-inferences explain T1-conflicts.

The MCSAT T1-plugin features an evaluation mechanism mapping trail Γ
and literal L to a truth value v[Γ ](L) defined if Γ assigns values to all variables
of L. The CDSAT module I1 captures these evaluations with the inference rule
J `T1 L

′, where J is the restriction of Γ to the variables of L, and L′ is L
or L depending on whether v[J ](L) is true or false. The MCSAT T1-plugin
also provides an explanation function mapping L and Γ to a T1-valid clause
explain(L, Γ ) = L1 ∨ · · · ∨ Lm ∨ L, such that v[Γ ](Li) = false, ∀i, 1≤i≤m.
This function is applied only if all T1-models endorsing ΓT1 (the T1-view of Γ )
endorse L. In practice, the system checks that the current candidate T1-model
endorses L as MCSAT focuses on theories with model-constructing plugins.
The CDSAT module I1 captures the clauses produced by the T1-explanation
function with inferences L1 . . . , Lm `T1 L.

In this special case where only Bool and T1 are combined, the MCSAT
and CDSAT transition systems have only few differences. MCSAT can make
Boolean decisions about any formula in the local basis of I1, while CDSAT
only decides relevant ones. MCSAT applies Deduce explicitly for BCP and
implicitly for evaluation inferences: given input clause C = (x<0) ∨ (y<0),
a CDSAT trail ∅`C, ?x←1, {x←1}`(x<0), {x<0,C}`(y<0) corresponds to the
MCSAT state 〈J(x←1), (C → (y<0))K, {C}〉 where the falsity of x<0 is im-
plicit and only C justifies y<0. MCSAT applies neither Fail nor ConflictSolve
with evaluation inferences, so that conflicts are made of Boolean assignments
C1, . . . , Cp, L1, . . . , Lm where C1, . . . , Cp are clauses of level 0. MCSAT presents
such a conflict as the conflict clause C = L1 ∨ · · · ∨ Lm, leaving implicit the
0-level premises C1, . . . , Cp of C. Clause learning and forgetting [9] can be
added to CDSAT as already done for learning [6].

The MCSAT combination of Bool, LRA, and EUF [15] is a special case of
CDSAT: consider a variant of the CDSAT-MCSAT relation described above
with an EUF-plugin added to MCSAT and IEUF added to CDSAT. MCSAT
was implemented in Z3 [9], CVC4 [15], and Yices [11]. As all these solvers are
DPLL(T )-based, either MCSAT does not interact with the rest (as in Yices),
or it interacts as a black box. CDSAT provides a theoretical foundation for
the cooperation of MCSAT and DPLL(T ) components. The MCSAT imple-
mentation in Yices organizes a generic collaboration of several conflict-driven
theory plugins, for which CDSAT provides theoretical underpinnings. Yices
implements a variant of MCSAT that allows the propagation of first-order
assignments [13]: the CDSAT extension allowing theory modules to derive
first-order assignments is future work.

10.3 Summary of Contributions and Directions for Future Research

We presented a new framework for SMT named CDSAT, which solves the
hitherto open problem of integrating conflict-driven and black-box theory pro-
cedures. CDSAT lifts CDCL to satisfiability modulo multiple theories by com-
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bining theory inference systems termed theory modules. We presented several
theory modules, including one for arrays which is the first integration of this
theory in a conflict-driven combination. Since it accepts also input first-order
assignments, CDSAT solves a class of problems, called SMA for Satisfiability
Modulo Assignments, that extends SMT. We proved that CDSAT is sound,
complete, and terminating, assuming a finite global basis for new terms.

In a forthcoming journal article, we provide local bases and completeness
proofs for the theory modules presented here, we show how to construct a
global basis from local ones, and we extend CDSAT with lemma learning and
proof generation [6]. Directions for future work include implementing CDSAT,
for which preparatory work is ongoing [3], heuristics for decisions, theory search
plans, and efficient techniques to detect the acceptability of assignments and
the applicability of theory inferences.
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15. Dejan Jovanović, Clark W. Barrett, and Leonardo de Moura. The design and imple-
mentation of the model-constructing satisfiability calculus. In Barbara Jobstman and
Sandip Ray, editors, Proceedings of the Thirteenth Conference on Formal Methods in
Computer Aided Design (FMCAD). ACM and IEEE, 2013. 4, 13, 19, 20, 31, 32
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