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Abstract—Embedded vision is a disruptive new technology in
the vision industry. It is a revolutionary concept with far reaching
implications, and it is opening up new applications and shaping
the future of entire industries. It is applied in self-driving cars,
autonomous vehicles in agriculture, digital dermascopes that help
specialists make more accurate diagnoses, among many other
unique and cutting-edge applications. The design of such systems
gives rise to new challenges for embedded Software developers.
Embedded vision applications are characterized by stringent
performance constraints to guarantee real-time behaviours and,
at the same time, energy constraints to save battery on the mobile
platforms. In this paper, we address such challenges by proposing
an overall view of the problem and by analysing current solutions.
We present our last results on embedded vision design automation
over two main aspects: the adoption of the model-based paradigm
for the embedded vision rapid prototyping, and the application
of heterogeneous programming languages to improve the system
performance. The paper presents our recent results on the design
of a localization and mapping application combined with image
recognition based on deep learning optimized for an NVIDIA
Jetson TX2.

Index Terms—Embedded vision, Heterogeneous architectures,
OpenVX, GPU, ORB-SLAM, Jetson TX2

I. INTRODUCTION

Embedded vision refers to the integration of an input
data sensor (typically a camera), an embedded processing
board, and a software application. The design and develop-
ment process of such systems strongly rely on programming
embedded vision applications, which is far from simple and
immediate. Pushed by the need for extreme energy efficiency,
embedded vision systems are embracing architectural hetero-
geneity, in which a multi-core host processor is coupled with
programmable accelerators specialized for various domains
(e.g., GPUs, DSPs, multicore CPUs, FPGAs) [1], [2]. Indeed,
beside functional correctness, programmers have to face non-
functional constraints like performance, power consumption,
reliability, and real-time [3], [4].

Software development of embedded vision systems is ar-
chitecture dependent and needs optimizations over two main
dimensions: block-level and system-level. The first is more
intuitive and applies to single functions (also called kernels).
This involves the re-implementation or parallelization of single
kernels for the target board accelerators through specific lan-
guages or programming environments like CUDA, OpenCL, or

OpenCV. The system-level optimization targets the overall sys-
tem power consumption, memory bandwidth, and inter-process
communication overhead. OpenVX [5] has been proposed to
help developers in both cases, and it is gaining consensus
as the reference standard, programming environment, and
API library. OpenVX aims at maximizing functional and
performance portability of vision applications across different
hardware platforms. It enables hardware vendors to implement
and optimize low-level image processing primitives, with
strong focus on mobile and embedded systems. In addition,
it addresses code optimization for different hardware archi-
tectures with minimal impact on the software applications.
Starting from a graph model of the embedded application,
OpenVX allows for automatic system-level optimizations and
synthesis on the target architecture by optimizing performance,
power consumption and energy efficiency [6]–[9].

In this context, we consider two of the main still open
issues. First, the definition of the graph-based model, its
parametrization and validation is time consuming and far from
intuitive to programmers, especially for the development of
medium-complex applications. Second, due to the limitation
of OpenVX to model complex applications through data-flow
graphs and to the incompleteness of the OpenVX primitive
library, any real embedded vision application requires the
integration of OpenVX with user-defined C/C++ code. On the
one hand, the user-defined code can benefit from paralleliza-
tion techniques for multi-cores, thus providing heterogeneous
parallel environments (i.e., multi-core + GPU parallelism). On
the other hand, due to the private and not user-controlled
memory stack of OpenVX, such an integration leads to the
sequentialization of the different execution environments, with
a consequent strong impact on the system-level optimization.

This paper presents an overall platform that aims at ad-
dressing these main challenges. The first contribution is a
methodology that extends OpenVX to the model-based design
paradigm. Differently from the standard approaches at the state
of the art that require designers to manually model the algo-
rithm through OpenVX code, the proposed approach allows for
a rapid prototyping, algorithm validation and parametrization
through Matlab/Simulink. The framework relies on a multi-
level design and verification flow by which the high-level
model is then semi-automatically refined towards the final



automatic synthesis into OpenVX code.
Then the paper shows how the platform allows combining

different programming environments, i.e., OpenMP, PThreads,
OpenVX, OpenCV, and CUDA to best exploit different levels
of parallelism while guaranteeing the semi-automatic cus-
tomization of the embedded vision applications.

The paper presents the results obtained by applying the
proposed framework to develop and verify a mapping and
localization application (ORB-SLAM) for an NVIDIA Jetson
TX2 board. The paper shows the impact of the several versions
of the code obtained through the heterogeneous programming
on the non-functional constraints when combined with an
image recognition system based on Deep Learning running
on the same board.

The paper is organized as follows. Section II presents and
analysis of the state of the art and of the related work. Section
III presents the model-based design flow. Section IV presents
the techniques to combine heterogeneous programming lan-
guages for the design of embedded vision applications. Section
V presents the experimental results, while Section VI is
devoted to the concluding remarks.

II. RELATED WORK

During the performance optimization of a computer vision
system, developers frequently run into platform-level bottle-
necks and inefficiencies that cannot be addressed by traditional
methods. OpenVX has been proposed to address such system-
level issues by meas of a graph-based paradigm [10]. Graphs
are used to specify a computing method. They are constructed,
then verified for correctness, consistency, and connectedness,
and finally processed.

The target embedded system (for computer vision appli-
cations) can have on-chip resources (computational, power,
area, etc.) as large a an autonomous car or as small as a
battery operated device. In both cases, the final goal for
developers is maximizing performance while decreasing power
consumption. Different works have been presented to optimize
OpenVX in this direction. JANUS [11] is a compilation system
for OpenVX that can analyse and optimize the graph to
take advantage of parallel resources in many-core systems or
FPGAs. Using a database of prewritten OpenVX kernels, it
automatically adjusts the image tile size and relies on kernel
duplication and coalescing to meet a defined area target, or to
meet a specified throughput target.

Dekkiche et al. [8] investigated on how OpenVX responds
to different data access patterns. They tested optimizations
like kernel merge, data tiling, and parallelization via OpenMP.
They also proposed an approach to target both system-level
and kernel-level optimizations on different hardware archi-
tectures. The approach consists in merging OpenVX and the
Numerical Template ToolBox (NT 2) library [12]. In this way,
OpenVX addresses system-level optimizations, while NT 2

targets single kernels acceleration on different processing
elements with minimal cost of code rewriting.

One of the main bottlenecks that can be addressed with
OpenVX is the memory bandwidth limits imposed by the

architectural constraints. Tagliavini et al. strongly investigated
on this issue. They first proposed ADRENALINE [6], which is
a framework for graph analysis and image tiling to accelerate
the execution of image processing on cluster-based many-core
accelerators. They then refined the approach by proposing
tiling techniques optimized for different data access patterns
[13]–[15].

Glenn et al. [16] presented a variant of OpenVX that is
amenable to real-time analysis. They presented some graph
transformation techniques to eliminate graph cycles due to
back edges and to enable pipelining. These transformations
enable real-time constraints to be validated. In particular,
the specific constraint they consider is that end-to-end graph
response times are provably bounded [7].

Yang et al. [17] proposed a much more fine-grained
approach for scheduling OpenVX graphs. The approach
is designed to enable additional parallelism and to elimi-
nate schedulability-related processing-capacity loss that arises
when programs execute on both CPUs and GPUs. They
presented a response-time analysis for this new approach and
the evaluation of its efficacy.

Implementing or porting OpenVX for different hardware
architectures has been the focus of many research groups in
the last years [18]–[20].

Differently from all the work of the literature, this paper
presents and integrated framework with a twofold contribution:
An extension of the OpenvX environment to the model-based
design paradigm, and the application of different programming
languages to best exploit the heterogeneous nature of the target
architectures. All the state-of-the-art optimization techniques
can be applied and combined to the proposed platform.

III. RAPID SYSTEM PROTOYPING THROUGH THE
MODEL-BASED PARADIGM

Fig. 1 depicts the overview of the proposed design flow.
The computer vision application is firstly developed in Mat-
lab/Simulink, by exploiting a computer vision oriented toolbox
of Simulink1. Such a block library allows developers to define
the application algorithms through Simulink blocks and to
quickly simulate and validate the application at system level.
The platform allows specific and embedded application prim-
itives to be defined by the user if not included in the toolbox
through the Simulink S-Function construct [21] (e.g., user-
defined block UDB Block4 in Fig. 1). They can also model
vision blocks for which the developer has the corresponding
kernel optimized for parallel execution (e.g., C/C++ with
OpenMP pragmas, C/C++ with PThread, CUDA).

Streams of frames are given as input stimuli to the applica-
tion model and the results (generally represented by frames or
streams of frames) are evaluated by adopting any ad-hoc vali-
dation metrics from the computer vision literature (e.g., [22]).
Efficient test patterns are extrapolated, by using any technique

1We selected the Simulink Computer Vision toolbox (CVT), as it represents
the most widespread and used toolbox in the computer vision community.
The methodology, however, is general and can be extended to other Simulink
toolboxes.



Test	
patterns
(frames)

Block1

Block2

Block3
Validation
metrics

Simulink
Toolbox
(e.g.,	CVT)

Computer	vision application

Project.slx
Application	model

synthesis
(Matlab script)

OpenVX-Simulink
primitive	

mapping table

OpenVX
primitives

Computer	vision applicationp1
p2

p3

p1 p2

p3

Block4

Validation
metrics

OpenVX
toolbox	 for
Simulink

p1

re
us
e

OpenVX application

n1 n2

n3
Validation
metrics

High-level
simulation

and	
validation

Low-level
simulation

and	
validation

Execution
and	

validation
on	real
board

Node level and	
system level
profiling

(Performance,	
Power,	Energy)

re
us
e Application	model

synthesis (Matlab script)

Block4

UDB

UDB

UDB

Fig. 1. The model-based design flow

of the literature, to asses the quality of the application results
by considering the adopted validation metrics.

The high-level application model is then automatically
synthesized for a low-level simulation and validation through
Matlab/Simulink. Such a simulation aims at validating the
computer vision application at system-level by using the
OpenVX primitive implementations provided by the HW
board vendor (e.g., NVIDIA VisionWorks) instead of Simulink
blocks. The synthesis, which is performed through e Matlab
routine, relies on two key components:
-) The OpenVX toolbox for Simulink. Starting from the library
of OpenVX primitives (e.g., NVIDIA VisionWorks [23] in
the current implementation), we created a toolbox of blocks
for Simulink by properly wrapping the primitives through
Matlab S-Function. Such function allows describing any
Simulink block functionality through C/C++ code. The code
is compiled as mex file by using the Matlab mex utility [24].
As with other mex files, S-functions are dynamically linked
subroutines that the Matlab execution engine automatically
loads and executes. S-functions use a special calling syntax
(i.e., S-function API) that enables the interaction between the
block and the Simulink engine. This interaction is very similar
to the interaction that takes place between the engine and built-
in Simulink blocks. Such a wrapping-based methodology can
be applied to implement the toolbox of Simulink blocks for
other hardware vendor primitives (e.g., INTEL OpenVX [25],
AMDOVX [26], Khronos OpenVX standard implementation
[27]).
-) The OpenVX primitives-Simulink blocks mapping table.
It provides the mapping between Simulink blocks and the
functionally equivalent OpenVX primitives. As explained in

the experimental results, we created the OpenVX toolbox for
Simulink of the NVIDIA VisionWorks library as well as the
mapping table between VisionWorks primitives and Simulink
CVT blocks. They are available for download from https:
//profs.sci.univr.it/bombieri/VW4Sim.

The low-level representation allows simulating and validat-
ing the model by reusing the test patterns and the validation
metrics identified during the higher level (and faster) simula-
tion.

Finally, the low-level Simulink model is synthesized,
through a Matlab script, into an OpenVX model or, if any
user-defined primitive, a heterogeneous model implemented
in OpenVX, OpenMP, Pthreads, and CUDA. The interaction
of the different programming languages is addressed in the
following section. The program is executed and validated on
the target embedded board. At this level, all the techniques
of the literature for system-level optimization can be applied.
The synthesis is straightforward (and thus not addressed in
this paper for the sake of space), as all the key information
required to build a stand-alone OpenVX code is contained in
the low-level Simulink model. Both the test patterns and the
validation metrics are re-used for the node-level and system-
level optimization of the OpenVX application.

IV. ENHANCING PERFORMANCE THROUGH
HETEROGENEOUS LANGUAGE PROGRAMMING

Beside OpenVX, we consider five different languages and
parallel programming environments (environments in the fol-
lowing): C/C++, Pthreads, OpenMP, OpenCV, and CUDA.
The environment heterogeneity allows implementing different
application blocks with the most appropriate style, such as
C/C++ for control parts, Pthreads for concurrent execution
functions on the CPUs, OpenMP for directive-based automatic
parallelization of code chunks, CUDA for any kernel (if
available) acceleration on GPU, and OpenVX for primitive-
based parallelization of data-flow routines. OpenCV has been
chosen to implement standard I/O communication protocols of
computer vision applications through standard data-structures
and APIs. This allows the embedded vision applications to
be portable and efficiently integrated to any other application
compliant to the standard.

For the sake of clarity and without loss of generality, we
consider, as a running example, the widespread and most
popular NVIDIA Jetson TX2 as the target platform. Such
an embedded board relies on a shared-memory architecture,
in which two different clusters of CPUs (four cores Cortex-
A57 CPUs and two cores Denver CPUs) and a GPU with two
symmetric multiprocessors share an unified memory space.

The top of Figure 2 depicts the stack layer involved by the
concurrent execution of each environment. It relies on two
main parts:

• The user-controlled stack, which allows for shared
memory-based communication among processes run-
ning on different CPUs. They include C/C++ processes,
OpenCV APIs, Pthreads, and processes generated by
OpenMP.
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Fig. 2. Framework overview: memory stack, task mapping, and task schedul-
ing layers of an embedded vision application developed with the proposed
method on the NVIDIA Jetson TX2 board.

• The private (not user-controlled) stack, which is created
and handled by OpenVX and allows for communication
between OpenVX graph nodes running on different CPUs
or on the GPU.

The tasks related to the user-controlled stack are mapped to
the CPU cores by the operating system (i.e., Linux Ubuntu for
the NVIDIA Jetson). The OpenVX tasks are mapped to the
CPU cores or GPU multiprocessors by the OpenVX runtime
system.

To enable the full concurrency of the two parts, to avoid
sequentialization of the two sets of tasks, and to avoid the
consequent synchronization overhead, we associate the two
parts to a single unified scheduling engine. This allows all
the tasks mapped to the CPU cores (of both stack parts) to
be scheduled by the operating system, while the GPU task
scheduling, the CPU-to-GPU communication and synchroniza-
tion (i.e., GPU stream and kernel engine) to be controlled by
the OpenVX runtime system. To do that, we propose a C/C++-
OpenVX template-based communication wrapper, which al-
lows for memory accesses to the OpenVX data structures on
the private stack and for full control of the OpenVX context
execution by the C/C++ environment.

Figure 3 gives an overview of the wrapper and its integration
in the system. The OpenVX initialization phase generates the
graph context and allocates the private data structures. Such
allocation returns opaque pointers to the allocated memory
segments, i.e., pointers to private memory areas which layout
is unknown to the programmer.

OpenVX read and write primitives
(Write-Read_on_vx_Datastructure() in the
Figure) have been defined to access the private data structures
through the opaque pointers. The primitives are invoked
from the C/C++ context and, through the communication
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Fig. 3. Overview of the communication wrapper

wrapper APIs, they set a mutex mechanism to safely access
the OpenVX data structures. The same mutex is shared with
the OpenVX runtime system for the overall graph processing
(vxProcessGraph() in the Figure). As a consequence, the
mechanism guarantees synchronization during the accesses
to the shared data structures between the OpenVX and
C/C++ contexts when run concurrently on multicores. It is
important to note that the invocation of the overall graph
processing, which is performed in the C/C++ environment,
starts the execution of the data-flow oriented OpenVX code.
As shown in Figure 3, such an invocation can be performed
concurrently by different C/C++ threads, and each invocation
involves a mapping and scheduling of the corresponding
graph instance. The proposed communication wrapper and
mutex system allow for synchronization among the different
concurrent OpenVX graph executions and the C/C++ calling
environments.

Standard mutex mechanisms are adopted to synchronize
all the other C/C++ based contexts belonging to the user-
controlled stack, when accessing shared data structures.

The mutex-based communication wrapper allows for multi-
level parallel execution of the application. For example, a first
level of parallelism can be implemented by Pthreads, which
run application blocks on different CPU cores. Then, other
blocks can be implemented in OpenVX and run on a CPU
core and on the GPU. The parallel implementation of the
graph nodes offloaded on the GPU is provided by the OpenVX
library vendor (i.e., NVIDIA VisionWorks for our case study)
and are optimized for the specific GPU architecture. In case
two nodes of the OpenVX graph are independent, they are
executed concurrently. Finally, OpenMP provides another level
of parallelism when a block is enriched with parallel directives.
Each of these blocks is executed in parallel by the threads
generated automatically by the compiler, which run on the
available CPU cores.



V. PUTTING ALL TOGETHER: THE MAPPING,
LOCALIZATION, AND IMAGE RECOGNITION CASE STUDY

We applied the proposed platform to develop a mapping and
localization application (ORB-SLAM) [28] for an NVIDIA
Jetson TX2 board. We developed and optimized such applica-
tion considering its utilization possibly concurrent to an image
recognition system based on Deep Learning [29] running on
the same board (see Figure 4).
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Results

Results

Embedded	Vision	Software

Fig. 4. Inter-application communication

ORB-SLAM solves the simultaneous localization and map-
ping problem when RGB camera sensors are adopted. It
computes, in real-time, the camera trajectory and a sparse 3D
reconstruction of the scene in a wide variety of environments,
ranging from small hand-held sequences of a desk to a
car driven around several city blocks. It builds a 3D map
starting from an input stream and/or it performs localization
by considering the current map. The application consists of
three main blocks (see Figure 5):
- The tracking and localization block computes visual features,
it localizes the agent in the environment, and, in case of
significant discrepancies between an already saved map and
the input stream, it communicates updating information of
the map to the mapping block. The processing rate (i.e.,
the supported frame rate per second) and the main power
consumption of the whole application strongly depend on this
block performance.
- The mapping block updates the environment map by using
information (map changes) sent by the localization block.
- The loop closing block aims at adjusting the scale drift
error accumulated during the input analysis. When a loop in
the agent pathway is detected, this block updates the mapped
information through a high latency heavy computation, during
which the first two blocks must be suspended. This can
lead the agent to loose tracking and localization information
and, as a consequence, the agent to get temporary lost. The
computation efficiency of this block (run on-demand) is crucial
for the quality of the whole application results.

We first applied the model-based design flow to define the
mapping and localization algorithm as explained in Section
III. Along the design flow, we measured the execution time
of the algorithm implementations at different refinement steps,
by using the KITTI dataset [30], which is a standard set of
benchmarks for SLAM and computer vision applications.

Table I reports the execution time we obtained at different
refinement levels. Starting from the original video streams,
we extrapolated a subset of test patterns, which consist of
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Validation level Sim./Exec. time (sec)

Simulink High-Level model 804.0

Simulink Low Level model 762.0

Software application on target embedded sys-
tem device (with accelerators) - Version 3:
Pthreads+OpenVX

30.0

TABLE I
SIMULATION (IN SIMULINK) AND EXECUTION (ON REAL BOARD) TIMES

the minimal selection of video streams necessary to validate
the model correctness by adopting the Smith et al. validation
metrics for light field video stabilization [22].

We then applied the Matlab synthesis script to translate
the high-level model into the low-level model by using the
OpenVX toolbox for Simulink generated from the NVIDIA
VisionWorks v1.6 [23] and the corresponding Simulink CVT-
NVIDIA OpenVX/VisionWorks mapping table.

Finally, we synthesized the low-level model into pure
OpenVX code, by which we run the real time analysis and
validation on the target embedded board (NVIDIA Jetson
TX2) with the different code versions generated through the
heterogeneous language programming.

We observed a slightly reduced execution time for the
Simulink low-level model execution with respect to the high-
level model despite the overhead introduced by the wrappers.
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Fig. 6. Evaluation of non-functional properties

This is due to the fact that the algorithm implementation in
Simulink required specialized MATLAB code that was not
available with Simulink CVT library as native blocks. We
developed custom code in MATLAB to meet the requirements,
and imported such a code as user-defined Simulink blocks
using S-functions. As for the model-based design flow, the
main focus of the Simulink implementation was to target
the functional verification of the embedded application, with
little effort on performance optimizations. On the other hand,
such user-defined blocks were available in the OpenVX-Vision
Works library thorough GPU-accelerated primitives.

At each refinement step, we reused the selected test patterns
to verify the code over the adopted validation metrics [22]
for both the contexts and by assuming a maximum deviation
of 5%. The results underline that the higher level model
simulation is faster as it mostly relies on built-in Simulink
blocks. It is recommended for functional validation, algorithm
parametrization, and test pattern selection. It provides all the
benefits of the model-based design paradigm, while it cannot
be used for accurate timing and power analysis.

The low level model simulation is much slower since it
relies on actual primitive implementation and many wrapper
invocations. However, it represents a fundamental step as it al-
lows verifying the functional equivalence between the system-
level model implemented through blocks and the system-level
model implemented through primitives.

Finally, we run the validation through execution on the
target real device for both functional and non-functional veri-
fication. In particular, we evaluated performance, power con-
sumption and energy efficiency of the different code versions
generated thanks to the heterogeneous language programming
presented in Section IV (Version 1, 2, and 3 in the follow-
ing). We compared their non-functional properties with those
provided by the most efficient parallel implementations at the
state of the art [31] of the same algorithm (Reference SoA 1
and 2 in the following). In particular, we consider:

• Reference SoA 1 (Pthreads): It is the state of the art
version [31], in which the three main blocks (Tracking
and localization, Mapping, and Loop closing blocks) are
run concurrently by Pthreads on the CPU cores.

• Reference SoA 2 (Phtreds+OpenMP): It extends Refer-
ence SoA 1 by enabling OpenMP parallelism. In particu-
lar, it parallelizes the bundle adjustment task, both local

in the mapping block and global in the loop closing block.
• Version 1 (OpenVX+Pthreads): It is the first version

generated with the proposed framework. It implements
the tracking sub-block in OpenVX, while the other two
blocks are implemented in C/C++ and run concurrently
through Pthreads.

• Version 2 (OpenVX+Pthreads+OpenMP): It extends Ver-
sion 1 by enabling also OpenMP in the Mapping and
Loop closing blocks.

• Version 3 (OpenVX+CUDA+Pthreads): starting from Ver-
sion 1, we reused a CUDA kernel that implements the
gaussian blur primitive in the tracking sub-block. We
modularly replaced the corresponding OpenVX Vision-
Work primitive with such a more optimized kernel.

• Version 4 (OpenVX+CUDA+Pthreads+OpenMP): It ex-
tends version 3 by enabling also OpenMP.

The Pthreads guarantee the minimum level of parallelism,
by enabling one CPU core per block. OpenMP has been set
to use the maximum number of available CPU cores (i.e., 4+2
in the Jetson). The GPU is enabled only by OpenVX/CUDA.

Figure 6 summarizes the results. The first plot (FPS) reports
information about the ORB-SLAM application performance.
FPS represents the maximum number of frames per second
supported by the embedded system. It has been measured
in two system configurations: with the only ORB-SLAM
application running on the board (all board resources available
for the developed application) and with ORB-SLAM running
concurrently with the image recognition -DL- system (board
resources shared). The results show the benefit of the heteroge-
neous language programming, by which Version 3 and Version
4 almost increase the performance by 100% with respect to
the parallel versions for multicore at the state of the art, and
by 50% with respect to Version 1 and 2 (without CUDA)
generated by the proposed flow. On the other hand, the plot
also shows that the versions that rely on the only multi-core
CPUs are slightly better when run concurrently with GPU-
hungry applications (i.e., DL). This is due to the fact that
scheduling ORB-SLAM tasks on GPUs in these cases causes
more overhead (for resource contention) than benefits.

The second and third plots report the energy efficiency and
peak power consumption of the system. The results show that
Version 3 provides the best results by guaranteeing up to 20%
and 15% of energy and peak power reduction, respectively,



w.r.t. the other versions in the first configuration. The plots
show that, when the DL application is switched on, the Ref.
Soa implementations are the most energy efficient while the
peak power is fairly the same.

In general, the results show that, as expected, exploiting
the heterogeneous characteristics of the board allows reaching
the best performance and energy efficiency of the system.
This underlines the benefits of the proposed method, by
which the different computing elements are fully exploited by
the different programming environments. On the other hand,
we found that adopting all the possible environments is not
always the best solution. Version 6 is an example, in which
switching on the OpenMP parallelism does not provide better
performance than the Pthread+OpenVX+CUDA version while
it increases the peak power consumption.

In conclusion, the experimental results show how the differ-
ent versions provide a very large mapping space to be explored
(which is part of our future work). Such a space can provide
the best solution for each of the considered design constraints
like performance, power consumption, and energy efficiency.

VI. CONCLUSION

This paper presented an overall platform with two main
characteristics: It extends OpenVX to the model-based de-
sign paradigm, and it allows for heterogeneous language
programming. Differently from the standard approaches, the
proposed platform allows for a rapid prototyping, algorithm
validation and parametrization in a model-based design en-
vironment (i.e., Matlab/Simulink). The platform allows com-
bining different programming environments, i.e., OpenMP,
PThreads, OpenVX, OpenCV, and CUDA to best exploit
different levels of parallelism while guaranteeing the semi-
automatic customization of the embedded vision applications.
The experimental results showed how the different versions
provide a very large mapping space to be explored by con-
sidering different system configurations (available resources)
and non-functional design constraints like performance, power
consumption, and energy efficiency.
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