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Abstract

We propose an active object recognition framework that introduces the recognition
self-awareness, which is an intermediate level of reasoning to decide which views to
cover during the object exploration. This is built first by learning a multi-view deep 3D
object classifier; subsequently, a 3D dense saliency volume is generated by fusing to-
gether single-view visualization maps, these latter obtained by computing the gradient
map of the class label on different image planes. The saliency volume indicates which
object parts the classifier considers more important for deciding a class. Finally, the
volume is injected in the observation model of a Partially Observable Markov Decision
Process (POMDP). In practice, the robot decides which views to cover, depending on the
expected ability of the classifier to discriminate an object class by observing a specific
part. For example, the robot will look for the engine to discriminate between a bicycle
and a motorbike, since the classifier has found that part as highly discriminative. Experi-
ments are carried out on depth images with both simulated and real data, showing that our
framework predicts the object class with higher accuracy and lower energy consumption
than a set of alternatives.

1 Introduction

Active object recognition (AOR) allows to consider different views of the test object, over-
coming the single-view hypothesis of classical object recognition, making the classification
problem much easier in principle. Unfortunately, this freedom comes with a price, which is
that of maneuvering the sensor for selecting informative images: in fact, not all the views
are equally discriminative [21], too similar images are not informative and the movements of
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the camera are usually bounded by manipulability and energy constraints [11]. Active object
recognition means actually to long-term planning in order to reach a good trade-off between
a higher classification accuracy and a lower cost for moving the sensor.

Many AOR approaches have been designed, with the POMDP-based techniques being
the most effective ones [1, 7, 14]. Strictly speaking, all of them treat the classifier as a black
box, maximizing entropy principles among the acquired images [7], possibly focusing on
geometric saliency cues of the test object [1].

In this paper, we propose the first AOR approach which does open the box of the classi-
fier, understanding its capabilities, injecting thus a recognition self-awareness in the planning
process. Technically, we model the camera planning as a Partially Observable Markov De-
cision Process (POMDP), in line with the most successful non-myopic techniques in the
literature [1, 7, 14]. In particular we design a novel observation model (that is, how the
planning process manipulates the information gathered from the scene) that exploits deep
network visualization techniques [6, 23]. Deep visualization approaches provide gualitative
explanations on why a particular classifier succeeds or fails in classifying 2D images. In
particular, we are interested in those approaches which provide saliency maps over the in-
put images [6]. Here we adopt such saliency maps in a quantitative fashion, by building a
3D dense saliency volume which fuses together saliency maps obtained from different view-
points, obtaining a continuous proxy on which parts of an object are more discriminative for
a given classifier. This volume is injected in the POMDP observation model; in this way,
the robot can move knowing the capabilities of its classifier. We call our model Recogni-
tion Aware-POMDP (RA-POMDP). As an example, if the robot knows that its classifier is
effective in distinguishing between a motorbike and a bike by looking for the presence of an
engine, it will move the camera in a side view (where the engine can be easily spotted) in-
stead of focusing on frontal views (which intuitively may also work, but not for that specific
classifier).

Experiments have been carried out on ObjectNet3D [22], a dataset of 3D models of
objects belonging to 85 semantic classes, exploiting as sensor a depth camera, with simulated
and real robots, showing dramatic improvement against state-of-the-art approaches. Ablation
studies show the effectiveness of our RA-POMDP against alternative models.

The rest of the paper is organized as follows: in Sec. 2 we briefly review the recent
AOR literature and the deep network visualization; the problem formalization and our RA-
POMDP are in Sec. 3 and 4, respectively; finally, an extensive experimental campaign is
reported in Sec. 5.

2 Related Work

Active object recognition. Several works on AOR focus on selecting the next best view
within a finite set of candidates [4, 8, 15]. In [15], a belief model of the unobserved space
is exploited to estimate the expected information gain of each possible viewpoint. Similarly,
in [4], the next-best-view prediction is based on Hough Forests running on unsupervised
features learned from depth-invariant patches using a sparse autoencoder. In [8], a greedy
approach is used to maximize the conditional entropy of the next view. All these methods
are myopic, only considering the short-term (next-time step) reward. Long-term planning is
modeled with reinforcement learning, in order to reach a good trade-off between a higher
classification accuracy and a lower cost for moving the robot. Foundational work [13] plans
an optimal sequence of views that maximally discriminates objects of different classes and
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their orientations. In [7], a probabilistic model is used to encode structural relations among
objects and locations. An object search task is then represented by fitting the probabilistic
model with the visual appearance of the object of interest. A sequence of views is planned
using a POMDP with conditional entropy as the reward function. The approach of [1] is a
non-myopic strategy formulated as an active hypothesis testing problem solved with a point-
based approximate POMDP algorithm; it uses 3D point clouds as input data for a viewpoint
pose tree classifier and dynamic programming to solve an infinite-horizon planning problem.
As an extension of this work, [17] includes an energetic term in the cost function to be op-
timized. In a very recent work [14], a variation of Monte Carlo tree search is employed to
achieve a non-myopic planning. A particle filter is combined with Gaussian process regres-
sion to estimate joint distributions of object class and pose, and predict sensor observations
from future viewpoints. Differently from the other POMDP-based methods, this work ex-
ploits Monte Carlo methods to avoid full-width expansion in the search space.

POMDP-based approaches suffer from two main problems: 1) intractability in the con-
tinuous search space, and 2) the observation model is usually computationally expensive
(see Sec. 4.1). In this work we build upon a point-based algorithm to compute approximate
solutions [10], by considering the 3D dense saliency volume.

Visualization of deep networks. The works of [3, 23, 24, 26] individuate those images
which activate a certain neuron the most. Other approaches consider the network as a whole,
generating dreamlike images that bring the classifier to high classification scores [19, 24].
Another type of deep visualization highlights those salient patterns which drive a classifier
toward a class [5, 6, 12, 18, 25, 27] or against it [28].

In all of these cases, the output of a visualization approach is merely used to unveil
hidden patterns the network is more sensible to, and it is constrained to 2D images. Here
we build a 3D volume using the visualization results over different views and we use it in a
quantitative way, embedding it in the observation model of a POMDP.

3 Problem formulation

We consider a multi-class classification scenario, where the class labels belong to the finite
set C. A single instance of a given class is a 3D object which is located with a standard pose
in the centroid of a spherical workspace V,, of radius p where a robotic arm can move in the
upper hemisphere (since the object lies on a solid floor). The centroid of the object coincides
with the centroid of Vj,. A depth sensor is mounted on the end-effector of the robotic arm'.
The robot can move and acquire a depth image at each time step, until it stops and provides
the object class. The decision whether to move or to stay, and in case where to go, is taken
by minimizing an energy function that combines the cost for moving the robot and acquire a
new view, Ejs, and the cost for an incorrect classification, E,.:

E = Ey(x,xX')+AEc(c,¢) (1)

where ¢ and ¢ are the predicted and correct classes respectively, x and x' are two generic
locations in the 3D space, and A is a constant value. The process iterates over time and
it stops when the cost for moving the robot becomes higher than the cost associated to the

'We use a depth sensor to simplify the creation of the 3D dense saliency volume. In any case, RGB-D data can
be also considered, and will be the subject of future work.
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classification error. In this work, we define the classification cost as a constant value that
uniformly penalizes incorrect classification:

. 0 c¢c=¢
Ec(c,0) = . @)
1 otherwise
while the movement cost takes into account two different terms: one related to geometri-
cal properties, i.e. the length of the trajectory from x to x’, and the second related to the
kinematics of the robot itself:

Ep(x,x') = len(x,x") +man(q') (3)

Here ¢’ is the configuration of the robot’s joints when the sensor is positioned at x’, and
man(q') represents the manipulability measure, i.e. an estimate of the capacity of change in
position and orientation of the robot end-effector given a joint configuration. Formally this

measure is defined as man(q) = y/det (J(q) J7(g)) > 0 where J(-) is the Jacobian operator,

and man(q) = 0 coincides with a singular configuration. No other active object recognition
approach considers the manipulability measure. To minimize Eq. 3, we consider the POMDP
framework, explained in the following section.

4 Our model RA-POMDP

We restrict the moving sensor to stop and look towards the centroid of the sphere V, at a finite
set of viewpoints x; € X, C V,: this allows us to ensure that the sensor is always pointing
to the object of interest. From now on, the robot iterates over the following steps: 1) decide
if moving to a new position is convenient (otherwise the class label has to be provided and
the process stops), 2) retrieve the best move from the POMDP policy, 3) move and acquire
a new image, 4) update the belief state of the POMDP. The process starts with the robot in a
random but known position.

4.1 Partially Observable Markov Decision Process

A POMDP is a 6-tuple (S,A,T,R,Q,0), where S is a finite set of states, A is a finite set of
actions, 7' : S X A — S is the transition function defining the probability of state change upon
application of a given action, R : § X A — R is the reward function that represents the reward
granted to the system after having reached the new state with the given action, Q is a finite
set of observations, and O is the probability distribution of the observations according to the
states and the actions.

At each time step, given a current state s € S, the agent receives an observation o € Q
with probability O(s,0) = Pr(o | s). Depending on this observation and the current state, the
agent takes an action a € A, which causes a transition to state s’ with probability 7' (s,a,s’) =
Pr(s’ | s,a). Finally, the agent receives a reward r equal to R(s,a). Then the process repeats.

In our RA-POMDP formulation, the state s at time ¢ is a pair (x;,c), where x; € Xp is
the viewpoint (here assumed to be measurable), and ¢ € C is the (hidden) class of the object
in the scene. In other words, we assume the robot as knowing its position at each time
step”. This assumption is reasonable since the motion is deterministic (we have the set A&p of

2Relaxing this constraint means that the robot, after each movement, has to check its position w.r.t. a reference
system. In this work we ignore this aspect which could be considered as future work.
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finite viewpoints), thus the set of actions is to move between viewpoints, and the transition
function only affects the viewpoint part of the state (the object class label does not change)
and has the form:

“4)

T( ,) 1 ais “move from s to s’
s,a,s') = .
0 otherwise

The observation o corresponds the output z, of the static classifier, while the observation
model O(s,0) is generated at training time as described in the next section.

Solving a MDP means to find an optimal policy mapping from a state to an action that
maximizes the expected total reward. However, since in a POMDP the state is partially
observable, the concept of belief has to be taken into account. A belief is a probability
distribution over all the states s € S. A POMDP policy & maps a belief b to a prescribed
action a. A policy 7 induces a value function Vz(b) that specifies the expected total reward of
executing the policy 7 starting from b. The goal for the robot is to choose the optimal policy
m*, i.e. the policy that maximizes the associated value function: V* = E[Y, r,]. This problem
is usually computationally intractable, but approximate solutions have been proposed in the
literature. In this work we use SARSOP approach [10] that finds the best policy iteratively
by sampling points in the belief space and pruning away the non optimal candidates. Starting
from an initial distribution by, at every iteration the belief is updated using the formula:

b(s)=a0(s o) Z:ST(s,a,s’)b(s) %)

where « is a normalization constant and all the new beliefs are guaranteed to be reachable
from by. In this setup, we introduce a novel observation model O(s’,0).

4.2 RA-POMDP observation model: 3D dense saliency volume

Our RA-POMDP supposes that a 3D object classifier is trained before to operate on the
robot. At training time, we generate a set of synthetic depth images D by projecting artificial
3D models on a simulated depth camera located in a set of viewpoints uniformly distributed
on the surface of a sphere centered at the centroid of each model (Fig. 1a). Note that, differ-
ently from [ 1], with our approach these training viewpoints are conceptually unrelated to the
viewpoints X, used at testing time, as well as to the radius of the viewsphere V).

The output of the classifier is a distribution z that returns the probability of the object to
belong to each class in C: z = [z ... zi¢|], ):‘Ccz‘l ze=1.

Our goal is to understand how the classifier uses the input to classify, i.e. which depth
image regions have been considered more important to decide a particular class. First, for
each viewpoint specific depth image Dy we compute a 2D visualization map (S2) as in [6].
We do so by learning a mask whose perturbation (usually by blurring its corresponding
pixels) drifts the classifier away from deciding the correct class, causing a drop in the related
entry of z (Fig. 1b). The mask is dense and each of its pixel intensities is proportional to
the classification drop occurred when masking it. The 2D mask is then mapped to the 3D
volume by means of the associated depth map. The 3D model is now discretized into a finite
set of voxels, and to each voxel we associate a 3D saliency score S(v) computed as the
median value of the saliency of all the points lying inside it (Fig. 1c).

We are now ready to define the observation model O for the POMDP planner. We assign
to each viewpoint a cumulative score (Fig. 1d) by averaging the 3D saliency value of all the
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0.00

(d) (e)

Figure 1: Overview of the RA-POMDP observation model construction: (a) depth maps;
(b) saliency maps of the deep classifier; (c) 3D volume of the object; (d) observation model
with (e) saliency maps on generic views, whose pixel summation is then mapped on the
hemisphere.

voxels in the field of view of the camera (Fig. le). This viewpoint specific score is then
normalized in order to guarantee that for each class the observation model is in the range
[0,1]. Mathematically, the observation model returns an estimate of the classifier output z
as a function of the measured part of the state (s = x), and, given the transition function of
Eq. 4, we can express it as a function of the next state:

N,
0(s',0) =Pr(z|s) =) S (vi)n(vi,x) (6)
i=1

where o is a normalization factor, N, is the total number of voxels, and 1 (v;, x/ ) is a visibility
function that returns 1 if the i-th voxel v; is visible from x’, and 0 otherwise.

S Experiments

We evaluate two main aspects of our RA-POMDP: 1) the quality of the 3D saliency volume
(Sec. 5.1), and 2) the recognition performances, on both simulated and real data (Sec. 5.2).

5.1 3D saliency volume

We present some results on different object classes, showing how the saliency volume changes
in dependence with the type and number of classes of 3D objects considered.

As dataset, we consider the ObjectNet3D [22] dataset, commonly adopted for passive
3D object recognition. The dataset is composed of RGB images and CAD models, and we
use the latter for the experiments. In particular, we select three different sets of classes,
composed respectively by 2, 35 and 85 classes (the whole dataset), considering the same
number of 3D models for each class in order to avoid biases in the 3D saliency volume.
Specifically, we pick 5 random models from each class (the minimum number of models
for a class): 3 models for training, 1 for building the 3D dense volume and 1 for the testing.
Experimentally, fusing together different models of a single class in for creating the 3D dense
volume was not found as particularly beneficial for the active recognition stage; in any case,
we plan to further investigate this aspect as a next step.
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For each 3D model, we extract depth acquisitions with the V-REP software?, in particular
simulating the real camera (Asus Xtion Pro) that has been used for the real data experiments.
With V-rep, we define the set X, of 128 views, uniformly distributed on the upper hemi-
sphere of radius 0.6 meter.

5.1.1 3D saliency volume creation

The steps of the 3D saliency volume have been already shown in Fig. I, focusing on the
bicycle class. Once we have computed the 2D saliency of each view using [6], we build
the 3D model of the target class using depth images and averaging the saliency of the views
that insist on the same voxel. As for 3D classifier, we adapt an ImageNet-pretrained AlexNet
architecture [9] similarly to [2]. Specifically, we substitute the three fully connected lay-
ers with a single one, mapping the convolutional features directly to the desired number of
classes. For fine-tuning the classifier, we employed the ADAM optimizer with a learning rate
of 0.0001 and weight decay 0.0005, batch size of 128, for a total of 4 epochs. The proposed
set of hyperparameters is enough to reach a single image testing accuracy of 46% over the
set of 35 classes, 36% over the set of 85 classes.

For the 3D saliency volume creation, the size of the voxels is not really crucial and goes
in the range from 25 to 80. In practice, the voxelization ensures a sort of classification
generalization to the other models of the class: voxels smaller than 25 lead to overfitting
(bringing to low classification accuracy), higher than 80 lead to a less effective 3D dense
volume.

5.1.2 Impact of the type of object classes

The saliency volume is the proxy of what the classifier has found as particular discriminative
in a multi-class classification setup. It is thus interesting to observe the impact that different
object classes have on the volume of a given class.

To this sake we consider a two-class classification problem, keeping one class fixed,
bicycle, while changing the other class as teapot, glasses, and motorbike, re-
spectively. The three cases are reported in Fig. 2. As visible, in the teapot case (Fig. 2a)
the bike saliency volume is uniformly highlighted: every view serves to discriminate against
the teapot. In the case of the glasses (Fig. 2b), the shape and relative location of the lenses
resembles the shape of the tires of the bike (note that in the dataset bike and glasses have
the same dimensions). As consequence the bicycle tires have less importance than the pre-
vious case. In the third case, bike and motorbike are compared (Fig. 2c). Here the tires have
definitely less importance, while the internal framework becomes crucial (in practice, the
classifier has understood the presence or absence of the engine as discriminative).

5.1.3 Impact of the number of object classes

Another important aspect is to check how the saliency volume changes while increasing the
number of classes into play. The question is whether a bigger number of classes would lead to
have saliency volume focusing on fewer parts. We focus on the bike class and start with two
classes (bike and teapot). The saliency volume of the bike is the same than Fig. 2c. With 35
classes (Fig. 2d) the general aspect of the volume does not change, and with with 85 classes

3http://www.coppeliarobotics.com/.
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Figure 2: On the left, 3D dense saliency volumes when changing type of classes in a two
class problem: bike VS teapot (a), bike VS glasses (b) and bike VS motorbike (c). On the
right, when increasing the number of classes: 35 classes (d) and 85 classes (e).

(Fig. 2e) the most important part remain the framework, with the tires that become quite
irrelevant, due also to the presence of other classes having the tires (car, wheelchair).

5.2 Recognition results

We show here the recognition performances of our RA-POMDP, comparing against four
competitors, on simulated and real data:

Static. The standard (passive) recognition baseline approach: we take a single observation
from the starting viewpoint and predict the class.
Random. A random walk on the viewsphere, avoiding to revisit viewpoints. At each step,
the next viewpoint to visit is selected at random among the 8 nearest neighbours.
VP-tree [1]. Like ours, this method is based on a non-myopic POMDP implementation, but
in this case the classifier (a vocabulary tree) is treated as a black box, with no saliency
computation therein.

Classifier. In this case we change our RA-POMDP model by closing the box of the classi-
fier (the deep network), that is, without any saliency assumption.

As robotic platform, we use a Panda arm, from Franka Emika GmbH*. This is a 7 d.o.f.
manipulator that can move in a workspace of about 855mm, perfectly suited for our scenario.
The motion planner is implemented in the Movelt! framework, part of the Robotic Operating
System (ROS) [16]. We use OMPL (Open Motion Planning Library) [20] as motion planner
library and Trac-IK as kinematic solver. In the simulations, we simulate the RGB-D camera
acquisition with V-Rep, which has set to emulate an Asus Xtion Pro Live”.

5.2.1 Simulated data

Simulated data exclude all the variability related to the depth sensor acquisition (sensor noise
mainly). For time reasons we are able to test 35 classes out of 85 (the list is in the additional
material), repeating the experiment for each class 5 times by sampling randomly the initial
position over the 64 x; points € X),.

Table 1 shows the results of the simulations considering the average classification accu-
racy (Accuracy). The other considered quantities are the Belief (the belief entry b(s) of the

“https://www.franka.de/panda
Shttp://xtionprolive.com/asus-3d-depth-camera/asus—-xtion-pro-live
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bicycle

[Approach T Accuracy [ Belief | #steps [ Distance | Cost |

belief

Static 0.36 0.344 . - - o

Random 0.85 0.584 3.938 0.492 7.837 Chassirer
VP-tree [1] 0.40 0318 13.350 1.677 10.253 02 e Vetree
Classifier 0.65 0.567 3.879 0.788 8.005 0 = Randm
RA-POMDP| _ 1.00 0.771 4,638 0314 6.498 Pt s

Table 1: Quantitative results on simulated data. Av-
erage values on objects belonging to 35 classes and 5 Figure 3: Belief evolution for class
initial positions for each class. bicycle during the exploration.

output class s in the belief distribution b, see Eq. 5), the Number of steps (the number of
atomic movements performed by the robot), the Distance (geodesic distance covered by the
camera); the Energy (energy spent by the robot as in Eq. 3). These numbers should be con-
sidered together with Fig. 3, showing the process of exploration of the robot in terms of steps
done and updated belief (in this case, the bicycle class has been reported as representative of
the various approaches, for the sake of visualization®). As visible, RA-POMDP achieves the
highest accuracy and the lowest energy spent. Fig. 3 shows that RA-POMDP has the steepest
gradient, meaning that at each step the belief has a considerable improvement. The Classi-
fier approach shows the importance of opening the box of the classifier: in practice, in this
approach the observation model has a scattered volume of classification values to consider
as proxy, which do not communicate which part has been actually important to be visualized
for a successful classification, resulting in an extremely discontinuous observation model:
the low Belief in fact says that at some point the next useful point to move is too far and
expensive and the process stops. Fig. 3 shows a flatter gradient. VP-tree has even lower per-
formances, dictated by the scarcer classifier taken into account, and (Fig. 3) a longer process
of belief update, due to the fact that at each step the classifier is not so discriminative. Please
consider that [1] represents the actual state of the art as for active object classification in a
very similar scenario (despite it has been proven with less classes, with another dataset). The
random classifier has remarkable accuracy performance and cost, but the low belief value
means that it has been arrived in a configuration where the next move costs too much than
the expected belief positive update: this is due to the fact that random positions do not take
into account of the energy and manipulability constraints. Random is better than VP-tree
because of a better classifier. Fig. 3 for the random classifier shows an obviously irregular
belief update.

5.2.2 Real data

We also tested our framework on a real setup. An RGB-D sensor Asus Xtion Pro Live has
been mounted on the end effector of a Franka Panda robotic arm and the exploration has
been carried out on 4 object classes. Due to the setup constrains, we focused on objects that
can reasonably lie on a tabletop: cup, eyeglasses, bottle, and scissors. Results
are comparable with the ones in the simulated scenario, with RA-POMDP achieving the
highest accuracy, followed by Classifier and Random walks. RA-POMDP is in general able
to generate a correct prediction sooner than most of the competitors, spending less energy
during the exploration and with a higher confidence (belief). A demo video for the cup

doing an average over the classes here would mean to average trajectories of different lengths, resulting in a
confused visualization.
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scenario is provided in the supplementary material.

6 Conclusions

Active object recognition approaches traditionally considered the classifiers as black boxes,
planning robot trajectories to feed them with maximally different images. With RA-POMDP
we drastically change this point of view, considering that classifiers build internal represen-
tations in which some visual patterns are more important than others. Leveraging deep visu-
alization approaches, by means of a 3D dense saliency volume, we extract this knowledge,
exploiting it to plan maximally effective sensor trajectories. Results promote our idea, still
at its infancy, as a promising approach with the possibility to easily embed new features.
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