
Extending Conditional Simple Temporal Networks
with Partially Shrinkable Uncertainty
Carlo Combi
Department of Computer Science, University of Verona, Verona, Italy
carlo.combi@univr.it

https://orcid.org/0000-0002-4837-4701

Roberto Posenato
Department of Computer Science, University of Verona, Verona, Italy
roberto.posenato@univr.it

https://orcid.org/0000-0003-0944-0419

Abstract
The proper handling of temporal constraints is crucial in many domains. As a particular challenge,
temporal constraints must be also handled when different specific situations happen (conditional
constraints) and when some event occurrences can be only observed at run time (contingent
constraints). In this paper we introduce Conditional Simple Temporal Networks with Partially
Shrinkable Uncertainty (CSTNPSUs), in which contingent constraints are made more flexible
(guarded constraints) and they are also specified as conditional constraints. It turns out that
guarded constraints require the ability to reason on both kinds of constraints in a seamless
way. In particular, we discuss CSTNPSU features through a motivating example and, then,
we introduce the concept of controllability for such networks and the related sound checking
algorithm.
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1 Introduction

Temporal constraint networks have been adopted in different research areas for reasoning
on temporal requirements. Among such areas, we mention here planning and scheduling
[1, 19, 24], business process [7, 14, 18] and healthcare informatics [4][5].

In such areas the proposed temporal constraint models allow the representation of both
conditional and contingent constraints. In general, conditional constraints hold only when
some specific situations happen. Thus, it is possible to specify in a compact way constraints
holding in different contexts. Sometimes such contexts are related to decisions made by the
executing agent, while in other cases, they are related to external events [8][23]. Contingent
constraints allow the representation of event occurrences that are not under the control of
the executing agent but are tied to happen within some specified time interval. Therefore, it
is necessary to guarantee that all the other constraints are consistent for all possible event
occurrences [21].
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9:2 Extending CSTN with Partially Shrinkable Uncertainty

Recently, a new temporal constraint model, called Simple Temporal Network with Partially
Shrinkable Uncertainty (STNPSU), was proposed for the analysis of modular temporal
business processes [17]. It introduces a new type of constraint, called guarded constraint,
and allows the representation of temporal features of business sub-processes as guarded
constraints. A guarded constraint is a contingent constraint that is partially under control of
the executing agent (i.e., it may be shrunk to a core).

STNPSU lacks of an important feature, especially in the business process domain: the
possibility of expressing conditional (possibly guarded) constraints. To the best of our
knowledge, the issue of representing conditional constraints and guarded constraints in the
same model has not been considered in the literature to date.

Contributions. The novelty of this paper, therefore, is that it focuses on the representation
of and reasoning on both conditional constraints and guarded ones. In particular, we
introduce Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty
(CSTNPSUs), in which all constraints (guarded included) may be specified with respect to
particular contexts. At first glance, conditional constraints and guarded ones seem to be
orthogonal features that may be managed in an independent way. When taking a closer
view on them, however, it turns out that conditional constraints in combination with the
guarded ones require the ability to reason on both constraints in a seamless way, because,
for example, reasoning techniques for guarded constraints are no longer applicable. Then,
we focus on the dynamic controllability (DC) of the proposed model introducing a new DC
checking algorithm. In general, DC corresponds to the capability of an executing agent to
dynamically execute a network for all allowed occurrences of all guarded events, while still
satisfying all temporal constraints in all possible situations (which are revealed at run time
in incremental way); i.e., DC ensures that it is possible to assign a timestamp to each node
of a network without any need to modify any guarded core to be able to satisfy anyone of
the other temporal constraints in any occurring situation.

Structure of the paper. The rest of the paper is organized as follows. Section 2 provides
the fundamentals of Conditional Simple Temporal Problem with Uncertainty (CSTNU)
and checking related dynamic controllability. Moreover, we introduce here the motivating
example we use throughout the paper. Section 3 provides the definition of the new model
Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty. Then, it
presents the concept of dynamic controllability and how it can be checked reducing the
problem to the CSTNU controllability check. Finally, we propose an improved controllability
check algorithm by extending a recently proposed sound-and-complete algorithm for CSTNU
to deal with the introduced guarded constraints. Section 5 gives some concluding remarks
and outlines some future work.

2 Background and Related Work

Given a set P of propositional letters, a label ` is any conjunction of literals, where a literal is
either a propositional letter p ∈ P or its negation ¬p. The empty label is denoted by �. The
label universe of P, denoted by P∗, is the set of all labels whose literals are drawn from P.
Two labels `1, `2 ∈ P∗ are consistent if and only if their conjunction `1 ∧ `2 is satisfiable and
a consistent label `1 entails a consistent label `2 (written `1 ⇒ `2) if and only if all literals
in `2 appear in `1 too.
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(a) A CSTNU instance.
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(b) Distance graph of CSTNU in Figure 1a.

Time-point Meaning
Z Begin First Blood Test
P End First Blood Test

P ? Check Blood Test (generates truth value for p; p = > indicates positive reaction)
R Begin Second Blood Test
Q End Second Blood Test

Q? Check again Blood Test (only applicable if p = >; generates truth value for q;
q = > indicates positive reaction)

E Do Emergency Procedure (only applicable if p = q = >)
F End Emergency Procedure (only applicable if p = q = >)
Ω End

Constraints are shown as single arrows, whereas contingent links as double ones. Each single-arrow edge
between X and Y is decorated by a range [l, u] and label ` corresponding to constraint (l ≤ Y −X ≤ u, `).
Each double-arrow edge between A and C is decorated by a range [x, y] corresponding to constraint (A, x, y, C).
Each time-point has a label ` ∈ P∗ representing the scenario in which it is present.

Figure 1 Example of CSTNU.

In this section, we recall the definition of Conditional Simple Temporal Network with
Uncertainty [12] and some basic properties presented in [13] that must hold also in such
networks.

I Definition 1 (Conditional Simple Temporal Network with Uncertainty). A Conditional Simple
Temporal Network with Uncertainty (CSTNU ) is a tuple (T ,OT ,P, L,O, C,L), where:
T = {X,Y, . . . } is a finite set of time-points (i.e., variables with continuous domain).
OT ⊆ T is a set of observation time-points.
P = {p, q, . . . } is a finite set of propositional letters.
L : T → P∗ is a function assigning a label to each time-point X ∈ T .
O : P → OT is a bijection associating a unique observation time-point to each proposi-
tional letter.
C is a set of (labeled) constraints each one having the form (l ≤ Y −X ≤ u, `), where
X,Y ∈ T , l, u ∈ R with l ≤ u and ` ∈ P∗.
L is a set of contingent links each having the form (A, x, y, C), where A ∈ T and
C ∈ T \ OT are different time-points (written A 6≡ C), 0 < x < y < ∞, L(A) = L(C).
For any pair (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L with A1 6≡ A2 it holds C1 6≡ C2.

TIME 2018



9:4 Extending CSTN with Partially Shrinkable Uncertainty

For each constraint (l ≤ Y −X ≤ u, `) ∈ C, `⇒ L(Y )∧L(X) (constraint label coherence).
For each literal p or ¬p appearing in `, `⇒ L(O(p)) (constraint label honesty).
For each X ∈ T , if literal p or ¬p appears in L(X), then L(X)⇒ L(O(p)), and O(p) has
to occur before X, i.e., (ε ≤ X −O(p) ≤ +∞, L(X)) ∈ C for some ε > 0 (time-point label
honesty).

For any contingent link (A, x, y, C), A is called activation time-point whereas C is called
contingent time-point. Once A is executed, C is only observed to occur. However, C is
guaranteed to execute such that C −A ∈ [x, y]. Moreover, a contingent link has an implicit
label given by the label ` = L(A) = L(C).

Figure 1a gives an example of CSTNU representing a temporal plan in a healthcare setting
with minutes as a temporal granularity. The CSTNU is shown in its graphical form where
nodes represent time-points, single-line directed edges represent constraints, and double-line
directed edges represent contingent links. It starts with the execution of Z, which is usually
assumed to be the first time-point to be executed, and ends with the execution of Ω, which
is usually assumed to be the last time-point to be executed. For example, time-point P?
represents the time at which a particular blood test is checked. This test generates a truth
value for the propositional letter p, where p = > indicates that the patient tested positive.
In this example, if the test generates a positive result, then the test is repeated at time-point
R and ends at time-point Q; then, at time-point Q? the truth value for the propositional
letter q is set. Since the time-points R, Q, and Q? apply only in scenarios where p = >,
they are labeled by p. Similarly, the edge from P? to R is labeled by p. It represents the
constraint, R − P? ∈ [15, 20] (i.e., the second test must be performed between 15 and 20
minutes after the first one). Finally, note that the constraints from Q? to E, and from E to
Ω are labeled by pq, indicating that they apply only in scenarios where both p and q are >.
The three contingent links represent the execution of the first blood test, the second one,
and the emergency procedure, respectively. Constraints and time-points labeled by � are
always taken into consideration. Constraint (7 ≤ Ω − Z ≤ 60,�) represents a constraint
for the overall execution time of the network. It is worth noting that the couple P and P?
represents two time-points executed at the same time but in the given order. The first one,
P , refers to the end of blood test, while the second one refers to observing the blood test
result (the same for couple Q and Q?) They must be different, according to CSTNU model.

In general, by executing a non-contingent time-point we mean to assign a real value to it,
while a contingent time-point is executed when the “environment” sets a real value to it.

The truth values of propositions and the duration of contingent links in a CSTNU are not
known in advance. Instead, they are incrementally revealed over time as the corresponding
observation/contingent time-points are executed, respectively. A dynamic execution strategy
for executing the time-points in a CSTNU is defined in a way that it can react to observations
and contingent time-points as time passes (after an ε > 0 reaction time). A viable and
dynamic execution strategy for a CSTNU is a strategy that guarantees that all relevant
constraints will be satisfied no matter which truth values for propositions and durations for
contingent links are incrementally revealed over time. A CSTNU with such a strategy is
called dynamically controllable (DC). The problem of checking the dynamic controllability
(DC-checking problem) consists of verifying, at design time, whether a CSTNU is DC.

In [2], authors showed that the problem of checking the dynamic consistency of conditional
simple temporal networks (CSTNs) is PSPACE-complete. It is straightforward to show that
a CSTN is a special case of a CSTNU: it is a network where there is no contingent links.
Therefore, the CSTNU DC-checking problem is PSPACE-hard.

Nevertheless, in literature there are some proposals to solve the DC-checking problem
using different algorithm techniques [2, 3, 6] and only one of them, presented in [6], results
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(a) A CSTNPSU extension of the CSTNU in Figure 1a.
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(b) Distance graph of CSTNPSU in Figure 2a.

Figure 2 A CSTNPSU and its distance graph.

to be applicable to real world problems as shown in [5, 15, 19]. It determines all possible
constraints from the initial ones using a suitable set of constraint propagation rules, while
verifying their satisfiability. Recently, a new sound-and-complete algorithm for CSTNUs DC
checking has been proposed in [10], where the authors extend and merge the algorithms
proposed in [5] and [13] using a new technique and show its practical applicability.

3 Conditional Simple Temporal Networks with Partially Shrinkable
Uncertainty

In some real-world contexts, contingent links seem to be not flexible enough to represent task
durations. Indeed, it may be that in some cases task duration constraints can be slightly
modified during the execution of a complex plan. For example, the duration range [1, 5] of
blood tests in the CSTNU in Figure 1a could be made more flexible by saying that it can
be reduced to [1, 4] if needed. In other contexts it could be that also the lower bound of
a contingent link can be modified, e.g., range [2, 4] for blood test could be less expensive
because it requires different devices.

In [16] and [17] the authors addressed this issue in the context of STNUs (and related
business process modeling). A STNU is a simplified version of a CSTNU without condi-
tions [21]. In this section we extend such approach by introducing a new proposal of temporal
constraint networks, named Conditional Simple Temporal Networks with Partially Shrinkable
Uncertainty (CSTNPSU).

Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty is an
extension of CSTNU where contingent links are generalized to guarded links. Each guarded
link has the form, (A, [x, x′], [y′, y], C), where A is the activation time-point, and C is the
contingent one, and 0 < x < y < ∞, x ≤ x′, x′ < y′, y′ ≤ y. Once A is executed, C is
guaranteed to execute such that C −A ∈ [x, y]. However, bounds x and y can be modified
before executing A with the limitations specified by the two guards x′ and y′, i.e., x can
be incremented up to x′, while y can be reduced down to y′. The range [x′, y′] ⊆ [x, y]

TIME 2018



9:6 Extending CSTN with Partially Shrinkable Uncertainty

of a guarded link represents its unshrinkable range, named guarded core. Moreover, if
x = x′ ∧ y = y′ hold, the guarded link is equivalent to a contingent link of CSTNU.

I Definition 2 (CSTNPSU). A Conditional Simple Temporal Networks with Partially Shrink-
able Uncertainty (CSTNPSU) is a tuple (T ,OT ,P, L,O, C,G), where T ,OT ,P, L,O, C are
the same as in CSTNU definition and have the properties specified in Theorem 1. G is a set
of guarded links each having the form (A, [x, x′], [y′, y], C), where A and C are time-points,
x, y ∈ R, 0 < x ≤ x′ < y′ ≤ y <∞, L(A) = L(C).

Figure 2a shows an extension of the example introduced in Section 2. Previous contingent
links have been replaced by guarded links. In particular, both contingent links (R, 1, 5, Q)
and (Z, 1, 5, P ) were replaced by the guarded links (R, [1, 2], [4, 5], Q) and (Z, [1, 2], [4, 5], P ),
respectively, representing the fact that blood tests do not need to have [1, 5] as contingent
range but the less demanding [2, 4] if it is required during the execution. Contingent link (E,
5, 30, F ) was replaced by the guarded link (E, [5, 5], [30, 30], F ) meaning that, in this case, the
guarded link is identical to the original contingent one: such constraint cannot be partially
shrunk.

3.1 Dynamic Controllability of CSTNPSU
Informally, a CSTNPSU is dynamically controllable if there exists a strategy for executing
the time-points in the network such that all constraints are guaranteed to be satisfied no
matter how the durations of the guarded links turn out, and no matter how the observations
of the various propositions turn out, in real time – paying attention to the fact that in
any given scenario, only the time-points whose labels are true in that scenario need to be
executed, and only the constraints whose labels are meaningful in that scenario need to be
satisfied.

In order to verify whether a CSTNPSU is dynamically controllable it is possible to
consider the CSTNU corresponding to the CSTNPSU where all guarded links have been
restricted to their core.

I Definition 3 (Core Situations). Let S = (T ,OT ,P, L,O, C,G) be a CSTNPSU. If G
contains k guarded links, (A1, [x1, x

′
1], [y′1, y1], C1), . . . , (Ak, [xk, x

′
k], [y′k, yk], Ck), then ΩS =

[x′1, y′1]× . . .× [x′k, y′k] is called the space of core situations for S. Any ω = (d1, . . . dk) ∈ ΩS
is called a core situation.

Given the space of core situations ΩS of a CSTNPSU S, a projection of S onto a CSTNU
can be obtained as follows: each guarded link in G is replaced by a contingent link with the
range specified in ΩS .

IDefinition 4 (Core CSTNU of a CSTNPSU). Let S = (T ,OT ,P, L,O, C,G) be a CSTNPSU.
The core CSTNU of S onto its space of core situations ΩS corresponds to a CSTNU
(T ,OT ,P, L,O, C,L) where:

L = {(Ai, x
′
i, y
′
i, Ci) | 1 ≤ i ≤ k, [x′i, y′i] is the i-th component of ΩS}

Finally, this leads us to the dynamic controllability of an CSTNPSU. We provide a form-
alization of the dynamic controllability of an CSTNPSU based on the dynamic controllability
of a CSTNU. We choose this approach since the formalization of dynamic controllability of
CSTNU is robust and verified in literature [6][10][11][12].

I Theorem 5 (Dynamic Controllability of CSTNPSU). A CSTNPSU S = (T ,OT ,P, L,O, C,G)
is dynamically controllable (DC) if its core CSTNU is dynamically controllable.
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Proof. ⇒ It is a matter of definitions to show that, if the core CSTNU is DC, then S is DC
as well. Indeed, it is always possible to restrict S to its core situations, and for each core
situation of S, a viable dynamic execution strategy (DES) for the core CSTNU, is also a
viable DES for S.
⇐ If the core CSTNU is not DC, at least one core situation ω exists for which no DES exists.
Hence, S is not DC either. J

To check the controllability of a CSTNPSU, we proceed in two steps:
1. we consider the sound-and-complete CSTNU DC checking algorithm proposed in [10];
2. we extend such algorithm for directly checking the controllability of CSTNPSUs obtaining

also minimized constraint networks.

3.2 An improved CSTNU DC checking algorithm
Before introducing the algorithm, it is necessary to consider the CSTNU representation by
distance graphs. In [10], the authors showed that, for the DC checking task, it is possible
to consider a streamlined representation of distance graphs where nodes are not labeled,
i.e., labels are present only on constraints1. A distance graph D = (T , E) of a CSTNU
(T ,OT ,P, L,O, C,L) is a graph having the same set of nodes and edges derived from the
upper and lower bound constraints.

Each constraint (l ≤ Y − X ≤ u, `) ∈ C between a pair of time-points X and Y is
represented in the distance graph as two ordinary edges in E : X

〈u, `〉
Y , representing

constraint Y ≤ X + u, and X 〈−l, `〉
Y , for constraint Y ≥ X + l.

Moreover, for each contingent link (A, x, y, C) between a pair of time-points A and C, E
contains two other edges with special values, called lower and upper case values [20]. An
edge with a lower case value, A 〈c:x,�〉

C, represents the fact that C cannot be forced to
be executed at a time greater than x after A, i.e., it is not possible to add a constraint
A

〈−x′,�〉
C, x < x′ to the network. In turn, an edge with an upper case value, A 〈C:−y,�〉

C,
represents the fact that C cannot be forced to be executed at a time less than y after A, i.e.,
it is not possible to add a constraint A 〈y′,�〉

C, y′ < y to the network.
These two kinds of edges containing special values are fundamental for determining the

dynamic controllability of the network as explained in the following.
Figure 1b depicts the distance graph of CSTNU in Figure 1a. If multiple edges exist

between two nodes (e.g., an ordinary and an upper-case edge), for the sake of readability, we
draw only one arrow between the nodes and annotate it with the values of the respective
edges.

The DC checking algorithm, CSTNU-DC-Check, consists of deriving new constraints
(edges) through the application of propagation rules. Such technique narrows the search
space of possible partial solutions by creating equivalent yet more explicit networks. In such
equivalent networks, the search for a solution is more efficient. On the other hand, solving a
complete problem by inference often requires the addition of an exponential number of new
constraints [9].

Propagation rules for CSTNUs fall into two main groups. The first group extends the
edge-generation rules proposed in [20] for STNU DC checking algorithm to accommodate
labeled edges; the second group consists of label-modification rules that address interactions
involving observation nodes.

1 The notation of constraint values we use in this paper is slightly different from the one adopted in [10].
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9:8 Extending CSTN with Partially Shrinkable Uncertainty

Table 1 Edge-generation rules of CSTNU-DC-Check algorithm.

Rule Conditions Pre-existing and Generated Edges

rG1 u+ v < 0, αβ ∈ P∗ XYZ 〈ℵ:v, β〉 〈u, α〉

〈ℵ:u + v, αβ〉

rG2 x+ v < 0, C 6∈ ℵ, β ∈ P∗ ACZ 〈c:x,�〉〈ℵ:v, β〉

〈ℵ:x + v, β〉

rG3 −y + v < 0, β ∈ P∗ Z A C
〈C:−y,�〉〈ℵ:v, β〉

〈Cℵ:−y + v, β〉

rG4
m = max{v, w − x}, C 6∈ ℵℵ1,
β, γ ∈ Q∗ AZY C

〈c:x,�〉〈ℵ1:w, γ〉〈Cℵ:v, β〉
〈ℵℵ1:m,β?γ〉

rM1 w < 0, β ∈ Q∗, p̃ ∈ {p,¬p, ?p} P?Z 〈ℵ:w, βp̃〉
〈ℵ:w, β〉

rM2 w < 0, β, γ ∈ Q∗, p̃ ∈ {p,¬p, ?p} P?ZY
〈ℵ1:w, γ〉〈ℵ:v, βp̃〉

〈ℵℵ1:max{v, w}, β?γ〉

Z = 0; A,C,X, Y ∈ T ; C is contingent; P? ∈ OT ; each of ℵ and ℵ1 is a conjunction of one
or more upper-case names of contingent nodes, possibly empty.

The first group consists of four rules, rG1–rG4, depicted in Table 1. All rules only
generate ordinary or conjuncted upper-case edges (introduced below).

Each rule generates an edge whose label, e.g., αβ, is the conjunction of the labels of its
parent edges, e.g., α and β. If the resulting label is unsatisfiable (e.g., p¬p), then the new
edge is not generated (or kept). By ℵ we represent a, possibly empty, conjunction of one or
more upper-case names of contingent nodes.

When the generated edge contains a label having a non-empty ℵ, then it represents an
extension of wait constraints [21]. An edge labeled by a non-empty conjuncted upper-case
value, i.e., X 〈ℵ:w,�〉

Y , represents the following constraint2: as long any of contingent time-
points in ℵ remains unexecuted, Y must wait at least w units after the execution of X. If
any contingent time-point in ℵ is executed before w units after the execution of X, then the
constraint is not significant and, therefore, ignored.

Effectively, rule rG4 does not generate a new conjuncted upper-case value, but reduces
one already present removing a contingent name from it. Moreover, rG4 (as well as rM1 and
rM2) can handle also a new kind of labels, named q-labels, that indicate that a constraint
need only hold as long as the value of its special literals, named q-literals, are unknown [10].

More formally, q-literals and q-label can be introduced as the following definition.

I Definition 6 (Q-literals, q-labels). If p ∈ P, then ?p is a q-literal. A q-label is a (possibly
empty) conjunction of literals and/or q-literals. Q∗ denotes the set of all q-labels.
(For example, p(?q)¬r and (?q)(?r)t¬u are both q-labels.)

The ? operator extends ordinary label conjunction to q-labels. Intuitively, if constraint C1 is
labeled by p, and constraint C2 is labeled by ¬p, then both C1 and C2 must hold as long as
p is unknown, which is represented by p ? ¬p = ?p.

I Definition 7 (?). The operator, ? : Q∗ × Q∗ → Q?, is defined as follows. First, for any
p ∈ P , p ? p = p and ¬p ? ¬p = ¬p; otherwise, for any p1, p2 ∈ {p,¬p, ?p}, p1 ? p2 =?p. Next,
for any `1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction obtained by applying ? in pairwise
fashion to matching literals from `1 and `2, and conjoining any unmatched literals.
(For example, (p¬q(?r)t) ? (qr¬s) = p(?q)(?r)¬st.)

2 Morris et al. [21] named it also as conditional. Hereinafter, we call it wait to avoid confusion with
respect to the introduced conditional constraints.
Moreover, if in X 〈ℵ:w,�〉

Y ℵ is empty, then the wait constraint degenerates to an ordinary one X 〈w,�〉
Y .



C. Combi and R. Posenato 9:9

Table 2 Updated Upper-Case Removal Rule of CSTNPSU-DC-Check algorithm.

Rule Conditions Pre-existing and Generated Edges

rG∗4

m = max{v, w − x}, x is the lower
bound of the guarded link
(A, [x, x′], [y′, y], C), C 6∈ ℵℵ1,
β, γ ∈ Q∗, and γ entails γ′.

AZY C
〈−x, γ′〉; 〈C:−y′,�〉

〈y, γ′〉; 〈c:x′,�〉〈ℵ1:w, γ〉〈Cℵ:v, β〉
〈ℵℵ1:m,β?γ〉

Z = 0; A,C, Y ∈ T ; C is contingent; each of ℵ and ℵ1 is a conjunction of one or more
upper-case names of contingent nodes, possibly empty.

The second group of propagation rules, composed by rM1 and rM2, consists of a variety
of label-modification rules that share some resemblance to rule rG4. The label-modification
rules rM1 and rM2 have the same general flavor, except that they deal with the uncertainty
associated with observation nodes, rather than contingent links.

For example, consider the edge, Z 〈w,αp〉
P?, where neither p nor ¬p appears in α, and

w < 0. This edge represents the requirement that “in scenarios where αp is true, since
Z = 0, P? ≥ −w must hold.” But that, in turn, implies that the truth value of p cannot be
known at the time 0, i.e., when Z is executed. And, of course, the truth value of p cannot be
known when the decision to execute P? is made either. As a result, decisions about when to
execute P ? cannot depend on the truth value of p. Thus, the label on the edge from P ? to Z
should be modified to remove the occurrence of p, yielding the new edge, Z 〈w,α〉

P?, which
represents the constraint that in scenarios where α holds, Z−P ? ≤ w must hold. This is the
idea behind the label-modification rule, rM1, shown in Table 1. While rM1 simplifies labels
on edges outgoing from an observation time-point to Z, rule rM2 simplifies labels on edges
going to Z with respect to the labels present on edges from observation time-points to Z.

3.3 DC-Checking for CSTNPSU considering Guarded Links
The dynamic controllability of an CSTNPSU may be checked without the need of restricting
it to its core CSTNU. First, we extend the concept of distance graph. Then, we extend
propagation rules in order to adapt the DC-checking algorithm for CSTNU to CSTNPSU.

I Definition 8 (Distance Graph of a CSTNPSU). The distance graph for a CSTNPSU S has
the form (T , E), where each (unlabeled) time-point in T corresponds to a node in S and E is
a set of ordinary and special value edges, defined as follow:

Each constraint (l ≤ Y −X ≤ u, `) of S is represented by two ordinary edges X 〈u, `〉
Y

and X 〈−l, `〉
Y .

Each guarded link (A, [x, x′], [y′, y], C) having ` = L(A) = L(C) of S is represented by
two ordinary edges A 〈y, `〉

C and A 〈−x, `〉
C, considering lower and upper bounds x, y,

respectively,
one lower-case edge A 〈c:x′,�〉

C, considering guard x′, and
one upper-case edge A 〈C:−y′,�〉

C, considering guard y′.

Figure 2b shows the distance graph of CSTPSU of Figure 2a.
In the following we will show that rules of Table 1 may be reused in order to check

dynamic controllability of a CSTNPSU, provided that rule rG4 has to be refined as rG∗4
(cf. Table 2) where the value to use for comparison is the lower bound of a guarded link
instead of the lower case value used in the original rule.

TIME 2018
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(a) A wait constraint from an activation
time-point of a guarded link.
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(b) A wait constraint from a contingent
time-point of a guarded link.

Figure 3 Combining a Guarded Link with a Wait Constraint.

Z S
〈y,�〉 〈s:x′,�〉

〈−x,�〉 〈S:−y′,�〉

〈QR:−w, β〉

(a) Original values of Guarded Link
and Wait Constraint.

Z S
〈y,�〉 〈s:x′,�〉

〈−x,�〉
〈S:−y′,�〉
〈QR:−w, β〉

(b) if x < w ≤ x′; otherwise, it is not
controllable.

Figure 4 Combining a Guarded Link with a derived Wait Constraint.

Particularly, we analyze all possible combinations of edges between three nodes of a
CSTNPSU graph and show that the resulting distance graph has no negative loops if and
only if the distance graph of the core CSTNU has no negative loops as well. Without loss of
generality, we focus only on the more interesting cases when Z may be also an activation
time point of a guarded link.

Figure 3a shows how a wait constraint on T (i.e., from T to Z having a conjuncted
upper-case value) may be combined with a guarded link from T to S. Labels β and β′ entail
α and v and w are non negative (otherwise, rules don’t apply). The shadow values denotes
the ones generated by applying rG1 and rG3 rules for the new edge between S and Z. It
can be shown that the generated edge is similar to the one that would be generated for the
core CSTNU and, most important, the resulting temporal constraint is equivalent. Indeed,
the generated edge for the core CSTNU would have only two labeled values that differ from
the ones shown in Figure 3a: 〈−v − x′, β〉, and 〈QR:−w − x′, β′〉 instead of 〈−v − x, β〉, and
〈QR:−w − x, β′〉, respectively. Such two different values are not relevant for checking the
DC property because the two labeled values 〈S:−v − y′, β〉 and 〈QRS:−w − y′, β′〉, present
also in the core CSTNU, are stronger and, therefore, make the former redundant.

Figure 3b depicts a similar case where a wait constraint is present on a contingent time-
point (i.e., from S to Z). In this case, applying rG2, one wait constraint and one ordinary
constraint must be added between T and Z. Note that also rG1 can be applied, but the
resulting labeled values have the same form but with weaker values than the ones generated
by rG2 rule and, therefore, they can be ignored. It is easy to verify that two new labeled
values are identical to the ones that would be generated for the core CSTNU.

One of the most interesting cases is depicted in Figure 4a, where Z is the activation
time-point of a guarded link. Due to possible previous constraint propagations, a wait
constraint S 〈QR:−w, β〉 Z has been added next to the guarded link. For the case x < w ≤ x′
the result is depicted in Figure 4b. Note that for a CSTNU, such case is not possible.
Indeed, in a CSTNU x′ = x and, therefore, there are two cases: either w > x′ = x (i.e., the
CSTNU is not controllable) or w ≤ x (i.e., the wait constraint is redundant) holds. For a
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Algorithm 1: CSTNPSU-DC-Check(G).
Input: G = (T ,OT ,P, L,O, C,G): a CSTNPSU instance
Output: the dynamic controllability status of G.
G′ = distance graph of G
h = M |T |, where M is the maximum absolute value of any negative edge
foreach X ∈ T do

Add to G′ the lower bound X 〈0,�〉 Z
Add to G′ the global upper bound Z 〈h,�〉

X

do
G′ = rM1(G′) // Label Modification
G′ = rM2(G′)
G′ = rG1(G′) // Edge Generation
G′ = rG2(G′)
G′ = rG3(G′)
G′ = rG∗4(G′)
if (any negative cycle has been found) then return not DC

while (rules are applied)
return DC

CSTNPSU, Figure 4b can be interpreted as follows: wait 〈QR:−w, β〉 is not relevant for
the controllability check because 〈S:−y′, α〉 is more restrictive. On the other hand, when
executing the CSTNPSU the wait constraint must be observed in the β scenario. Particularly,
if the guarded link is activated prior to the execution of time-point R and time-point Q, w
must be used as lower bound when executing the guarded link. Otherwise, x is used as lower
bound.

Using the above technique, we can prove that the propagation rules can be applied to
all possible combinations of distance graph edges (constraints) to derive new constraints
retaining the property that there are (no) negative loops if and only if the distance graph of
the core CSTNU has (no) negative loops as well.

Algorithm 1 depicts the pseudo-code for dynamic controllability check, based on the
propagation rules presented in Table 1–2. As shown in [10], the termination of the DC
checking algorithm is guaranteed by adding a global upper upper bound and the algorithm
is sound-and-complete. As regards the computational complexity of Algorithm 1, it has been
shown that an upper bound is O(M |T |43|P|2|L|), where M is the maximum absolute value
of any weight in the graph [10].

4 Proof Of Concept

The presented model and its dynamic controllability check algorithm were implemented as
a proof-of-concept prototype in the CSTNU Toolset [22]. This prototype enables users to
create, edit, and load/save CSTNPSU instances using a graphical editor. A loaded CSTNPSU
can then be checked for dynamic controllability. Moreover, the minimal temporal constraints
between any time-point and time-point Z are shown after a successful check.

The screenshot in Figure 5 shows the CSTNU Toolset after the checking of the CSTNU
depicted in Figure 1b: there are three panels, the editor, on the right, the checker, on the left,
and the command below. Figure 5 highlights the three panels. The editor panel shows the
loaded CSTNU instance while the checker panel shows the same instance after the dynamic

TIME 2018
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(a) Toolset screen after the check of CSTNU depicted in Figure 1b.

(b) Editor Detail.
.

(c) Checker Detail.

Figure 5 Determining the Dynamic Controllability of CSTNU depicted in Figure 1b.
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(a) Toolset screen after the check of CSTNPSU depicted in Figure 2b.

(b) Editor Detail.

(c) Checker Detail.

Figure 6 Determining the Dynamic Controllability of CSTNPSU depicted in Figure 2b.

TIME 2018
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controllability check button has been clicked. For CSTNU depicted in Figure 1b, the check
determines that it is not dynamically controllable. Therefore, the new constraints shown in
the checker panel are the minimal number of constraints that determine a negative cycle in
the instance.

The screenshot in Figure 6 shows the CSTNU Toolset after the checking of the CSTNPSU
depicted in Figure 2b. In this case, the check determines that the instance is dynamically
controllable and the new constrains shown in the checker panel represent the minimal distance
between time-point Z and all the other time-points.

5 Conclusions

In this paper we presented a new temporal constraint model, CSTNPSU, that allows one to
represent guarded links and conditions completing previous proposals dealing with either
guarded links or conditions, separately. In particular, we discussed CSTNPSU features
through a motivating example and, then, we introduced the concept of controllability for
such networks and a related checking algorithm. Besides checking DC controllability of
CSTNPSUs, such algorithm performs the minimization of constraints, in case the network is
controllable. We showed that the algorithm is sound-and-complete. As for future work, we
will focus on the proposal of an efficient run-time execution algorithm that will extends in
an appropriate way the run-time execution algorithm for STNUPS presented in [16].
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