
Lorenza Brusini

Brain Microstructure: Impact of the

Permeability on Diffusion MRI

Ph.D. Thesis

April 4, 2018
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Abstract

Diffusion Magnetic Resonance Imaging (dMRI) enables a non invasive in-vivo char-
acterization of the brain tissue. The disentanglement of each microstructural prop-
erty reflected on the total dMRI signal is one of the hottest topics in the field. The
dMRI reconstruction techniques ground on assumptions on the signal model and
consider the neurons axons as impermeable cylinders. Nevertheless, interactions
with the environment is characteristic of the biological life and diffusional water
exchange takes place through cell membranes. Myelin wraps axons with multiple
layers constitute a barrier modulating exchange between the axon and the extra-
cellular tissue. Due to the short transverse relaxation time (T2) of water trapped
between sheets, myelin contribution to the diffusion signal is often neglected. This
thesis aims to explore how the exchange influences the dMRI signal and how this
can be informative on myelin structure. We also aimed to explore how recent dMRI
signal reconstruction techniques could be applied in clinics proposing a strategy
for investigating the potential as biomarkers of the derived tissue descriptors.

The first goal of the thesis was addressed performing Monte Carlo simulations
of a system with three compartments: intra-axonal, spiraling myelin and extra-
axonal. The experiments showed that the exchange time between intra- and extra-
axonal compartments was on the sub-second level (and thus possibly observable)
for geometries with small axon diameter and low number of wraps such as in
the infant brain and in demyelinating diseases. The second goal of the thesis was
reached by assessing the indices derived from three dimensional simple harmonics
oscillator-based reconstruction and estimation (3D-SHORE) in stroke disease. The
tract-based analysis involving motor networks and the region-based analysis in
grey matter (GM) were performed. 3D-SHORE indices proved to be sensitive to
plasticity in both white matter (WM) and GM, highlighting their viability as
biomarkers in ischemic stroke.

The overall study could be considered the starting point for a future investiga-
tion of the interdependence of different phenomena like exchange and relaxation
related to the established dMRI indices. This is valuable for the accurate dMRI
data interpretation in heterogeneous tissues and different physiological conditions.
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1

Introduction

In the first Chapter of this thesis we briefly introduce the motivations at the basis
of this investigation, giving an idea of why the questions here addressed are exciting
from both a scientific and a clinical point of view. We also present the aims and
main contributions of the work to easily guide the reader into the comprehension
of the implications of this study. We finally provide the description of the thesis
structure to further aid the reading of the manuscript and the list of publications.

1.1 Diffusion MRI signal modeling and clinical applications

The brain is often considered to be the most complex organ of the human being.
Its investigation is a fascinating work if we think that it is the control center of
our body, of all our actions making us in relationship with the others and with the
environment.

In this scenario, diffusion magnetic resonance imaging (dMRI) is an important
technique to observe the human brain as it is able to capture a view in a non-
invasively way. The acquired signal is proportional to water diffusion inside the
brain thanks to a particular MRI sequence that in its simplest form employs two
gradient pulses in addition to two radiofrequencies (RF). In particular, the combi-
nation with mathematical models leads to information extraction from hindrance
to the Brownian motion of water molecules from the brain tissue structure. The
solution of the inverse problem consents to derive some microstructure measures
of the neural environments thanks to the relationship existing between the sig-
nal and the ensemble average probability (EAP) of spins displacement within a
time interval.The dMRI was firstly introduced by Le Bihan and colleagues in 1985
[130] and rapidly captured the interest of the community. In the following years,
many models were developed in order to obtain images of the brain which could
be informative about its structure, as well as clinically useful.

Three main big scale objectives are currently pursued: microstructural mod-
eling, structural connectivity and encoding strategies improving. The first aims
at the definition of numerical biomarkers. The second targets the definition of
the topology of the structural network through the exploitation of the orientation
distribution function (ODF), the elementary building block of the tractogram.
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The last points at the design of new acquisition sequences with the purpose to
increase the specificity of dMRI.Concerning the first, there is a wide variety of in-
dices derivable thanks to signal modeling such as the apparent diffusion coefficient
(ADC) and the fractional anisotropy (FA). These were largely used for comparing
and differentiating patients and healthy subjects with diffusion tensor modeling,
one of the initial reconstruction methods for the dMRI signal. The calculation of
alternative models and indices further aided in understanding diseases from the
structural point of view. Tractography is the reconstruction of fiber tracts con-
necting the various cerebral areas by tracking peaks extracted from the ODFs and
it is actually used in surgical planning as well as the basis for pathoconnectomics.

Focusing on microstructural mapping, it must be said that dMRI is evidently
sensible to microstructural changes but it is not specific [168, 72]. In one voxel
having size of the order of millimeters a lot of different biological structures having
size in the order of micrometric scale are present: axons, somas, glial cells, free fluid,
extracellular tissue, astrocytes as well as others. All these compartments contribute
to the overall dMRI signal although with potential different diffusivities, stressing
the complexity of resolving the inverse problem that aims to understand the tissue
microstructure beyond the signal.

Moreover, the reconstruction models rely on assumptions such as constraining
the dMRI signal to a multivariate Gaussian described by one tensor, as in dif-
fusion tensor imaging (DTI); considering a predefined number of compartments;
assuming no exchange between intra- and extra-axonal compartments and many
others. Despite these assumptions, relevant information could be extracted from
models, mirroring the structure and microstructure of the brain. However, the
huge complexity of brain tissue must be accounted for in the interpretation of the
reconstructed dMRI data, being aware of the inherent limitations of the models
and addressing the issue of their reliability.

In this thesis, we aimed at casting light to some of these issues.

1.2 Aims of the thesis

In this thesis one of the focuses is on the assumption most often used that is
the impermeability of compartment walls in white matter modeling.Myelin is a
membranous structure that wraps axons with multiple lipid bilayers [75, 164].
Water in the myelin fills the space left between the bilayers, which MRI has the
potential to detect. However, the short relaxation time (T2) [222] makes this task
particularly difficult, especially using clinical sequences [8]. For this reason, many
signal models used to analyse dMRI data make the assumption that myelin does
not contribute to the observed signal. Nevertheless, myelin plays an important role
in shaping the signal because it constitutes a significant barrier to the exchange of
water molecules from the intra to extra-axonal spaces. In addition, the measure of
the exchange time is still an open issue in the literature. When the exchange has
been incorporated in the analysis of white matter (WM) dMRI data, a wide range
of estimated exchange times was recovered. Nilsson et al. [152] found exchange
times in healthy WM in the order of seconds (1.25− 2.5 s) whereas Nedjati-Gilani
et al. [146] found values in the subsecond range (0.5− 0.6 s). Thus, the first main
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aim of this work was to investigate the plausibility conditions of the no-exchange
assumption as previously described and to contribute a method for the estimation
of the exchange time.

On the same line, this thesis aimed at assessing the myelin structure via ex-
change studies in dMRI experiments. As a biological barrier, myelin can modify
the exchange flux and thus cause a sensible change in dMRI signal implicitly re-
flecting its geometry. More in detail, this work goes further in the modeling of
myelin structure in order to explore the conditions or configurations under which
the myelin wrapping permits fast exchange, that is in the sub-second scale. This
could be an important prior for guiding the interpretation of dMRI studies in-
volving an altered myelin structure such as during the development of the human
brain [54] and in demyelinating diseases like myelinoclastic disorders (e.g. multiple
sclerosis) and leukodistrophies (e.g. vitamin B12 deficiency) [126] and thus holds
a great translational potential.

The second main aim of the thesis was to address the wide field of computed
aid to clinical activity. In particular, we specifically focused on one dMRI signal
reconstruction model called three dimensional simple harmonics oscillator-based
reconstruction and estimation (3D-SHORE), for its capability in deriving a closed-
form analytical derivation of both the signal and the Ensemble Average Propa-
gator (EAP). Some interesting brain microstructure descriptors can be derived
grounding on the probability of no net water particles displacement during the
time occurring between the gradients of the diffusion weighted imaging (DWI)
acquisition. These indices were not fully characterized so far for their ability in
differentiating pathological tissues. An extensive study was performed for captur-
ing the contralateral axonal remodeling in case of ischemic stroke [94, 135]. The
analysis of their reproducibility, specificity and sensitivity is essential for assessing
their exploitability as clinical biomarkers.

Overall, this thesis aimed at sheding light on the plausibility of the assumption
of no exchange through the axonal walls and on the conditions for the detectability
of such a mechanism, as well as to contributing a pipeline for the assessment of
the suitability of microstructural measures as numerical biomarkers. In this way,
a complete analysis framework could be defined starting from the acquisition and
ending with the assessment of the exploitability of the measures for prognostic
purposes. To this end, ischemic stroke was considered as a case study, relying
on microstructural features derived under the no-exchange assumption, but the
developed framework could be easily adapted to demyelinating diseases relying on
new microstructure measure, which is the long-term target of this research and is
left for future work.

1.3 Main contributions

The main contributions of this thesis are here sinthesized.

• Review of permeability concepts in dMRI

One contribution of the thesis is a review of the permeability concepts in dMRI
that is not actually easily understandable from the literature. In particular, the
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concepts involving both the walls relaxivity, the exchange, their relationship
and their related models in the state of the art are here reported.

• Assessment of the plausibility of white matter modeling assumptions

Specifically focusing on signal reconstruction assumptions regarding permeabil-
ity, we provide evidence for their unsuitability in some conditions. Since these
conditions reflect particular physiological states, this work emphasizes the im-
portance of a strict collaboration between clinicians and computer scientists
for discerning the most effective solution aiming at ad personam healthcare.

• Characterization of dMRI sensitivity to myelin multi-wrappings fea-

tures via exchange-based studies

The Monte Carlo simulations under the pulsed gradient stimulated echoes (PG-
STE) acquisition scheme followed by reconstruction with diffusion signal mod-
els shed light on the relationship between myelin and exchange between intra-
axonal and extracellular spaces. In particular, we identify some possible myelin
structure conditions where exchange could occur from intra-axonal space to-
wards extracellular tissue.

• 3D-SHORE indices characterization as biomarkers

Another contribution of the thesis is the exploitation of 3D-SHORE-based in-
dices in describing in-vivo healthy and pathological brain tissues in ischemic
stroke disease. More in detail, for the first time is provided their sensitivity to
contralateral brain remodeling focusing on cortical and subcortical networks.

– Pipeline for biomarker suitability analysis

Along with the previous characterization, another contribution is the modal-
ity of analysis of the 3D-SHORE indices precision, sensitivity, specificity and
predictability of motor outcome proposed for the first time.

– Representation by 3D-SHORE indices of different tissues

3D-SHORE indices were analysed in white matter (WM) tracts and grey
matter (GM) in parallel, proving to be suitable in probing plasticity. Based
on this, we could provide additional viability as a novel family of biomarkers.

1.4 Thesis structure

This thesis is organized in four main parts. Part I delineates the overall objective,
clarifies the central idea of the work and summarizes the main contributions that
have been reached (Chapter 1). The background and the state of the art are
successively presented in the following two Chapters (Chapters 2 and 3). Part II
of the thesis consists of two Chapters (Chapters 4 and 5) targeting the investigation
of the exchange mechanisms in the white matter as well as the characterization
of the role of the myelin sheet. Moreover, some general considerations about the
assumptions usually done in dMRI reconstruction methods are reported along with
results. In particular, a numerical method consisting on Monte Carlo simulations
is proposed to address these issues, and signal reconstruction models are used to
study the induced variations in the estimated parameters.

Part III consists of two chapters (Chapters 6 and 7) in which a wide tract-
based study is proposed along with a statistical analysis aiming at exploring the
potential of the considered microstrutural indices as biomarkers in stroke disease.
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More in detail, the diffusion tensor and the 3D-SHORE models were considered
opening the way to a future application for exchange models. In addition, a first
attempt to use 3D-SHORE indices for characterizing GM plasticity is proposed.

Finally, Part IV derives the conclusions (Chapter 8), summarizes the main
open issues and provides some hints for future works.

1.5 Publications

The work presented in this thesis was published or submitted to international
peer-reviewed journals and international and national conferences.

More in details, the contributions on permeability presented in Chapter 4 and
Chapter 5 are mainly represented in [39] as well as in a submitted paper to the
European Signal Processing Conference (EUSIPCO) in 2018 and in a journal under
submission for the IEEE Transactions on Medical Imaging.

The results on stroke studies by 3D-SHORE indices reported in Chapter 6 and
Chapter 5 were published in [229, 37, 156, 38, 31].





2

Background

This chapter provides the fundamentals for the two main issues touched by this
work: neuroanatomy and dMRI. First, the neuroanatomical perspective is illus-
trated, starting from the description of the brain to get to the discussion of per-
meability in the white matter. Successively, the diffusion process is illustrated and
the main technical issues of dMRI are briefly illustrated.

2.1 Neuroanatomy

The nervous system is basically the control center of the body and all the things
that make us in communication with the environment (e.g. eating, sleeping, think-
ing, moving, etc.). The nervous system is made up of a network of specialized cells
called neurons that send and receive signals throughout the body quite rapidly and
that we investigate more in detail in the subsequently paragraphs. There are two
main parts composing the nervous system: the central nervous system (CNS) and
the peripheral nervous system (PNS). The brain and the spinal cord constitute
the first, while nerves and ganglia outside the CNS constitute the second one [70].
Exemplifying, the brain communicates with the nerves via the spinal cord receiv-
ing sensory informations, integrating them and sending informations in turn. The
CNS has four fundamental structures that are common to many species compris-
ing the human: the forebrain, the midbrain, the hindbrain and the spinal cord.
Focusing on the first three that constitute the parts on which we are more inter-
ested, seventeen structures can be recognized. The first four are the brainstem,
the cerebellum, the thalamus and the cerebrum. The brainstem is substantially
devoted to involuntary actions like breathing, circulation or digestion and it is the
switching center for information from sensory nerves and directed to motor nerves.
It includes three parts: the medulla oblungata, the pons and the midbrain. The
cerebellum is dedicated to body control and motion memory. The thalamus sorts
data and determines where they should go, while a part of it called hypothalamus
is principally responsible for homeostasis (e.g. body temperature). Another one
called posterior pituitary is a site for the secretion of neurohypophysial hormones
(oxytocin and vasopressin) directly into the blood. The cerebrum has the principal
function of data integration. It is made up of two hemispheres connected by an
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ensemble of nerves called corpus callosum. Below the corpus callosum there are
the basal ganglia, constituted by bunches of nuclei with the same function that
control different motor actions. Finally the cerebral cortex (∼80% of the brain)
consists of four lobes: the frontal lobe mainly committed to emotional control,
the parietal lobe substantially responsible for sensation, the occipital lobe for the
vision and the temporal lobe for tasks like language, hearing, memory and many
others. Interestingly, on the parietal lobe with the somatosensory cortex and on
the motor cortex located on the other side of the gyrus in the frontal lobe, there is
the cortical homunculus which is a mapping of each part of the body on the brain
meaning that there is a dedicated portion of the cortex for controlling each part of
our body. In general, the brain can be thought as divided in parts gathering neu-
rons having cytoarchitecture similarity. Alternatively it can be thought divided in
parts sharing functional features or again relying on their anatomical localization
on the brain structure as well as other similarities [162, 9, 33]. The relationship
between structure and function opens the way to exciting investigations of the
connections between bunches of neurons leading to the study of structural and
functional networks, as well as of their interactions [162, 9, 33].

As previously mentioned, the neuron is the cell constituting the fundamental
unit composing the nervous system and is the most complex cell of our organism.
Its function is the receiving and sending of informations in a dense communication
network. The neuron receives stimuli from the environment (e.g. sight, touch, etc.)
or from the organism itself (e.g. visceral pain). The parts composing the neuron
are the soma which is the body of the neuron containing the nucleus; the dendrites
that are extensions from soma creating branchings and for this reason also called
dendritic tree (in fact some dendrites originate from soma, other from other den-
drites); and the axon, which originates from soma and is unique. Regarding the
information flux, the dendrites are the structures devoted for receiving while the
axon is the structure dedicated for sending informations to other neurons through
synapses and to muscles. The soma of neurons are in high concentration in the
cortex that is also called the GM, while the WM is mainly made up of axons.

Going into detail of axons composing the WM, it was shown that they are not
limited to drive informations from one point to another, but they process infor-
mation in at least two or three different domains [109]. The first is the spatial
and amplification domain: spatial because the axon maps the position of the cell
body into the position of the number of terminals in the area where it terminates,
and amplification because not all the terminations receive the same number of
synaptic buttons and thus the signal is amplified differentially [107]. The second
is the temporal domain because the axons convey the informations to the target
in a certain specified time that could be different also for different terminals of
the same axon [111]. It is important in the context of axons the role of electricity
conduction. Concerning this, Gasser and Erlanger [86] proposed a classification
showing that there exists a sort of relationship between average fiber diameters
and conduction velocity, added to the type of information they carry. The dMRI
potential to recover the axon structure morphology becomes even more fundamen-
tal to understand the way this system works. In detail, the morphological basis of
temporal computation in axons is v = (5.5/g) × dinner (v is the velocity, dinner is
the inner diameter of the axon, g is the g-ratio) [108]. The myelin is an important



2.1 Neuroanatomy 11

tissue as it defines the g-ratio as g = dinner/Douter (Douter is the axon diameter
comprehensive of myelin). In the CNS there is a very wide spectrum of axon di-
ameters, e.g. in the mouse we can find the peak of the distribution indicating the
mean around 1.0 µm while monkey shows also larger axons. Also humans show
many differences in axon diameters as will be detailed in what follows.

Studying the evolution of the fiber tracts, two determining phenomena occurred
in parallel: the loss of unmyelinated axons and the increase in number of all the
axons in the same way. Many of these axons are less than 2.0 µm as showed in [109]
and the g-ratio is interestingly stable across animal systems and across different
animals (∼0.68 − 0.69) and also across diameters (∼0.71 µm in monkey and ∼0.69
µm in mouse). In the calculation of the conduction velocity we thus don’t need
to take the g-ratio strongly into account. The corpus callosum also reflects the
variety of fiber diameters enclosing finer axons arriving from prefrontal cortex and
thicker axons from motor cortex [1], emphasizing that different cortical areas com-
municate through the corpus callosum with different axonal systems of different
diameters [197]. In particular, thinner axons connect prefrontal, parietal and tem-
poral associaton areas while thicker axons connect primary motor, somatosensory
and visual areas. Aboitiz and colleagues [1] calculated the distribution of sizes in
regions of the human corpus callosum and recovered average diameters around 4.0
µm in genu, 6.9 µm in midbody and 3.6 µm in splenium. In a more recent work,
Innocenti et al. found a diameter median value of 0.89 µm in the planum tempo-
ral sector of the human corpus callosum [110]. Liewald et al. [133] confirmed this
finding measuring the sizes of cortico-cortical fibers and obtaining diameters in a
range of 0.16−9 µm with average < 1 µm. Most of these axons are myelinated and
only the prefrontal axons in monkey seem to be unmyelinated. The relationship
between conduction velocity and diameters determines that there are some areas
with faster conduction and other ones with slower conduction. Studying the gener-
ated delay (delay = Lp/v) requires to employ the length of the pathways (Lp) and
thus its reconstruction by tracer injection followed step by step from origin to end,
which is a very difficult work. In this respect tractography could be of great help
once its accuracy and specificity have been demonstrated [49]. This computation
can further help to disentangle the structure of the network since big differences
were found from callosal midline emphasizing a higher delay than expected, while
shorter delays were found in motor and somatosensory areas [50]. The connectome
could thus be improved not only by finding which areas connect to which, but
also taking into account diameters, that may lead to more informative networks.
From this point of view, it seems that the size of axons from the same area can
be different for different targets, highlighting in this example a sort of advantage
for motor and somatosensory connections. These and other morphological aspects
can improve the knowledge about the nervous system and dMRI seems to be on
the way of providing some of these estimates in-vivo providing crucial information
on computational properties of the neurons.

As previously mentioned, a biological structure strictly related to axon is the
myelin. The myelin structure is represented in Figure 2.1 and it is an insulatory
layer sorrounding the axon of neurons that helps the electrical signal travelling
more efficiently and quickly along the axon thanks to gaps called nodes of Ran-
vier, where the axon is exposed to extracellular space. The myelin posed between
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the nodes of Ranvier is called internode and the ensemble of internodes lead to a
saltatory conduction that makes the transmission faster. The length of an intern-
ode goes from 100.0 µm to 2.0 mm functionally changing the signal transmission
velocity in the axons. In the PNS each internode is constituted by a Schwann
cell that wraps the axon in a multilamellar conformation, while in the CNS the
myelin is formed by an oligodendrocyte that can construct many internodes of
several neurons always wrapping the axon in multiple turns. In this context, it
is easily understandable how myelin is a cell with its cytoplasm and membrane
forming layers with an almost known structure as illustrated in Figure 2.1. In a
theoretical work of 1951, Rushton demonstrated that the conduction velocity is
maximal when the g-ratio is 0.6 [178]. Albert et al. measured the g-ratio of healthy
subjects along with multiple sclerosis patients finding a value of 0.65 in the firsts
and a value of 0.76 in axons remyelinated by the repair attempt of the seconds
[3]. Edgar and Griffiths reported normal g-ratios in a range of 0.6− 0.7 [75], while
Innocenti reported a theoretical work of the 70s according to which the g-ratio is
a quasi -constant parameter with value 0.71 in the monkey and 0.68− 0.69 in the
mouse [108]. It is possible to calculate the number of myelin wraps relying on the
simple calculation of the myelin thickness mt as:

mt =
dinner(

1
g − 1)

2
, (2.1)

and dividing it by one myelin unit depth of 210 Å[164]. Considering an axon
diameter of 0.9 µm and g-ratio of 0.6, 0.65, 0.7 and 0.75, the respective result-
ing number of wraps is ∼ 14, 11, 9 and 7. In the cells membranes of the brain
are present water-channel proteins called acquaporins that can modify the mem-
branes permeability to water. In general the topic of permeability and thus also
of exchange is important for life as one of its fundamental characteristics beyond
being informative about the membrane itself. In this case, studying the possible
exchange mechanisms mediated by myelin is an important step in its structure
and role understanding.

Several techniques were used to calculate the membrane permeability of the
mammalian red blood cell such as diffusion NMR, Mn2+ doping 1H NMR method
and diffusion studies with magnetic field inhomogeneity. They all provided similar
results, finding a high permeability in the range of 49 − 112 µm/s at 37◦ in various
species. More directly speaking of exchange and in particular of exchange time (τ),
to the best of our knowledge it is difficult to find a clear reference for human brain τ
validated from literature. It was sometimes referred to Pfeuffer et al. [167] and more
usually to Quirk’s group work [172]: in the first case τ was estimated around 50 ms
through Kärger model fitting to pulsed gradient spin echoes (PGSE) experiments
on perfused glial cells; in the second one τ was recovered to be around 550 ms
via Bloch-McConnell exchange modeling of longitudinal relaxation experiments of
in-vivo rats with injected MR relaxation agent into the extracellular space. More
recently, Dortch et al. [71] recovered τ in rat optic nerve and frog sciatic nerve ex-
vivo tissues directly via Relaxation Exchange Spectroscopy (REXSY) and found
a value of 138 ± 15 ms and 2046 ± 140 ms respectively. When the exchange has
been incorporated in the analysis of WM dMRI data, Nilsson et al. found exchange
times in healthy white matter in the order of seconds (1.25− 2.5 s) using Filtered
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Fig. 2.1: Illustration of myelin structure from the work of Laule and colleagues
[129]. An axon wrapped by myelin is shown along with a representation of one
myelin bilayer unit.

EXchange Imaging (FEXI) [152] whereas Nedjati-Gilani et al. found values in the
subsecond range (0.5 − 0.6 s) using a random forest regressor trained on Monte
Carlo simulations [146]. It is evident how this issue is still to solve and requires a
wider investigation to disentangle the permeability role in brain diffusion modeling
and physiological knowledge.

2.2 Diffusion MRI

2.2.1 The diffusion process

In 1855, Robert Brown observed the grains of pollen of a plant suspended in water
under a microscope and realized that they accomplished a random motion now
called Brownian motion [35]. The same physical phenomenon was observed also
for water particles which move with microscopic movements without requiring an
initial action and without generating a flux, in a scenario called diffusion process.
The diffusion coefficient (D) describes how fast the molecules diffuse. In 1905,
Einstein related the diffusion process to the mean squared displacement [76]:

〈r2〉 = 2DTD, (2.2)
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where 〈r2〉 is the mean squared displacement and TD is the time along which it is
observed. The D parameter determines the variance of the displacement distribu-
tion describing the observed diffusion process. In case of free diffusion, the longer
is TD and the higher is the distance displaced by the diffusion process. In restricted
diffusion we have the same effect as in free diffusion if observed in short TD but
for long TD the size of the medium makes the process indipendent from time. In
the last context of restriction, if we are able to obtain D we could extract geo-
metrical information of the medium in which diffusion takes place because of the
relationship in Equation 2.2. For this reason is particularly interesting to obtain
D for different TD.

2.2.2 Diffusion in cerebral tissues

More in detail, the diffusion coefficient for water at 37◦ is known to be 3.0 µm2/ms
for free diffusion, while the reduced diffusivity in restricted compartments like in
brain tissue becomes informative about the microstructure. The difference between
free diffusivity and the diffusivity in a complex medium made up of several barri-
ers provides information on the restriction due to geometrical constraints. In fact,
brain tissue as every biological tissue is a highly heterogeneous media consisting
of several compartments and barriers leading to different “apparent” diffusivities
where exchange can happen and/or where relaxation differences can occur all re-
sulting in one “apparent diffusivity” per voxel. The overall diffusion coefficient
obtained by diffusion encoding and resulting from a voxel in the brain is lower
than that for free diffusion and is called apparent diffusion coefficient (ADC).
Looking at the cytohistologic architecture of a biological tissue, it can be gener-
alized as a set of compartments all connected in an arrangement remembering a
network. Focusing on the neuronal tissue, the fibrillar structure of the WM con-
sents to assume the nervous tracts as consisting of bundles of packed axons all
aligned in a specific direction as cylinders with free diffusion along the axis and
restriction in the transversal plane forming the anisotropic signal in dMRI. On the
other side, the GM composed by bunches of neurons soma can be assimilated to
pores permitting a more free diffusion compared to axons. The CSF present in the
cavities of brain is characterized by fluid free to diffuse and consequently reason-
ably regarded as a compartment where the diffusivity can take place. However, the
brain tissue is much more complex of what just reported (as illustrated in Figure
2.2) and attention must be paid in resolving of the inverse problem that allows the
derivation of the microenvironments description. Due to this complexity, diffusion
in brain tissue is usually considered non-Gaussian, term that needs to be clarified.
In fact, Gaussian diffusion refers to the case where the displacement probability
during diffusion process is Gaussian and thus has a variance that increases linearly
with time. This means that there is a single type of diffusing particles and that
there are no barriers to the diffusion and it can be referred to as time independent.
Non-Gaussian diffusion in brain tissue may arise due to time-dependent diffusion
and/or due to multiple compartments. The non-Gaussian behaviour in the first
case is due to the variance of the displacement probability during the diffusion
process limited by the structure, in the second case the non-Gaussian behaviour of
the system is considered due to the heterogeneity of the tissue which can be con-
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stituted by different types of particles, all with approximately Gaussian diffusion
(i.e. multi-Gaussian).

Fig. 2.2: Representation of the neural tissue complexity by the Nobel prize for
medicine in 1906 Santiago Ramón y Cajal.

2.2.3 The diffusion acquisition

The MRI images ground on the signal emitted by hydrogen nuclei. Their magnetic
dipoles, referred to as spins, align with the static magnetic field B0 generated by
the clinical scanner and the perturbations of these alignments through RF and
magnetic field gradients are proportional to the detected signal. The RF pulses
rotate the spins away from B0 and the transverse precessing part of the spins
contributes to the macroscopic magnetization that decays exponentially with a so-
called T2 time, while the spins realign in B0 direction with T1 time, both depending
on the tissue composition (mainly determined by the water and fat components).
The first is tipically on the order of 100 ms, while the second is tipically on the
order of 1 s [170]. A classical spin-echo sequence consists of one 90◦ and one 180◦

RF. The first makes the spins to rotate onto the transversal plane to B0 and
start to dephase due to factors such as magnetic field inhomogeneities and dipolar
interactions, the subsequent 180◦ pulse inverts the dephasing due to magnetic field
inhomogeneities and the spins start to rephase causing a signal reproduction [25].

The dMRI is a spin echo sequence with gradient pulses employed to obtain the
PGSE [188] as in Figure 2.3. The first gradient after the 90◦ RF introduces a phase
shift dependent on G at the position of the spins in that temporal instant and, after
a waiting time (TD) (during which molecules can either diffuse or stay at the same
position), the second gradient after the 180◦ RF induces a phase shift dependent
on the position of the spins in that second temporal instant. The spins that have
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Fig. 2.3: Pulsed gradient spin echo acquisition sequence. It is composed by two
radiofrequencies at 90◦ and 180◦ and two gradient pulses just after them. The two
gradient pulses are characterized by a duration δ and a strength G, while ∆ is the
time occuring between them.

displaced during TD do not return in the same position and they do not rephase
[99]. Assuming gradients short enough to consider negligible diffusion during them,
the net phase change induced by the first is φ1 = −qx1 (where q = γδG and x1 is
the “initial” particle position) and φ2 = −qx2 is the net phase change due to the
second one. More in detail, γ is the gyromagnetic ratio characteristic of hydrogen
atoms of water (42.58exp(6) Hz/T), while δ and G are the duration and gradient
strength respectively. The phase induced by the magnetic field is ignored since is
constant for all spins in the ensemble. The phase change reversion caused by the
180◦ leads to the net phase change

φ2 − φ1 = −q(x2 − x1). (2.3)

Because of Equation 2.3, no net phase shift is stored for stationary particles. On
the contrary, the signal given by the sum of the magnetic moments of all spins for
diffusing particles is attenuated due to the orientation incoherence of individual
magnetic moments. The measured signal can be expressed as:

S(q, TD) = S0 exp
[

−(q2TD)ADC
]

(2.4)

where TD = ∆ − δ/3 (∆ is the time between the two pulses). The only param-
eters that are possibly turneable on the MRI scanner are q and TD (q2 · TD is
more commonly known as b-value). The diffusion signal from one voxel, whose
dimension is in the order of mm3, reflects all the signal contributions from com-
partments constituting the tissue microstructure at micrometer and millisecond
scale. It is important to highlight that q determines the maximum displacement
that we are sensitive to, while TD determines the resolution limit in the size of
the microstructural environments probed [188, 74]. The acquisition with gradients
in different directions collects the ADC variation in the three-dimensional space
that enables a complete description of the tissue. Another important aspect to
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be considered is the role of T2 relaxation that occurs with the application of the
RF pulses as previously described. Taking this factor into account, Equation 2.4
becomes [188, 74]:

S(q, TD) = S0 exp
[

−(q2TD)ADC
]

· exp
(

−TE
T2

)

(2.5)

where TE is the echo time defined as the time from the first 90◦ RF to the echo.
Other issues regard the maximal available G in clinical scanners that lead to low
q-values implicating no contrast to the smallest diameters, and the finite pulse
width that usually ends in ∆ ∼ δ implying that the diffusion goes on also during
the pulse without possibility to be ignored and causing apparently smaller pores
sizes derivation [74, 142].

An alternative to PGSE is the PGSTE sequence that takes advantage of the
fact that, in this sequence, a slower T1 decay is more consistent than the T2 decay
during TD [194]. More in detail, the sequence is composed by three 90◦ RF with the
first gradient pulse between the first and the second RF and the second gradient
pulse after the third RF. The time between the second and third 90◦ RF is called
mixing time (TM) during which the phase encoding is stored along the longitudinal
axis and is thus only exposed to the T1-relaxation, while T2 is now present only for
TE/2 [43]. The second 90◦ RF is indeed now used to place the net magnetization
back into the transversal plane. The signal becomes:

S(q, TD) = S0 exp
[

−(q2TD)ADC
]

· exp
(

−TE
2T2

)

· exp
(

−TM
T1

)

. (2.6)

The same aforementioned hardware constraints still affect the acquisition and a
long TD is reached at price of 50% of SNR less than PGSE [74]. Figure 2.4 shows
an illustrative PGSTE sequence.

Fig. 2.4: Pulsed gradient stimulated echo (PGSTE) acquisition sequence. It is
composed by three radiofrequencies at 90◦ and two gradient pulses just after the
first and third ones. The two gradient pulses are characterized by a duration δ and
a strength G, while ∆ is the time occuring between them.
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It must be mentioned that recent advances in developing encoding sequences
have been done. In particular, FEXI [128] introduces adavantages over PGSE or
PGSTE. Its main advantage is the ability to disentangle exchange from restriction
employing two PGSE sequences. The two PGSE sequences constitute the diffusion
weighting blocks with constant diffusion times while the mixing time between the
two is varied. In this way, the first PGSE acts as a low pass diffusion filter attenuat-
ing signal from fast diffusing molecules after which exchange takes place restoring
the equilibrium between different diffusion components. The second PGSE block
provides information for the derivation of the ADC varying the mixing time which
can be used to quantify the apparent exchange rate (AXR). The AXR depends on
characteristics like the cell membrane permeability. FEXY is advantageous also
compared to other sequences for exchange filtering like Diffusion EXchange Spec-
troscopY (DEXSY) [48] or Filter EXchange SpectroscopY (FEXSY) [11]. In fact,
it is an even more sparse protocol than FEXSY compared to DEXSY that makes
it clinically feasible and advantageous at low SNR.

2.2.4 The propagator formalism

The dMRI signal can be directly related to the probability that particles travel for
a certain displacement in a considered direction during the TD. This probability
was derived in the context of the diffusion process by Einstein [77] as mentioned
in Section 2.2.1. The diffusion propagator or EAP from the PGSE signal was
formalized by Stejskal and Tanner and is related to the diffusion signal through the
Fourier relation [188] when assuming δ short enough to be considered negligible:

P (r) =

∫

q∈R3

E(q) exp(2πiq · r)dq (2.7)

where E(q) = S(q)/S0 is the normalized diffusion signal.
The collection of a huge amount of data in the q-space could lead to a direct

derivation of the EAP via Fourier transform [47] but the strong influence by the
microscopic environment limits this solution due to practical issues related to
dMRI sensitivity.

In real condition, the gradient pulse has a finite duration and enables the
PGSE spin-echo amplitude expression in terms of the spatial Fourier transform of
the center-of-mass propagator [142]. This can be seen as an extension of the afore-
mentioned diffusion propagator since we should consider the additional random
walks of duration δ with initial points uniformly distributed within the pore. Ef-
fect of such acquisition constraint consisting in the finite pulse duration makes the
pore appear smaller than its actual size. This issue is relevant since great interest
has been devoted in microstructure modeling able to derive, for example, the mean
axon diameter. In order to accomplish this effort, more advanced techniques com-
pared to PGSE could be used such as the oscillating gradient spin echo (OGSE)
[91, 224]. In fact, OGSE have been developed to reach short diffusion times (e.g.
1 − 2 ms) replacing the diffusion gradients with oscillating diffusion-sensitizing
gradients. A temporal diffusion spectrum which is derivable by varying the oscil-
lating frequency should be more sensitive to small axons. Recently, a framework
independent from the gradient waveform has been developed for calculating the
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lower bound for accurate axon diameter estimate and is referred to as resolution
limit [150]. Analysing only the intra-axonal space and assuming the axons as im-
permeable cylinders, single diffusion encoding sequences resulted as having the
lowest resolution limit in case of parallel cyilinders while square-wave oscillating
gradients were the optimal ones in presence of orientation dispersion. The limit
thus depends from factors like the orientation dispersion or the noise level, and for
standard clinical MRI was in the range 4 − 8 µm while this was lower for higher
gradient strengths.

However, models linking the diffusion process to either the signal or EAP func-
tions from collection of DWIs are being investigated for inferring voxel-averaged
microscopic descriptors of the tissue. For example, the Gaussian modeling is largely
employed as we will better describe in Chapter 3 and the propagator takes the
form:

P (r,u, TD) =
1

√

(4πTD)3|D|
exp

(−r2uTD−1u

2TD

)

(2.8)

where D represents the 3×3 symmetric matrix describing the diffusion tensor and
u is the unit vector in the considered direction. In ideal conditions of narrow δ and
TD ≫ a2/D (where a is the pore characteristic size), the propagator exactly reflects
the pore shape as mentioned in Section 2.2.1, enabling the derivation of brain
microstructure measures [46]. However, since the nervous tissue architecture is
complex within each voxel, many other methods overcoming the derivation of only
three parameters as in this technique have been developed and found to be more
convenient for the compact representation of the signal as well as of the estimated
quantities, while improving the robustness to noise [10, 65, 104]. Moreover, features
of the tissue like cell size, shape, and transmembrane exchange following from the
restricted character of the diffusion process are extremely important in biomedical
applications, and possibly modeled by more complex models as detailed in Chapter
3.
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State of the Art

This chapter aims at illustrating the main dMRI signal reconstruction models cur-
rently available in the state of the art as well as the respective derivable microstruc-
tural parameters. The most common classification is done on the assumption or
not of a generative model of the underlying tissue microstructure [90]. Second
aim of the chapter is to introduce the main models assumption and the related
limitations.

3.1 Signal reconstruction models in diffusion MRI

3.1.1 Signal models

Signal models rely on the representation of the signal as a linear combination of
basis. The projection coefficients are most often obtained by fitting the function
representing the signal to the measured signal. In describing them, we start from
the simplest and most popular Diffusion Tensor Imaging (DTI) and progressively
introduce techniques capable to overcome some of its limitations.

Diffusion Tensor Imaging

DTI [23, 24] assumes that the dMRI signal can be described by a single multivariate
Gaussian function:

E(q) = exp(−4π2TDqTDq). (3.1)

The eigenvalues and the eigenvectors of D reflect some microstructural character-
istics. More in detail:

D = λ1v1v1
T + λ2v2v2

T + λ3v3v3
T (3.2)

where λi is the eigenvalue corresponding to the eigenvector vi. In particular, the
first eigenvector v1 has the highest eigenvalue among the three and thus corre-
sponds to the main diffusion direction in the tissue. Specifically, the eigenvalue λ1
is the ADC in the principal diffusion direction. One of the main advantages of
DTI is short acquisition time, due to the low number of diffusion gradients that
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are required for the tensor estimation. The minimum number of necessary images
is six, each corresponding to a different direction, and one baseline image (b0) used
for S0 calculation. D is then recovered in each voxel through the determination of
its coefficients via the least squares fitting [124]. Information reflecting the under-
lying microstructure can then be derived from the eigenvalues. In particular, the
FA, Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD)
can be derived as follows: [22, 123, 220]:

FA =

√

1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ21 + λ22 + λ23
(3.3)

MD =
λ1 + λ2 + λ3

3
(3.4)

RD =
λ2 + λ3

2
(3.5)

AD = λ1. (3.6)

Figure 3.1 provides an illustration where a high value of FA is representative of
a diffusion tensor elongated in one specific direction, that is representative of re-
stricted diffusion with parallel packed compartments (e.g. corpus callosum). The
MD is the mean value of the eigenvalues averaged in all the three principal di-
rections. A high value is typical of free diffusion and corresponds to a symmetric
(spherical) tensor. The RD and AD give a clearer idea of the diffusion profile shape,
respectively disentangling the diffusivity in the transversal plane and along to the
main diffusion direction.

The EAP for the DTI model is calculated via Fourier transform and was stated
in Equation 2.8. From this Equation is possible to derive the ODF, that is a
function on the sphere representing the probability that the water molecules move
in a particular direction, r in the unit time. As it is well known, the single tensor
model is unable to capture multiple peaks of diffusivity in regions with complex
architectures like fiber crossing or fanning (e.g. corona radiata) [28, 60, 114].

The Multi-Tensor model can be seen as a natural extension of DTI [203, 180].
The signal is modeled as the sum of the signal contributions arising from the
different compartments in the underlying tissue assuming no exchange:

E(q) =

M
∑

i=0

νi exp (−4π2TDqTDiq) (3.7)

where M is the number of compartments, νi is the volume fraction and Di is the
diffusion tensor associated with the ith compartment. Generally, the propagator,
the ODF and each index of the Multi-Tensor model can be computed as the
sum of the single tensor contributions. The Multi-Tensor model has two principal
limitations: the number of compartments in each voxel is different and unknown a-

priori, and its fitting procedure for finding volume fractions and diffusion tensors is
non-linear leading to a high number of required samples spread on multiple shells.
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Fig. 3.1: DTI indices calculated on one healthy subject data. The subject under-
went DWI acquisition on a 3T Philips clinical scanner providing written informed
consent to the University Hospital of Verona. The acquisition scheme consisted of
7 images at b = 0 s/mm2 and two shells with b = 700 s/mm2 and 24 diffusion gra-
dients (∆ = 0.0579 ms and δ = 0.0138 ms), and b = 2000 s/mm2 and 48 diffusion
gradients (∆ = 0.0458 ms and δ = 0.0283 ms) respectively; TR/TE = 8500/91 ms,
FOV = 230×230 mm, 120 slices, 2×2×2 mm resolution. Data were pre-processed
applying topup, eddy current-induced distortions, and subject movement correc-
tions.

Diffusion Kurtosis Imaging

The use of higher order tensors allows a finer dMRI signal representation, empha-
sizing tissue characteristics due to non Gaussian diffusion [89]. Diffusion Kurtosis
Imaging (DKI) grounds on the fourth order tensor corresponding to kurtosis [113].
The signal model is:

S(b) = S0 · exp



−b
3
∑

i,j=1

Dijgigj +
b2

6
MD2

3
∑

i,j,k,l=1

Wijklgigjgkgl



 (3.8)

whereDij are the coefficients ofD, andWijkl are the coefficients of the fourth order
cumulant kurtosis tensor. Since the symmetric kurtosis tensor is of dimensions
3 × 3 × 3 × 3, at least fifteen diffusion directions and two baseline images need
to be acquired. DKI characterizes the kurtosis of the signal highlighting whether
the departure from Gaussian behaviour is in a negative (platykurtic distribution)
or positive (leptokurtic distribution) sense. From kurtosis tensor, indices similar
to those derived from DTI can be obtained that are Mean Kurtosis (MK), Radial
Kurtosis (RK) and Axial Kurtosis (AK) [82, 192] (Figure 3.2).

One of the limitations of the DKI model is the long image acquisition time
compared with that for DTI [189]. A minimum of images in different directions
bigger than those for DTI are required to calculate the added higher order kurtosis
tensor. Another limitation is the complexity of the DKI model compared to DTI
considering that it relies on 21 independent parameters instead of 6 [189].
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Fig. 3.2: DKI indices calculated on one healthy subject data. The subject under-
went DWI acquisition on a 3T Philips clinical scanner providing written informed
consent to the University Hospital of Verona. The acquisition scheme consisted of
7 images at b = 0 s/mm2 and two shells with b = 700 s/mm2 and 24 diffusion gra-
dients (∆ = 0.0579 ms and δ = 0.0138 ms), and b = 2000 s/mm2 and 48 diffusion
gradients (∆ = 0.0458 ms and δ = 0.0283 ms) respectively; TR/TE = 8500/91 ms,
FOV = 230×230 mm, 120 slices, 2×2×2 mm resolution. Data were pre-processed
applying topup, eddy current-induced distortions, and subject movement correc-
tions.

Diffusion Spectrum Imaging

As mentioned in the previous Sections, the Stejskal-Tanner formalism enables the
direct estimation of the EAP from the signal. Diffusion Spectrum Imaging (DSI)
derives it by Fast Fourier Transform [215] without making any assumption on the
diffusion process. A discrete q-space sampling on a Cartesian grid is performed,
which is required to be dense for a good approximation of the EAP. Many diffusion
directions are acquired up to high b-values (typically 8000 s/mm−2) in order to
resolve very small features of the tissue from EAP. Moreover, the desirable short
δ for satisfying the narrow pulse approximation (NPA) further prompts to high
|G|. Unfortunately, the required conditions make acquisition times and b-values
hardly feasible in clinical conditions due to long scan durations, high impact Eddy
current distortions and possibly harmful electric fields in the subject caused by
the coils movement in the attempt to reach these strong gradients in short times
(in some works, more than 500 DWIs were acquired and bmax =∼ 20000 s/mm−2

was used) [218, 215].

Orientation Distribution Function driven methods

The importance of the ODF derivation for performing tractography also in cases
of crossing fibers is such that some reconstruction methods were developed with
the aim to just obtaining a high resolution ODF. From the EAP it is possible to
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derive the ODF, that maps the EAP on the sphere and can be seen as the radial
average of the EAP. It is obtained as the integral of the EAP along its radius:

ODF (u) =

∫ ∞

0

P (ru)r2dr. (3.9)

In q-ball Imaging (QBI), the diffusion signal is described through real symmet-
ric spherical harmonics (SH) basis. The q-space is sampled on a single shell and
only the angular part of the signal is modeled [202, 65]. Specifically, the diffusion
signal is represented as:

E(u, q) =

N
∑

l=0,even

l
∑

m=−l

clmY
m
l (u) (3.10)

where clm are the coefficients associated to the SH function Y m
l and their number

is (l + 1)(l + 2)/2. The SH coefficients are retrieved via regularized least squares
methods and are used to approximate the ODF using the Funk-Hecke Theorem.

The ODF can be seen as a blurred version of the fiber ODF (fODF) that
represents the principal directions of diffusion corresponding to the peaks of the
ODF. More in detail, the signal is assumed as given by a spherical convolution
between the response function of an ideal single fiber bundle (e.g. corpus callo-
sum), a kernel generally assumed constant for the whole WM, and a spherical
density function which is the fODF representing the distribution of the fiber ori-
entations in the voxel. This model was first described in [211]. The deconvolution
process allows to retrieve the underlying fODF starting from the signal and the
known single fiber signal diffusion kernel (acting as a response function). The two
principal techniques used for the deconvolution are a modified Richardson-Lucy
deconvolution algorithm [2, 161] and the Constrained Spherical Deconvolution
(CSD) using the SH basis [200, 199]. In CSD, the single fiber response function
is assumed to be axially symmetric and it is estimated from voxels with high FA
values and thus most probably containing only single fiber bundles. The fODF is
modeled as a sum of Dirac delta functions and the deconvolution problem is lin-
early solved by representing the signal, the fODF and the response function in the
SH basis. The fODF is obtained by an iterative regularisation process. Recently, a
multi-shell multitissue CSD (MSMT-CSD) generalization involving a multi-q-shell
spherical deconvolution was proposed [115] which is able to discern also between
cerebrospinal fluid (CSF), GM and WM crossing fibers [115] besides providing
improved performance [67].

From the ODF it is possible to derive a measure of anisotropy calculated as its
“variance” called Generalized FA (GFA):

GFA =

√

n
∑n

i=1 ψ(ui)− 〈ψ〉)2
(n− 1)

∑n
i=1 ψ(ui)2

(3.11)

where ψ(ui) is the ODF sampled along direction i and 〈ψ〉 is its mean over all
directions. GFA was first introduced by Tuch [202] when he formalized the QBI.
The method reconstructs the signal acquired with multiple b-values and directions
[High Angular Resolution Diffusion Imaging (HARDI) signal] via Funk-Radon
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transform leading to resolve multiple fiber orientations within the voxel. The b-
value dependence of GFA is consequence of the same ODF dependence from which
is derived and thus is consequence of the reconstruction model used. For example,
Tournier et al. [201] have shown that 4000 s/mm2 was the minimum b-value re-
quired for resolving 45◦ crossing with QBI, while 2000 s/mm2 was sufficient with
CSD although a bias in the orientations could be introduced. The main cause of
this difference is the fact that lower b-values lead to a more blurred QBI ODF
from which the presence of two peaks could be indistinguishable. On the other
hand, too high b-values could result in the fitting of noise instead of signal. There-
fore, it is important for results interpretation task to discern among the optimal
and acceptable acquisition parameters required depending on the reconstruction
method.

Methods based on functional basis

Many analytical approaches for calculating EAP were proposed in literature. These
reconstruction methods allow the interpolation of the data in both the q-space
and the real space since the signal is represented with functional basis having
analytical or closed forms Fourier transformations. More in detail, functional bases
decompose the diffusion signal E(q) as a linear combination of functions Ψn(qu):

E(q) =
∑

n=0

cnΨn(qu) (3.12)

and the coefficients cn are recoverable using regularized least squares optimization
[65, 141] or quadratic programming [159]. The EAP is then calculated by applying
the Fourier transform to Equation 3.12.

Among these, the 3D-SHORE is of particular interest for its approximation
capabilities. It employs a monoexponential decaying function in the radial direc-
tion modulated by Laguerre polynomials L, and an angular profile described by
spherical harmonics as functional basis [158]. Specifically, the basis functions are:

Ψjlm(ζ, qu) =

[

2(j − l)!

ζ3/2Γ (j + 3/2)

]1/2(
q2

ζ

)l/2

exp

(−q2
2ζ

)

L
l+1/2
j−l

(

q2

ζ

)

Y m
l (u)

(3.13)
where ζ is a scaling parameter and j, l and m are the indices for the representation
of the series involving spherical coordinates.

The same model expressed in terms of Cartesian coordinates is the Mean Ap-
parent Propagator MRI (MAP-MRI) model [159]. In this case, three scaling pa-
rameters ζx, ζy and ζz are enabled along the three principal directions, as opposed
to the case of SHORE where a single scaling parameter ζ can be used. The sep-
arable solution in the Cartesian space was then introduced leading to a Hermite
polynomial series representation:

Ψk1k2k3
(Z,q) = ψk1

(ζx, qx)ψk2
(ζy, qy)ψk3

(ζz, qz) (3.14)

with

ψk(Z, q) =
i−k

√
2kk!

exp (−2π2q2ζ2)Hk(2πqζ) (3.15)
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with Z = [ζx, ζy, ζz]
T and Hk the kth order Hermite polynomial. Zucchelli et al.

[230] proposed an extension of the MAPMRI model called Multi-Tensor MAPMRI
(MT-MAPMRI). MT-MAPMRI improves the reconstruction for crossing fibers
which takes advantage on the initial single tensor fitting by fitting more than one
axially symmetric tensors.

Other models based on functional basis that is worth mentioning are the Dif-
fusion Propagator Imaging (DPI) where the diffusion signal equation is obtained
by solving the Laplace equation in spherical coordinates [66]; the Bessel Fourier
Orientation Reconstruction (BFOR) model where the full and analytical Fourier
transform in spherical coordinates were derived from the heat equation [105]; and
the Spherical Polar Fourier Imaging (SPFI) using a Gauss-Laguerre representation
with its full analytical Fourier transformation [16, 51, 58, 57].

It is important to say that the accuracy of signal description by the basis
obviously depends on the basis parameters and moreover on the fitting of the
coefficients through the optimization [79, 141]. The number of coefficients depends
on the maximal basis order N and must not exceed the number of DWIs for a
reliable fitting.

Microstructural descriptors

From the aforementioned methods, microstructural indices can be derived from
the EAP. Among these are the Return To Origin Probability (RTOP) or the
Mean Squared Displacement (MSD), the Return To Axis Probability (RTAP), the
Return To Plane Probability (RTPP), the Propagator Anisotropy (PA) and the
Non-Gaussianity (NG) [159].

The RTOP is the probability that the particles do not move during the observed
diffusion time and it is formalized as:

RTOP = P (0) =

∫

R3

E(q)d3q. (3.16)

Under assumptions of narrow pulses and long diffusion time, RTOP is proportional
to the reciprocal of the apparent pore volume in which diffusion is supposed to
take place and thus can be considered as a measure of restriction. It was firstly
introduced in Özarslan et al. [159] along with RTAP and RTPP that are respec-
tively the integral of the EAP along the main diffusion direction and over the plane
passing through the origin and perpendicular to the main diffusion direction:

RTAP =

∫

R

P (r‖)dr‖ =

∫

R2

E(q⊥)d
2q⊥ (3.17)

RTPP =

∫

R2

P (r⊥)d
2r⊥ =

∫

R

E(q‖)dq (3.18)

where P (r‖) is the propagator along the main diffusion direction r‖, while P (r⊥)
indicates the propagator over the plane through the origin and along r⊥ which
is the direction perpendicular to the main one; q⊥ is the plane passing through
the origin and perpendicular to the main diffusion direction and q‖ is the main
diffusion direction. Also RTAP and RTPP are proportional to the inverse of the
apparent cross-sectional area and the apparent mean length of the compartment



28 3 State of the Art

where diffusion takes place under the aforementioned conditions. All the indices
of no net displacement between the two gradient pulses are illustrated in Figure
3.3.

Fig. 3.3: 3D-SHORE indices of no net displacement calculated on one healthy
subject data. The subject underwent DWI acquisition on a 3T Philips clinical
scanner providing written informed consent to the University Hospital of Verona.
The acquisition scheme consisted of 7 images at b = 0 s/mm2 and two shells with
b = 700 s/mm2 and 24 diffusion gradients (∆ = 0.0579 ms and δ = 0.0138 ms), and
b = 2000 s/mm2 and 48 diffusion gradients (∆ = 0.0458 ms and δ = 0.0283 ms)
respectively; TR/TE = 8500/91 ms, FOV = 230× 230 mm, 120 slices, 2× 2× 2
mm resolution. Data were pre-processed applying topup, eddy current-induced
distortions, and subject movement corrections.

The PA represents an index that relates the entire three-dimensional apparent
propagator to a measure of anisotropy that can be expressed as an angular metric
between the propagator and its isotropic counterpart:

PA = σ(sinθPO, ǫ) (3.19)

where σ(·) is a scaling function
[

σ(t, ǫ) = t3ǫ

1−3tǫ+3t2ǫ

]

(t is the quantity to scale,

e.g. sin θPO) and ǫ is a positive-valued shape parameter that determines the range
of values to be emphasized by the transformation.

Finally, the NG is an index that quantifies the dissimilarity between the prop-
agator P (r) and its Gaussian part G(r) readily available from a diffusion tensor
analysis. The NG is defined as NG = sin θPG and can be seen as an alternative
measure to kurtosis [159].

MSD has been proven to be closely related to the classical MD index, sharing
similar patterns and representing the net mean square displacement of the water
molecules in the unit time [223]. MSD is computed as follows:

MSD =

∫

R3

P (r)r2d3r (3.20)
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It has been shown that when reconstructing with partial data at lower b-values,
scalar maps of indices derived by MAPMRI (in particular PA) are affected even if
they are similar to the original ones [159]. Aiming to investigate a clinical feasible
protocol for accurately reconstructing signal with MAPMRI, Avram et al. [17, 18]
demonstrated that reducing the number of DWIs does not significantly affect the
indices derivation when high b-values are included. MAPMRI optimal protocol
can thus be accelerated taking advantage by reducing the number of acquisition
but keeping relatively large b-values. In particular subsampled datasets containing
only 150 DWIs converged to within 5% error when images with b > 4000 s/mm2

were included.

3.1.2 Compartmental models

The idea beyond the compartmental reconstruction methods is the assumption of
a generative model of the tissue microstructure. The compartmental models aid in
the disentanglement of some phenomena otherwise hardly distinguishable like the
presence of a slow and fast diffusions observable in normal diffusion signal from
cerebral tissue, or the partial volumes between GM and WM or CSF. These fall in
the category of biophysical models as assumptions are made on the different com-
partments contributing to the signal and the corresponding signal contribution.

In what follows, the main compartmental models are briefly summarized.
Generally, diffusion in cerebral tissue is considered to take place in three princi-

pal conditions: restricted in compartments where only one main diffusion direction
is allowed, like axons, hindered in compartments where diffusion is still not Gaus-
sian yet less restricted, like extracellular tissue or cells present in WM as the glial
cells, and free in compartments where free diffusion can be allowed, like the CSF.

The simplest biophysical model is the Ball&Sticks that models the restricted
diffusion as a tensor with λ1 = 1, λ2 = λ3 = 0 (the ’sticks’) along the main diffusion
direction for the intracellular compartment while an isotropic Gaussian (the ’ball’)
is used to model the unrestricted diffusion [27]. A more realistic representation
of fiber bundles can be obtained by extending the model for accounting for the
distribution of fiber orientations.

In the Composite Hindered and Restricted Model (CHARMED) the restricted
diffusion compartment is a cylinder with a fixed diameter and the hindered diffu-
sion one is a diffusion tensor [14]. The signal model is then represented by:

E(q) = νhEh(q) + νrEr(q) (3.21)

where Eh is the model of the signal coming from the hindered compartment, Er

is the model of the signal coming from the restricted one and νh + νr = 1 are the
volume fractions.

AxCaliber then introduced an alternative to CHARMED, allowing to estimate
the diameters of parallel structural components when a diffusion gradient perpen-
dicular to the main diffusion direction is applied [13]. More in detail, the fiber
population diameters are assumed as coming from a Gamma distribution and the
restricted signal is represented via Callaghan’s model under short gradient pulse
assumption [46].
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ActiveAx is another improvement of the CHARMED method assuming four
tissue compartments: the axons represented by Gaussian phase distribution ap-
proximation [145] of the signal from particles in a cylinder [205], the extra-axonal
water represented by a diffusion tensor, the CSF modeled through an isotropic
Gaussian and the stationary water as in glial cells represented by a constant signal
equal to 1 [6].

The Neurite Orientation Dispersion and Density Imaging (NODDI) model al-
lows the cylinders (again represented as sticks) to disperse. The three main com-
partments in which the overall diffusion signal is divided are the free water com-
partment, the intra-neurite compartment and the extra-neurite one. The signal is
[225]:

E(q) = (1− νiso)(νinEin + (1− νin)Een) + νisoEiso (3.22)

where the subscript iso is for the free water compartment, in is for the intra-neurite
compartment and en is for the extra-neurite compartment. A linear optimization
for the fitting of these parameters was also provided with the advantage of greatly
reducing the computational time. The dispersion of cylinders is modeled by the
Watson distribution [226]. Recently, Lampinen et al. [127] have demonstrated the
invalidity in brain and gliomas of NODDI constraints. More in detail, the intra-
cellular volume fraction directly connected to the mean diffusivity of the tissue
by tortuosity assumption leads to greater water levels with microscopic diffusion
anisotropy in GM and glioma tumors. To obtain more data-driven estimates, they
proposed the employment of b-tensors with variable shape.

Typical biomarkers derivable from the aforementioned models are the volume
fractions of the isotropic, the intra-neurite and the extra-neurite compartments
as illustrated in Figure 3.4, obviously in addition to all the parameters let free in
the fitting. NODDI also introduced the Orientation Dispersion Index (ODI) which
describes the neurites direction distribution [225]. A further evolution of the model
was then provided by replacing the Bingham with the Watson distribution [117].

Extracellular tissue compartment is usually assumed Gaussian and thus gener-
ally modeled as a tensor independent by diffusion time [7, 13, 15, 226]. Recently,
it has been shown that this compartment diffusion in the orthogonal plane to the
main fiber orientation is dependent from time [155]. Moreover, it can generate
a bias in axon diameter and density estimates if not considered in the modeling
[155]. Based on this, De Santis et al. [63] proposed a two compartment model
composed by the restricted and the hindered compartments, where the novelty
was the modeling of the hindered compartment representative of the extracellular
tissue described by:

Sh(q, ∆) = exp[−4π2(∆− δ/3)qTDhq], (3.23)

where

Dh =







Dh,‖ 0 0

0 Dh,∞ +A ln(∆/δ)+3/2
∆−δ/3 0

0 0 Dh,∞ +A ln(∆/δ)+3/2
∆−δ/3






. (3.24)

Dh,‖ can be chosen as free parameter like in CHARMED [15] or linked to the
longitudinal diffusion in the restricted compartment via tortuosity approximation
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Fig. 3.4: NODDI indices of volume fraction calculated on one healthy subject data.
The subject underwent DWI acquisition on a 3T Philips clinical scanner providing
written informed consent to the University Hospital of Verona. The acquisition
scheme consisted of 7 images at b = 0 s/mm2 and two shells with b = 700 s/mm2

and 24 diffusion gradients (∆ = 0.0579 ms and δ = 0.0138 ms), and b = 2000
s/mm2 and 48 diffusion gradients (∆ = 0.0458 ms and δ = 0.0283 ms) respectively;
TR/TE = 8500/91 ms, FOV = 230×230 mm, 120 slices, 2×2×2 mm resolution.
Data were pre-processed applying topup, eddy current-induced distortions, and
subject movement corrections.

[191] like in NODDI [227]. Dh,∞ is the bulk diffusion constant while A is the
characteristic coefficient for ln(∆/δ)+ 3/2 (used when ∆/δ ≫ 1 [42]). For a wider
understanding of such a modeling, Fieremans et al. [81] provided an investigation
comparing the conventional two-compartments model in which time-dependence
is considered only for the intra-axonal compartment and the extra-axonal time-
dependent model at the basis of the aforementioned study.

All the signal reconstruction models just mentioned consider the restricted
compartments representing WM as completely impermeable. With the aim of
overcoming such a limitation, in this work, a wide-spectrum review of the lit-
erature regarding permeability/relaxivity was performed. Next Section provides
an overview on the topic.

3.2 Permeability in dMRI

Talking about permeability, a distinction must be done on the difference between
osmotic and diffusional permeability. Osmotic permeability takes place when an
osmotic pressure gradient is present over the membrane and is generally greater
than the diffusional one [209]. The dMRI experiments are assumed to be done in
absence of osmotic permeability and thus we generally refer to diffusional perme-
ability throughout the thesis. In this thesis we aim at sheding light on strategies
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used to extract information on the brain tissue depending on the permeability. In
some cases, it was difficult distinguishing the proper studies on the topic due to
the used nomenclature. In particular, this was the case of studies on surface relax-
ivity that is a microscopic phenomenon that is correlated to the permeability from
a macroscopic point of view but from which is important making a distinction.
Among these studies on the surface relaxivity we investigated the Multiple Propa-
gator [59] and the Multiple Correlation Function [95, 96]. More properly, diffusional
permeability implies an exchange and thus multiple compartments through which
this has place. The Kärger model [119] is a multi-compartment reconstruction
method grounding on this phenomenon. Other strategies different from the signal
modeling to assess cerebral microstructure characteristics depending on perme-
ability are proposed. This is the case of specific acquisition sequences and opti-
mization routines, together with numerical simulations to realize the exchange as
a flux through the barriers. Figure 3.5 represents the entire picture of strategies
described above.

Fig. 3.5: schema representing the review of permeability in dMRI. The Multiple
Correlation Function and the Multiple Propagator are methods for investigating
surface relaxivity that must be distinguished from permeability which implies ex-
change through multiple compartments. Among the methods used to investigate
this topic we see the Kärger model for reconstructing the signal, numerical sim-
ulations and other strategies such as new acquisition sequences and optimization
routines.

3.2.1 Surface relaxivity

In the study of this phenomenon, the reference system is placed inside a particular
geometry (e.g. typically slab, cylinder, sphere) and the world system is confined
within the walls of the considered shape. In this case, the collision of the water
particles with the walls gives information about the properties of the boundaries.
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More in detail, these impacts cause a lost of magnetization depending on the sur-
face relaxivity which have the same effect of permeability if considered from a
macroscopic point of view. The signal attenuation is thus modeled through relax-
ivity and is modulated by the surface-to-volume ratio of the compartment in which
the world system is placed.

The parameter involved in the study of this mechanism is:

M =
1

s

∫

µ(r)df (3.25)

where M [cm/s] is the average value of the surface sink strength density µ(r)
over the active surface s (df is the surface element) [36]. The signal attenuation
mechanism due to surface relaxivity is governed by a dimensionless variable h =
Ma
D .

Limiting the investigation to WM diffusion signal reconstruction models and
considering the cylinder as the more suitable geometry for representing the axon,
Callaghan was one of the firsts to derive the PGSE nuclear magnetic resonance
signal under conditions of wall relaxation [44]. Together with Codd, he also pro-
posed a matrix formalism named Multiple Propagator [59] to simulate the PGSE
signal in a general gradient waveform. Successively, Grebenkov proposed another
matrix formalism based on the Laplacian operator and called Multiple Correlation
Function [95, 96].

Multiple Propagator

The assumption of the NPA allows re-writing Equation 2.7 as [188, 46]:

E(q, ∆) =

∫ ∫

ρ(r, 0)P (r|r′, ∆) exp [i2πq · (r′ − r)] drdr′ (3.26)

where the propagator is formalized as a conditional probability that a molecule
starting from r at t = 0 arrives in r′ at t = ∆, and ρ(r, 0) is the starting spin
density that may be considered as the pore molecular density function ρ(r) indeed
thanks to NPA.

Since the basic differential equation governing the propagator is the Fick’s law,
the propagator can be developed by Eigenmode expansion [44]:

P (r|r′, t) =
∞
∑

n=0

exp(−λnt)un(r)u∗n(r′) (3.27)

where un(r
′) are an orthonormal set of solutions to the Helmholtz equation pa-

rameterized by the eigenvalues λn. Since P (r|r′, 0) = δ(r − r′), the eigenfunction
expansion of P is derived for the identity δ(r|r′) =

∑∞
n=0 un(r)u

∗
n(r

′). The eigen-
values λn depend on the Robin boundary condition for the case of relaxing walls:

Dn̂ · ∇P +MP = 0 (3.28)

where n̂ is the outward surface normal, ∇P is the gradient of the propagator along
the same direction. For M = 0 we retrieve the NPA echo-attenuation as defined
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by Tanner and Stejskal [195]. In case of cylindrical pore the typical length a is the
radius and the eigenfunction expansion of P is given by:

P (r|r′, ∆) =

∞
∑

nk

exp
[

−β2
nkD∆/a

2
]

Jn(βnkr/a)Jn(βnkr
′/a)A2

nk cos(nθ) cos(nθ
′)

(3.29)
where

A2
nk = (2/πa2)(β2

nk/J
2
n(βnk))/

[

(Ma/D)2 + β2
nk − n2

]

(3.30)

A2
0k = (1/πa2)(β2

0k/J
2
0 (β0k))/

[

(Ma/D)2 + β2
0k

]

(3.31)

where Jn are the Bessel functions and the eigenvalues βnk are obtained by solving:

βnkJ
′

nk(βnk)/Jnk(βnk) = −Ma/D. (3.32)

The final cylindrical NMR signal equation with relaxing walls and assumed NPA
is [44]:

E(q,∆) =
∑

k

4 exp
[

−β2
0kD∆/a

2
] β2

0k

[(Ma/D)2 + β2
0k]

× [(2πqa)J0
′(2πqa) + (Ma/D)J0(2πqa)]

2

[(2πqa)2 − β2
0k]

2

+
∑

nk

8 exp
[

−β2
nkD∆/a

2
] β2

nk

[(Ma/D)2 + β2
nk − n2]

× [(2πqa)Jn
′(2πqa) + (Ma/D)Jn(2πqa)]

2

[(2πqa)2 − β2
nk]

2 .

(3.33)

In case of the common NPA assumption violation, Codd and Callaghan pro-
posed a matrix formalism in 1999 [59]. In particular, the gradient waveform was
subdivided in steps short enough to make valid such assumption and some matri-
ces describing the different attenuation mechanisms were obtained by the afore-
mentioned eigenfunction expansion [45]. More in detail, S represents the spectral
component of the phase factor and is dependent on the specific geometry under
examination, R is for including the time evolution associated with diffusion and
A is for the phase evolution associated with the gradient impulse:

E = S(q)R [A(q)]
m2 . . . R [A(q)]

mn . . . R [A(q)]
mN RS†(−q) (3.34)

where q is the smallest impulse used to digitize the waveform, mn are the indices
used to summarize the shape of the waveform and S† is the Hermitian conjugate
of S(q).

The formulation of the matrices for the case of cylinder with relaxing walls are
given in [59].

Multiple Correlation Function

Grebenkov proposed a formalism called Multiple Correlation Function for the sim-
ulation of the diffusion signal with the possibility to add the surface relaxation [95].
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In a confining domain with Neumann boundary conditions (i.e. without surface
relaxation) the evolution of the transverse magnetization is described by an ini-
tial state due to diffusion and a perturbation state due to encoding (Bloch-Torrey
equation) [198]. The initial state is given by the diffusive migration of the spin-
bearing particles and is represented by the diffusion coefficient D and the Laplace
operator that measures the caused change [177, 147, 36]. The perturbation state is
due to the magnetic encoding, when the spins acquire the phase shift resulting from
their precession. Since the Laplace operator has a complete set of eigenfunctions
(in all the three possible boundary conditions: Neumann, Dirichlet and Robin), it
can be used as a basis to decompose the transverse magnetization [29]. Similarly
to the approach used in the Multiple Propagator, matrices depending on the pore
geometry and representative of each attenuation mechanism of the diffusion signal
can be derived [95]. The matrix formalism can be used for any gradient waveform,
for example in the classical PGSE we have:

E = U exp [−(pΛ+ iqB)δ/Ttot] exp [−pΛ(Ttot − 2δ)/Ttot] exp [−(pΛ− iqB)δ/Ttot] Ũ
(3.35)

where U represents the initial spin density, Λ is the matrix for the attenuation
due to pure diffusion, B is the matrix for the attenuation due to phasing, p and
q are the dimensionless variables respectively corresponding to p = DTtot/L

2 and
q = γGaTtot, i is such that i2 = −1, Ttot is the total time observed and finally Ũ
is the sampling function. In the matrices multiplication we can see that the first
exponential represents the first gradient pulse in which diffusion together with
dephasing are present, the second exponential is for calculating the pure diffusion
that has elapsed during ∆ and the last exponential is the same of the first but it
has different sign due to the rephasing [95].

Up to this point, no surface relaxation was considered. To do this, Grebenkov
proposed two alternative methods [95]. Similarly to [59], the first one assumes a
uniform surface relaxation taking into account the magnetization in case of Robin
boundary condition. In this case all the governing matrices have to be re-written
in order to be put in the form described above [95]. In the alternative perspective,
a real coefficient κ for the phasing attenuation mechanism is assumed instead of
the imaginary part (iq), which corresponds to a pure relaxation mechanism. The
limitation of this mechanism only in the boundaries space allows the insertion of
the surface relaxation mechanism in the aforementioned formalism. In this case,
the PGSE formulation becomes:

E =U exp
[

−(pΛ+ iqB + phB̃s)δ/Ttot

]

exp
[

−(pΛ+ phB̃s)(Ttot − 2δ)/Ttot

]

× exp
[

−(pΛ− iqB + phB̃s)δ/Ttot

]

Ũ

(3.36)

where B̃s is the matrix for the walls relaxivity and ph corresponds to the real term
κ just discussed and it is equal to MTtot/a.

Starting from conditions as reported by Callaghan in 1995 [44], we reproduced
the cylindrical dMRI signal in case of surface relaxivity different from zero with
NPA. Figure 3.6.A illustrates the signals obtained from five different ∆ times with-
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out surface relaxation, for comparison with Figure 3.6.B where a surface relaxation
leading to h = 2 was introduced.

Fig. 3.6: Diffusion MRI signal from cylindrical pore without walls relaxivity (A)
and with walls relaxivity leading to h = 2 (B). Differences in ∆ times are color-
coded.

Figure 3.6.A shows the well known dependence from TD, that is equal to∆ since
in this experiment δ is negligible. It is interesting to observe how the diffraction
pattern reflecting the size of the cylinder becomes evident with ∆ that only slightly
overcomes a2/D (the condition according to which the particles are allowed to hit
the surface). Figure 3.6.B shows the ideal signal obtained in case of NPA and
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∆ ≫ a2/D without surface relaxivity. In particular it highlights, in case of the
surface relaxation, the diffraction effect still evident also when ∆ only slightly
exceeds a2/D. Evidently, the relaxation reduces the magnitude of the peaks and
shifts the diffraction minimum to higher values of q highlighting that the estimated
apparent radius would be reduced if this effect was ignored.

We also reproduced other experiments done by Codd and Callaghan in 1999
[59] using the Multiple Correlation Function from Grebenkov [95]. In particular,
in these experiments the surface relaxation was taken into account in simulations
employing finite gradient pulses duration. Figure 3.7 illustrates the cylindrical
dMRI signals at varying ∆, gradient strength and surface relaxation.

Fig. 3.7: Diffusion MRI signal from cylindrical pore varying ∆ along the rows
and gradient strength along the columns. Differences in walls relaxation are color-
coded.

Note that in Figure 3.7 γ∗g∗ = γga3/D is a dimensionless gradient amplitude.
As expected from the previous calculations, the walls relaxation results in an
apparent narrowing of the pore and a decrease in signal magnitude.

The surface relaxivity studies are important for deep understanding the signal
trend in a simple situation, but in a realistic situation such as the nervous tissue,
where many micrometric structures are higly probably present in one voxel, the
multi-compartment models are to be preferred.
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3.2.2 Kärger model

The Kärger model is a multi-compartment model that represents permeability as
the result of an exchange mechanism among compartments, that is throughout a
diffusion flux through the walls modulated by membranes properties. The work
proposed on this thesis grounds on this assumption and explores the potential of
the Kärger model in predicting the exchange rate in a specific condition that will
be detailed in what follows. In addition, The DKI model [113] will be considered for
the estimation of the kurtosis to characterize the diffusion process. A Monte Carlo-
based simulation will be used for signal generation allowing to set the reference
values for the parameters of interest. Numerical simulations will be also performed
on multi-compartment geometries to build a reference ground truth.

The diffusional exchange can be modeled by first order exchange kinetics equa-
tions:

dS1

dt
= −q2D1S1 − k12S1 + k21S2 (3.37)

dS2

dt
= −q2D2S2 − k21S2 + k12S1. (3.38)

These equations basically say that in the first compartment the signal is lost during
the time interval due both to diffusion and to spins flowing out of this compart-
ment (described by exchange coefficient k12) and is gained due to spins flowing back
from the second compartment into the first compartment. Similarly, in the second
compartment signal decay is described through inward and outward flow of spins
through the permeable boundary that is ruled by the same mechanism through
the exchange coefficient (k21). When this model is applied to two-compartments
systems the Kärger model is retrieved [119]. The Kärger model assumes two com-
partments with free diffusion and no exchange during the pulses that thus must be
narrow enough (or the exchange must be slow enough). The two aforementioned
exchange coefficients become kie and kei to indicate the flux through intra- and
extracellular spaces. Modifications to this model exist in order to account for re-
stricted diffusion and exchange during the pulses. Among these modifications, the
most used is written in a simple matrix exponential form as subsequently shown
[228]. The concepts just illustrated are graphically represented in Figure 3.8.

The matrix exponential form is the following:

S(q, TD) = S01
T · exp

(

(−(2πq)2D+K)TD
)

· f (3.39)

where 1 is a column vector of ones, D = diag(D1, D2, . . . , Dn) and f = [ν1ν2 . . . νn]
are the diffusivities and the volume fractions of the considered compartments. The
exchange matrix K for a two-compartments system is:

K =

[

−kie +kei
+kie −kei

]

(3.40)

with νikie = νekei in equilibrium conditions. The exchange time is derived as
τ = k−1

ie and it will be detailed in the Section 3.2.4. The restriction is accounted
for through the diffusivity in the compartments as dependent by the diffusion time.
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Fig. 3.8: Illustration of the two-compartments exchange model on which Kärger
model grounds.

3.2.3 Other strategies

It is important to say that other strategies different from the explicit modeling
of the more classical PGSE diffusion signal were recently employed for extracting
parameters related to permeability.

Except for the numerous different implementations of the numerical simulations
in which what substantially varies is the considered geometry, a strategy recently
employed is based on machine learning. This allows to avoid direct signal modeling
by learning a mapping between microstructural parameters of interest and features
derived by DWI data rather than from Monte Carlo simulations. One example
is the training of a random forest regressor on simulations where exchange was
allowed as in numerical simulation method and then applied to real data to extract
the intracellular residence time [146].

Another important strategy is grounded on the recent imaging techniques as
described in Section 2.2.3 such as FEXI which is able to retrieve the AXR that
is proportional to the total exchange rate constant. However, the recruitment of
specialised diffusion encoding sequences were out of scope of this thesis [128, 152].

3.2.4 Numerical simulation

Numerical simulations like Monte Carlo can be used to mimick the dynamics of
the spins following a given model. From a microscopic point of view, permeability
is the probability that a spin that moves from the intracellular to the extracellular
compartment completes the transition. The exchange time τ is expressed as the
probability of the transition to take place in the unit time. Formally [149]:
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pic2ec =

(

ntot

nout

)

ic

∆tic
τic

(3.41)

where ntot is the total number of particles in the intracellular compartment, nout
is the total number of particles that exit the intracellular compartment, ∆tic is the
simulation unit time, that is the intracellular compartment time step and τic is the
intracellular residence time. Similarly, the probability that the particle completes
a transition from the extracellular compartment to the intracellular compartment
is obtained by multiplying it by the ratio between discretization times (they could
be different). In terms of membrane permeability, pic2ec is derived as [149]:

pic2ec =
K∆x

Dic
=

2nd

∆x

V

A

∆tic
τic

. (3.42)

When assuming K =
(

1
τic

)

·
(

V
A

)

(V and A are the volume and surface of the

compartment respectively) and nd = 2 (the number of system dimensions) [174],
Equation 3.42 is approximately equivalent to Equation 3.41. ∆x is the space dis-
cretization of the simulation and Dic is the diffusivity. Barzykin et al. [21] already
formalized this relationship as the diffusional permeability for a cell.

Further details on some of the used simulation models in the field of perme-
ability in WM will be provided in Section 4.2.

3.2.5 The issue of observability

Given the interest in interpreting data regarding an organ with such a complex
tissue like the brain where a very high number of structures are continuosly in com-
munication, our attention focused on multi-compartment models of permeability
that, in our opinion, better represent the issue that we would like to address.

In this context, it is important to explore some conditions of observability of
the permeability parameters and in particular of the exchange time. Moreover,
some limitations regarding the Kärger model are here reported for a better under-
standing of the most common used model for the exchange time estimation.

Generally, an accurate estimate of the exchange time requires experiments em-
ploying long diffusion times and high values of gradient pulse strength [152]. Nils-
son and colleagues [149] found that exchange time based on simulations resulted
accurate when in the same order of magnitude of the diffusion time, which is easily
understandable thinking to the impossibility of being sensible to an exchange time
much longer than the observed. Furthermore, the high gradient pulse strength
allows for the observability of fast exchange since it becomes potentially more sen-
sible to finer structures as suggested by the higher kurtosis of the diffusion signal
[131, 83].

A consequent issue with these conditions is about the MRI scanner constraints,
in particular with the difficulty to impose long diffusion times and high gradient
strength in a clinical setting. As simple example, the long diffusion time can dra-
matically increase the acquisition time which can easily become unfeasible in a
clinical setting. Another important factor that cannot be neglected is T2 relax-
ation during the diffusion time acting as a strong attenuation of the diffusion
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signal and that can only be partly avoided by using PGSTE instead of classical
PGSE.

In addition, the Kärger model originally grounds on assumptions like the mix-
ing of the exchanging compartments in order to have equal transition probability
for all the particles [119]. In this context, the parameters calculation can suffer be-
cause of the restriction of the brain tissue. However, the restriction can be added
as mentioned in the previous Section, but Fieremans et al. [83] already commented
on the need of having the intracellular exchange time τi satisfying the condition
τi ≫ d2/2Di (d is the axon size and Di the intracellular diffusivity) which trans-
lates in having a barrier limited exchange in a compartmental system.

In this scenario, it is thus even more relevant to understand the effective sensi-
tivity of the dMRI signal in affordable situations. The numerical simulations can
be really helpful in this study to understand the extent to which the parameters
of interest can be reliably inferred.

3.3 Scientific objectives

The state of the art summarized here highlights the extended use of simplifications
in models for the dMRI reconstruction. In consequence, care must be taken in the
interpretation of the results. One of this simplification is the assumption of per-
fectly reflecting and impermeable axon walls despite some experiments highlighted
the limitations implied by such assumption [152, 146]. The investigation through
models involving the possible exchange between compartments allows us to bring
novelty in theoretical and clinical areas.

3.3.1 Theoretical objectives

More in detail of theoretical objectives of this thesis, the overall objective is to
shed light on the reliability of no-exchange assumption in the WM tissue. First
we aim at investigating the permeability concept in dMRI. This is important for
sheding light on the interpretation of real data in which exchange can plausibly
play a role.

The exploration of the sensitivity of the dMRI signal to such mechanism should
open the way to added awareness to be exploited in new signal models. Therefore,
we want to characterize when exchange is necessary in WM modeling.

Another objective concerns the strict relationship between exchange and barrier
through which it takes place, and thus we are interested in a deepening in the
myelin impact in dMRI as constituting the most important biological barrier in
WM.

3.3.2 Clinical objectives

From a clinical perspective, the investigation of the relationship between the tissue
structure and the model derived indices (such as the FA) becomes particularly
relevant in interpreting data from subjects with pathologies (e.g. stroke). In this
context the definition of indices holding the potential for being possible biomarkers
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would be important in the clinical practice. Then, we explore 3D-SHORE indices
for characterizing their potential as biomarkers in stroke disease.

Aiming at this objective, a pipeline is proposed able to quantify this suitability
through the calculation of their precision, sensitivity, specificity and predictability
of clinical outcome.

Another important step to reach the first objective is the specific tissue rep-
resentation by model-based indices that we explore via analysis on WM and GM
separately.



Part II

Signal modeling in Diffusion MRI





4

Materials and methods

In this Chapter, first, the premises and rationale of the proposed study are dis-
cussed. Then, the proposed methods are presented, together with the motivations
at the basis of our choices and the details of the experiments are provided. The
contents of this Chapter are in part published in an accepted abstract to ISMRM
conference [39], a submitted paper to EUSIPCO and a submitted journal to TMI.

4.1 Premises

Diffusion in brain depends on the neural tissue morphology. In the ventricular
system, where the space is constituted by cavities, the CSF is free to diffuse in all
directions according to Brownian motion. In the soma of the neurons water equally
diffuses in all directions displacing distances confined by the quasi -spherical shape
of the cell. The same probably happens also in all the other cells of the neural tissue
such as the neuroglial cells. Differently, in the axons forming fibers, diffusion takes
place in an elongated structure and results in an anisotropic process being the
diffusion approximately free along the tract and restricted in the radial direction.

The water exchange through barriers is another kind of diffusion extremely
important for maintaining the water level constant in spite of its loss or formation
caused by the metabolic processes. Even if the biological lipid membranes are a
significant barrier for movements into and out of cells due to their characteris-
tic hydrophobicity, a low permeability is anyway present. Furthermore, thanks to
Fick’s law according to which the rate of diffusion is proportional to the concen-
tration gradient, the naturally high ratio between cells surface area and volume
and high concentration of water molecules inside cells facilitate this phenomenon
[52]. Moreover, an important role is played by a family of proteins called “aqua-
porins” (AQP) which regulates the transport through membranes. In particular,
three different types of aquaporins were found in brain and participate to its phys-
iological functioning demonstrating their potential as target for drug discovery
[193]. Badaut and colleagues [19] showed that the inhibition of the expression of
one of this three types arousing a 27% aquaporin silencing caused a 50% decrease
in ADC values despite the tissue remained intact. This proves the dMRI sensi-
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tivity to diffusional exchange through the brain barriers, boosting the interest of
discovering specific descriptors for permeability modeling in the nervous system.

Myelin constitutes a barrier to exchange between axon and extracellular tissue
having a particular multi-wrappings structure in the direction transversal to the
length of the axon and interrupted along its length in nodes of Ranvier [75, 164].
Nilsson and colleagues [148] showed by Monte Carlo simulations that these gaps
constitute a possible exchange mechanism especially necessary for small axons hav-
ing diameters below 4.0 µm and short nodal distances below 100.0 µm for which
the exchange time (τ) is in the 10-400 ms range. Moreover, a study by Guo et al.
[98] demonstrated the possible rise of myelin permeability due to deficiency of the
peripheral myelin protein-22 (PMP22) according to which myelin remains intact
but the myelin junctions are disrupted. This augmented permeability constitutes
a realistic biological case in which the role of the barrier might be investigated.
However, the multi-wrapping myelin nature effect on dMRI signal remained unex-
plored apart one case in which this conformation was only implicit [101]. Specif-
ically, Harkins and Does represented the anisotropy of this structure allowing a
circumferential diffusion higher than radial one and they highlighted how myelin
can slightly influence DWI. Furthermore, they hypothesized that myelin water
exchange can complicate the interpretation of dMRI sensitivity to myelin.

Another complication factor is T2 relaxation. More in detail, T2 describes the
loss of phase coherence in the transverse magnetization and depends on several
factors including the tissue density or the lipid composition among others [64].
The richness of lipids in myelin sheath is considered to be one of the main factors
responsible for the WM shorter T2 compared to GM [163]. This reason led to the
assumption that the signal contribution due to myelin is not observable in the
observation time and thus to not take it into account in signal modeling.

However, the relationship between T2 and exchange seems to be more complex
and its role deserves further investigation. In particular, Levesque and Pike [132]
performed pathology-inspired analyses on simulations representing disease arous-
ing increased exchange. They found that myelin water fractions and T2 values
decreased for greater exchange concluding that myelin water fractions could be
incorrectly related to changes in myelin content. Harkins et al. [102] also studied
this relationship finding a linear correlation between T2 profile and water volume
fractions as measured by histological studies of rat spinal cord. They nevertheless
found an overestimation of water fractions that could be reasonably attributed
to exchange since other myelin markers did not explain the changes in myelin
contents.

4.2 Rationale

The microstructure characterization of the neural tissue based on a given signal
in dMRI research is an inverse problem. Jelescu et al. [112] showed how the sig-
nal models seen in Chapter 3 suffer from the lack of specificity although they are
sensitive to the microstructural modifications. They correctly said that, for exam-
ple, given a FA or MK change from a portion of WM we cannot determine if it
was due to demyelination, axonal degeneration, inflammation, as well as others.
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There are some examples of studies highlighting this: Paus discussed the inher-
ent ambiguity in the interpretation of the DTI-derived metrics changes in WM
growing in adolescent brain, making impossible to disentangle between myelin- or
axon-related processes [164]. Norris showed how similar microstructural indices
alterations can have different causes at a mesoscale level (e.g. lower permeability
and cell swelling) [154]. Badaut et al. found that MD decreased after the inhi-
bition of specific brain membrane proteins for the water transport. Nevertheless,
many dMRI signal models do not take into account the permeability [19]. In this
context, simulations and numerical methods are very useful tools for a controlled
exploration of a model performance, and therefore they aid in the understanding
of the possible tissue configurations. For this reason, in this work, numerical sim-
ulations were used for investigating the spiraling myelin as a model to explain the
exchange mechanism. This allows characterizing the dMRI sensitivity to specific
myelin structure changes being aware of the limitations of the model.

Prior works have often modelled exchange as a direct jump from the intra-
axonal to extracellular space, without considering a volume for the third com-
partment representing the myelin. As example, Fieremans et al. [83] investigated
the relationship between Kärger model and a WM-inspired geometry by randomly
packed identical parallel cylinders with permeable walls. Nilsson et al. in a first
work compared the estimation of Kärger model in uniformly sized cylinders with
different diameters and exchange, and the τ estimates obtained by fitting in-vivo

dMRI data of the corticospinal tract [151]. In a second work they evaluated the
performance of the same model against a model based on a collection of simulations
from different instances of the same aforementioned substrate [149]. Nedjati-Gilani
and colleagues [146] extracted τ from healthy and multiple sclerosis diseased sub-
jects using either the Kärger model or a random forest regressor trained on simu-
lated collections of non-abutting parallel cylinders with radii drawn from a gamma
distribution having different values of surface permeability. They concluded that
machine learning improves the estimation of exchange time but care must be taken
about the dependence on the substrate used for the regressor training that makes
the sensitivity highly specific. Some approaches have included more complex sim-
ulations. Nilsson et al. investigated water exchange only at the interruptions of
myelin called nodes of Ranvier [148]. Other approaches treated the myelin as a
third compartment with free diffusion whose own diffusion coefficient could have
an effect on the overall DWI signal. More in detail, Hwang et al. [106] developed an
image-based diffusion simulation method which allowed the generation of substrate
on the basis of histologic images with different diffusivity in each compartment in-
cluding the myelin sheath; Sen and Basser [182] proposed a model for diffusion
in white matter as an array of identical thick-walled cylindrical tubes periodically
arranged in a regular lattice and inserted in a outer medium; Peled [165] studied
a tensor model with an added baseline correlating with intra-axonal water vol-
ume on a geometry composed by coated parallel identical cylinders in a hexagonal
lattice where particles were allowed to diffuse inside and through compartments;
Baxter and Frank [26] added, to the analysis described by Sen and Basser, the
observation of different spin concentration for each compartment effect. To the
best of our knowledge, only the aforementioned study by Harkins and Does [101]
paid attention to the multi-wrappings nature of the myelin, albeit implicitly, by
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modelling diffusion in myelin as anisotropic with a higher diffusivity in the tangen-
tial compared to radial direction [101]. However, the latter works modeling myelin
sheath volume investigated its impact from a limited point of view without paying
attention to τ estimation.

Our work goes further in the modeling of myelin structure in order to explore
the conditions or configurations under which the myelin wrapping permits fast
exchange, defined as sub-second τ . The strategy chosen was to perform Monte
Carlo simulations in which the myelin was realized as a spiral along which the
water molecules could diffuse freely. This approach thus reproduced the histolog-
ically known structure of myelin. The dependence of the intra-to-extra axonal τ
was explored while varying parameters of the geometry. Diffusion-weighted signals
from a PGSTE sequence [194] were then simulated with experimental parameters
applicable with clinical MRI scanners. The data were subsequently analysed with
the DKI model [113] and the modified Kärger model [118]. DKI was fitted aiming
to understand the dMRI signal model specificity in capturing myelin modifications
by effects on the most popular brain descriptors such as apparent diffusion coef-
ficient and apparent kurtosis; Kärger model is instead the most used method for
specifically capturing exchange time despite the limitations already discussed in
Chapter 3. Effects of T2 relaxation on the signal were also investigated in order to
explore a realistic situation.

4.3 Methods

We can summarize our strategy in the following pipeline illustrated in Figure 4.1
as follows:

i) Definition of the geometrical substrate and simulation of water dynamics using
Monte Carlo according to the chosen acquisition sequence;

ii) Recording of the number of intra-axonal particle concentration as a function
of time;

iv) Fitting of the Kärger and DKI models to the resulted signal and corresponding
microstructural indices derivation;

v) Evaluation of models performance by comparison between the substrate pa-
rameters and the fitted ones.

4.3.1 Geometry and water dynamics setup

Starting from the first step of our pipeline, we constructed the spiraling myelin
simulation geometry as comprising three compartments: intra-axonal, extra-axonal
and myelin, as illustrated in Fig. 4.2. We chose the simplest representation of WM
constituted by parallel identical cylinders since in this work we just wanted to
investigate the suitability of spiraling myelin as exchange mechanism. We leave for
the future work a more complex implementation in order to see the interaction
of the many variables that naturally affect the biological tissue. In the following
Section we describe the details of the geometry implementation from a top-down
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Fig. 4.1: Pipeline for investigating spiraling myelin feasibility as exchange mecha-
nism.

perspective in three levels of in-depth analysis: i) the periodic structure, ii) the
substrate, iii) the myelin.

The periodic structure was managed by imposing periodic boundary condi-
tions and consisted in an infinite number of two-dimensional transversal sections
of parallel “axons”. More in detail, the periodic boundaries were implemented by
updating the absolute x - and y-coordinates of the spins with the addition or sub-
traction of one step according to the respectively reached upper or lower bound
of the cell unit. A second pair of variables representing the x - and y- coordinates
within the cell unit were updated adding or substracting the entire cell unit width
according to the reached lower or upper bound.

In detail, the substrate consisted of unit cells where each unit cell consisted of
a square tile modeling the extracellular tissue surrounding the axon (intra-axon
and myelin) placed at the center. The width of the square (swidth) was a turne-
able parameter, together with the axon inner diameter (dinner) and the g-ratio (g).
The g-ratio corresponded to g = dinner/Douter, where Douter was the diameter of
the structure including both axon and myelin. Tuning the three aforementioned
variables was thus possible to assign the desired volume fractions to the substrate
and viceversa, with the limits given by the space discretization. Another turneable
parameter was the number of myelin wraps (nwraps) around the axon of the con-
sidered thickness. Therefore, the variables of the model were: swidth, dinner, g-ratio
and nwraps. Throughout this work, the g-ratio was set to g = 0.7 as discussed in
Section 2.1. Then, νic was set to νic = 0.45 and swidth was derived accordingly,
while dinner and nwraps were varied. Figure 4.2.A shows an example of the geometry
varying dinner and nwraps, maintaining g-ratio and swidth constant. Figure 4.2.B
shows a portion of the substrate with infinite size resulting from the application
of periodic boundaries to the unit cell.

Going into details of myelin implementation, a one-dimensional spiraling com-
partment was chosen for its model. This choice was done to overcome the space
representation limit due to difference in size between axon and myelin which cov-
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ers several orders of magnitude. An idea of this difference is given by the size of
extracellular space placed between the myelin wraps that is around 30.0 nm [164]
and the axon diameters which generally measure up to 4.0 µm [133]. Figure 4.2.C
illustrates the geometrical equivalence of the described substrate model.

B) Portion of substrateA) Cell unit varying diameter (rows) and

number of wraps (columns)

dinner

swidth Douter = dinner/g

C) Geometrical equivalence of the cell unit for the implementation

Fig. 4.2: Simulation setup. A) Changes of the axon diameter and number of wraps
are illustrated across rows and columns, respectively. B) Periodic boundary con-
ditions. C) Rectified myelin wraps as in the implementation.

After the geometry specification, we go into details of the water particles dy-
namics. Specifically, this implementation involved the definition of three principal
conditions of possible movements.

The first and more common condition was the case of particles moving inside
axonal or extra-axonal space. All particles positions were incremented of one step
along a direction randomly chosen in the xy-plane at each time step.

The second condition is peculiar for particles movements inside the myelin.
Positions within the myelin spiral were parameterized as

x =

(

dinner
2

+ sθ

)

cos(θ) (4.1)

y =

(

dinner
2

+ sθ

)

sin(θ) (4.2)

where s was the spacing between each arm [s = (Douter − dinner)/(4πnwraps)] and
θ the angle turned by the spiral. The length of the spiral was calculated by solving

L =

∫ 2πnwraps

0

√

s2 +

(

dinner
2

+ sθ

)2

dθ. (4.3)



4.3 Methods 51

The length of the spiral was divided by ∆x that is the space discretization of the
simulation, and the particles were then allowed to diffuse along L. Positions of
the particles inside the myelin were updated according to x- and y-coordinates
obtained by cosine and sine of the angle just turned calculated as

θi = li∆x/Lnwraps2π (4.4)

where li is the position along the spiral.
Exchange was implemented by allowing transition from axon to myelin (pa2m),

from myelin to axon (pm2a), from extra-axon to myelin (pe2m) and from myelin
to extra-axon (pm2e) at specific points in the axon and extra-axonal space (Fig-
ure 4.3). These probabilities were constrained by equilibrium conditions of mass
balance according to:

mm · pm2a = ma · pa2m (4.5)

mm · pm2e = me · pe2m (4.6)

where mm, ma and me are the total number of particles (”masses”) in the
myelin, axon and extra-axonal space, respectively. Since the myelin space was
represented differently from the axon and extracellular spaces, the initial particle
concentrations in each space was computed by counting pixels (the volume units
in the two-dimensional model) occupied by each compartment multiplied by its
water concentration. For myelin, the concentration depended on the ratio between
the probability to enter and leave it. These were computed as follows:

pm2a = 1.0 (4.7)

pa2m = pm2a ·
am
aa

pm2e = 1.0

pe2m = pm2e ·
am
ae
.

These probabilities depend on the exchange rate and the permeable area, ac-
cording to which they are directly proportional as discussed in Section 3.2.4 [11].
We assumed no hindrance for particles entering the myelin, except that the ”cross
sectional area” of the myelin layer was smaller than the simulated voxels. Thus,
the axon-to-myelin transition area (am) was computed as the width of the passage
into myelin relative to pixel size (discretizing the size of the extracellular space
existing between myelin wraps that is 30.0 nm [164]). The myelin-to-axon and
myelin-to-extra transition areas (aa and ae) were defined as the fraction of steps
that yield a transition.

4.3.2 Estimation of observable τ

The second step of our pipeline was the computation of the observable exchange
times by recording the flow of intra-axonal particles through the spiralling barrier
as a function of time.
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pa2m

pm2a

pm2e

pe2m

…

1 2

Fig. 4.3: Exchange setup. Referring to the geometrical equivalence of the cell unit
for the implementation, the impermeability of the myelin walls is shown except
for the myelin-to-axon and the myelin-to-extra areas highlighted by areas 1 and 2
respectively. In these areas, particles flow is allowed in both the directions.

The first set of numerical experiments were designed to probe how the intra-
axonal residence time depends on myelin properties. Particles were here initialized
in the intra-axonal and myelin compartments only. Flow to the extra-axonal space
was allowed, but particles were not allowed to re-enter. This setup gives an unbi-
ased measure of the exchange time [149]. Random walks were then simulated for
a period of 200 ms and the number of intra-axonal particles as a function of time
was recorded. The exchange time τ was estimated from the following relation,

n(t) = n0 exp(−t/τ), (4.8)

via polynomial fitting in a least-squares sense, where n(t) is the number of resident
particles at time t.

Effects on the exchange time were investigated in two conditions. First we
investigated the impact of the number of myelin wraps (τ versus nwraps), and then
of the axon diameter (τ versus dinner). In the first case, dinner was varied between
1.0 and 2.0 µm and nwraps was set to 1, 2, 4, 8, 16 and 32. In the second case
nwraps was varied between 1 and 4 and dinner was 1.0, 2.0 and 4.0 µm.

The results were related to values found in literature or to values derived from
our calculations from Equation 2.1 in Section 2.1 reporting a review on myelin
structure characteristics (i.e. diameter, number of wraps, etc.).

4.3.3 Signal decay

Microstructure information in dMRI is encoded in the signal attenuation due to a
phase dispersion caused by the interaction of magnetic field gradients and diffusing
spins. The Monte Carlo simulations model the process by using particles mimicking
the behaviour of the spins and carrying the phase information φ. Then, the signal
is derived as

S(G) =
1

n

n
∑

k=1

exp(−iφk), (4.9)
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where n is the number of particles, i2 = −1, and

φk = γ

m
∑

i

gi xi∆t (4.10)

where γ is the gyromagnetic ratio, gi the magnetic-field gradient discretized into
m time points, xi the position of the particle, and ∆t is the time discretization of
the Monte Carlo simulation.

The acquisition sequence was the PGSTE which uses two 90◦ RF pulses replac-
ing the 180◦ one and a spoiler gradient. This led to a higher signal conservation
than the classical PGSE for large enough diffusion time, which is an advantage
when T2 is short as in myelin [5]. The signal is commonly analysed as a function
of the b-value, given by [188]:

b = γ2δ2G2TD. (4.11)

The attenuation due to T2 relaxation was accounted for. In particular, the time
spent in each compartment was tracked for each particle and the corresponding
diffusion signal was multiplied by exp(−∆t/T2), where T2 was the relaxation time
that depends on the compartment [101]. The use of the PGSTE sequence allowed
us to avoid T2 decay during time between the two gradient pulses.

Therefore, the overall simulated signal is

S(G) =
1

n

n
∑

k=1

exp(−iφk) exp(−∆t/T2). (4.12)

The aforementioned geometries with varying dinner and nwraps underwent one-
dimensional PGSTE acquisition in perpendicular direction with respect to the
main diffusion direction. The diffusion times were δ = 15 ms and ∆ = 25, 55 and
225 ms, respectively.

4.3.4 Model fitting

We fitted our data with two different models: DKI and Kärger models. The two
models allow the estimation of different parameters from the same data enabling
the study of the same experimental condition from two different perspectives. More
in detail, the DKI model permitted the derivation of RD and RK, while the Kärger
model allowed the τ calculation among the others.

RD and RK estimates

The DKI model [113] was fitted to the PGSTE simulated signal for δ = 15 ms
and ∆ = 25 ms for two different choices of myelin T2 relaxation [101, 190, 137,
206]: short (T2 = 15 ms) and long (T2 = 85 ms). T2 of axon and extra-axon
compartments were both set to 85 ms as in [101].

Since we are focusing on one-dimensional acquisitions perpendicular to the axis
of the axons, Equation 3.8 can be reformulated as in [113] replacing the two tensors
with RD and RK respectively:
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S(b) = S0 · exp
[

−b ·RD + (b ·RD)
2
RK/6

]

(4.13)

where RD and RK were respectively the radial diffusivity and kurtosis. The free
parameters of the model are S0, RD and RK and were retrieved through nonlinear
curve-fitting in least-squares sense via the Levenberg-Marquardt algorithm.

In addition, the apparent fiber density (AFD) was calculated as the diffusion
signal value at the highest b-value (in this case equal to 2500 s/mm2). It was
already demonstrated that this measure calculated in radial direction with respect
to the substrate is a measure of νic [173].

τ estimation

The PGSTE simulated signals were used to fit the Kärger model [118]. More in
detail, the two-compartments model was the same as defined by Nilsson et al.
[149] and already illustrated in Section 3.2.2. The two-compartments version of
Equation 3.39 can be re-written as:

S(b) = S0

[

1 1
]

exp(−b ·ADC+K · TD)

[

νic
νec

]

. (4.14)

The D matrix in Equation 4.14 is defined as follows:

ADC =

[

ADCic 0
0 ADCec

]

(4.15)

with ADCic calculated as in [149] and thus as ADCic = [d · κ(α, β)]2 /2TD where
κ(α, β) is the Gaussian phase distribution approximation [205]. ADCec is one of
the free parameters of the model and is formalized as ADCec = Dec/λ

2, where
λ is the tortuosity factor of the extracellular space. The τ parameter to be esti-
mated is embedded in the K matrix. This matrix describes the exchange between
two compartments through exchange rates between the intra- and the extracel-
lular compartments. In the equilibrium condition, no net flux is present thus the
following relation holds: kecνec = kicνic. Reminding that the permeability K can
be written as in Section 3.2.4 as K = kic

(

V
A

)

[21] and is expressed in µm/s, kic
is the reciprocal of a time and in particular of τ that is the intra-axonal residence
time.

Overall, the free parameters S0, ADCec, τ and νic can be recovered by nonlinear
curve-fitting in the least-squares. In our implementation this was performed by the
trust-region-reflective algorithm [149]. Usually, the diameter is a free parameter
of the Kärger model. However, in our implementation it was set to ∼ 0 because
it would not have been observable under the considered experimental condition
[150].

500 instances of Gaussian noise (SNR = 40) were added to each instance of
the resulting diffusion signal and the 5th and 95th percentiles of the estimated
parameters distributions were calculated.
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Results and discussion

In the following Sections we first demonstrate the reliability of our simulator by
some unit tests. Then, the results obtained from the experiments illustrated in
Chapter 4 are reported and discussed.

5.1 Monte Carlo simulator validation

The number of particles used in the next unit tests and experiments was 100000,
D = 2.0 µm2/ms, ∆x = 0.05 µm and 100 equally spaced b values were chosen
from 0 to 2500 s/mm2. The same classical pulsed gradient spin echo (PGSE)
acquisition sequence [188] was employed with the pulses duration chosen as short
as possible for comparing our simulation with the theoretical signals under the
NPA [δ ∼ 1.5 exp(−2) ms], while the delay between the pulses was ∆ = 20.0 ms.

Free diffusion

Free diffusion was characterized through particles placed in the extra-axonal space.
The recovered signal was compared to the theoretical one S(b) = exp(−bD) by

computing the mean square error (MSE =
∑

i=1 N(simi−thei)
2

N , where simi and
thei are the ith element of the simulated and theoretical signal respectively and
N corresponds to their length). The width of the substrate unit was 100.0 µm
and dinner = 0.5 µm. Therefore, the simulation geometry had preponderance of
extracellular tissue and movements were allowed only within it since the particles
were initialized only in this compartment and the transition probabilities were
zero-outed. The simulated and theoretical signals representing free diffusion are
reported in Figure 5.1. The MSE = 2.6 exp(−5) proves the goodness of the sim-
ulation.

Restricted diffusion

Restricted diffusion signal was characterized from particles placed inside the axon.
The theoretical diffusion signal inside a cylinder was used as reference [140]:

S =

(

2 · J1(πqdinner)
πqdinner

)2

(5.1)
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Fig. 5.1: Free diffusion signal simulation (black) and theorethical one (blue).

where J1 was the Bessel function of the first kind and order 1. The simulation
geometry had dinner = 2.0 µm, and zero-outed transition probabilities. The re-
stricted diffusion signals corresponding to Monte Carlo simulation and Equation
5.1 are shown in Figure 5.2. The corresponding MSE was MSE = 6.0 exp(−7).

Transition between compartments

The transition between compartments was tested initializing the particles in the
whole substrate and recording their number in the different compartments during
200 ms. The test was performed for two cases: transition probabilities different
from zero, and equal to zero, respectively. Figure 5.3 represents the number-of-
particles versus time curve for each compartment in both the aforementioned cases.
The slope of each curve was computed as the rise over run and resulted ∼ −2
for the curves representing the extra- and intra-axon trends and ∼ 3 for myelin
one in the exchange condition, and ∼ 0 for the three ones in the no-exchange
condition. Correctly, the curves do not show decay or other variations as expected
at equilibrium in the case of allowed transition. The same is expected also in
the case of no-exchange due to absence of transition and thus no concentration
variations in time.

Time tracking

The same simulation set of the restricted diffusion validation test was also used
to check the particle time tracking with particles distributed in all compartments.
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Fig. 5.2: Restricted diffusion signal simulation (black) and theorethical one (blue).

The time spent in each compartment was compared to the total time required
for the acquisition sequence (Ttot). Since no transition was allowed, the two times
should both result equal to Ttot = 2δ + ∆ (∼ 20 ms). The satisfaction of this
relation proved the correctness of the time tracking in our framework.

T2 relaxation

Free and restricted diffusion with addition of T2 relaxation of 85 ms [166] were
tested to evaluate this effect on simulations. More in detail, the theoretical diffusion
signals of the two validation tests were respectively multiplied by exp(−Ttot/T2)
where T2 was the relaxation time of the compartment in exam. The signals were
compared by computing MSE. Figure 5.4 illustrates the simulated and theoretical
signals normalized to the maximum value respectively for both cases of free and
restricted diffusion with T2 relaxation. The computed MSEs were respectively
1.6 exp(−5) and 5.5 exp(−7) demonstrating the good performance of the Monte
Carlo simulator.

5.2 Results

5.2.1 Estimation of observable τ

Figure 5.5A shows observable τ values as a function of nwraps for two different
dinner. In particular, water particles flow out from axons with a lower rate adding
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Fig. 5.3: Extra-axonal (magenta), myelin (red) and intra-axonal (blue) concentra-
tion trends in case of exchange (top) and no exchange (bottom).

wraps and τ values were sistematically higher with greater dinner. Figure 5.5B
reports the axon water number of particles versus time decaying trend from an
axon having dinner = 1.0 µm and nwraps = 4. The annotation in Figure 5.5B
reports Equation 4.8 from which τ was recoverable via polynomial fitting.

Figure 5.6 illustrates observable τ values versus dinner and again the exchange
time increases with axon diameter and the number of myelin wraps.

In both cases, y-axis was limited to 3500 ms to highlight only configurations
with τ observable using clinical MRI acquisitions [152]. More in detail, the feasi-
bility of exchange time measurements is increased for small dinner and low nwraps.

5.2.2 Signal decay

The PGSTE simulated diffusion signals are illustrated in Figure 5.7. It can be
observed that less myelin wraps lead to increased signal decay. The signal cor-
responding to geometries with large number of wraps was not sensitive to TD,
while the dependence on TD could be observed by reducing nwraps. The smaller
nwraps, the higher the signal decay. Moreover, differences in Figure 5.7A and 5.7B
highlighted a larger sensitivity to nwraps variation when dinner was small.
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Fig. 5.4: Simulated (black) and theorethical (blue) signal in case of T2 relaxation for
free (top) and restricted diffusion (bottom) normalized to the respective maximum
value.

5.2.3 RD and RK estimates

The parameters estimated via the DKI model fitting are reported in Figure 5.8A
and 5.8B, together with the signal value calculated at highest b-value (b = 2500
s/mm2) as in Figure 5.8C and referred to as AFD. As it can be observed, RD
generally decreased adding nwraps in the range 0.46−0.62 µm2/ms, while RK and
AFD increased showing an almost equal trend and specular to the RD one. More
in detail, RK varied in the range 1.75− 2.67 and AFD in the range 0.42− 0.56. A
larger slope of RD, RK and AFD versus nwraps curves was also observed in case
of longer myelin T2 relaxation than for shorter one. Moreover, in long myelin T2
relaxation the curve representing small axons intersected the bigger axon curve at
lower nwraps (16 wraps) compared to short myelin T2 relaxation for all parameters.
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Fig. 5.5: A) Exchange time observed as the time employed by water particles to
flow out from axon into extra-axonal compartment depending on the number of
wraps in case of axon diameter 1.0 and 2.0 µm. B) Number of particles within the
axon as a function of time in case of axon diameter 1.0 µm and 4 wraps.

5.2.4 τ estimation

Figure 5.9 shows the parameters estimated via Kärger model fitting. The esti-
mated νic slightly increased with nwraps, and almost negligible error areas were
identified ranging from 0.41 to 0.52. As expected, no high differences were found
in νic estimation when changing dinner since the volume fractions were maintained
constant in all the studied frameworks as reported in Section 4.3.1.
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Fig. 5.6: Exchange time observed as the time employed by water particles to flow
out from axon into extra-axonal compartment depending on the axon diameter in
case of 1 and 4 myelin wraps.

The ADCec estimate was not highly sensitive to nwraps neither to dinner varia-
tions, although it was a little bit lower for smaller axons in the range 1.06− 1.13
µm2/ms. The error areas were negligible also for ADCec estimate.

The τ estimation followed the same trend as observable ones as reported in
Figure 5.5A, showing sistematically higher values to greater dinner and nwraps.
Figure 5.9 reveals progressively wider error areas for larger nwraps that highlights
that τ estimates become less reliable counting up nwraps. Numerical details are
provided in Table 5.1 where observable and estimated τ values are compared. A
larger correlation is generally retrieved for small axon diameters and low numbers
of wraps.

5.3 Discussion

This work targeted the modeling of myelin structure by representing its spiraling
nature through Monte Carlo simulations. To the best of our knowledge, it was
the first time that the multi-wrapping nature of myelin was directly mimicked
apart from one other case in which this effect was indirectly introduced through
a compartment with different diffusivity in radial and circumferential direction
[101]. Noteworthy, Harkins and Does did not use their simulation for estimating
exchange time. In fact, the strategy followed here consented to compute a ground
truth for the exchange mechanism depending on myelin wraps around the axons.
More in detail, the observable τ exclusively due to the particular geometry was
calculated for different morphological conditions. This enabled the definition of a
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Fig. 5.7: PGSTE simulated diffusion signal for different numbers of myelin wraps
(light blue - blue colors) and diffusion time (columns) in axons having diameter
A) 1.0 µm and B) 2.0 µm.

reference condition allowing to derive a set of measures of τ (observable τ) to be
used as a benchmark for the estimation of such parameters using the Kärger model.
Controlling τ through simulations is important because of the lack of agreement
on the value of such parameter in the literature as already discussed in Section
2.1. Moreover, the flexibility of the geometry allowed to explore the effects of such
exchange mechanism on the diffusion signal in different conditions. In particular,
this study was designed following a possible clinical setting (TD = 20 ms, b ∈ [0−
2500] s/mm2) with possibly realistic T2 relaxations, allowing the characterization
of RD and RK [113] together with AFD [173] variations to myelin structure
modifications. In addition, the possibility to create a ground truth for axonal
residence time enabled the possibility to evaluate the performance of the Kärger
model [118] in estimating τ values, as mentioned before.
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Fig. 5.8: DKI model estimated parameters in case of axon diameter 1.0 and 2.0
µm and short (solid line) and long (dashed line) myelin T2 relaxation: A) radial
diffusivity, B) radial kurtosis and C) apparent fiber density.
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Fig. 5.9: Kärger model estimated parameters in case of axon diameter 1.0 and 2.0
µm: A) intracelullar volume fraction, B) extracellular apparent diffusion coeffi-
cient and C) exchange time. Error areas are bounded by 5th and 95th percentiles
computed on 500 noisy instances of signal (SNR = 40).
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dinner [µm] nwraps Obs τ [ms] Est τ (5th − 95th) [ms]

1.0

1 126 120 (112− 130)
2 251 237 (223− 255)
4 507 543 (495− 596)
8 1077 770 (688− 863)
16 2761 2381 (1883− 3351)
32 5254 2608 (2057− 3458)

2.0

1 1015 780 (702− 882)
2 2026 1301 (1105− 1569)
4 4104 2059 (1652− 2664)
8 9005 3215 (2270− 5103)
16 16718 2473 (1937− 3475)
32 19805 2681 (2047− 3717)

Table 5.1: Observable and estimated exchange time with 5th and 95th percentiles
reported for each axon diameter and number of wraps.

5.3.1 Estimation of observable τ

The exchange times increased with the number of wraps and for bigger axons. This
is intuitevely understandable since the length of the path the spins have to travel
to quit the axon through the myelin sheet increases with nwraps, and thus the
time spent in the spiral. The exchange time was also greater in bigger axons, still
easily understandable thinking about the lower probability for a particle to reach
the boundary besides the fact that bigger axons imply longer spiral myelin length.
Our findings were in line with what observed by Dula et al. [73] and Harkins [102]
according to which exchange is longer in big axons and thick myelin. More in detail,
Dula et al. [73] observed by quantitative MRI measures of multi-exponential T2
relaxation (MET2) a lower underestimation of the myelin water fraction, which is
larger in big axons and thick myelin and they supposed the longer exchange time
as cause. They performed this analysis on ex-vivo rat tissue and subsequently
retrieved the same effects further enhanced in in-vivo tissue [102]. Harkins et al.
[102] also highlighted some abnormal results on the human corpus callosum and
they hypothesized different characteristics of the myelin in different tracts of the
brain as justification. Since the large majority of human brain axons have diameter
below 1.0 µm (as seen in Section 2.1), and the number of myelin wraps in human
brain is normally around 10 according to Edgar et al. [75, 54] and in agreement
with the results following Section 2.1, our results suggest that exchange times are
not clinically observable as they overcome the sub-second scale. The measurement
of exchange time could become clinically feasible in case of myelin turns lower than
expected. In a reasonable normal situation in humans, the results were more in line
with the findings of Nilsson and colleagues [152] than with those of Nedjati-Gilani
[146]. Specifically, we calculated τ in the order of second as in [152] supposing a
typical human axon with dinner < 1.0 µm and nwraps ∼ 9 as discussed in Section
2.1. Probably, the difference observed with τ recovered in [146] was due to the
assumed structure model at the basis. In particular, Nedjati-Gilani and colleagues
did not take into account myelin multi-wrappings nature and volume. Results in
our work were also within the same order of magnitude of τ retrieved via the rat
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model having axon with dinner = 1.0 µm and nwraps < 8 [172, 71]. Quirk’s group
work [172] also recovered τ in the sub-second scale (around 550 ms) via Bloch-
McConnell exchange modeling of longitudinal relaxation experiments injecting MR
relaxation agent into the extracellular space, but they performed experiments on
in-vivo rats with potentially smaller axons and consequently potentially lower
number of myelin turns than in humans [75]. Doing the same consideration, also
Dortch et al. [71] recovered fast τ in rat optic nerve ex-vivo tissue directly via
Relaxation Exchange Spectroscopy (REXSY) and they found a value of 138± 15
ms.

From our results, we can extrapolate some scaling laws that govern how the
spiraling myelin impacts the exchange time. From Equation 3.42 and knowing that
the surface-to-volume ratio in a cylinder is determined by the radius as A/V = 4/r,
we can say that τ ∝ r/K considering permeability along the whole membrane and
thus equal permeability for all points on the area. In the case here examined of
a cylinder covered by a spiraling membrane, we have a high permeability where
the spiral opens, and a lower or absent permeability otherwise. Assuming that the
exchange through the lipid bilayers forming the myelin membranes is much slower
than the diffusion around a full spiral and thus negligible, the factor governing
the exchange rate will be the width of the space between myelin turns in which
extracellular water is trapped. This is known to be approximately 30.0 nm [164]
in normal conditions. We thus get Am ≈ 30.0 nm leading to τ ∝ r2/KmAm that
explains the results in Figure 5.5, where twice the inner diameter results in four
times the exchange time. Moreover, Figure 5.5.A illustrates that exchange time
scales approximately with the logarithm of the number of wraps.

Another generalization that can be made is that diameters of above approxi-
mately 2 micrometers, or more than approximately 8 layers, are sufficient to lead
to exchange times longer than a second. This is important, because some tracts like
spinal cord, brainstem or cerebellar peduncles contain axons with diameters up to
10.0 µm [75] and diameters up to 9.0 µm were found also in the human superior
longitudinal fascicle [133]. The number of myelin turns in normal human brain
was already calculated to be ∼ 9 in Section 2.1 further confirmed by literature
[75, 54] as mentioned before. In normal conditions, our results thus support the
assumption of slow (negligible) exchange in WM. However, during development or
degeneration, these numbers can change [54, 3, 20] and thus affect the observable
exchange times aiding the interpretation for experiments in these cases.

5.3.2 Signal decay

The signal versus b curves showed higher decay for smaller number of myelin
wraps and smaller axons, accentuated in longer diffusion times. The results are
in agreement with the findings of Harkins and Does [101] according to which a
slowly diffusing myelin (in this study given by many nwraps) accounted for more
signal coming from water staying in the multi-wrappings compartment. The higher
emphasis of this phenomenon provided by longer TD did not surprise given that
long diffusion times allow to detect permeability effects as already discussed by
Stanisz et al. [186]. In fact, the longer the observation times, the more probable
it is that the water particles bump into a transition. The last consideration could
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also explain the lower decay observed in bigger axon where water particles had not
the time to experience exchange in the considered TD resulting in almost restricted
signals.

5.3.3 RD and RK estimates

The RD decrease along with the RK and AFD increase were more evident for
small axons and low number of wraps, otherwise the short myelin T2 makes neg-
ligible these variations. The RD and RK estimates resulted in ranges of values
similar to those found by Harkins and Does [101]. Moreover, our findings were in
line with their results, showing respectively a decreased RD and increased RK
adding nwraps (corresponding to the slower myelin diffusivity in [101]). The recov-
ered AFD was already discussed by Raffelt et al. [173] as being approximately
linearly related to νic. In this study, AFD resulted close to the volume fraction
set of 0.45 and comprehensive of both axon and myelin. The observed increase
with nwraps was possibly caused by the preponderance of water in axon or more
probably in myelin as discussed before referencing to the work of Harkins and
Does [101]. This enhances the signal coming from those compartments. The incre-
ment of AFD to nwraps was also in line with what found by Peled [165] according
to which a reduced permeability caused an increase of her model baseline tensor
that correlated with intra-axonal water volume in her definition. Concerning the
differences in myelin T2, in this work we observed that parameters estimation was
much more different across nwraps in long T2 than in short although some inter-
esting slight differences could be observed for lower number of wraps in clinical
acquisition setting. It was also noted a greater slope for curves representing smaller
(and also the most frequent [133]) axons in human brain, further confirming the
reasonable potential of accounting for water exchange.

5.3.4 τ estimation

In this work, the Kärger model well fitted to all the diffusion signals reporting
reliable estimates of exchange times for small axons and number of wraps up to 8.
Concerning νic, the estimated values had negligible error areas, quite insensible to
dinner and slightly more sensible to nwraps, with values in a range comprehending
the ground truth value of 0.45 and trends close to AFD previously discussed. Also
ADCec findings were stable, showing a very slight dependence from dinner while
it resulted independent from nwraps. The resulting values were in agreement with
D/λ (λ corresponding to tortuosity factor) as in [149]. The τ estimates were closer
to the respective observable counterparts and also more stable for dinner = 1.0 µm
and nwraps = 1, 2, 4 and 8 and dinner = 2.0 µm and nwraps = 1. The decreased
reliability of τ estimates for larger dinner were possibly due to the fact that longer
TD are required to study exchange in this case, while the same effect observed for
many nwraps can be due to the almost impermeability of the myelin that causes a
failure in Kärger model fitting [83]. An important implication derived by our work
is added evidence of the capability of Kärger model to retrieve the exchange time
for those cases in which nwraps could be lower than expected like in developing
brain or demyelinating diseases [54, 3]. Furthermore, even if relaxometry was not
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included in experiments observing exchange, in case of low nwraps and small axon
it is ininfluent as seen from the previous DKI fitting experiments.

5.3.5 Limitations and bottlenecks

A limitation of the present study was the oversimplification of the substrate, in
particular the assumption of constant diameter across axons and the square pack-
aging. The square packaging allows a maximum νic without substrates overlapping
lower than, for example, the hexagonal one, allowing more realistic simulations of
the WM [100]. Moreover, the diameter variation could add similarity to histologic
data as shown in the work of Aboitiz [1], and the coexistence of these parameters
in the overall signal can make the signal interpretation further difficult. However,
the obtained results could be reasonably retained with the aim to explore multi-
wrapping myelin and conditions in which this is a possible exchange mechanism
able to influence dMRI signal.

Future work could include a study of the different parameters here analyzed
and their dependence from TE, recently considered as an interesting biomarker
for myelin-dependent process [134]. In particular, Lin et al. [134] highlighted a
sensitivity of TE dependence to the change of g-ratio. Qin et al. [171] already
demonstrated the dependence of the tensor-derived indices on TE, attributing
this effect to the different transverse relaxation within the tissue although this
requires more specific investigation. Several works suggest the possibility to obtain
more trustworthy results by including compartment-specific T2 and by studying
the relationship between TE and diffusion experiments [208, 196, 78].

Furthermore, a study on real data and especially on subjects in which myelin is
plastic or damaged would be required for assessing the sensitivity and specificity of
the proposed method in realistic contexts [54, 20]. More specifically, we can search
for the same trend variations in estimated parameters and eventually correlate
the findings with results from multi-modal imaging for being more specific on the
nature of these modifications. As example, Magnetization Transfer Ratio (MTR)
imaging, Multiexponential T2 (MET2), and many others are used for myelin water
imaging [8].
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Clinical applications
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Application: stroke characterization through

dMRI indices

In this chapter we describe the methods used for defining the indices derived from
the promising SHORE model as potential biomarkers. This was done aiming at
exploring a possible strategy for validating the clinical relevance of dMRI signal
measures, opening the way to application also for different models like the ones
for permeability. In order to check the suitability of the indices as biomarkers, the
model must be fitted also on data from pathological subject. The stroke disease
was investigated for this purpose. The content of this Chapter has been published
in journals [37, 31] and [38, 156] papers.

6.1 MRI in stroke disease

The blockage of blood (e.g. due to a clot) or the rupture of an artery (e.g. due to
an aneurysm burst or a vessel leak) causes the lack of oxygen to brain cells and
subsequently their death in a phenomenon called stroke (when it is consequence of
the first cause is named ischemic, otherwise is named hemorragic). The symptoms
can be the loss of speech, weakness, or paralysis of one side of the body. Stroke is
the second most common cause of morbidity worldwide and is the leading cause
of acquired disability [69]. Following initial damage, stroke patients can recover
to some extent, partially due to the resolution of edema and possibly because of
structural and functional modifications in surviving brain tissue. In particular,
several experimental studies on both animal models and patients showed that this
spontaneous recovery mainly depends on brain plastic reorganization of the infarct
and peri-infarct areas [68, 144]. Figure 6.1 illustrates the qualitative structural
differences between a healthy and a diseased subject.

Important insights into the underlying remodeling and reorganization processes
of functional recovery can nowadays be derived in human patients via advanced
neuroimaging methods and brain mapping [175]. In addition, the recent develop-
ments in connectivity analyses from multiple MRI data have provided new details
about the network pathophysiology and stroke recovery, although the role of the
non-injured hemisphere in this process is still controversial. At functional level,
positron emission tomography (PET) and subsequently functional MRI (fMRI)
studies have evidenced task-related brain activations in both lesional and con-



72 6 Application: stroke characterization through dMRI indices

Fig. 6.1: Coronal, lateral and axial views of the structural image of one healthy and
one stroke patient. They were acquired with the high-resolution 3D T1-weighting
protocol described in Section 6.4.

tralateral hemispheres, which were highly dependent on the degree of brain dam-
age [219, 176]. In particular, Ward et al. [214] investigated a series of patients who
went through a good recovery after stroke and suggested that the recruitment of
other contralateral motor-related networks would have subserved the recovery and
played an essential role for compensation of the impaired functions.

At structural level, dMRI has recently generated considerable interest due to its
ability to disclose early pathophysiological changes in acute stroke, both in terms
of structural changes of fiber tracts and microstructural properties of the tissues.
Several studies demonstrated structural remodeling in ipsilateral and contrale-
sional corticospinal tracts [41] and changes in the number of neural pathways in
areas both ipsilateral and contralateral to the stroke [87], especially for the specific
fiber trajectories connecting cortical regions in both hemispheres [61]. In addition,
dMRI studies performed in well-recovered stroke patients revealed increased FA
in both ipsi- and contralesional corticospinal tracts in comparison to controls, and
that tracts’ FA asymmetries in the contralateral corticospinal tract may play a
role in motor recovery after unilateral stroke [179]. Connectivity remodeling after
stroke has been reported in both injured [184] and uninjured hemispheres [94, 135].
GFA had previously been successfully exploited to provide evidence of plasticity
in the uninjured motor network in stroke patients with motor deficits [94, 135].
Current literature works suggest that dMRI may be one of the most sensitive
neuroimaging biomarkers of vascular damage in stroke patients [143].

Among the different variants currently available, DSI is a particular technique
that is sensitive to intra-voxel heterogeneities in diffusion directions caused by
crossing fiber tracts and thus allows more accurate mapping of axonal trajectories
than other diffusion imaging approaches [216]. Although anisotropy is the most
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widely studied diffusion index, there is a growing interest in investigating WM
microstructural properties and changes by analyzing different diffusion indices.
To this end, the application of a recently proposed new analytical reconstruction
model referred to as 3D-SHORE [157] can provide a set of new generation indices
describing different microstructural properties.Even though many factors affect
the accuracy of such an estimation, including acquisition parameters such as dif-
fusion time, diffusion gradient duration, gradient strength, partial volume effects
due to limited resolution and, last but not least, the presence of crossing fibers,
this measure is of particular interest because it is sensitive to WM microstructural
changes.Although the available findings for these numerical indices are encourag-
ing, a quantitative comparison with the classical tensor-derived metrics is currently
lacking but essential to further probing their potentialities as biologically specific
markers. Regardless of the aforementioned issues, MD and FA remain indeed the
standard measures in clinical settings, especially for acute stroke imaging. There-
fore, 3D-SHORE-based indices have to be carefully related to these tensor-derived
indices in terms of precision, consistency, discriminative and predictive power in
patients, all essential requirements for being considered good biomarkers. Avram
and colleagues [18] reported a first attempt to assess within a clinically appropri-
ate scanning time the feasibility of novel EAP-indices (from MAP-MRI modeling
rather than 3D-SHORE) in comparison to classical DTI indices, demonstrating
good consistency across subjects and reproducibility in test-retest experiments on
three controls. However, despite the promising results, we dealt with a very limited
number of healthy subjects and relied on qualitative visual comparisons, acknowl-
edging the need for further studies on patient populations that, to the best of our
knowledge, are still missing in recent literature.

Despite its relevance in stroke disease, the microstructural modeling of GM is
still largely unexplored. In fact, there is a growing need for a more comprehen-
sive assessment of GM tissue changes using dMRI despite its intrinsic complexity
given by the lack of coherent tissue orientation and the unproven suitability of
the currently available models. Some previous studies with classical DTI indices
have highlighted MD as a promising marker of GM diffusivity changes in several
pathologies as Alzheimer disease [221], multiple sclerosis [53] and Parkinson [121].
However, DTI is scarcely employed in the assessment of GM regions, especially in
the cortex, and its ability of capturing microstructural features and feature modu-
lations in GM is still under debate. Conversely, thanks to the ability of capturing
the EAP in complex tissue microstructures, the 3D-SHORE model might allow
characterising the signatures of hindered diffusion in GM regions and/or provide
information about GM changes occurring over time. In particular, we target the
plasticity process taking place in the case of stroke. Very little is known about
possible GM modifications in the contralateral hemisphere with respect to the le-
sion, as these tissues have been widely disregarded as considered normal and not
directly involved in any rearrangement process [138, 160]. Indeed, to the best of
our knowledge, all the models present in the state-of-the-art were tailored on WM,
often relying on simplistic assumptions such as predefined pore geometry, limited
number of diffusion compartments and absence of water exchange. Even though
these hardly cope with the complex GM structure, it is worth assessing the ex-
ploitability of such models for deriving measures that could be useful indicators
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of tissue alterations. This might be useful for detecting the occurrence of different
pathologies as well as for characterizing the recovery due to treatment in longitu-
dinal studies. Otherwise stated, the goal of this work was not to derive measures
that could directly express biophysical tissue properties but suitable detectors of
microstructural features modulations due to different possible causes with the aim
of improved personalized health care and treatment.

In this chapter,we fared the study at three levels of complexity. In a first
and preliminary investigation, we aimed at exploring whether the measures could
reveal contralesional structural changes along intracallosal connections after stroke,
whether they correlate with the well established GFA index and if they allow to
predict motor outcomes jointly with clinical status. In a successive step we widened
the investigation by including the transcallosal circuit and the subcortical motor
loops as well as multiple temporal scales from injury. Finally, we propose the
comparative analysis of the 3D-SHORE-derived microstructural descriptors with
respect to the classical tensor-derived indices (MD and FA) and the analysis of
the ability of the considered indices to detect plasticity processes in GM.

6.2 Materials and methods

The following Sections describe the characterization of the dMRI indices as po-
tential biomarkers for stroke pathology.

Briefly summarizing, structural (T1) and dMRI data from ischemic stroke pa-
tients and healthy subjects were collected at different timepoints. The firsts were
employed as reference for brain parcellation and registration of dMRI data, while
the seconds were fitted with 3D-SHORE model to derive the indices under analysis
and the tractography. We could then extract the variations of the indices along
the desired tracts connecting different regions across time and in both controls
and patients. The statistical analysis was then provided for quantifying these vari-
ations and the indices capability as biomarkers. The entire pipeline here briefly
described is represented in Figure 6.2 while the following Sections describe each
step in more detail.

6.3 Signal modeling and microstructural indices derivation

The dMRI signal is represented as in Equation 3.12. In this case, Φn(qu) is the
family of functional basis functions and, in detail, they are the solutions for the
3D quantum harmonic oscillator (u is the unit vector). The EAP is obtained by
applying the inverse Fourier transform to Equation 3.12:

P (r) =

N
∑

n=0

cnF [Φn(qu)] =

N
∑

n=0

cnΨn(ru) (6.1)

where Ψn(ru) are the Fourier transforms of the basis functions Φn(qu). The 3D-
SHORE model is expressed in spherical coordinates. Separability holds the radial
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Fig. 6.2: Scheme of the pipeline employed to address the study reported in this
Chapter.

and angular coordinates which prevents the independent scaling of the basis func-
tions along the main coordinate axes. Following the formulation in [56], the basis
functions Φn(qu) can be written as

Φn(qu) = Rn(q)Yn(u) (6.2)

where Rn(q) models the radial part of the signal and {Yn(u)} are the real spherical
harmonics of even order [65]. After a reordering of the terms, the signal model
becomes

E(qu) =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΦnlm(qu) (6.3)

Φnlm(qu) =

[

2(n− l)!

ζ3/2Γ (n+ 3/2)

]1/2(

q2

ζ

)l/2

exp

(

−q2
2ζ

)

×

× L
l+1/2
n−l

(

q2

ζ

)

Y m
l (u)

(6.4)

where Nmax is the maximal order in the truncated series and Φnlm(q) is the
orthonormal 3D-SHORE basis, Γ is the Gamma function, L is the Laguerre poly-
nomial and ζ is an isotropic scaling parameter. The coefficients are determined by
quadratic programming and positivity constraints are imposed to the EAP. The
first Nmax/2 + 1 functions are isotropic (l = 0 and m = 0) and ζ was derived
by the zero order term Φ000 to be the DTI-derived Gaussian function leading
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to ζ = 1/(8π2TDD) (where D is diffusivity) [229]. In case of isotropic scaling
the MAPMRI formulation [159] is equivalent to this one. Accordingly, the scale
factor depends on two parameters: the diffusion time and the diffusivity. In the
3D-SHORE model the diffusivity is assumed to be constant across the angular di-
rections, which corresponds to isotropic diffusion, and is calculated as the diffusion
tensor derived mean diffusivity. We are aware of the fact that such an assumption
is not suitable where diffusion is either restricted or hindered as it is the case in
WM and, to a lesser extent, in GM [159]. This constraint cannot easily be removed
because the radial term of the 3D-SHORE model is not separable since it only de-
pends on the norm of the reciprocal vector. Angular dependency is recovered by
SH. In case of high anisotropy this limits the accuracy of the signal representation.
Nevertheless, the 3D-SHORE model provides competitive performance in terms of
both signal reconstruction error and estimation of main fiber directions [80, 153].

The corresponding EAP is recovered by Fourier transformation

P (ru) =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΨnlm(ru) (6.5)

Ψnlm(ru) = (−1)n−l/2

[

2(4π2ζ)3/2(n− l)!

Γ (n+ 3/2)

]1/2(

4π2ζr2

)l/2

exp

(

4π2ζr2

)

×

× L
l+1/2
n−l

(

4π2ζr2

)

Y m
l (u)

(6.6)

where, due to the linearity of the transform operator, the coefficients cnlm are the
same as in Equation 6.4.

The RTOP, RTAP and RTPP indices can then be derived starting from Equa-
tions 3.16 and 3.18 as follows [159]

RTOP =

Nmax/2
∑

n=0

cn00(−1)n
[

4π2ζ3/2(n)!

Γ (n+ 3/2)

]1/2

L1/2
n (0) (6.7)

RTAP =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlm×

×
[

ζ1/22l+3π2Γ (l/2 + 1)2Γ (n+ 3/2)
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]1/2

×
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m
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RTPP =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlm×

×
[

Γ (l/2 + 1/2)2Γ (n+ 3/2)2l

ζ1/2(n− l)!Γ (l + 3/2)2

]1/2

×

× 2F1(l − n, l/2 + 1/2, l + 3/2, 2)Y m
l (~u‖)

(6.9)
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where 2F1 is the Gaussian hypergeometric function and Pl(0) is the l -degree Leg-
endre polynomial in zero. Özarslan et al. [159] proved the equivalence between
RTOP, RTAP, and RTPP and the reciprocal of the ensemble average of the pores’
geometrical properties under assumption of long TD, NPA, homogeneous pores
in the voxel and sufficiently precise fitting of the signal. In particular, RTOP,
RTAP, and RTPP respectively represent the estimation of the reciprocal of the
mean apparent volume (1/ 〈V 〉), cross-sectional area (1/ 〈A〉), and length (1/ 〈L〉)
of the compartment in which diffusion takes place. Thus, the estimation of the
apparent mean axon’s diameter can be obtained as D = 2R = 2

√

1/(πRTAP )
(where D and R will be the diameter and the radius in the rest of the thesis). It
is important to note that the assumptions for deriving microstructural indices are
strong and thus normally of difficult reaching. Despite this, we can observe the
sensitivity of these descriptors to microstructural modifications and dicussing on
their interpretation basing on their theoretical meaning.

The PA index represents the measure of the anisotropy of the EAP and is
defined similarly to the tensor FA. It is calculated as the weight of the isotropic
part of the propagator, corresponding to the first 3D-SHORE coefficient

PA =

√

√

√

√1−
∑Nmax

n=0 c2n00
∑Nmax

l=0,even

∑(Nmax+l)/2
n=l

∑l
m=−l c

2
nlm

. (6.10)

Other indices that we calculated from 3D-SHORE EAP were the more well es-
tablished GFA [202] and MSD which general formulas were already seen in Equa-
tion 3.11 and Equation 3.20 respectively.

6.4 Dataset

Ten ischemic stroke patients (6 males, mean age: 60.3 ± 12.3 years) and ten age-
and gender-matched healthy subjects were enrolled in the study and underwent
longitudinal MRI acquisitions on a 3T Siemens scanner (Trio, Siemens, Erlangen,
Germany) equipped with a 32-channel head coil, as firstly reported in [94]. Patients
were affected by ischemia infarction in the motor cortex or subcortical structures
involved in motor control, while subjects with brainstem and cerebellar infarcts or
with massive edema causing midline shift were excluded [94]. Moreover they should
not have history of previous stroke or generally neurological, psychiatric or ma-
jor system disorder. Acquisitions were performed at three time points in patients
(within one week (tp1 ), one month (± one week, tp2 ), and six months (± fifteen
days, tp3 ) after the injury), and at two time points in controls (one month apart,
tp1c and tp2c). The same structural imaging protocol was used in all cases. In
particular, Diffusion Spectrum Imaging (DSI), a high angular resolution diffusion
technique [217], was performed using a single-shot spin-echo echo-planar imaging
(EPI) product sequence and the following parameters: TR/TE = 6600/138 ms,
FOV = 212 × 212 mm2, 34 slices, 2.2 × 2.2 × 3 mm3 resolution, GRAPPA = 2,
scan time = 25.8 min. The sampling scheme consisted of a keyhole Cartesian ac-
quisition with 258 diffusion directions covering a half q-space 3D grid with radial
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grid size of 5. Thirty-four different b-values (from 300 up to 8000 s/mm2) were
included in the acquisition and one image was acquired at b-value=0 s/mm2 (b0
volume). Because of the inherent antipodal symmetry, the signal was duplicated
on the other hemisphere yielding to 515 points.High-resolution 3D T1-weighted
images were also included (TR/TE = 2300/3 msec, FOV = 256× 256 mm2, 160
slices, 1 × 1 × 1.2 mm3 resolution, scan time = 6.13 min). Besides MRI acquisi-
tions, patients underwent clinical neurological assessment following the National
Institutes of Health Stroke Scale (NIHSS) at each tp. They all received antiplatelet
treatment and standard rehabilitation program. Only the motor part of the NIHSS
score was retained for further analysis. Stroke volumes were derived from the indi-
vidual high-resolution T1-weighted images using the statistical parametric mapping
(SPM) lesion segmentation toolbox (www.fil.ion.ucl.ac.uk/spm/). All the subjects
signed the written informed consent to the imaging and the Lausanne University
Hospital approved the protocol. Patient demographics and main clinical informa-
tion are reported in Table 6.1.

Patient Gender Age Stroke
Location

Arteries
Involved

NIHSS
Motor

Stroke Size
(# voxels)

tp1 tp2 tp3

1 F 25
L cortico-
subcortical

L MCA 13 4 3 8032

2 M 66 L subcortical L MCA 5 2 2 1112

3 F 39
R cortico-
subcortical

R MCA 7 4 3 76568

4 F 49
R cortico-
subcortical

R MCA 8 3 1 15408

5 M 76 L subcortical L MCA 6 2 2 7520

6 M 73 L subcortical
L MCA

3 1 0 9400
L ACA

7 F 67
L cortico-
subcortical

L MCA 7 3 1 19336

8 M 62
R cortico-
subcortical

R MCA 8 5 4 69832

9 M 35
R cortico-
subcortical

R MCA 16 7 4 101360

10 M 69
R cortico-
subcortical

R MCA 4 2 2 8752

Table 6.1: Patient demographics and clinical characteristics where the following
abbreviations are used: right middle cerebral artery (R MCA), left middle cerebral
artery (L MCA) and left anterior cerebral artery (L ACA).
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6.5 Image preprocessing

For each subject, dMRI images were processed using the Diffusion Toolkit (CMTK;
www.cmtk.org) in order to derive the ODFs needed for fiber tracking, subse-
quently performed via a streamline-based algorithm. Individual high-resolution T1-
weighted images were parcellated using Freesurfer (http://surfer.nmr.mgh.harvard.edu/)
and the Desikan-Killiany anatomical atlas at 83-region scale (64 cortical and 19
subcortical regions) plus the Corpus Callosum was employed. The FLIRT tool
from the FMRIB FSL software (www.fmrib.ox.ac.uk/fsl) was used for the linear
(affine) registration of the T1-weighted scan to diffusion data. In particular, the
diffusion baseline images (b0 volumes) were considered as reference images for es-
timating the registration transformation subsequently applied to back-project the
subject-specific anatomical parcellation into the DSI space.

The tissues analysis is then divided in tract-based analysis characterized on
WM tissue, and in region-based analysis characterized on GM tissue. The difference
in diffusion properties at the basis of the two requires a substantially different point
of view in the investigation choices and interpretation.

6.5.1 Tract-based analysis on WM tissue

In a first preliminary study, only the primary motor area (M1), supplementary
motor area (SMA), somatosensory cortex (SC) and thalamus (Thl) were considered
in the analysis. More precisely, GFA, RTAP, D, and PA values were collected only
along intracallosal fiber bundles connecting those regions to the corpus callosum
(CC) in the contralateral (non-lesioned) hemisphere.

Widening the study, a series of networks involved in different motor skills were
identified in collaboration with an expert. These networks were practically cre-
ated by selecting the respective regions of interest (ROIs) from the whole set of
regions derived from the automatic brain parcellation and all the analysis were
performed on these networks in order to study the specific contralateral motor
mechanisms. The considered cortical and subcortical ROIs include M1, SMA, SC
and premotor area (PM), Thl, caudatus (Cau), putamen (Put) and globus pal-
lidus (GPi). In particular, the following ensembles of tracts were considered: (1)
the set of connections between each region cited above in the contralesional area
and the corpus callosum (Figure 6.3a), that we call here transcallosal circuit (CC);
(2) the ensemble of connections linking the cortical regions, that we define cortical
loop (CORT) (Figure 6.3b); (3) the ensemble of connections linking subcortical
regions called subcortical loop (SUBCORT) (Figure 6.3c). The latter has been
further investigated, identifying its five main sub-networks, in order to provide a
more detailed description of the SUBCORT motor pathways: (a) M1 loop (Figure
6.3d), (b) SMA1 loop (Figure 6.3e), (c) SMA2 loop (Figure 6.3f), (d) PM1 loop
(Figure 6.3g), (e) PM2 loop (Figure 6.3h).

The microstructural indices previously computed were collected along the dif-
ferent pairs of ROI links shaping each of the aforementioned networks. To this end,
an in-house software was used to extract the mean of values along each fiber con-
necting two specific ROIs. After that, the mean of fibers’ values was calculated for
each fiber bundle to obtain a value for each index and each particular connection
of the considered networks.
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M1 = Primary Motor Area Thl = Thalamus

SMA = Supplementary Motor Area Cau = Caudatus

SC = Somatosensory Cortex Put   = Putamen

PM = Premotor Area Gpi = Globus Pallidus

M1 SMA

PM SC

b) CORT

M1
SMA

PM

Thl

GPi

Put Cau

c) SUBCORT

M1

Thl

GPi

Put

d ) M1 loop

SMA

Thl

GPi

Put

e ) SMA1 loop

SMA

Thl

GPi

Cau

f ) SMA2 loop

PM

Thl

GPi

Put

g ) PM1 loop

PM

Thl

GPi

Cau

h ) PM2 loop

a) CC

CC

M1
SMA

PM

SCThl

Cau GPi
Put

Fig. 6.3: Schematic representation of the transcallosal (CC), cortical (CORT) and
subcortical (SUBCORT) networks. The five sub-networks of this latter circuit are
also reported on the right panel (d-h).

6.5.2 Region-based analysis on GM tissue

The individual high-resolution T1-weighted images were segmented into WM, GM
and CSF tissues using the SPM toolbox [85]. A binary mask was derived for GM
using a conservative 95% threshold on the individual probability maps aiming to
avoid partial volume effects. Eighty regions from the Freesurfer parcellation were
considered (brainstem and corpus callosum were excluded) and masked with the
binary GM mask. Four small subcortical regions per hemisphere resulted to be
empty after GM masking and were excluded from further analyses, for a total of
seventy-two regions. For all indices, the mean GM value across each masked ROI
was then calculated. In particular, average measures were calculated across corre-
sponding regions in both hemispheres for controls, while averaging was constrained
to the contralateral hemisphere for patients, leading in both cases to thirty-six rep-
resentative GM values for each index and subject. The list of the considered regions
and relative abbreviations is provided in Table 6.2.

6.6 Statistical analysis

6.6.1 Preliminary study

In the preliminary study of this investigation [38], the reproducibility of mean
GFA, RTAP, D, and PA values along motor tracts was assessed by evaluating
statistical differences between tp1c and tp2c using a paired t-test (p > 0.05) after
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ROI Abbreviation

Banks of superior temporal sulcus bSTS
Caudal anterior cingulate cortex cACC
Premotor area PM
Cuneus Cun
Entorhinal cortex EC
Fusiform gyrus FuG
Inferior parietal lobe IPL
Inferior temporal gyrus ITG
Isthmus cingulate gyrus IGG
Lateral occipital cortex LOC
Lateral orbito frontal cortex lOFC
Lingual gyrus LgG
Medial orbito frontal cortex mOFC
Middle temporal gyrus MTG
Parahippocampal gyrus PHG
Supplementary motor area SMA
Pars orbitalis PORB
Pars triangularis PTRI
Pericalcarine PERI
Sensory cortex SC
Posterior cingulate cortex PCC
Primary motor area M1
Precuneus PCN
Rostral anterior cingulate cortex rACC
Rostral middle frontal gyrus rMFG
Superior frontal gyrus SFG
Superior parietal lobe SPL
Superior temporal gyrus STG
Supramarginal gyrus SMG
Frontal pole FP
Temporal pole TP
Thalamus Thal
Caudate Cau
Putamen Put
Hippocampus Hipp
Amygdala Amg

Table 6.2: List of the thirty-six regions and relative abbreviations considered for
the region-based analyses.

a Kolmogorov-Smirnov normality test. Percentage absolute changes in mean values
between time points were evaluated for each index on both groups as

∆tp12c(m) = |(mtp2c −mtp1c)|/mtp1c

∆tp12(m) = |(mtp2 −mtp1)|/mtp1 (6.11)

∆tp23(m) = |(mtp3 −mtp2)|/mtp2

∆tp13(m) = |(mtp3 −mtp1)|/mtp1
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where m denotes the mean value of the considered index along the fibers of a
given connection, and the subscript c denotes the control group. Normality test
(Kolmogorov-Smirnov) revealed that the values were normally distributed enabling
the use of parametric statistics. Accordingly, the unpaired t-test with p < 0.05 was
performed to establish the significant differences between∆tp12c(m) and∆tp12(m).
With the purpose to further characterize the indices, Spearman correlation with
GFA was performed. In addition, for each patient, the z-score of the mean absolute
changes of each index and connection with respect to the same measurement on
the control group was calculated in order to highlight and visually render in an
intuitive way the distance between each patient and the control group as well
as individual changes over time. Finally, the predictive value of each metric was
assessed by a linear regression model where the motor outcome at six months after
stroke (tp3) was the dependent variable and the mean values of each index for all
the connections at tp1, age, stroke size, and NIHSS motor scores at tp1 and tp2
were the predictors. A backward selection process was used to select the optimal
predictor model with p = 0.05 as significance threshold.

6.6.2 Networks study

In the next step, the analysis was extended to other microstructural indices that
are RTOP and RTPP, and an additional statistical analysis was performed, as
detailed in what follows [37].

Precision of the measurements

In order to demonstrate the longitudinal stability of the different indices, a re-
peatability analysis was performed on the test-retest data from the control group.
First, for each index and each network the degree of correlation as assessed by the
square of the Pearson’s correlation coefficient (R2) was calculated between tp1c

and tp2c data. Second, the Bland-Altman plot was derived for illustrating the
variations of the differences between paired data for each of the main networks,
together with the percent coefficient of intra-subject variation (CVintra%), and
the intra-class correlation coefficient (ICC). More in details, the ICC estimates
the reliability of the measurements by comparing the within-subject (WS) to the
between-subject (BS) variability:

ICC =
BSMSS −WSMSS

BSMSS +WSMSS
(6.12)

where MSS represents the mean sum of squares and is calculated for the WS
and the BS as follows:

WSMSS =

∑N
i=1

∑2
k=1(mik −mi)

2

N
(6.13)

BSMSS =

∑N
i=1 2(mi −m)

2

N − 1
(6.14)
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where N is the number of subjects,mik is the value of the kth measurement session
for subject i, mi is the mean of the measurements for subject i across all sessions
and m the overall mean across all subjects and sessions. The ICC values were
interpreted as follows: > 0.75 as excellent, 0.40 – 0.75 as fair to good and < 0.40
as poor [84].

Comparison of absolute indices changes in patients and controls

After the stability analysis, on both groups the percentage absolute changes in
mean values between time points were calculated for each index and each net-
work as in Equation 6.12 averaging the values from all the tracts belonging to the
same network. Since Kolmogorov-Smirnov normality test informed about the nor-
mal distribution of the percentage values, unpaired t-test (corrected for multiple
comparisons with a false discovery rate of 0.05) was performed to detect signifi-
cant differences between ∆tp12c(m) and ∆tp12(m), ∆tp12c(m) and ∆tp23(m), and
∆tp12c(m) and ∆tp13(m).

Predictive models

In order to assess the predictive power of the 3D-SHORE indices, different lin-
ear regression models were considered for prediction of the motor outcome at six
months after stroke (NIHSS at tp3 ). First, a linear regression model including
only age, stroke size, and NIHSS motor scores at tp1 as predictors was calculated.
Then, for each of the three main networks, the mean value of each index along the
connections of the set at tp1 was calculated and included as predictor together
with age, stroke size and NIHSS motor scores at tp1. Moreover, a predictive model
was derived for each index separately using its ∆tp12 values and including all the
networks shown in Fig. 6.3 and NIHSS at tp1. The optimal model was identified
by a backward selection process (significance threshold: p = 0.05).

6.6.3 Comparison between 3D-SHORE indices and tensor FA and MD

In comparing the 3D-SHORE indices with the classical tensor FA and MD [31]
we decided to insert the MSD which has a more explict and directly correlation
with MD [223]. Moreover, to avoid overfitting in some analyses due to the large
number of considered indices we decided to retain only RTAP and RTPP discarding
RTOP as being the composition of the previous ones and thus already implicitly
described. The major part of the analysis was the same as already written except
for the GM analysis, thus the subsequent Sections evidenced only the additions to
the pipeline.

Precision of the measurements

The variability and longitudinal stability analyses were performed for all the mi-
crostructural indices, relying on all the representative measures coming from both
tract-based and region-based analysis on GM. In addition to ICC and CVintra
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calculated as aforementioned, the inter-subject coefficient of variation was added
(CVinter) [30, 55, 169].

Specifically, the CVinter (between-subject CV) measures the variability across
subjects, reflecting the inter-individual variability and being indicative of data
consistency across subjects. The CVinter was computed for each session as follows:

CVinter =
σ

µ
· 100 [%] (6.15)

where µ and σ are the mean and standard deviation of each index measure
across subjects. For biological measurements from MRI, CVintra ≤ 10% and
CVinter < 15% are considered as acceptable [139, 103]. For tract-based measures,
CVintra and ICC were a single measure for each loop, as all the connections belong-
ing to the corresponding network were considered together for providing a global
representative measure of network reproducibility. Conversely, the CVinter metric
was first computed for each tract as the mean of the corresponding CVinter values
of the two sessions and then summarized for each loop by the mean ± standard
deviation (SD) values across connections. This has been done to better appreci-
ate the variability across these structural links. For region-based analysis, CVintra

and ICC were computed for each ROI individually (mean ± SD values across GM
ROIs), while the CVinter metric was initially derived calculating it for each region,
after averaging the CVinter metrics of the two sessions, and then reported as mean
± SD values across GM ROIs.

Comparison of absolute indices changes in patients and controls

Concerning this analysis, everything remained unchanged with respect to the pre-
vious Section apart from a more stringent correction for multiple comparisons
across indices that is Bonferroni adjustment at α = 0.05.

Predictive models

In addition, in order to assess the predictive power of both tensor-derived and 3D-
SHORE-derived indices, different linear regression models were considered and
their performance in predicting the clinical motor outcome at six months (NIHSS
at tp3 ) was tested. For each of the three networks, three regression models were
built:

• Tensor-based model (TBM): the average across all the connections of the con-
sidered loop at tp1 was calculated for each index (MD, FA) and both mean
values were included as predictors along with age, stroke size and NIHSS at
tp1.

• 3D-SHORE-based model (SBM): the average across all the connections of the
considered loop at tp1 was calculated for each index (GFA, PA, RTAP, RTPP,
MSD) and these mean values were included as predictors along with age, stroke
size and NIHSS at tp1.

• Global microstructural model (GBM): all the indices (both tensor-derived and
3D-SHORE-derived) were included as predictors, after having calculated their
individual mean value across all the connections of the considered loop. No
clinical information was added.
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The optimal model was always identified by a backward selection process (signifi-
cance threshold: p = 0.05).

Statistical analysis on GM region-based outcomes

After the reproducibility assessment, also for the GM region-based measures the
statistical analyses were performed for depicting differences between patients and
controls and detecting possible plasticity changes in contralateral GM tissues.
First, a three-way mixed (within-between) analysis of variance (ANOVA) was per-
formed for each microstructural index to test the significance of different factors,
using the mean index value as dependent variable. Three indipendent variables
were considered: Time with two levels and Region with thirty-six levels (within-
subject factors) plus Group with two levels as between-subject factor. In addition,
a further two-way repeated measures ANOVA was performed on the patient group
data in order to assess for the presence of longitudinal changes in contralateral
GM structures across all temporal scales. Also in this case the mean value for
each index was used as dependent variable in the corresponding ANOVA, while
two independent variables were included: Time with three levels and Region with
thirty-six levels. For each ANOVA, Mauchley’s test was used to assess the spheric-
ity assumption and Greenhouse-Geisser epsilon adjustments for nonsphericity were
applied where appropriate. Post-hoc tests adjusted for multiple comparisons with
the Bonferroni correction were used when significant interactions were found. For
all statistical tests, p < 0.05 was considered to be significant.





7

Results and discussion

Following Chapter 6, here below we show all the results obtained and we discuss
them aiming at emphasizing the 3D-SHORE indices potential as biomarkers for
stroke disease. The structure of this Chapter reflects the subdivision proposed in
Chapter 6 starting from the preliminary study exploring only some indices and
single connections and succesively widened considering collections of connections
and more indices, that were also characterized against well established DTI indices.

7.1 Preliminary study

Reproducibility of index values in controls.

In controls, reproducibility of the mean GFA, RTAP, D and PA values was observed
as confirmed by t-test which showed no statistical significant differences between
tp1c and tp2c (p > 0.05). The mean absolute GFA, RTAP, D, and PA changes
calculated for all the motor connections between the two time points were: GFA :
0.0248±0.0074, RTAP : 0.0290±0.0082, D : 0.0205±0.0047, PA : 0.0241±0.0072
(mean±SEM). Among connections, the largest variability was recorded for SC.

Comparison of absolute GFA, RTAP, D, and PA changes in patients and

controls.

Figure 7.1 illustrates the mean absolute percent changes of the different indices
for patients and controls. For each index, absolute changes between tp1 and tp2 in
patients’ connections were significantly different from the absolute changes between
the same regions in controls between tp1c and tp2c (0.01 ≤ p ≤ 0.05). However,
the thalamic intracallosal connection failed to reach significance in all conditions,
and SC-CC did not reach significance for RTAP and D. As it is apparent from
Figure 7.1, PA shows the highest sensitivity in differentiating the patients from
the control group, outperforming GFA in the SMA-CC connection and having the
same performance for the other considered ones. In particular, both are able to
differentiate the groups for the M1 and SC intracallosal connections. RTAP and
D also allow differentiating between the two groups for M1 and SMA, while they
could not highlight differences for SC. In connections where RTAP and D are able
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to split patients and controls, 3D-SHORE-based indices allow for a more accurate
description of the microstructural changes in patients.

M1 SC SMA Thl
0

5

10

15

D
e

lt
a

 o
f 

m
e

a
n

 G
F

A
 (

%
)

**

*

*

M1 SC SMA Thl
0

5

10

15

D
e

lt
a

 o
f 

m
e

a
n

 P
A

 (
%

)

** *

**

M1 SC SMA Thl
0

5

10

15

D
e

lt
a

 o
f 

m
e

a
n

 D
 (

%
)

* *

M1 SC SMA Thl
0

5

10

15

D
e

lt
a

 o
f 

m
e

a
n

 R
T

A
P

 (
%

)

*

*

 

 

Controls TP1−TP2 Patients TP1−TP2 Patients TP2−TP3 Patients TP1−TP3

A) B)

D)C)

Fig. 7.1: Longitudinal changes in percent mean absolute values in controls and
patients (*p < 0.05, **p < 0.01). (A) GFA; (B) PA; (C) D; (D) RTAP [38].

Correlations of each absolute descriptor changes with GFA.

For both controls and patients, Spearman’s correlation ρ showed a significant (p <
0.05) monotonic relationship between the mean absolute changes of each index
and GFA changes. The overall correlation among all the intracallosal connections
was assessed, showing the following results: 1) RTAP: ρtp12c = 0.48, ρtp12 = 0.74,
ρtp23 = 0.38, ρtp13 = 0.65; 2) D: ρtp12c = 0.43, ρtp12 = 0.76, ρtp23 = 0.37, ρtp13 =
0.40; and 3) PA: ρtp12c = 0.51, ρtp12 = 0.74, ρtp23 = 0.40, ρtp13 = 0.64. In all cases
results were significant with p < 0.05.

Longitudinal changes in patients.

Figure 7.2 highlights the pattern of the longitudinal changes in the different con-
nections for individual patients with respect to the control group, that appeared
to be patient-specific. The largest changes were observed in patients with the more
severe motor deficit. The pattern is similar for the different indices providing evi-
dence of the ability to capture the microstructural alterations due to white matter
plasticity in the contralesional area. In particular, PA closely reproduces the pat-
tern of GFA, while RTAP and D appear to be less sensitive especially for SC,
coherently with the observation that for SC no significant difference between pa-
tients and controls could be detected by these two indices (see Figure 7.1). An
increase in axon diameter is seen in patients over time. This could reveal axonal
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outgrowth and myelin increase due to plasticity as activated in the rehabilitation
process [135], [204].
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Fig. 7.2: Patients’ individual profiles of mean absolute changes between tp1 and
tp2 (first column), tp2 and tp3 (second column), and tp1 and tp3 (third column).
Changes were compared to the corresponding controls’ mean changes using z-
scores. Patients are ordered according to the initial NIH Stroke Scale (NIHSS)
[38].

Prediction of clinical outcomes in patients for each index.

In the patients’ group, a linear regression model including only age and NIHSS at
tp1 and tp2 gave low correlation as well as a model including only NIHSS at tp1
and tp2 as reported in Table 7.1 (R2 = 0.691; adjusted R2 = 0.652). Conversely,
for each index, the models including also its mean values across the different con-
nections were able to predict the NIHSS at tp3 with higher significance (Table
7.2). In particular, the best prediction model was obtained for D (R2 = 0.998;
adjusted R2 = 0.990, p = 0.008). However, all models led to high significance,
with adjusted R2 > 0.8, confirming the importance of GFA and 3D-SHORE-based
indices for an early prediction of the patient clinical outcome. Moreover, although
GFA and PA are both anisotropy indices, PA has a higher prediction significance
pointing at a stronger reliability of this new descriptor.

Table 7.1: Prediction model based only on Age+NIHSS

Coefficients Estimate SE t p Confidence interval

NIHSS tp2 0.62 0.15 4.23 0.003 0.28, 0.96

The prediction model was statistically significant F (1, 8) = 17.86 with p =
0.003; RMSE: 0.78
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Table 7.2: Performance of each prediction model

Index Multiple R2 Adjusted R2 p

GFA 0.970 0.932 0.004
RTAP 0.919 0.818 0.026
D 0.998 0.990 0.008
PA 0.991 0.973 0.004
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Fig. 7.3: Representation of the measured and predicted NIHSS at tp3 using the
models described above.

7.2 Networks study

7.2.1 Precision of the measurements

The repeatability of the measurements was assessed on the three main networks
using the Bland-Altman plots.

The Bland-Altman plots comparing the mean index values across the CC con-
nections for tp1c and tp2c are reported in Figure 7.4. The corresponding correlation
scatter plots are provided in Figure 7.5. As shown in Table 7.3, a strong correlation
between tp1c and tp2c was detected for all the indices. The best degree of asso-
ciation was achieved for GFA (r2 = 0.85, p < 0.05), followed by PA (R2 = 0.83,
p < 0.05) while R showed the lowest correlation value (r2 = 0.78, p < 0.05). High
ICC values, close to unity, were found in all cases, with GFA and R showing also
the highest and lowest ICC values (0.92 and 0.88), respectively. Regarding the
relative variability expressed by the CV index, RTPP resulted the index with the
best performance and lowest value, below 3%. In all cases, the Bland-Altman plots
showed a mean difference close to zero (except for RTOP, due to the high values’
range for this index) with a limited spread of values.
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Fig. 7.4: Bland Altman plot for each index in the transcallosal (CC) network. The
solid line represent the mean value, while the dashed lines represent the ±1.96 SD
values, respectively [37].

The Bland-Altman plots for the CORT and SUBCORT loops are reported
in Figures 7.6 and 7.7, respectively, while the corresponding repeatability indices
are given in Table 7.3. For the CORT network, the correlation plots evidenced a
positive association between time points for all the indices (see Figures 7.8 and
7.9), with the highest correlation obtained for RTOP (r2 = 0.82, p < 0.05), while
RTPP showed a poor degree of correlation between values along time. RTOP and
RTPP also displayed, respectively, the highest and lowest agreement in terms of
ICC values between repeated measures in the test-retest procedure (0.91 and 0.59,
respectively). For all the indices, the CV values between the repeated measures
were well below 6%. Also in this network, the Bland-Altman plots confirmed a
good reproducibility for all the indices, with a limited spread of the values around
the mean (close to zero) and almost entirely within ± 1.96 SD.

For SUBCORT, PA showed the highest temporal stability both in terms of cor-
relation and ICC (r2 = 0.90, p < 0.05; ICC = 0.96). Differently from the other two
sets of connections, RTPP and RTOP showed, respectively, the lowest correlation
and repeatability values relatively to the other indices (RTPP r2 = 0.73, p < 0.05;
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Fig. 7.5: Correlation plot for each index in the CC set [37].

RTOP ICC = 0.85). RTOP also showed a larger CV value in comparison with the
other networks (11%). The good reproducibility of the indices for this loop was fur-
ther confirmed by the Bland-Altman plots, with almost all the values concentrated
within the agreement limits for all the indices.

Overall, all the microstructural indices resulted to be stable across acquisition
sessions guaranteeing precise measurements.

7.2.2 Comparison of absolute indices changes in patients and controls

The mean absolute percent changes for ∆tp12c, ∆tp12, ∆tp23 and ∆tp13 for each
index and for each of the main networks are reported in Figure 7.10. Regarding the
CC network, a significant difference was reached in all the comparisons between
temporal changes.

In particular, a marked statistically significant difference was detected in all
the indices, except R, between the pairs {∆tp12c, ∆tp12} and {∆tp12c, ∆tp13} with
the same range of p values (0.001 < p ≤ 0.01, corrected) while ∆tp23 appeared
to be less different from the control variations in this loop. Regarding the CORT
network, this failed to show statistically significant differences for RTPP at all
time scales as well as for the pair {∆tp12c, ∆tp23} in all the considered indices.
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Fig. 7.6: Bland-Altman plot for each index in the cortical (CORT) network. The
solid line represents the mean value, while the dashed lines represent the ±1.96
SD values, respectively [37].

In the other cases, the differences with the control group appeared to be equally
or less strongly significant in comparison with the other two networks at all the
time scales. Finally, the SUBCORT network presents the same results as for the
CC connections for GFA and R. A lower significance than for the CC network
could be observed for PA and RTAP for the comparison between ∆tp12c and ∆tp12

and also for the comparison between ∆tp12c and ∆tp23 in RTPP. Moreover, RTOP
had no significant differences except for the pair {∆tp12c, ∆tp13}.

RTPP results revealed that this index has lower percentage absolute changes
over time in comparison with the other indices, both for controls and patients,
while RTOP trends in all the networks are in line with those of RTAP.

Overall, mean absolute changes of the set of microstructural indices along the
CORT network resulted less effective in discriminating patient and control groups.
We thus decided to investigate further the role of the SUBCORT network by
considering the five SUBCORT loops that are illustrated in Figure 6.3. This allows
a finer granularity in the analysis while still keeping the loop as the basic structural
element.
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Fig. 7.7: Bland-Altman plot for each index in the subcortical (SUBCORT) network.
The solid line represents the mean value, while the dashed lines represent the±1.96
SD values, respectively [37].

Splitting the SUBCORT network to the set of five sub-network components
(Figures 6.3d-h, 7.11) highlighted the leading role of the M1 loop since it allowed
discriminating the two groups at all time scales for GFA, PA and R (p < 0.05). On
the other end, the PM2 sub-network had a less prominent role detecting significant
differences only at longer time scales using PA and RTAP as shown in Figure 7.11.

Focusing on the indices, GFA was highlighted as the index reaching the high-
est significant differences for all the three temporal conditions and all the sub-
networks. Furthermore, R showed a good ability to differentiate controls from
patients in all loops, followed by PA and, to a lesser extent, RTAP. Finally, RTOP
and RTPP changes failed to reach significance in all conditions, namely for all sub-
networks and temporal scales. However, a positive trend could be observed in the
absolute percent change ∆tp13 between tp1 and tp3 in patients, which indicates a
change in the absolute value of the corresponding index. Even though such changes
did not reach statistical significance, they witness the ability of RTOP and RTPP
indices of capturing microstructural remodeling in patients. It could be useful to
highlight that the method used for correction for multiple comparisons strongly
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Fig. 7.8: Correlation plot for each index in the CORT set [37].

influences the results. A clear indication does not emerge from the literature in
this respect so far.

7.2.3 Predictive models

Two families of predictive models were considered: the first targeting the identi-
fication of the networks playing a dominant role in the prediction of the clinical
outcomes at tp3 and the second aiming at disambiguating the role of a specific
index in the same predictive task by gathering the different circuits.

In the patients cohort, a linear regression model including only age, stroke
size and NIHSS at tp1 has shown to predict the NIHSS outcome at tp3 with low
correlation (R2 = 0.546; adjusted R2 = 0.489; p = 0.772). The R index was not
considered because of its dependence on RTAP [38]. Conversely, the construction
of a predictive model for each of the three networks including all together the
corresponding tp1 values of GFA, PA, RTAP, RTOP, and RTPP, increased the
prediction capability, except for the CORT loop, as shown in Figure 7.12 (R2 =
0.558; adjusted R2 = 0.431; p = 0.057). Notably, the best results were obtained
in the SUBCORT set (R2 = 0.997; adjusted R2 = 0.988; p = 0.009), even though
the regression model for the CC network proved to have a high correlation as well
(R2 = 0.994; adjusted R2 = 0.973; p = 0.021). Moreover, all the prediction models
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Fig. 7.9: Correlation plot for each index in the SUBCORT set [37].
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Fig. 7.10: Longitudinal changes in percent mean absolute values in controls and
patients for each index in transcallosal (CC), cortical (CORT), and subcortical
(SUBCORT) networks (*p < 0.05, **p < 0.01, ***p < 0.001) [37].
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Table 7.3: Repeatability performance in terms of correlation coefficient (R2), intra-
class correlation coefficient (ICC), and coefficient of variation (CV%) for all the
indices for each set of connections.

Network Index r2 ICC CV %

CC

GFA 0.85 0.92 4.8
PA 0.83 0.90 4.0
R 0.78 0.88 4.6
RTAP 0.84 0.91 5.7
RTOP 0.81 0.90 7.4
RTPP 0.82 0.90 2.8

CORT

GFA 0.80 0.89 5.2
PA 0.68 0.82 5.2
R 0.49 0.69 5.3
RTAP 0.79 0.89 5.1
RTOP 0.82 0.91 5.6
RTPP 0.35 0.59 4.9

SUBCORT

GFA 0.88 0.94 5.0
PA 0.90 0.96 4.7
R 0.82 0.91 3.1
RTAP 0.77 0.88 6.2
RTOP 0.76 0.85 11.0
RTPP 0.73 0.88 3.1

Table 7.4: In all the networks, correlation values were statistically significant (p <
0.05).
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Fig. 7.11: Longitudinal changes in percent mean absolute values in controls and
patients for each index in the five sub-networks (*p < 0.05, **p < 0.01, ***p <
0.001) [37].
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retained RTOP as a significant predictor while GFA was the only one rejected in
the model composed by SUBCORT connections.
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Fig. 7.12: Representation of the measured and predicted NIHSS at tp3 using the
models described above [37].

When the 3D-SHORE indices were considered separately, the advantage of
taking into account RTOP to determine a good prediction of clinical outcome was
further confirmed as appears in Figure 7.13. Indeed, the predictive model for this
index showed the highest correlation value (R2 = 0.998; adjusted R2 = 0.983;
p = 0.096). The models using GFA (R2 = 0.992; adjusted R2 = 0.976; p = 0.003),
RTPP (R2 = 0.956; adjusted R2 = 0.802; p = 0.146), and PA (R2 = 0.861;
adjusted R2 = 0.688; p = 0.073) also showed a good correlation and prediction
power. Conversely, no meaningful prediction models could be derived for RTAP
using these sets of connections.

For all the different optimal models, the relative importance of each predictor
was evaluated by the Fisher test.
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Fig. 7.13: Representation of the measured and predicted NIHSS at tp3 for each
index [37].

7.3 Comparison between 3D-SHORE indices and tensor FA

and MD

7.3.1 Qualitative assessment of dMRI-based indices

Classical tensor-derived and 3D-SHORE-derived indices were estimated in all sub-
jects and tp. Figures 7.14 and 7.15 show the different maps calculated for each



7.3 Comparison between 3D-SHORE indices and tensor FA and MD 99

index across times in a representative control and a representative ischemic stroke
patient, respectively. For ease of visualization and for the sake of clearer presenta-
tion, the three anisotropy measures were normalized to the respective maximum
index value, while the square-root of the RTAP maps was extracted to report
the values in the same range of RTPP, as in [18]. All the anisotropy measures
as well as RTAP and RTPP maps revealed high values in WM, while lower val-
ues were reached in GM and especially in voxels with strong CSF contribution.
The opposite pattern was visible in MD and MSD maps, where WM appeared
to be hypointense due to restricted diffusion while higher values were reached in
GM and CSF tissues. These patterns were consistent across subjects and tempo-
ral scales. Comparing GFA, PA and FA, both control and patient representative
slices revealed a higher WM/GM contrast for the normalized 3D-SHORE-derived
anisotropy measures that also appeared to be less noisy and more uniform through-
out WM in comparison to the classical FA. Moreover, FA appeared to have lower
values in regions with large fiber orientation dispersions where the single tensor
representation precludes the possibility to cope with complex structures leading to
drops. RTAP maps were hyperintense in regions of coherently packed WM fibers,
while RTPP was similar in GM and WM tissues. Finally, MSD and MD visually
demonstrated a correlated behaviour, appearing brighter in regions where water
particles are free to diffuse like ventricles and darker in regions of restriction like
WM. In the stroke patient reported in Figure 7.15, a large ischemic lesion can be
appreciated in the left hemisphere (cortico-subcortical areas) and the modulation
of tissue microstructure is visible across the different tp. The lesion was hypointense
in GFA, PA, MSD, FA and MD at tp1, while markedly brighter than the other
tissues in RTAP and RTPP. After one month from the injury (tp2 ), the contrast
was reversed for these two indices, such that the lesion appeared hypointense as
in the anisotropy measures, where hyperintensities within the lesion became visi-
ble in MSD and MD. Such a trend persisted at six months after the initial brain
damage (tp3 ). For all the subsequent quantitative analyses, we investigated the
contralateral hemisphere only, where microstructural changes after stroke might
be subtle and not visually detectable.

Fig. 7.14: Axial slices of a representative control for each index (columns) and each
time point (rows). Images are displayed in radiological convention [31].



100 7 Results and discussion

Fig. 7.15: Axial slices of a representative patient (ischemic stroke in left cortico-
subcortical areas) for each index (columns) and each time point (rows). Images
are displayed in radiological convention [31].

7.3.2 Precision of the measurements

In terms of test-retest reproducibility, tract-based results highlighted excellent
consistency across sessions in the three networks for tensor-derived as well as 3D-
SHORE indices, with ICC > 0.8 in almost all cases and values close to unity
for the SUBCORT loop (Table 7.5). Indeed, the highest ICC was obtained for
PA in SUBCORT (ICC = 0.96), followed by MSD in the same network (ICC =
0.95). Conversely, MSD together with RTPP reached the lowest values in CORT,
although still amenable to be judged as having good reliability (ICC = 0.67 and
ICC = 0.59, respectively). This high reliability was matched with high intra-
subject stability across sessions as measured by CVintra values, well below 10%
and, in most of the cases, also below 5%. The lowest stability was found in the
CC loop for MD (CVintra = 7.7%), while MSD resulted to be the index with
the highest stability in all the loops, reaching a remarkable 1.1% within-subject
variability in the SUBCORT network.

GM region-based reproducibility results are reported in Table 7.6 in terms of
mean and SD values across ROIs. RTAP, RTPP, MSD and MD reached excel-
lent consistency, with mean ICC > 0.90 and very low SD across ROIs (< 0.10).
Conversely, all the anisotropy measures showed only good reliability and more
variability across the different GM structures. This was further confirmed by the
CVintra measure, reporting mean values < 10% in all cases albeit higher for GFA,
PA and FA in comparison to the other microstructural indices. Also in this case,
MSD reached the lowest variability values with a limited spread around the mean.

Figure 7.16 shows the inter-subject variability results (CVinter) represented as
mean ± SD across all the connections of a given loop for tract-based analysis, and
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Table 7.5: Tract based reproducibility.

Tract-based
CC CORT SUBCORT

GFA
ICC 0.92 0.89 0.94
CVintra 4.83 5.23 5.03

PA
ICC 0.90 0.82 0.96
CVintra 3.98 5.23 4.71

RTAP
ICC 0.91 0.89 0.88
CVintra 5.72 5.10 6.16

RTPP
ICC 0.90 0.59 0.88
CVintra 2.83 4.92 3.10

MSD
ICC 0.83 0.67 0.95
CVintra 2.06 3.40 1.13

FA
ICC 0.90 0.91 0.93
CVintra 4.77 4.31 4.89

MD
ICC 0.85 0.89 0.94
CVintra 7.74 3.73 3.50

Table 7.6: Grey matter reproducibility.

ICC CVintra

GFA 0.63 ± 0.22 7.36 ± 2.96
PA 0.61 ± 0.24 6.82 ± 2.42
RTAP 0.91 ± 0.07 3.40 ± 1.63
RTPP 0.92 ± 0.07 1.73 ± 0.78
MSD 0.93 ± 0.09 1.97 ± 0.75
FA 0.66 ± 0.17 9.25 ± 3.59
MD 0.94 ± 0.08 3.09 ± 1.71

across ROIs for region-based analysis on GM. As expected, the between-subject
variability was higher than the within-subject, although the mean CVinter values
were ≤ 15% in all cases. Regarding the network analysis, similar patterns in the
three loops were observed for each index, with RTPP and MSD featuring the
lowest variability across subjects (RTPP: CVinter = 4.67±2.53% in CORT; MSD:
CVinter = 2.36± 1.82% in SUBCORT). Conversely, RTAP was the index showing
more variability in all loops, especially in CC. The same trend was observed in the
ROI-based analysis on GM, where the CVinter values were similar to those resulting
from tract-based analysis with RTPP and MSD reaching the highest stability
(RTPP: CVinter = 4.87 ± 1.34%; MSD: CVinter = 6.49 ± 1.72%). It is worthy of
note that all the values were within the recommend 15% range [139, 103], even
though tensor-derived indices featured relatively lower stability across subjects in
GM, with the highest values reached by FA (CVinter = 11.68± 3.09%).

7.3.3 Comparison of absolute indices changes in patients and controls

For each index and network, the mean of the percentage absolute changes between
tp is reported in Figure 7.17 along with SD across subjects. The p-values resulting
from the statistical analysis are shown as stars with three levels of significance
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Fig. 7.16: Reproducibility in terms of inter-subject coefficient of variation (CVinter)
for all the indices and for all the outcome measures. Results are expressed as
percentage and reported as mean ± standard deviation across connections (for
tract-based) and regions (for region-based on grey matter), respectively. CC =
transcallosal network; CORT = cortical network; SUBCORT = subcortical net-
work [31].

(*p < 0.05, **p < 0.01, ***p < 0.001). In all the cases, data from the control
group confirmed the limited percentage changes between time points, with mean
values < 5%, in agreement with the reproducibility results from the previous
Section. Regarding the CC network, all the anisotropy measures (GFA, PA and
FA) reached the highest significance when comparing ∆tp12c and ∆tp12 as well as
∆tp12c and ∆tp13 (p < 0.001). Moreover, GFA and FA showed higher significance
than the other microstructural indices in the comparison between ∆tp12c and ∆tp23

(p < 0.01). MSD and MD highlighted the same patterns across time and the same
statistical differences, with not significant changes between∆tp12c and∆tp23. In the
CORT network, only few significant differences were detected between controls and
patients (∆tp12) by GFA and RTAP, while for all the other indices the longitudinal
changes, although appreciable, did not reach the statistical threshold. Conversely,
several significant differences were detected again in the SUBCORT loop by all
the indices at multiple time scales, except for RTAP and RTPP which did not
depict significant changes between ∆tp12c and ∆tp23. All the anisotropy measures
confirmed the presence of marked changes over time involving also this network,
with similar patterns to the findings shown in CC.

7.3.4 Predictive models

Extending the preliminary analyses, the tract-based results in patients were fur-
ther used to predict the clinical motor outcome at tp3 by relying on several regres-
sion models. The reference linear regression model including only clinical variables
at baseline (age, stroke size and NIHSS motor score at tp1 ) and avoiding mi-
crostructural indices could predict the NIHSS outcome at tp3 with low correlation
(R2 = 0.546; adjusted R2 = 0.489; p < 0.05). The TBM, enclosing MD-FA at
tp1 plus the clinical variables, allowed increasing the prediction capability of the
reference model in the CORT and SUBCORT networks (Figure 7.18, first row).
In detail, the TBM for SUBCORT presented the best performance (R2 = 0.975;
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Fig. 7.17: Longitudinal changes in percent absolute values in controls and patients
with significant differences between cohort distributions (*p < 0.05, **p < 0.01,
***p < 0.001) for each index in transcallosal (CC), cortical (CORT), and subcorti-
cal (SUBCORT) networks. Mean ± standard deviation values across subjects are
reported [31].

adjusted R2 = 0.955; p < 0.001) holding MD, FA, stroke size and age as rele-
vant predictors. In the case of the CORT network, a higher correlation than the
reference model was found with the TBM retaining only stroke size and MD as
significant predictors (R2 = 0.700; adjusted R2 = 0.614; p < 0.05). Conversely, the
tensor-based model for CC did not include any microstructural index, returning
the reference model as the optimal one. The SBM, embedding the five 3D-SHORE
indices at tp1 plus the clinical variables, reached the highest correlation in the
SUBCORT network (R2 = 1; adjusted R2 = 0.998; p < 0.001) (Figure 7.18, sec-
ond row). The optimal predictive model held clinical variables plus GFA, MSD,
RTPP and PA as significant predictors. The SBM for CORT excluded all the mi-
crostructural indices, leading to the reference model as the optimal one. Finally,
in the CC network the SBM presented a slightly lower correlation than the refer-
ence (R2 = 0.454; adjusted R2 = 0.385; p < 0.05) but highlighting RTPP as the
only significant predictor. The GBM, including only the dMRI-based indices, al-
lowed to substantially increase the capability to timely predict the motor outcome
compared to the clinical reference model (Figure 7.18, third row). In detail, the
SUBCORT network provided again the highest correlation (R2 = 0.728; adjusted
R2 = 0.694; p < 0.01) keeping only RTPP as significant predictor. The predictive
model for the CC network also featured high correlation (R2 = 0.713; adjusted
R2 = 0.631; p < 0.05) maintaining MD and RTPP as predictors, while GFA,
RTAP and MD were retained in the predictive model for CORT. This network
led to the GBM with the lowest correlation (R2 = 0.724; adjusted R2 = 0.586;
p < 0.05), but still higher than the reference model.

7.3.5 Statistical analysis on GM region-based outcomes

Regarding the control vs patient analyses on the outcomes from the region-based
quantification in GM tissues, the mixed ANOVA revealed a significant three-way
interaction between Group, Time (TP) and Region (ROI) for all the anisotropy
measures (GFA, PA, and FA) and RTPP. Details about these statistical results are
reported in Table 7.7. For the four indices, post-hoc Bonferroni tests revealed sig-
nificant between-group differences in several regions at both time scales, showing
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Fig. 7.18: Representation of the measured and predicted NIHSS at tp3 using
tensor-based, 3D-SHORE-based and global predictive models [31].

in these cases higher values in patients than controls (Figure 7.19.A,B). While the
most widespread changes were detected in terms of anisotropy at tp1, four common
regions were identified as significantly altered (Patients > Controls) also by RTPP.
While the most widespread changes were detected in terms of anisotropy at tp1,
four common regions were identified as significantly altered (Patients > Controls)
also by RTPP. In detail, the Inferior Temporal Gyrus (ITG) and the Lateral Oc-
cipital Cortex (LOC) were in common at both tp, while the Lateral Orbitofrontal
Cortex (lOFC) and the Middle Temporal Gyrus (MTG) presented high significance
(p ≤ 0.01) at tp1 and tp2 in GFA, PA and RTPP and only at tp1 in FA (Fig-
ure 7.19.C). RTPP changes were more visible at tp2, with several regions showing
higher values in patients compared to controls and non-significant anisotropic dif-
ferences. The remaining indices failed to reach a significant three-way interaction
even though control vs patient differences can be visually appreciated in Figure
7.19.A. In particular, for RTAP a similar trend to the anisotropy measures was
detected in all the regions, especially at tp1 over motor areas and subcortical nu-
clei as PM, SMA, SC, M1 and Thl, Cau and Put (Patients > Controls). For MSD,
while few ROIs presented relatively higher values in patients at tp1, there was an
overall increase in all regions at tp2 (Patients > Controls), except for the temporal
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pole where lower values were found over time in this group. Finally, MD patterns
were in line with MSD results, although with less marked changes between groups.
Moving a step backwards in the mixed ANOVA, all the indices except RTAP re-
vealed a significant two-way interaction between Group and ROI confirming that,
considering the overall time scales, there were differences in specific GM regions
between the two groups (Table 7.7; Figure 7.20). The anisotropy measures were
highly consistent, with FA highlighting more widespread increased values in GM
for patients as before. Finally, only GFA, PA and FA revealed an overall significant
main effect of Group (between-subject factor), as reported in Table 7.7.

Between-subject Within-subject
Group Group*ROI Group*TP*ROI

F-ratio
(1,18)

p-value
F-ratio
(35,630)

p-value
F-ratio
(35,630)

p-value

GFA 6.205 0.023* 2.340 < 0.001* 2.235 < 0.001*
PA 6.256 0.022* 2.218 < 0.001* 1.669 0.010*
RTAP 1.548 0.229 1.249 0.157 1.326 0.102
RTPP 2.064 0.168 2.152 < 0.001* 1.843 0.003*
MSD 2.681 0.119 2.601 < 0.001* 0.552 0.990
FA 7.346 0.014* 2,082 < 0.001* 2.731 < 0.001*
MD 0.186 0.671 1.825 0.003* 1.105 0.314

Table 7.7: ANOVA results (three-way mixed ANOVA) for the control vs patient
comparison of grey matter outcomes. The three independent variables were Group
(between-subject factor), Time Point (TP) and Region (ROI) (within-subject fac-
tors), while the dependent variable was the mean index value. Group*ROI and
Group*TP*ROI interactions are expressed in terms of F-ratio(df,error) and p-
values.

Considering the longitudinal analysis on the patient measures only, again all
the anisotropy indices along with RTPP and MD revealed a significant interaction
between TP and ROI. In details, GFA F (70, 630) = 1.61, p = 0.002; for PA
F (70, 630) = 1.52, p = 0.006; for RTPP F (70, 630) = 1.47, p = 0.01; for FA
F (70, 630) = 1.92, p < 0.0001; and for MD F (70, 630) = 1.76, p = 0.0003 (Table
7.8). Post-hoc Bonferroni tests (Figure 7.21) highlighted for the three anisotropy
measures consistently significant differences over the lingual gyrus (LgG) for tp1

vs tp2, and in the medial orbitofrontal cortex (mOFC) for tp1 vs tp3. Moreover,
FA presented LgG differences for tp1 vs tp3, and in the precuneus (PCN) for both
tp1 vs tp2 and tp1 vs tp3. In all these statistically significant changes, higher
values were detected just after the stroke event (tp1 ) in comparison to tp2 and
tp3. Conversely, an opposite trend was found for RTPP detecting a single region
[frontal pole (FP)] with higher values at tp2 compared to tp1. For MD, despite
the significant interaction no regions survived the Bonferroni corrections of the
post-hoc paired tests (Figure 7.21.B,C). When using a less conservative approach
[Least Significant Different (LSD) post-hoc tests], five regions, including PM, SC
and Thal, turned out to be significantly increased at tp3 compared to tp2 and
tp1 (Figure 7.22). Applying LSD post-hoc tests also to the other indices, the



106 7 Results and discussion

GFA

0 0.2

PA

0 0.15

RTAP

3000 6500mm2

RTPP

40 65mm1

FA

0 0.3

MSD

14 20mm2

MD

0.5 1.5mm2/s

Controls > Patients

Controls < Patients

bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

A) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

B) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

0 0.05

pvalue

C)

GFA         PA           RTAP       RTPP       MSD         FA             MD
GFA   PA  RTAP RTPP MSD   FA    MD    tp1     tp2      tp1     tp2      tp1     tp2    tp1     tp2     tp1     tp2      tp1    tp2      tp1     tp2  GFA   PA  RTAP RTPP MSD   FA    MD    

Fig. 7.19: Post-Hoc test results for the three-way mixed ANOVA (controls vs
patients). A) For each index and each time point (tp) block, the first column
represents the mean index values for the controls while the second column the
mean values for the patients. B) Post-hoc results of the significant interactions
between Group, TP and Region (ROI), expressed in red if the difference between
control and patient mean values is positive (controls > patients) and in blue if
the difference is negative (controls < patients). (C) Corresponding p-values for
the significant ROI resulting from the post-hoc tests. These values (p < 0.05) are
Bonferroni corrected for multiple comparisons [31].

anisotropy measures revealed more widespread regions of increased values in the
early phase (tp1 ) in comparison to the other two time points, consistently with the
results from the mixed ANOVA. GFA and PA, in addition, showed higher values
at tp3 compared to tp2 over two motor regions, e.g. Put and M1, respectively.
Finally, RTPP confirmed a significant increase over time (both tp2 and tp3 ) in
comparison to tp1 in the FP region. Regarding the other two indices that did
not show a significant interaction (RTAP and MSD) and were thus precluded to
be evaluated with post-hoc tests, a different trend was visible across time with a
series of appreciable longitudinal differences (Figure 7.21.A). In particular, RTAP
revealed a similar behaviour to the anisotropy measures, with higher values at tp1
that decreased over time, especially at tp3. Conversely, MSD highlighted higher
values over time, as in the case of MD, with marked visual increases at tp3 over
several regions (as PM, SC, FP, Thal, Put, Cau).

7.4 Discussion

7.4.1 Networks study

This longitudinal study on motor stroke patients demonstrates the suitability
of 3D-SHORE indices for characterizing the contralesional structural changes of



7.4 Discussion 107

GFA

0 0.2

PA

0 0.15

RTAP

3000 6500mm2

RTPP

40 65mm1

FA

0 0.3

MSD

14 20mm2

MD

0.5 1.5mm2/s

bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

A) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

B) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

0 0.05

pvalue

C)

Controls > Patients

Controls < Patients

GFA   PA  RTAP RTPP MSD   FA    MD    

Fig. 7.20: Post-Hoc test results for the three-way mixed ANOVA (Controls vs Pa-
tients). A) For each index, the first column represents the mean index values for
the controls while the second column the mean values for the patients, averaged
across the first two time points. B) Post-hoc results of the significant interactions
between Group and Region (ROI), expressed in red if the difference between con-
trol and patient mean values is positive (Controls > Patients) and in blue if the
difference is negative (Controls < Patients). (C) Corresponding p-values for the
significant ROI resulting from the post-hoc tests. These values (p < 0.05) are
Bonferroni corrected for multiple comparisons [31].

TP*ROI
F-ratio
(1,18)

p-value

GFA 1.611 0.002*
PA 1.515 0.006*
RTAP 1.161 0.184
RTPP 1.467 0.010*
MSD 0.983 0.520
FA 1.918 < 0.001*
MD 1.756 < 0.001*

Table 7.8: ANOVA results (two-way ANOVA for repeated measures) for the lon-
gitudinal evaluation of grey matter outcomes in the patient group. The two inde-
pendent variables were Time Point (TP) and Region (ROI), while the dependent
variable was the mean index value. The TP*ROI interaction is expressed in terms
of F-ratio(df,error) and p-values.

the main motor pathways. In particular, our findings suggest that the complete
microstructural characterization provided by these indices over the contralateral
white matter connections can enable a more detailed knowledge of axonal remod-
eling after stroke, confirming and extending recent studies based on anisotropy
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Fig. 7.21: Post-Hoc test results for the two-way ANOVA for repeated measures.
A) For each index, the first column represents the mean index values at tp1, the
second column at tp2 and the third at tp3. B) Post-hoc results of the significant
interactions between Time Point (TP) and Region (ROI) for the different time
scales (light blue: tp1 − tp2 ; yellow: tp1 − tp2 ; red: tp2 − tp3 ), expressed with
their sign as positive or negative depending on the difference results. (C) Corre-
sponding p-values for the significant ROI resulting from the post-hoc tests. These
values (p < 0.05) are Bonferroni corrected for multiple comparisons [31].

measures [94, 135] and on a different and less extended set of microstructural
indices [38].

The potential of 3D-SHORE derived indices as new markers of disease-induced
changes has been further demonstrated by the test-retest study on healthy volun-
teers which proved the stability of all these indices over time. Finally, our results
stress the indication that the different 3D-SHORE measures within 1 week from
the insult, combined with clinical status in the acute phase, can predict the motor
outcome at 6 months after stroke with strong correlation.

While previous studies focused on the plastic changes considering individu-
ally the contralateral intra-hemispheric and interhemispheric motor connections
[176, 61, 94], here the concept of network has been introduced and fully investi-
gated. Acute ischemic strokes can indeed disrupt the nodes and edges of the circuits
and lead to time- and recovery-dependent changes in the specific structural net-
work characteristics [125]. Thus, studying different CORT and SUBCORT circuits
we could identify which are more involved in the recovery process and which al-
low to more clearly discriminate acute stroke patients from controls. Our findings
demonstrate the detection of microstructural changes in all the considered net-
works. More in details, the changes in all the indices of the CC and SUBCORT
network loops, which differ substantially between patients and healthy subjects,
put forth the important role played by these two interacting networks which have
been largely neglected for a long time. Our results about the CC network are in
line with previous findings from functional imaging and electrophysiological studies



7.4 Discussion 109

GFA

0 0.2

PA

0 0.15

RTAP

3000 6500mm2

RTPP

40 65mm1

FA

0 0.3

MSD

14 20mm2

MD

0.5 1.5mm2/s

bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

A) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

B) bSTS

cACC

PM

Cun

EC

FuG

IPL       

ITG

IGG

LOC

lOFC

LgG

mOFC

MTG

PHG

SMA

PORB

PTRI

PERI

SC

PCC

M1

PCN

rACC

rMFG

SFG

SPL

STG

SMG

FP

TP

Thal

Cau

Put

Hipp

Amg

0 0.05

pvalue

C)



+ +

+
+

+
++

+

+

+

+

+
+

+

+

+
+
+

+

+
+

+

+
+ +

+

+
+

+

+

++









 









Patients tp1tp2

Patients tp2tp3

Patients tp1tp3

GFA       PA       RTAP   RTPP     MSD      FA      MD     GFA       PA       RTAP    RTPP    MSD     FA       MD      GFA       PA       RTAP   RTPP     MSD      FA        MD     

Fig. 7.22: Post-Hoc test results for the two-way ANOVA for repeated measures.
A) For each index, the first column represents the mean index values at tp1, the
second column at tp2 and the third at tp3. B) Post-hoc results of the significant
interactions between Time Point (TP) and Region (ROI) for the different time
scales (light blue: tp1 − tp2 ; yellow: tp1 − tp2 ; red: tp2 − tp3 ), expressed with
their sign as positive or negative depending on the difference results. (C) Corre-
sponding p-values for the significant ROI resulting from the post-hoc tests. These
values (p < 0.05) are derived using Fisher’s LSD (Least Significant Difference)
[31].

applying transcranial magnetic stimulation (TMS) that have suggested a critical
importance of interhemispheric connections for stroke recovery [181].

Regarding the different indices, GFA and PA appeared to be the most sensitive
to longitudinal changes in stroke patients, and the most specific in discriminat-
ing patients from controls for all the loops. The remodeling of the contralesional
white matter in post-stroke functional improvement was reported in many studies
[176, 87, 179, 136] and specified as possibly caused by axonal sprouting, axonal
outgrowth, dendritic plasticity, or new connections [93, 204]. The new indices, in
particular RTAP, RTOP, and RTPP, help us to disentangle the different sources
of the contralesional compensation. More in details, GFA permits to only enhance
differences in the diffusivity while RTAP, RTOP and RTPP can specify the changes
in the axonal structures.

In terms of longitudinal stability and repeatability, the statistical measures ap-
plied to the test-retest data from the control group confirmed strong and significant
correlations between time points for all the indices and sets of connections, with
higher and consistent values for the interhemispheric connections and SUBCORT
loop. The ICC values for these two circuits demonstrated excellent agreement for
all the indices, while those for the CORT network resulted to be slightly inferior
for R and RTOP, although still excellent for the remaining four indices. Finally,
the Bland-Altman plots further elucidated a strong repeatability of the indices
in test-retest trials showing narrow limits of agreement and small mean differ-
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ences between the two repetitions. Overall, the CC and SUBCORT connections
appeared to be the most stable and reproducible networks for all the indices,
suggesting their importance as circuits to take into consideration for assessing
patients’ changes over time.

Regarding the prediction power of these indices, the predictive models intro-
duced in this study further demonstrated how 3D-SHORE measures calculated
over specific circuits, in combination with clinical and functional status, can pro-
vide a powerful and easy-to-use tool to evaluate acute stroke patients and predict
their motor recovery. In particular, two types of models have been presented. First,
a predictive model for each of the three main networks have been derived, con-
sidering all the indices’ values at tp1 together. Again, the interhemispheric (CC)
circuit and the SUBCORT loop highlighted the beyond suspicious importance of
taking into account these brain circuits. For these models, the inclusion of RTOP
as predictor in all the regressions, instead of the conventional GFA, evidenced the
role played by the 3D-SHORE indices in the creation of an effective prediction
model. Second, we defined a predictive model for each index, considering all to-
gether the circuits as predictors. However, here we considered the mean absolute
changes rather than the individual values at tp1 and only included the clinical
variables at tp1 demonstrating that early changes can provide a good prediction
of the clinical outcome. While GFA results further confirmed previous findings in
literature about its strong prediction power [94, 135], RTOP and RTPP results
are novel and permit an improved prediction in comparison to the conventional
models including only clinical variables and/or GFA measures. Future studies will
be performed to broaden both the inclusion criteria and the number of patients,
in order to fully validate these promising findings for a wider clinical use and for
a better planning of the rehabilitation processes in stroke patients.

7.4.2 Comparison between 3D-SHORE indices and tensor FA and MD

Our results suggest that 3D-SHORE-based microstructural descriptors obtained
from DSI data are capable to quantify the remodeling of both WM tracts and
GM regions involved in motor recovery after ischemic stroke. 3D-SHORE-based
indices proved to perform similarly to the classical DTI indices (FA and MD) and
revealed common patterns across the networks and ROI evaluated in the analyses.
Considering their performance and different nature, their combination in clinical
studies would allow to provide a more detailed and specific tissue characteriza-
tion, allowing to disentangle different conditions where tensor-based indices take
the same values. For instance, DTI cannot distinguish between a reduction of FA
caused by crossing fibers and one caused by a decrease of neural density in a
voxel. Conversely, the joint exploitation of RTAP and RTPP can allow disentan-
gling such ambiguity, as RTAP and RTPP both diminish in the case of neuronal
density reduction, while RTAP decreases and RTPP increases for crossing fibers,
as previously reported [229]. In addition, the combination of tensor-based and
SHORE-based indices in the linear regression models allowed to greatly increase
their ability to predict the clinical motor outcome in all the considered networks.
To the best of our knowledge, this is the first study focusing on the quantitative
comparison between 3D-SHORE-based and tensor-based descriptors in healthy
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subjects and in a patient population, aiming at demonstrating their behaviour
in different brain conditions/tissues and accomplishing an essential step towards
their applicability as viable tissue markers.

A growing body of literature is currently reporting the advantages of using
multiple b-values in terms of both detecting fiber crossings [185, 115] and recov-
ering the tissue microstructure [12, 227, 116]. Because of these facts, nowadays,
sampling schemes presenting higher b-values (as DSI and multi-shell) are becom-
ing popular in research and started to appear also in clinical application. In order
to fully exploit advanced dMRI datasets, reconstruction models that require mul-
tiple b-values such as the 3D-SHORE are necessary and therefore will become
more common in this field. In this context, it is therefore necessary to provide
an extensive characterization of these indices in describing tissues in physiological
and pathological condition, as we did for stroke patients. In line with the findings
firstly described by Özarslan and colleagues [158, 159], our results suggest that 3D-
SHORE-based indices can provide a wide set of information, reflecting meaningful
tissue properties as visually appreciable from the different maps. In particular,
the values estimated in our healthy population for each index and their spatial
distribution across the different anatomical structures appear to be in agreement
with the available literature results [159, 229, 18], with a high consistency across
subjects and time also at a visual inspect. GFA and PA are able to more properly
quantify the anisotropy, presenting more contrast between the GM and regions
with multiple fiber crossings in which the FA usually results in the same value.
The two zero-displacement probability measures derived from SHORE reflect dif-
fusion restriction in different directions, respectively radially (RTAP) and axially
(RTPP) to the main diffusion direction [159]. Consistently, RTAP maps exhibited
high values in regions of coherently packed WM fibers, as the corpus callosum
which is less contaminated by partial volume effects. RTPP values were similar in
both GM and WM tissues featuring less WM/GM contrast. This could suggest
similar apparent axial diffusivity for WM and GM, even though the mapping of
this measurement to real tissue microstructural properties is still an open issue.
Finally, MSD and MD were consistently higher in regions featuring free diffusion,
like the CSF and in areas with ischemic oedema [4]. These two indices are di-
rectly related via the Einstein diffusion equation as reported in the works of Wu
and Alexander [223] and Hosseinbor et al. [105] and, accordingly, are visually cor-
related. Evaluating qualitatively the longitudinal maps derived from the stroke
patients, the microstructural indices exhibited a different behaviour in the voxels
belonging to the damaged area but with a consistent pattern. Indeed, while all the
anisotropy measures revealed low values within the lesion that persisted over time,
RTAP and RTPP shifted from initial hyperintensities towards hypointensities after
one month from the event (tp2 ), highlighting an opposite trend for anisotropy and
restriction. This stresses the complementarity of the information brought by those
indices. Furthermore, considering their opposite trend in comparison to MSD and
MD (from hypo- to hyperintensities) and the ischemic nature of the stroke these
findings support the hypothesis of Avram et al. [18] according to which the zero-
displacement measures are more specific biomarkers of the presence of restricting
barriers to diffusion. Interestingly, RTAP and RTPP featured the highest values
at tp1 highlighting restricted diffusion in the lesion. Moreover, we found MSD to
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be more contrasted than MD inside the ischemic lesion in all cases. In particular,
this index seems to identify and characterise different portions of the lesion, while
MD appears to be more homogeneous in the same areas. Some patients (mainly
those with extensive lesions) also revealed increased MSD values in the periphery.
However, as this pattern was not confirmed in all cases, a larger sample size and
more focused analyses on the stroke lesion would be necessary to draw robust con-
clusions on this aspect, possibly pointing at an inflammatory reaction which has
been previously described [213, 122]. Finally, the heterogeneous patterns of RTAP,
RTPP and MSD visible within the lesion one week after stroke could be of help
for distinguishing the ischemic core from the penumbra area. This issue deserves
further investigation.

The quantitative analysis of possible plasticity processes focused on the con-
tralateral hemisphere to the stroke and exhibited high reproducibility in both
3D-SHORE-based and DTI indices, as quantified by ICC, and high stability, as
quantified by intra/inter-subject CV parameters, on both tract and region-based
outcomes. Interestingly, for tract measures the 3D-SHORE index MSD, rarely con-
sidered in previous studies, showed the lowest intra-subject variability (CVintra)
in all cases, and the highest reliability (ICC) in CC and SUBCORT. Conversely,
it revealed lower, although still good, ICC values in CORT along with RTPP that
resulted to be the index with the lowest reliability in this network. This is possibly
related to the fact that these two indices exhibited here a relatively higher within-
subject SD for repeated measurements than in the other cases, which resulted to be
closer to the between-subject SD values and therefore led to lower ICC values for
this loop. Despite this consideration concerning the CORT loop only, the reliabil-
ity and discriminative power of MSD and RTPP were not compromised as further
proven by the other group-based analyses performed in this study. Other studies
have quantified the reproducibility of 3D-SHORE-based metrics across subjects
and sessions. Moreover, the previous reports aiming at quantifying the reliability
of classical tensor-based measures generally focused only on few major fiber tracts
(e.g. corpus callosum, cingulum, fornix and arcuate fasciculus) [103, 62, 212] rather
than considering specific brain networks with different sets of tracts. Despite this
main difference, our findings are in line with the results of these studies, which
demonstrated reliable measurements for FA and MD featuring both inter-session
CVintra ≤ 10% and ICC ≥ 0.70, with some variability related to the considered
tract. Regarding region-based outcomes, the reproducibility analysis in GM ROIs
revealed a higher intra-subject variability for the three anisotropy measures (GFA,
PA and FA) in comparison to the other indices, with mean values still well within
the 10% range, matched with a good reliability from ICC. This is possibly due to
the lack of directed orientation in a tissue as GM [25] and is in agreement with
previous studies showing a two-three times higher variation of FA in regions of
GM compared to WM structures [210, 32]. Conversely, MSD and RTPP appeared
again as featuring the lowest intra-subject variability and, along with MD, reached
the highest ICC reliability values. The performance of FA for GM ROIs appears
to be in line with previous reports evaluating DTI indices in this tissue [207, 97],
showing higher CVintra values for the whole GM than for MD (8−11% vs 2−5%,
respectively) and a wide range of variation across the different GM structures
(3.3− 19.2%). Conversely, no studies have previously quantified the measurement
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precision of 3D-SHORE-based indices in GM regions, therefore our findings add an
important step to the current literature on the topic and their reassurance in terms
of reliability encourages their use for evaluating GM tissues as well. Considering
as additional reliability measure the between-subject variability, we found average
CVinter values well below the 15% threshold for both tract- and region-based out-
come. Among the seven variables, RTPP and MSD generally had lower CVinter
than the other metrics with average values ≤ 6%. Tensor-based measures revealed
overall lower between-subject stability than 3D-SHORE-based indices, especially
in the GM ROIs where the average values were around 10%. Previous studies have
indicated FA and MD as the measures with lower CVinter in different WM fiber
tracts, for example Wang and colleagues [212] reported average values in the range
2.4−7.6% for FA and 1.7−9.9% for MD respectively, while Grech-Sollars et al. [97]
showed mean inter-subject values < 6% for the whole GM and WM regions (not
tracts). Our results confirmed the good inter-subject stability for FA and MD but
demonstrated that the 3D-SHORE-based indices improve on the classical measures
in terms of between-subject variability in most of the cases. The latter observation
demonstrated the gain in using a multi-b-values model such as 3D-SHORE. In
particular, GFA and MSD were already defined the analogues of FA and MD for
multi-b-values acquisitions by Hosseinbor and colleagues [105]. The combined high
stability over time, relatively higher inter-subject variability (CVintra ≪ CVinter)
shown by the 3D-SHORE based indices, which is a pattern that can help detect-
ing group differences between subjects, and excellent inter-session ICC values for
most of the cases reinforce their potentialities as microstructural biomarkers for
revealing longitudinal changes.

Longitudinal group-based analyses were performed to statistically compare the
mean absolute changes between time points calculated for each network. Regard-
ing 3D-SHORE-based indices, the Bonferroni corrected t-tests revealed several
highly significant differences between patients and controls in the SUBCORT and
CC networks, also for the newly introduced MSD index. These findings further
confirm and strengthen our results on a subset of 3D-SHORE indices [37], where
the t-tests were corrected for multiple comparisons with FDR. Conversely, a more
conservative correction was employed here in order to quantify with additional
confidence the longitudinal changes detected by the different indices and to re-
duce false positive results. Tensor-derived indices also exhibited similar patterns
to 3D-SHORE descriptors, in terms of both evolutions of changes over time and
level of significance. In all cases, the highest levels of significance were reached
in the patient group for the tp1-tp2 and tp1-tp3 relative changes, suggesting the
presence of marked modifications in the contralateral hemisphere just one week
after the stroke event (tp1 ). Interestingly, 3D-SHORE-based indices appeared to
be the only capable of depicting statistically significant changes across the CORT
loop. Indeed, only GFA and RTAP found a significant patient vs control difference
in the first phase (tp1-tp2 ), further highlighting the relevance of this time scale in
the course of the disease. These findings are in line with the few previous works
reporting changes in the WM tracts of the contralesional hemisphere after stroke.
Indeed, the possible modifications in the contralateral hemisphere with respect to
the lesion have been scarcely investigated in literature, especially in humans, as
these tissues have been widely disregarded as considered healthy and not directly
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involved in any rearrangement process [138, 160]. However, as the field moved for-
ward, it became apparent that also the non-injured hemisphere undergoes marked
changes and has a fundamental role in stroke recovery, as recognised by several au-
thors relying on different MRI techniques [214, 88, 61, 94, 135]. Specifically, Crofts
and colleagues [61] showed how communicability values, derived from complex
network analysis, were reduced in both ipsilateral and homologous contralateral
regions. Moreover, Granziera et al. [92] reported significantly increased apparent
diffusion coefficient (ADC) values in the infarct region (in both GM and WM
tissues) moving from acute to chronic, whereas WM FA significantly decreased in
the mirror regions. Our study extends the available literature on the topic and the
novel biomarkers derived by the 3D-SHORE model possibly add new metrics that
can be employed in this context (for a detailed overview see Kim and Winstein
[120]). In addition, the predictive power of all the microstructural indices for pa-
tient motor outcome at tp3 were investigated relying on the tract-based values and
comparing several regression models for the prediction. Notably, among the three
loops, the SUBCORT was the only one for which all the three types of models cre-
ated (tensor-based model, 3D-SHORE-based model, global microstructural model)
reached excellent performance. In particular, the 3D-SHORE-based model, com-
bining a subset of these indices together with clinical patient information, led to the
best linear regression model featuring a very high predictive power (R2

adj = 0.998,
p < 0.001), which slightly outperformed the optimal model we found in our previ-
ous work (R2

adj = 0.988, p = 0.009) [37]. The set of indices in the optimal model
of this work embeds MSD, suggesting that this index holds a higher potential in
probing stroke-induced microstructural changes during the early phase. The model
using all the microstructural indices led to the best performance in the SUBCORT
loop, reaching the highest correlation score (R2

adj = 0.694, p < 0.01) and keeping
RTPP as key predictor. The relevance of RTPP for subcortical WM tracts appears
to be coherent with another observation of Avram and colleagues [18] according to
which RTPP is very sensitive to deep structures, showing higher intensity in nuclei
like thalamus. RTPP also highlighted high predictive power in CC, contributing
to the optimal model for both the 3D-SHORE-based and global model, in combi-
nation with MD in this latter case. These results, jointly with the high precision
and the ability to detect significant changes between patients and controls, stress
the potential of this index in the considered task.

Besides evaluating the performance of the different indices along the WM con-
nections of specific brain networks, we performed a quantitative comparison of
their patterns within contralateral GM regions. GM tissue changes related to the
disease are generally quantified by volume or density analyses and are very rarely
investigated with dMRI-based indices. A growing body of literature is emerging to
endorse the use of dMRI techniques for detecting microscopic changes in GM in
different disorders. Indeed, the analysis of diffusivity GM changes using MD has
shown to be promising for detecting abnormalities in Alzheimer disease [221] and
multiple sclerosis [53]. GM FA alterations were also demonstrated in schizophrenic
patients in [183], reporting increased MD and decreased FA values in patients com-
pared to controls. In stroke patients, studies in GM are less consistent and generally
consider the tissues in the contralateral hemisphere as normal, although regions
remote (upstream or downstream) from the infarct have been demonstrated to
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undergo marked changes over a time course of 2 days to 1 year [184]. In one of
these studies using the contralateral part as reference, Maniega et al. [138] showed
a trend of increased MD/decreased FA values within the lesion, which just started
the first week from the event. In our study, the longitudinal analyses on the patient
group demonstrated a similar pattern but in the contralateral hemisphere, reveal-
ing an increase in MD values over time which mainly involved GM motor regions.
Conversely, FA exhibited an initial widespread increase at tp1 over temporo-frontal
and motor areas, followed by a gradual decrease towards normality at tp3. This
was further confirmed by the group-based comparisons with ANOVA, highlight-
ing in most of these regions significantly higher FA values at tp1 in patients vs
controls, whereas the increased pattern remained restricted to few ROIs when
tp2 values were evaluated. Similar patterns of alterations were detected also by
SHORE-based indices, in particular by GFA, PA, RTPP and MSD. The group
comparisons one week after the stroke revealed several GM regions (cACC, FuG,
IGG, mOFC, PORB, rMFG, FP, ITG, LOC, IOFC, MTG) in which the patients
exhibit significantly higher values for all the anisotropy indices (GFA, PA, FA) with
respect to the controls. Considering that in the same regions, at the same time
point, the MD and MSD appear to be increasing (Figure 7.19.A), although not
significantly, we can speculate that we are observing a general increase of the dif-
fusivity along the main diffusion direction in the GM. More difficult to interpret is
the simultaneous increase of the RTPP in some of these regions (ITG, LOC, IOFC,
MTG). RTPP is generally inversely proportional to anisotropy in WM, e.g RTPP
is low in single fiber bundle areas such as the CC, and higher in crossing regions
[159, 229, 18]. Understanding the possible causes of this contemporary increase of
RTPP and anisotropy in the GM will be one of the aims of our future works. Con-
tralateral changes in GM involved not only regions in the motor systems, but also
areas playing an important role in cognition and behaviour, as the FP and frontal
areas, supporting the hypothesis of extensive rearrangements during stroke recov-
ery. These indices therefore confirm their potentialities in describing not only WM
but also GM properties, with high reliability and discriminative power. However,
RTAP and MSD, which resulted to be suitable to characterize WM tracts in all
the networks, appeared to be less sensitive to GM changes. Indeed, these indices
failed to highlight statistically significant differences in the GM areas, especially
when comparing the patient data over time. However, they deserve further investi-
gations considering their good stability over time and their physiological relevance.
It is worth mentioning that the impact of partial volume effects was minimized
by restricting the analysis to voxels where the GM contribution was above the
95%. This strengthens the hypothesis of extensive contralateral changes involving
also the GM, reducing the contamination by other tissues. As a side note, we also
extracted for each patient and time point the average volumes of GM ROIs (re-
sults not shown). However, when statistically compared by means of a two-way
repeated measure ANOVA, no significant changes were detected, possibly because
of the small sample size and the limitations of such morphometric measure that
might be not sensitive enough to subtle changes in the contralateral hemisphere.
A larger sample size and more sophisticated analyses, for example based on cor-
tical thickness measures or voxel-based morphometry, might be more suitable for
depicting GM longitudinal changes following stroke, as often done in literature
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[187, 34]. Our results, though preliminary, support the hypothesis that SHORE-
based indices might hold the potential of revealing GM plasticity processes in the
contralesional stroke area. We are aware of the fact that the interpretation in terms
of geometrical restriction of the diffusion of the SHORE-derived indices in GM is
prone to criticism because the real tissue architecture cannot be directly mapped
to the underlying reference model (i.e. the pore). However, the fact that differ-
ences across time within a patient population and across groups can be detected
using such indices provide evidence in favour of their exploitability as potential
numerical biomarkers for GM plasticity in disease, leaving their interpretation in
terms of microstructural properties an open issue.

Some limitations have to be acknowledged. This work has to be considered as
a preliminary comparison between DTI and SHORE-based EAP derived indices
in stroke. Here, we considered only the two most used DTI derived indices (FA
and MD) and some of the principal EAP derived indices (RTAP, RTPP, MSD,
PA, GFA). However, it will be interesting to extend the analyses to further indices
that can be derived, e.g. the radial and axial diffusivity for the DTI, RTOP and
the MAP-MRI non-gaussianity for the EAP. Moreover, our findings are based on
the comparison between ten healthy subjects and ten ischemic stroke patients. A
higher number of subjects would be necessary in future studies to fully exploit the
potentialities and discriminative/predictive power of these rather novel indices. In
particular, the linear regression analyses have to be carefully evaluated bearing
in mind they are preliminary, although encouraging, findings. Indeed, the limited
sample size precluded the possibility of identifying the optimal model in a subset
of the population and testing it in a different validation cohort, as normally does
in the machine learning/classification field. Moreover, a large number of predic-
tors was initially included in the models, possibly leading to over-fitting problems
that should be carefully considered when dealing with a limited number of sub-
jects. Adding more data will allow to increase the power of the statistical analyses
performed in this work and to further validate the promising findings about con-
tralateral WM and GM changes suggesting the presence of plasticity processes.
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Thesis contributions, open issues and future works

8.1 Thesis contributions

Theoretical contributions

This thesis aimed at investigating the plausibility conditions of the no-exchange
assumption in dMRI signal reconstruction in white matter, as well at the definition
of a model allowing to assess the myelin structure. To this end, the present study
investigated for the first time the spiraling myelin as a possible mechanism for
modeling water exchange between intra and extra axonal environments, as well as
its influence on the dMRI signal.

• Review of permeability concepts in dMRI

In Chapter 3 and in Chapter 4 we proposed a review regarding the topic of per-
meability. The distinction between surface relaxivity and exchange flux through
barriers in relation to permeability is shown. This preliminary overview can
help the non-expert reader to appreciate the main contributions of this thesis,
summarized in what follows.

• Design and implementation of a multi-wrap model for myelin

A novel multi-wrapping model for myelin was proposed and implemented. To
the best of our knowledge, it was the first time that this implementation was
performed and studied from the diffusional exchange perspective.

• Assessment of the plausibility of white matter modeling assumptions

Our white matter model showed that although exchange can be neglected in
a reasonable normal human brain using clinical acquisitions, this assumption
can fail in some abnormal conditions like the infant brain and in demyelinating
diseases. According to our findings, in those cases the exchange time could be
estimated from clinically feasible MRI protocols. The work also emphasized
the need of accounting for myelin T2 in white matter modeling. Indeed, a T2
modulation of the considered microstructural parameters that is νic, ADCec

and τ was observed.
• Characterization of dMRI sensitivity to myelin multi-wrappings fea-

tures via exchange-based studies

A periodic substrate mimicking a three compartments environment was de-
signed allowing to control the parameters ruling the exchange and leading to
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observations of the exchange time in a set of different conditions. The same pa-
rameter was estimated from signal instances using the Karger model and other
parameters including apparent radial diffusion coefficient and kurtosis were also
derived from the DKI model. Our analysis predicts sub-second exchange times
for small axons and low number of myelin turns, more specifically up to ∼ 500
ms for diameters of 1.0 µm and 4 myelin wraps. As discussed in Chapter 6, a
number of myelin wraps lower than expected can be reasonably found in the
developing and demyelinating tissues, and the exchange time can be estimated
with high confidence using the Kärger model. In the same conditions of small
axons and number of wraps, we also provided evidence for RD, RK and νic
dependence on myelin structure changes since in these configurations the T2
influence resulted to be negligible, as discussed in Chapter 5.

The theoretical contributions are supported by an accepted abstract to Inter-
national Society for Magnetic Resonance in Medicine (ISMRM) in 2018, a paper
submitted to EUSIPCO conference and a journal submitted to IEEE of Transac-
tions on Medical Imaging.

Clinical study

Regarding the clinical applications, the recent 3D-SHORE indices were widely
investigated for characterizing the contralateral brain plasticity in motor recovery
after ischemic stroke. To the best of our knowledge, this was one of the first times
that these indices were employed as potential biomarkers in pathological human
brain.

• 3D-SHORE indices characterization as potential numerical biomark-

ers

The 3D-SHORE indices convey information regarding the cerebral microstruc-
ture enabling a more thorough characterization of the type of microscopic dif-
ferences that arise between healthy and diseased subjects and opens the way for
an accurate automatic discrimination. Overall, the 3D-SHORE indices could
be a support for clinical activity, and in particular in the prognosis formulation.

– Pipeline for biomarker suitability analysis

A novelty proposed in this thesis was the implementation of a pipeline for
analysing the potential of microstructural features of interest as biomark-
ers. We combined the classical tract-based analysis with the use of the
recent 3D-SHORE indices, obtaining the connectivity matrices from which
we extracted the values that underwent statistical analysis. Another con-
tribution was to bring this WM analysis at different levels of detail based
on the group categorization: single connections, subnetwork, network. Our
study revealed the advantage of using network and subnetwork information
rather than single connections, emphasizing the highly cooperation among
different parts of the brain. Moreover, it was the first time that these indices
were quantitatively characterized from the point of view of a GM region-
based analysis. Another contribution is in the exhaustive characterization
of the prognostic power of the considered microstructural indices through
the design of different predictive models exploiting different combinations of



8.2 Future work 121

indices and WM tract group. In particular, 3D-SHORE-based indices and
single connections, 3D-SHORE-based indices and networks, tensor-based
indices and networks, 3D-SHORE and tensor-based indices and networks
were considered as well as many others.

– Representation by 3D-SHORE indices of different tissues

The reproducibility of the indices as evidenced by the repeatability analy-
ses, the precision in the estimation of microstructural features and the capa-
bility to predict the clinical outcome proved the suitability of dMRI-based
microstructural indices in probing plasticity in both WM tracts and GM tis-
sue in ischemic stroke patients. The detection of significant changes in GM
across groups and in the patient longitudinal comparison provides a new
perspective along the path of characterizing disease-related microstructural
modulations which deserves further investigation. The 3D-SHORE-derived
indices performed as well as classical tensor-derived indices (FA and MD).
In particular, it was highlighted the importance of having more information
than standard clinical variables to predict the clinical outcome at 6 months
after the onset of a stroke as early as the first week of affection of the injury.

The clinical study contributions are supported by publications in peer-reviewed
journals as well as international and national conferences [31, 229, 37, 156, 38].

8.2 Future work

This work opened the way to other important aspects and perspectives that may
be worth to explore. Concerning the theoretical contributions, in Chapter 4 the
investigation of walls relaxivity via multiple propagator and multiple correlation
function was performed only from a qualitative point of view. Further investigation
would be required for a complete analysis. Moreover, the relationship between the
walls relaxivity and the permeability characteristic of the barrier would deserve
further investigation.

Regarding the white matter model proposed in this thesis, a possible extension
would be the addition of complexity to our numerical model of myelinated sub-
strate such as adding the third dimension. This would allow to simulate the node
of Ranvier thus opening the way to combine different exchange mechanisms for
dMRI investigation. In addition, the model should be extended for accounting for
the axons diameter distribution in the substrate.

Obviously, the availability of in-vivo measurements would be needed for the
assessment of the performance of the proposed method. This could be done in
a multi-modal framework where results from different imaging modalities such
as techniques for myelin water imaging [i.e. Magnetization Transfer Ratio (MTR)
imaging, Multiexponential T2 (MET2), etc.] acquired on healthy rather than patho-
logical subjects like multiple sclerosis diseased would be available.

The implications on the relationship between T2 and exchange mechanisms
emphasized by this thesis suggest a potential fruitful study of their interaction
with other acquisition parameters such as TD and TE. The recent interest of
the scientific community on this issue and evidences about TE impact on the
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considered variables [134, 208, 196, 78] encourage us to extend the exploration of
this topic through the joint analysis of these parameters.

The addition of complexity to our simulated substrate could also be in adding
further information coming from histology. Following the idea exposed by Nedjati-
Gilani et al. [146], machine learning method trained on Monte Carlo simulations
could be considered. To this extent, the big effort remains the validation challenge
as already mentioned in the previous Section.

Moreover, the pipeline exposed in the Chapter 6 of this thesis could be prof-
itably exploited in the context of permeability. The wide investigation of the ex-
change time comprehensive of a detailed statistical analysis would allow for the
assessment of the suitability of the derived microstructural indices as biomarker.
More in detail, this can be particularly useful for diseases affecting the myelin
structure.

The study exposed by this thesis could be the starting point for a future work in
which 3D-SHORE indices are studied in relationship with the various confounders
typical of heterogeneous tissue like partial volume, relaxation, exchange, mixture
of isotropic and anisotropic structures. This would be valuable for interpretation
of dMRI data. As example, another interesting confounder that could be possibly
explored is the axonal beading. Recently, Budde and Frank [40] have shown that
the reduced ADC observed after a few minutes from the injury could be explained
either as cell swelling or axonal beading providing a biophysical model of neurite
beading. More in detail of exchange topic afforded in this work, it would be of
interest the investigation of exchange integration in 3D-SHORE modeling leading
to a further advancement in the state of the art.

These and many other additional analysis are possible and particularly fas-
cinating in this field, that could be helpful for the improvement of health care.
Citing Rita Levi Montalcini, “progress depends on our brain. The most important
part of our brain, that which is neocortical, must be used to help others and not
just to make discoveries.”

8.3 Achievements

Awards

• Student Travel Award, MICCAI 2015

Grants

• Cooperint, 2015: public competition for the financing of projects with the pur-
pose to stimulate international relationships in the research environment.
4 January 2016 30 April 2016, INRIA Sophia Antipolis Mditerrane research
center
Local supervisor: Prof. Rachid Deriche
Description: study and implementation of different analytical simulations of
diffusion MRI signal in cylindrical pores in the extra-ordinary case of perme-
able walls.

• Educational Stipend, ISMRM 2015
• Educational Stipend, ISMRM 2018
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Visits

• INRIA Sophia Antipolis Mditerrane research center, 4 January 2016 30 April
2016
Local supervisor: Prof. Rachid Deriche
Description: study and implementation of different analytical simulations of
diffusion MRI signal in cylindrical pores in the extra-ordinary case of permeable
walls.

• Lund University, 6 February 2017 16 February 2017
Local supervisor: Prof. Markus Nilsson
Description: implementation of spiraling myelin for studying this exchange
mechanism on dMRI experiments.

8.4 Publications

Journals

• SUBMITTED: Journal to Transactions on Medical Imaging Brusini, L.,
Menegaz, G., Nilsson, M. Monte Carlo simulations of water exchange through

myelin wraps: Implications for diffusion MRI

• Boscolo Galazzo, I., Brusini, L., Obertino, S., Zucchelli, M., Granziera, C.,
Menegaz, G.On the viability of diffusion MRI-based microstructural biomarkers

in ischemic stroke, Journal to Frontiers in Neuroscience, 12, 92 (2018)
• Zucchelli, M., Brusini, L., Mendez-Guerrero, A., Daducci, A., Granziera, C.,

Menegaz, G.: What lies beneath? Diffusion EAP-based study of brain tissue

microstructure, Medical Image Analysis, 32, 145-156 (2016)

Invited journals

• Brusini, L., Obertino, S., Boscolo Galazzo, I., Zucchelli, M., Krueger, G.,
Granziera, C., Menegaz, G.: Ensemble average propagator-based detection of

microstructural alterations after stroke, Int J CARS, 11, 1585-1597 (2016)

Conferences

• International Proceedings
– SUBMITTED: Paper to EUSIPCO Conference Brusini, L., Menegaz, G.,

Nilsson, M.: Assessing the non-Gaussian Nature of Signal Decay in a Per-

meable Environment by Diffusion MRI

– Obertino, S., Brusini, L., Boscolo Galazzo, I., Zucchelli, M., Granziera, C.,
Cristani, M., Menegaz, G.: Shore based biomarkers allow patients versus

control classification in stroke, ISBI, Prague, 2016
– Brusini, L., Obertino, S., Zucchelli, M., Boscolo Galazzo, I., Krueger, G.,

Granziera, C., Menegaz, G.: Assessment of Mean Apparent Propagator-

based Indices as Biomarkers of Axonal Remodeling After Stroke, MICCAI,
Munich, 2015

– Zucchelli, M., Brusini, L., Mendez, C.A., Menegaz, G.:Multi-Tensor MAPMRI:

how to estimate microstructural infromation from crossing fibers, CDMRI
2015



124 8 Thesis contributions, open issues and future works

• Abstracts
– Brusini, L., Menegaz, G., Nilsson, M. Monte Carlo simulations of diffusion

in myelin spirals: Impact on diffusional water exchange, ISMRM, Paris,
2018

– Brusini, L., Zucchelli, M., Obertino, S., Menegaz, G.: Characterization of

diffusion MRI signal non Gaussianity using MAPMRI, ISMRM Workshop,
Lisbona, 2016

– Zucchelli, M., Brusini, L., Menegaz, G.: Detection of fiber crossing and fan-

ning using the Multi-Tensor Distribution Model, ISMRM Workshop, Lis-
bona, 2016

– Obertino, S., Brusini, L., Boscolo Galazzo, I., Zucchelli, M., Daducci, A.,
Menegaz, G., Granziera, C.: Cortico-Subcortical motor network integrity

relates to functional recovery after stroke, ISMRM, Singapore, 2016
– Brusini, L., Zucchelli, M., Daducci, A., Granziera, C., Menegaz, G.: Are

SHORE-based biomarkers suitable descriptors for microstructure in DSI?

ISMRM, Toronto, 2015
– Brusini, L., Zucchelli, M., Granziera, C., Menegaz, G.: Microstructural de-

scription of cerebral tissues from diffusion spectrum imaging data, ICHI,
Verona, 2014

• National Congresses
– Brusini, L., Zucchelli, M., Daducci, A., Granziera, C., Menegaz, G.: Diffu-

sion MRI sensitivity to contralateral GM modulations after stroke, GNB,
Milano, 2018

– Brusini, L., Cruciani, F., Boscolo Galazzo, I., Galbusera, A., Borin, M.,
Diana, G., Buffelli, M., Gozzi, A., Menegaz, G.: Assessing the effects of

synaptic plasticity using structural MRI in the mouse, GNB, Milano, 2018
• National Abstracts

– SUBMITTED: Abstract to ISMRM Italian Chapter Zucchelli, M., Brusini,
L., Menegaz, G.: Two-parameters compartmental models for diffusion MRI:

a comparative analysis

– Brusini, L., Zucchelli, M., Daducci, A., Granziera, C., Menegaz, G.: Diffu-

sion MRI characterization of stroke lesions using 3D-SHORE microstruc-

tural indices, Italian Chapter ISMRM, Bologna, 2016
– Zucchelli, M., Ricciardi, G.K., Brusini, L., Pizzini, F., Montemezzi, S.,

Menegaz, G.: Diffusion MRI characterization of glioma using MAPMRI re-

construction: a preliminary study, Italian Chapter ISMRM, Bologna, 2016
– Brusini, L., Zucchelli, M., Ricciardi, G.K., Pizzini, F., Montemezzi, S.,

Menegaz, G.: In-Vivo Quantification of Brain Microstructure: a Prelim-

inary Analysis using SHORE Diffusion Model, Italian Chapter ISMRM,
Verona, 2015

Presentations

• Brusini, L., Obertino, S., Zucchelli, M., Boscolo Galazzo, I., Krueger, G.,
Granziera, C., Menegaz, G.: Assessment of Mean Apparent Propagator-based

Indices as Biomarkers of Axonal Remodeling After Stroke, MICCAI, Munich,
2015. TRADITIONAL POSTER AND TEASER



8.4 Publications 125

• Brusini, L., Zucchelli, M., Daducci, A., Granziera, C., Menegaz, G.: Are

SHORE-based biomarkers suitable descriptors for microstructure in DSI? ISMRM,
Toronto, 2015. E-POSTER

• Brusini, L., Zucchelli, M., Ricciardi, G.K., Pizzini, F., Montemezzi, S., Menegaz,
G.: In-Vivo Quantification of Brain Microstructure: a Preliminary Analysis us-

ing SHORE Diffusion Model, Italian Chapter ISMRM, Verona, 2015. ORAL
PRESENTATION

• Brusini, L., Zucchelli, M., Granziera, C., Menegaz, G.: Microstructural descrip-

tion of cerebral tissues from diffusion spectrum imaging data, ICHI, Verona,
2014. TRADITIONAL POSTER





A

Appendix



Assessment of Mean Apparent

Propagator-Based Indices as Biomarkers

of Axonal Remodeling after Stroke

Lorenza Brusini1, Silvia Obertino1, Mauro Zucchelli1, Ilaria Boscolo Galazzo2,
Gunnar Krueger3, Cristina Granziera4, and Gloria Menegaz1

1 Dept. of Computer Science, University of Verona, Italy
2 Institute of Nuclear Medicine, University College of London, UK

3 Siemens Healthcare USA, Boston, USA
4 Dept. of Clinical Neuroscience, CHUV and University of Lausanne, Switzerland

Abstract. Recently, a robust mathematical formulation has been intro-
duced for the closed-form analytical reconstruction of the signal and the
Mean Apparent Propagator (MAP) in diffusion MRI. This is referred to
as MAP-MRI or 3D-SHORE depending on the chosen reference frame.
From the MAP, microstructural properties can be inferred by the deriva-
tion of indices that under certain circumstances allow the estimation of
pores’ geometry and local diffusivity, holding the potential of becom-
ing the next generation of microstructural numerical biomarkers. In this
work, we propose the assessment and validation of a subset of such in-
dices that is RTAP, D, and PA for the quantitative analysis of axonal
remodeling in the uninjured motor network after stroke. Diffusion Spec-
trum Imaging (DSI) was performed on ten patients and ten controls at
different time points and the indices were derived and exploited for tract-
based quantitative analysis. Our results provide quantitative evidence on
the eligibility of the derived indices as microstructural biomarkers.

1 Introduction

Connectivity remodeling after stroke has been reported in both injured [1] and
uninjured hemispheres [2,3]. Generalized Fractional Anisotropy (GFA) had pre-
viously been successfully exploited to provide evidence of plasticity in the unin-
jured motor network in stroke patients with motor deficits. Recently, a robust
mathematical formulation has been introduced for the closed-form analytical
reconstruction of the diffusion signal from which new micro structural indices
could be analytically derived. This is referred to as Mean Apparent Propaga-
tor (MAP)-MRI and 3D Simple Harmonic Oscillator Based Reconstruction and
Estimation (3D-SHORE), respectively, depending on the reference frame. The
corresponding MAP, also known in literature as Ensemble Average Propagator
(EAP) [4], can then be profitably exploited for deriving information about the
ensemble average values of pores’ geometry and local diffusivity [4] and hold
the potential for eligibility as the next generation of microstructural biomark-
ers. In particular, an estimation of the axons’ cross-sectional area and diameter

c© Springer International Publishing Switzerland 2015
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can be derived analytically in white matter. In this work, we aimed at explor-
ing whether the MAP-derived measures 1) could reveal contralesional structural
changes along intracallosal connections after stroke; 2) correlate with the well
established GFA index; and 3) jointly with clinical status allow to predict motor
outcomes.

2 Materials and Methods

Ten stroke patients [6 males and 4 females (age: 60.3 ± 12.8 years, mean ±
SD)] were enrolled in the study; the inclusion criteria, imaging protocol and
post-processing were as in [2]. All patients underwent three DSI scans (TR/TE
= 6600/138 msec, FOV = 212 × 212 mm, 34 slices, 2.2 × 2.2 × 3 mm resolu-
tion, 258 gradient directions, bmax = 8000 s/mm2) within one week (tp1 ), one
month (± one week, tp2 ), and six months (± fifteen days, tp3 ) after stroke. Ori-
entation distribution functions were reconstructed using the Diffusion Toolkit
(www.trackvis.org/dtk). Fiber-tracking was performed via a streamline algo-
rithm (www.cmtk.org). Patients benefited of clinical assessment (NIHSS: Na-
tional Institute of Health Stroke Scale), with the motor part (NIHSS motor)
derived from items 2 to 7 and 10 (www.nihstrokescale.org/). Ten age and gender
matched healthy controls were also included in the study (age: 56.1 ± 17.8 years,
mean ± SD). Control group underwent two DSI scans one month apart (tp1c
and tp2c). All subjects provided written informed consent and the Lausanne
University Hospital review board approved the study protocol. To the best of
our knowledge, this is the first attempt of using MAP-indices in patients, while
in-vivo acquisition in healthy subjects were reported in [5].

2.1 Analytical Model for Signal Reconstruction

In this work, the orthonormal formulation of the 3D-SHORE model was chosen
[6,7]. With respect to MAP, this formulation allows less degrees of freedom in
the choice of the scale parameter but there is some evidence for improved capa-
bility in resolving complex structural micro-topologies [8]. The diffusion signal is
modeled by using the Eigenfunctions of the SHORE as basis. After rotating the
reference frame for diagonalizing the stiffness tensor, a separable solution can be
obtained [4]

ΦNi
(A,q) = φnx(i)

(ux, qx)φny(i)
(uy, qy)φnz(i)

(uz, qz) (1)

with
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where Ni = (nx(i), ny(i), nz(i)) is the basis order and Hn a Hermite polyno-
mial. Diagonalization of the stiffness tensor is performed by tensor fitting A′

(A = RA′ RT ), where R consists of the tensor Eigenvectors. Separability en-
ables the anisotropic scaling of the basis functions along the coordinate axes
making the 3D basis particularly suited to anisotropic data. The 3D-SHORE
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model is expressed in spherical coordinates. Separability holds the radial and
angular coordinates which prevents the independent scaling of the basis func-
tions along the main coordinate axes. Following the formulation in [9], the basis
functions Φn(qu) can be written as

Φn(qu) = Rn(q)Yn(u) (2)

where Rn(q) models the radial part of the signal and {Yn(u)} are the real spher-
ical harmonics of even order [10]. After a reordering of the terms, the signal
model becomes

E(qu) =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΦnlm(qu) (3)

Φnlm(qu) =

[

2(n− l)!

ζ3/2Γ (n+ 3/2)

]1/2(

q2

ζ

)l/2

exp

(

−q2

2ζ

)

L
l+1/2
n−l

(

q2

ζ

)

Y m
l (u)

where Nmax is the maximal order in the truncated series and Φnlm(q) is the
orthonormal 3D-SHORE basis, Γ is the Gamma function and ζ is an isotropic
scaling parameter. The coefficients are determined by quadratic programming
and positivity constraints are imposed to the MAP. The two formulations are
equivalent for isotropic scaling.

Under such assumption, in this study we call MAP-based indices the mea-
sures derived from 3D-SHORE namely the Return to Axis Probability (RTAP)
and Propagator anisotropy (PA). An estimate of the axon diameter (D) was
inferred from RTAP as this provides an estimate of the exact statistical aver-
age of the cross-sectional area in white matter if some conditions are met [4] as

D =
√

4π /RTAP . The MAP indices were assessed against GFA.

RTAP =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlm

[

ζ1/2 2l+3π2 Γ (l/2 + 1)2 Γ (n+ 3/2)

(n− l)! Γ (l+ 3/2)2

]1/2

×

× 2F1(l − n, l/2 + 1, l + 3/2, 2) Pl(0) Y
m
l (u∗)

PA =

√

√

√

√1−

∑Nmax/2+1
l=0 c2l00

∑Nmax

l=0,even

∑(Nmax+l)/2
n=l

∑l
m=−l c

2
nlm

(4)

2.2 Tract-Based Quantitative Analysis

The primary motor area (M1), supplementary motor area (SMA), somatosensory
cortex (SC) and thalamus (Thl) were considered in the analysis. GFA and MAP-
indices were collected along intracallosal fiber bundles connecting those regions
to the corpus callosum (CC) in the contralateral (non-lesioned) hemisphere. In
particular, GFA, RTAP, D, and PA values were computed for each voxel and
then averaged along each tract and among all tracts connecting the regions of
interest to the CC.
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2.3 Statistical Analysis

Reproducibility of mean GFA, RTAP, D, and PA values along motor tracts
was assessed by evaluating statistical differences between tp1c and tp2c using a
paired t-test (p > 0.05) after a Kolmogorov-Smirnov normality test. Percentage
absolute changes in mean values between time points were evaluated for each
index on both groups as

∆tp12c(m) = |(mtp2c −mtp1c)|/mtp1c

∆tp12(m) = |(mtp2 −mtp1)|/mtp1 (5)

∆tp23(m) = |(mtp3 −mtp2)|/mtp2

∆tp13(m) = |(mtp3 −mtp1)|/mtp1

where m denotes the mean value of the considered index along the fibers of
a given connection, and the subscript c denotes the control group. Normality
test (Kolmogorov-Smirnov) revealed that the values were normally distributed
enabling the use of parametric statistics. Accordingly, the unpaired t-test with
p < 0.05 was performed to establish the significant differences between∆tp12c(m)
and ∆tp12(m). With the purpose to further characterize the MAP-based indices,
Spearman correlation with GFA was performed. In addition, for each patient,
the z-score of the mean absolute changes of each index and connection with
respect to the same measurement on the control group was calculated in order
to highlight and visually render in an intuitive way the distance between each
patient and the control group as well as individual changes over time. Finally, the
predictive value of each metric was assessed by a linear regression model where
the motor outcome at six months after stroke (tp3) was the dependent variable
and the mean values of each index for all the connections at tp1, age, stroke
size, and NIHSS motor scores at tp1 and tp2 were the predictors. A backward
selection process was used to select the optimal predictor model with p = 0.05
as significance threshold.

3 Results and Discussions

Reproducibility of index values in controls. In controls, reproducibility of the
mean GFA, RTAP, D and PA values was observed as confirmed by t-test which
showed no statistical significant differences between tp1c and tp2c (p > 0.05).
The mean absolute GFA, RTAP, D, and PA changes calculated for all the motor
connections between the two time points were: GFA : 0.0248± 0.0074, RTAP :
0.0290 ± 0.0082, D : 0.0205 ± 0.0047, PA : 0.0241 ± 0.0072 (mean ± SEM).
Among connections, the largest variability was recorded for SC.

Comparison of absolute GFA, RTAP, D, and PA changes in patients and con-

trols. Figure 1 illustrates the mean absolute percent changes of the different
indices for patients and controls. For each index, absolute changes between tp1

and tp2 in patients’ connections were significantly different from the absolute
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changes between the same regions in controls between tp1c and tp2c (0.01 ≤ p ≤
0.05). However, the thalamic intracallosal connection failed to reach significance
in all conditions, and SC-CC did not reach significance for RTAP and D. As it is
apparent from Figure 1, PA shows the highest sensitivity in differentiating the
patients from the control group, outperforming GFA in the SMA-CC connection
and having the same performance for the other considered ones. In particular,
both are able to differentiate the groups for the M1 and SC intracallosal con-
nections. RTAP and D also allow differentiating between the two groups for M1
and SMA, while they could not highlight differences for SC. However, RTAP
and D provide a richer microstructural information with respect to GFA which
only describes the level of anisotropy of restricted diffusion. In connections where
RTAP and D are able to split patients and controls, MAP-based indices allow
for a more accurate description of the microstructural changes in patients.
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Fig. 1. Longitudinal changes in percent mean absolute values in controls and patients
(*p < 0.05, **p < 0.01). (A) GFA; (B) PA; (C) D; (D) RTAP .

Correlations of each absolute descriptor changes with GFA. For both controls
and patients, Spearman’s correlation ρ showed a significant (p < 0.05) monotonic
relationship between the mean absolute changes of each MAP-based index and
GFA changes. The overall correlation among all the intracallosal connections was
assessed, showing the following results: 1) RTAP: ρtp12c = 0.48, ρtp12 = 0.74,
ρtp23 = 0.38, ρtp13 = 0.65; 2) D: ρtp12c = 0.43, ρtp12 = 0.76, ρtp23 = 0.37,
ρtp13 = 0.40; and 3) PA: ρtp12c = 0.51, ρtp12 = 0.74, ρtp23 = 0.40, ρtp13 = 0.64.
In all cases results were significant with p < 0.05.

Longitudinal changes in patients. Figure 2 highlights the pattern of the longi-
tudinal changes in the different connections for individual patients with respect
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to the control group, that appeared to be patient-specific. The largest changes
were observed in patients with the more severe motor deficit. The pattern is
similar for the different indices providing evidence of the ability to capture the
microstructural alterations due to white matter plasticity in the contralesional
area. In particular, PA closely reproduces the pattern of GFA, while RTAP and
D appear to be less sensitive especially for SC, coherently with the observation
that for SC no significant difference between patients and controls could be de-
tected by these two indices (see Figure 1). An increase in axon diameter is seen
in patients over time. This could reveal axonal outgrowth and myelin increase
due to plasticity as activated in the rehabilitation process [3], [11].
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Fig. 2. Patients’ individual profiles of mean absolute changes between tp1 and tp2
(first column), tp2 and tp3 (second column), and tp1 and tp3 (third column). Changes
were compared to the corresponding controls’ mean changes using z-scores. Patients
are ordered according to the initial NIH Stroke Scale (NIHSS).

Prediction of clinical outcomes in patients for each index. In the patients’ group,
a linear regression model including only age and NIHSS at tp1 and tp2 gave low
correlation as well as a model including only NIHSS at tp1 and tp2 (R2 = 0.691;
adjusted R2 = 0.652). Conversely, for each index, the models including also its
mean values across the different connections were able to predict the NIHSS at
tp3 with higher significance (Table 1). In particular, the best prediction model
was obtained for D (R2 = 0.998; adjusted R2 = 0.990, p = 0.008). The relative
importance for each predictor of the different optimal models was evaluated with
the Fisher test and reported in Supplementary Materials. However, all models led
to high significance, with adjusted R2 > 0.8, confirming the importance of GFA
and MAP-based indices for an early prediction of the patient clinical outcome.
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Moreover, although GFA and PA are both anisotropy indices, PA has a higher
prediction significance pointing at a stronger reliability of this new descriptor.

Table 1. Performance of each prediction model

Index Multiple R2 Adjusted R2
p

GFA 0.970 0.932 0.004
RTAP 0.919 0.818 0.026
D 0.998 0.990 0.008
PA 0.991 0.973 0.004
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Fig. 3. Representation of the measured and predicted NIHSS at tp3 using the models
described above.

4 Conclusions

In this study, some evidence was provided on the suitability of the MAP-based
indices RTAP, D, and PA as numerical biomarkers for stroke. Reproducibility was
assessed by the test-retest method on the control group and longitudinal analysis
on the patients group highlighted that contralesional structural changes after
stroke could be well characterized and monitored by the newly proposed indices.
The significant differences between controls and patients over multiple regions
of interest lead the way to the application of RTAP, D, and PA as important
descriptors for differentiating between the groups. Moreover, the performance of
RTAP-, D-, and PA-based clinical regressionmodels emphasized the suitability of
these indices as early descriptors of patients’ longitudinal changes and predictors
of clinical outcomes.
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Multi-Tensor MAPMRI: How to Estimate
Microstructural Information from Crossing
Fibers

Mauro Zucchelli, Lorenza Brusini, C. Andrés Méndez, and Gloria Menegaz

Abstract Diffusion Magnetic Resonance Imaging (dMRI) is able to detect the

properties of tissue microstructure underneath the voxel through the imaging of

water molecules diffusion. Many reconstruction methods have been proposed to

calculate the Orientation Distribution Function (ODF) from the diffusion signal

in order to distinguish between coherent fiber bundles and crossing fibers. The

diffusion signal was also used to infer other microstructural information such as

the axon diameter, but most often in areas with coherent fiber direction such as

the corpus callosum. In this work, we developed a reconstruction model called

Multi-Tensor MAPMRI (MT-MAPMRI) that is an extension of the MAPMRI model

which improves the performance of MAPMRI for crossing fibers. In particular,

it provides (a) enhanced signal fitting; (b) improved ODFs; (c) a more accurate

diameter estimation. The model was tested and validated on both simulated and

in-vivo data.

1 Introduction

Diffusion MRI is able to extract information on the cerebral tissue in vivo. From

the diffusion weighted (DW) signal, it is possible to calculate the ensemble average

propagator (EAP) under the long diffusion time assumption. The diffusion signal

E.q/ depends on the pulse width ı, the pulse separation time 	 and the gradient

strength G. Since the number of points that is possible to acquire with diffusion

MRI in practice is limited, analytical reconstruction models represent a mean

of extrapolating missing data in a controlled way. These are thus fitted to the

signal enabling the estimation of the tissue physical properties based on analytical

expressions. One of the first reconstruction models was the Diffusion tensor (DTI)

[4] in which the signal was modeled as a single multivariate Gaussian function
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(diffusion tensor). This model has been proved suitable for describing diffusion in

unconstrained conditions and in the case of single fiber bundles. Many attempts

have been made to expand the single tensor to a double or multi-tensor [13]

estimation in order to characterize more complex fiber topologies, like crossings,

which normally occur in the majority of the white matter [8]. Other reconstruction

techniques try to fit more complex basis functions to the signal in order to be

able to naturally fit crossing fibers. The 3D Simple Harmonic Oscillator Based

Reconstruction and Estimation (SHORE) introduced in [10] fits the diffusion signal

as a series of Hermite polynomials and spherical harmonics, leading to good results

in the calculation of the Orientation Distribution Function (ODF). The model further

evolved in the Mean Apparent Propagator (MAP) MRI [12] in which the spherical

harmonics were replaced by a set of orthogonal 1D-SHORE functions. In addition

to the ODF, other micro-structural descriptors were introduced, including the Return

To the Axis Probability (RTAP), an index characterizing the pore mean cross

sectional area, under certain conditions. Previously this feature was only calculated

in single fibers voxels using compartmental models such as the one proposed in

[3, 15] or using 3D-SHORE and MAPMRI as in [5, 6].

In this paper, we propose an improvement of MAPMRI based on a multi-tensor

fitting which is able to improve signal fitting and the calculation of EAP features

like the ODF and the RTAP for voxel containing multiple crossings fibers.

2 Materials and Methods

2.1 MAPMRI

The SHORE basis was originally defined in [10] and expresses the 1D diffusion

signal as

˚n.u; q/ D
i�n

p
2nnŠ

e�2�2u2q2

Hn.2�uq/ (1)

where u is a scale factor and H is the Hermite polynomial of order n. MAPMRI is a

3D SHORE basis where signal reconstruction is performed in two steps: in the first,

a Gaussian function (tensor) is fitted to the signal and the tensor eigenvectors are

used to rotate the reference frame in order to have the axis aligned with principal

diffusion directions. The eigenvalues are then used to calculate the scale parameters

of the three SHORE bases ux, uy and uz.

Since the basis is separable in the new reference frame, MAPMRI basis can be

expressed as a 3D basis

˚n1 ;n2;n3.u; q/ D ˚n1 .ux; qx/˚n2.uy; qy/˚n3.uz; qz/ (2)
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with independent radial orders n1; n2; n3. The diffusion signal E.q/ can then be

modeled as

E.q/ D
Nmax
X

ND0

X

n1;n2 ;n3

cn1;n2;n3˚n1 ;n2;n3.q/ (3)

where cn1;n2;n3 are the basis coefficients. The coefficients vector c can be obtained

using the standard least-squares fit or, alternatively, using quadratic programming in

order to add positivity constraints in the EAP space as in [12].

MAPMRI provides very accurate signal fitting in the case of voxels containing

bundles of fibers aligned in a single direction [5]. RTAP is calculated as the integral

of the signal in the plane orthogonal to the main axes of the pore [12]. There is an

intrinsic problem in identifying the principal direction of a fiber crossing. MAPMRI

identifies it as the main axis of the tensor that is usually placed between the axes of

the fibers. Selecting only the principal axis of one of each fiber would not solve the

problem because the signal originating in the second fiber would anyway contribute

to the integral. The only way to calculate this index accurately for crossing fibers is

to split the signal contributions of each fiber, as is explained below.

2.2 Multi-Tensor MAPMRI

In order to overcome the limitations of MAPMRI the initial tensor fitting is replaced

with the fitting of m axially symmetric tensor Di. With this model the diffusion

signal can be expressed as

E.q/ D
m

X

iD1

fi exp.�4�2�qT Diq/ (4)

Finding the volume fraction coefficients, fi, along with the tensor parameters is a

nonlinear optimization problem that can not be solved by ordinary least squares.

In order to find the coefficients, we implemented a Monte Carlo Markov Chain

optimization algorithm maximizing the Rician log-likelihood of the fitting [9]. From

the diffusion tensors, it is possible to derive multiple MAPMRI bases ˚ i, using

the respective eigenvalues and the eigenvector of Di. MT-MAPMRI basis signal

reconstruction can then be calculated as

E.q/ D
m

X

iD1

Nmax
X

ND0

X

n1;n2;n3

ci
n1;n2 ;n3

˚ i
n1;n2;n3

.q/ (5)
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The coefficients set ci can be fitted at the same time using ordinary least squares or

quadratic programming. It is then possible to calculate the EAP and its features, like

the ODF and the RTAP, as the sum of the contributions of each component.

For example, in the case of RTAP, it is possible to calculate each RTAPi using the

set of coefficients ci for all the m components. The final RTAP for MT-MAPMRI

will be equal to
Pm

iD1 RTAPi. This is a sum, and not a weighted average because

the relative volume fraction of each component is already embedded in the basis

coefficients.

Therefore, fitting the multi-tensor correctly is absolutely crucial, since a poor

fit will lead to an even worse fitting of the SHORE basis. In order to ensure the

robustness of the approach we try to fit at the same time: one isotropic tensor,

one axially-symmetric tensor, two axially-symmetric tensors and three axially-

symmetric tensors meanwhile selecting the best model using Akaike information

criterion [2]. In addition, if the tensor fraction fi is less than 0:15 the relative tensor

is not used for the SHORE fitting. In the case of voxels containing single bundles of

fibers the MT-MAPMRI basis is equivalent to the classical MAPMRI basis using a

single axially-symmetric tensor.

2.3 Simulated Data

RTAP allows inferring the underlying pore cross-sectional area accurately only

under three conditions: (a) the compartment is homogeneous (e.g. the pore is

composed only of cylinders with the same radius and orientation), (b) the pulse

separation time 	 is much larger than the pulse width ı, and (c), there are enough

points in the q-space to provide a good fitting of the bases. We will refer to these

conditions as ideal conditions for what concerns this work.

In order to have homogeneous compartments with known ground truth we

calculate the diffusion signal inside the cylindrical pore of given radius r0 as

described in [11] as Ecyl.q?; r0/ D .J1.2�r0q?/=.�r0q?//2 where q? is the plane

perpendicular to the main cylinder axis and J1 is the Bessel function of the first kind.

The axis diffusivity E.qk/ is simulated as a 1D Gaussian function. The total 3D

diffusivity can be calculated as Ecyl.q; r0/ D E.q?; r0/E.qk/. This equation holds

true only if 	 � ı which is the necessary condition for testing MAPMRI and

MT-MAPMRI RTAP. In these conditions, the RTAP represents the inverse of the

cross sectional area of the pore, and the cylinder diameter can thus be estimated as

2
p

1=.RTAP � �/.

We simulated three different sets of cylinders with radii of 4, 6 and 8 �m, and

with crossing angles of 0 (coherent fibers), 45ı, 60ı and 90ı. For each of the crossing

angles, we changed the orientation of the crossing fibers in 11 different directions.

Rician noise was then added to the voxels at a signal to noise ratio (SNR) equal to

20, with ten different instances per voxel. The final dataset was composed of 1320

voxels.
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2.4 In Vivo Data

The Human Connectome Project (HCP) [14] data results from a three-shell diffusion

weighted acquisition with 1.25 mm isotropic voxels in a 145 � 174 � 145 matrix. A

total of 288 DW measurements were acquired in each voxel with 90 gradients per

shell, respectively, with b-values 1000, 2000 and 3000 s=mm2 and 18 b0 images.

Echo time and repetition time were respectively 78 ms, and 2.6 s, with pulse width

ı D 10:6 ms, and pulse separation 	 D 43:1 ms.

3 Results

Cylindrical signal was simulated as is explained in Sect. 2.3, using the HCP gradient

table. MAPMRI and MT-MAPMRI were fitted on the signal, the maximal radial

order Nmax was set to 6 for MAPMRI (50 coefficients) and to 4 for MT-MAPMRI

(22 coefficients times the number of tensors), respectively. From the signal fitting,

it was possible to calculate the ODF, the RTAP and the normalized mean square

error (NMSE). The latter was calculated by reconstructing the cylinders signal on a

10-shell ground truth, with bmax D 10;000, in order to benchmark the interpolation

performance of the basis in points different from the one used for the fitting. The

RTAP was then used to estimate the cylinders diameter while from the ODF it was

possible to extract the principal directions that were used for calculating the angular

error (AE) with respect to the ground truth directions.

An example of ODF for a simulated voxel featuring a crossing of 60ı is presented

in Fig. 1. As can be seen MAPMRI ODF tends to underestimate the crossing angle,

which is actually 8ı below the ground truth value [6]. On the contrary MT-MAPMRI

recovers the crossing angle correctly. Figure 2, top row, shows the ability of the

two bases to estimate the cylinder diameter under the ideal conditions. Since the

single tensor can not adapt to the topology of the fibers configuration, MAPMRI

introduces an error in the estimation of the RTAP, leading to an overestimation of the

Fig. 1 Ground truth ODF, MAPMRI ODF and MT-ODF for a simulated two tensors crossing

of 60ı
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Fig. 2 Estimated diameter (top row), angular error (middle row) and NMSE (bottom row) on

pure cylinder voxels for MAPMRI (left) and MT-MAPMRI (right), grouped by the ground truth

diameter

cylinders diameter. Instead, the multi-tensor of the MT-MAPMRI is able to detect

the main diffusion directions and model the signal accordingly. In consequence,

the diameter estimation is more accurate, outperforming MAPMRI. As stated in

Sect. 2.1, MAPMRI tends to underestimate the crossing angles (Fig. 2, second row),

while MT-MAPMRI is able to retrieve the orientation directions in a reliable way

even for the majority of the 45ı crossings. For the same reason the reconstruction
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NMSE is lower for MT-MAPMRI than for MAPMRI. Although MT-MAPMRI is

generally more robust than standard MAPMRI, with a narrower interquartile range,

some outliers are still presents. These points represent voxels for which the initial

multi-tensor fails to retrieve the correct fibers configuration, leading to a wrong MT-

MAPMRI fitting.

Although it was possible to estimate the diameter under ideal conditions in these

simulated voxels, a validation on in-vivo data is required. The real signal is the

average of the signal contributions of all the water molecules trapped in the different

compartments present in the voxel. Also, when we moving from the ideal condition

	 � ı to a more realistic 	 ' ı it is possible to observe an underestimation of

the cylinder radius. The complete characterization of this behavior is beyond the

scope of this paper. Figure 3 shows the values of the estimated mean diameter in

a central coronal slice of HCP data for both MAPMRI and MT-MAPMRI. There

are some little differences between the two techniques which are most probably

due to the fact that in MT-MAPMRI the additional constraint of axially symmetric

tensors is imposed for single fiber voxels, while MAPMRI uses classical DTI tensor.

The corpus callosum (CC) presents an average apparent mean diameter of 9:0 �m

with both techniques (Fig. 4). The mean values in each section are higher than those

reported in [1]. However, they are inline with those presented in [3]. This is due

to different factors limiting the accuracy of the measure including partial volume

effects. Fick et al. [5] were able to obtain a more accurate axon diameter estimation

in CC but using a bmax D 10;000 four shells acquisition, with 552 gradients.

In the areas of crossings like the corona radiata (CR) MAPMRI diameter values

(14:0 �m on average) are higher than the one obtained in the CC, in agreement with

the results of the simulations showing that MAPMRI is prone to apparent mean

diameter overestimation in case of crossing fibers. MT-MAPRMI values, on the

contrary, are lower (10:4 �m) and closer to those obtained in CC. The histogram of

Fig. 3 Estimated diameter in one coronal slice of HCP in vivo data. As it is possible to observe

MAPMRI (left) apparent mean diameter is higher in regions with crossing fibers, while MT-

MAPMRI (right) estimated diameter appears steadier across the white matter
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Fig. 4 Estimated diameter in a corpus callosum ROI of HCP data

Fig. 5 Profile of the histogram for the diameter estimation in white matter voxels for MAPMRI

(blue) and MT-MAPMRI (green) for a slice of HCP brain

the white matter apparent mean diameter (Fig. 5) of MT-MAPMRI shows that there

is a higher number of voxels with low diameter with respect to the same histogram

for MAPMRI. This is due to the large amount of crossings present in brain white

matter compared to pure single fiber voxels [8], highlighting the potential of MT-

MAPMRI in detecting white matter structural features in the presence of complex

fiber topologies.
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4 Conclusions

The apparent mean diameter for in vivo data is an index that is limited by three

factors: (a) the compartments inside the voxel are not homogeneous, (b) the long

diffusion time hypothesis is not verified, (c) the gradient strength used for in vivo

studies is not high enough for characterizing small compartments [7]. Despite these

limitations this index holds the potential to describe anomalies and peculiarities of

the different brain tissues in vivo, in both pathological and healthy subjects. MT-

MAPMRI expands the MAPMRI reconstruction technique adding the possibility

to align the basis on multiple tensors if the voxel presents a high likelihood to

contain more than one fiber bundles. This led to a better estimation of ODF and

apparent mean diameter for such voxels, in both simulations and in-vivo data. The

principal drawback of the technique is the fact that the fitting of multiple tensors is

a non-linear problem with no easy solution. It can give unstable results (especially

in the presence of noise) and that requires a longer computation time with respect to

the single tensor (three seconds per voxel on an Intel Core I7-3610QM, 2.3 GHz).

Future work will include the research of an improved and faster multi-tensor imple-

mentation, besides the complete characterization of MT-MAPMRI performance on

an extended set of data and with respect to other state-of-the-art methods such as

constrained spherical deconvolution and 3D-SHORE.

Acknowledgements Data were provided by the Human Connectome Project, WU-Minn Consor-

tium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by

the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and

by the McDonnell Center for Systems Neuroscience at Washington University.

References

1. Aboitiz, F., Scheibel, A.B., Fisher, R.S., Zaidel, E.: Fiber composition of the human corpus

callosum. Brain Res. 598(12), 143–153 (1992)

2. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In:

Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike. Springer

Series in Statistics, pp. 199–213. Springer, New York (1998)

3. Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby,

T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI.

NeuroImage 52(4), 1374–1389 (2010)

4. Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self diffusion tensor from the

nmr spin echo. J. Magn. Reson. 103, 247–254 (1994)

5. Fick, R.H., Wassermann, D., Sanguinetti, G., Deriche, R.: Laplacian-regularized MAP-MRI:

improving axonal caliber estimation. In: International Symposium on Biomedical Imaging:

From Nano to Macro, Brooklyn, New York (April 2015). https://hal.inria.fr/hal-01140021

6. Fick, R.H., Zucchelli, M., Girard, G., Descoteaux, M., Menegaz, G., Deriche, R.: Using 3D-

SHORE and MAP-MRI to obtain both tractography and microstructural contrast from a clinical

DMRI acquisition. In: International Symposium on Biomedical Imaging: From Nano to Macro,

Brooklyn, New York (April 2015)



74 M. Zucchelli et al.

7. Huang, S., Nummenmaa, A., Witzel, T., Duval, T., Cohen-Adad, J., Wald, L., McNab,

J.: The impact of gradient strength on in vivo diffusion {MRI} estimates of axon diam-

eter. NeuroImage 106, 464–472 (2015). http://www.sciencedirect.com/science/article/pii/

S1053811914010003

8. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence

of complex fiber configurations in white matter tissue with diffusion magnetic resonance

imaging. Hum. Brain Mapp. 34(11), 2747–2766 (2013). http://dx.doi.org/10.1002/hbm.22099

9. Landman, B., Bazin, P.L., Prince, J.: Diffusion tensor estimation by maximizing rician

likelihood. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007,

pp. 1–8 (October 2007)

10. Ozarslan, E., Koay, C., Shepherd, T., Blackband, S., Basser, P.: Simple harmonic oscillator

based estimation and reconstruction for three-dimensional q-space MRI. Proc. Int. Soc. Magn.

Reson. Med. 17, 1396 (2009)

11. Ozarslan, E., Koay, C., Basser, P.: Simple harmonic oscillator based reconstruction and

estimation for one-dimensional q-space magnetic resonance (1d-shore). In: Andrews, T.D.,

Balan, R., Benedetto, J.J., Czaja, W., Okoudjou, K.A. (eds.) Excursions in Harmonic Analysis.

Applied and Numerical Harmonic Analysis, vol. 2, pp. 373–399. Birkhauser, Boston (2013)

12. Ozarslan, E., Koay, C., Shepherd, T., Komlosh, M., Irfanoglu, M., Pierpaoli, C., Basser, P.:

Mean apparent propagator (map) MRI: a novel diffusion imaging method for mapping tissue

microstructure. NeuroImage 78, 16–32 (2013)

13. Scherrer, B., Warfield, S.: Why multiple b-values are required for multi-tensor models.

evaluation with a constrained log-euclidean model. In: 2010 IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, pp. 1389–1392 (April 2010)

14. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser,

M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C.,

Essen, D.C.V., Ugurbil, K., Behrens, T.E.: Advances in diffusion {MRI} acquisition and

processing in the human connectome project. NeuroImage 80, 125–143 (2013). http://www.

sciencedirect.com/science/article/pii/S105381191300551X. Mapping the Connectome

15. Zhang, H., Hubbard, P.L., Parker, G.J., Alexander, D.C.: Axon diameter mapping in the

presence of orientation dispersion with diffusion {MRI}. NeuroImage 56(3), 1301–1315

(2011)



SHORE-BASED BIOMARKERS ALLOW PATIENT VERSUS CONTROL CLASSIFICATION

IN STROKE

S. Obertino1, L. Brusini1, I. Boscolo Galazzo2,3, M. Zucchelli1, C. Granziera4, M. Cristani1, G. Menegaz1

1 Dept. of Computer Science, University of Verona, Italy
2 Inst. of Nuclear Med., UCL, United Kingdom 3 Dept. of Neuroradiology, AOUI of Verona, Italy

4 Dept. of Clinical Neuroscience, CHUV and University of Lausanne, Switzerland

ABSTRACT

In diffusion MRI, numerical biomarkers are usually calcu-

lated for research and clinical purposes as Generalized Frac-

tional Anisotropy (GFA). Recently, more eloquent indices al-

lowing a more accurate description of tissue microstructure

were derived from the SHORE model. Under certain ex-

perimental conditions, such indices express the morpholog-

ical properties of the compartments where spins diffuse. Ev-

idence of the suitability of such indices as biomarkers for

stroke was provided in a previous study based on diffusion

spectrum imaging (DSI) and focusing on the cortical motor

loop. The goal of this work was to investigate the suitability

of such indices for stratification, namely for distinguishing

pathological from healthy subjects. To this end, two differ-

ent paths were followed. First, the same approach used in

the previous work for longitudinal analysis (statistics-based)

was applied to detect inter-group variations. Then, a new ap-

proach based on the LASSO regressor was proposed. Results

provided evidence of the suitability of the proposed indices

for stratification purposes.

Index Terms— Diffusion MRI, Classification, Stroke,

Tractography, 3D-SHORE

1. INTRODUCTION

Diffusion Weighted Imaging (DWI) studies highlighted con-

nectivity remodeling after stroke in the uninjured hemispheres

[1]. In particular, derived standard scalar measures as Gen-

eralized Fractional Anisotropy (GFA) has been successfully

exploited to detect the plasticity process over time. In ad-

dition, the extension of previous analysis to the motor loops

between cortical and subcortical regions provided additional

evidence of this phenomenon [2]. Recently, a new generation

of indices were derived from a closed-form analytical recon-

struction of the diffusion signal referred as 3D Simple Har-

monic Oscillator Based Reconstruction and Estimation (3D-

SHORE) model [3]. Following the same approach, such in-

dices were proven to be suitable as biomarkers of axonal re-

modelling after stroke [4] confirming their ability of detect-

ing white matter structural changes in longitudinal studies.

In this work, we move a step further providing evidence of

the suitability of the considered indices for stratification pur-

poses, that is for distinguishing affected from healthy sub-

jects, besides extending the set of features holding the poten-

tial for being additional biomarkers. Indeed, the possibility of

automatic identifying lesions in a subject-vs-group approach

would help disambiguating shady conditions where the lesion

itself cannot be detected by visual inspection by the neurora-

diologist. To this end, first, an extended set of features were

derived based on the probability density functions (pdfs) of

the indices to be exploited for detecting statistically signif-

icant changes across groups (inter-group). Then, the Least

Absolute Shrinkage and Selection Operator (LASSO) classi-

fier was used for splitting pathological from healthy subjects.

2. METHODS

The processing pipeline consists of (i) signal and apparent

propagator (EAP) reconstruction using the SHORE model;

(ii) extraction of the microstructural indices along white mat-

ter fiber bundles connecting cortical-subcortical regions; (iii)

feature extraction from the pdfs of the indices and, finally, (iv)

both statistic and LASSO based analysis, as is detailed in the

next sections.

2.1. Dataset

Ten patients (6 males) [age = 56.1 ± 17.8] suffering from

ischemic infraction affecting the motor cortex or subcorti-

cal structures were enrolled in the study. All patients under-

went three Diffusion Spectrum Imaging (DSI) scans [TR/TE

= 6600/138 msec, FoV = 212 × 212 mm2, 34 slices, 2.2 ×
2.2 × 3 mm3 resolution, 258 diffusion directions, b-value =
8000 s/mm2, ∼ 25 min scan time] within one week (tp1), one

month (± one week, tp2), and six months (± fifteen days,

tp3) after stroke. Pre-processing was performed as in [1]. Ten

age and gender matched healthy subjects [age = 59.0 ± 12.8]

were also recruited and underwent two DSI scans a month

apart (tp1c and tp2c). All subjects provided written informed

consent and the Lausanne University Hospital review board

approved the study protocol.

978-1-4799-2349-6/16/$31.00 ©2016 IEEE 1097



2.2. SHORE Reconstruction Model

The orthonormalized SHORE model [5] was used for recon-

structing the Mean Apparent Propagator (MAP) [3], which

represents the probability density of the mean square dis-

placement of spins across the spatial coordinates in the unit

time and is related to the diffusion signal E(q) by the Fourier

relation [6]. In the SHORE model the signal is approximated

as

E(qu) =

Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΦnlm(qu) (1)

where Nmax is the maximal order of the functions in the trun-
cated series and Φnlm(q) is the orthonormal SHORE basis.
This family of functions is defined as

Φnlm(qu) =
[

2(n− l)!

ζ3/2Γ(n+ 3/2)

]1/2(

q2

ζ

)l/2

exp

(

−q2

2ζ

)

L
l+1/2
n−l

(

q2

ζ

)

Y m
l (u)

(2)

where Γ is the Gamma function, ζ = 1
8π2τD is the scaling

parameter [τ : diffusion time; D: diffusivity]. In the imple-

mentation, ζ was derived forcing the zero order term Φ000 to

be the DTI-derived Gaussian function.

Several indices related to the microstructural properties can

be derived from MAP, which allow the estimation of pores’

geometry and local diffusivity properties under specific as-

sumptions [3]. In particular, the Return To the Axis Probabil-

ity (RTAP), the Propagator Anisotropy (PA), the Orientation

Distribution Function (ODF) and the well-known GFA were

derived as in [4] and analyzed. Among these, the ODF is

necessary for performing tractography since it represents the

mean square displacement probability of spins across spatial

directions and allows identifying the principal diffusion di-

rection. It is derived by integrating the EAP along the radial

dimension. Interestingly, RTAP represents the reciprocal of

the mean cross-sectional area of the pore [3] such that an esti-

mation of the axonal radius (R) can be inferred from its value

as R =
√

π/RTAP .

2.3. Tract-based Analysis

The ODFs were reconstructed using the Diffusion Toolkit1

and fiber-tracking was performed via a streamline algorithm2.

Binary masks representing fiber connections between specific

Regions Of Interest (ROI) were derived and values for each

index were collected along each fiber tract. The pdf was de-

rived for each index and the features chosen for describing

it were calculated. In particular, the mean, variance, skew-

ness, and kurtosis (m, v, s, k, respectively) were considered.

Moreover, the distances between the pdfs at different time-

points were characterized by three measures: Mean Standard

1www.trackvis.org/dtk
2www.cmtk.org

Error (MSE), Kullback-Leibler Divergence (KLD), and Haus-

dorff distance (H). These measures were introduced as they

can be directly derived from the pdfs at different time-points

and be considered as direct measures of longitudinal changes

over time. A subset of connections between cortical and sub-

cortical regions were selected from three major motor net-

works (Fig. 1): a) the sensory-motor sub-loop [primary mo-

tor cortex (M1), putamen (Put), globus pallidus (GPi), Thala-

mus (Thal)], b) the premotor subloop [premotor cortex (PM),

caudate nucleus (Cau), Put, GPi, Thal] c) the supplementary

motor cortex (SMA) sub-loop [SMA, Put, Cau, Thal, GPi].

Fig. 1: Cortical-Subcortical motor networks.

2.4. Statistical Analysis

For each feature, that is for each histogram descriptor, the

reproducibility of the measurement along cortico-subcortical

tracts was assessed by evaluating in the control group the per-

centage absolute change between time-points as

∆tp12c,i =
|Ftp1c,i − Ftp2c,i|

Ftp1c,i
(3)

where F denotes the feature, that is F = {m, v, s, k}, i runs

over the indices, that is i = {GFA,RTAP,R, PA}, and

subscript c denotes the control group. In addition, the per-

centage absolute changes between patients’ time-points were

also calculated as

∆tp12,i =
|Ftp1,i − Ftp2,i|

Ftp1,i
(4)

∆tp13,i =
|Ftp1,i − Ftp3,i|

Ftp1,i
(5)

As the normality test (Kolmogorov-Smirnov) to the whole set

of feature changes extracted from both groups of participants

revealed that the values were normally distributed, the use of

parametric statistics was enablead. Accordingly, the unpaired

t-test was used to detect significant differences in the fea-

ture values across groups (p < 0.05). In particular,∆tp12c,i

was compared to ∆tp12,i and ∆tp12c,i to ∆tp13,i. Moreover,

for both groups the distances between the pdfs of each index

(GFA,RTAP, R, PA) at different time-points were also consid-

ered. Since only one distance per each couple of histograms
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and per connection can be calculated, all the connections were

considered jointly resulting in Ns×Nc measurements, Ns=10

and Nc=11 being the number of subjects in each group and

the number of connections, respectively. The sets of distance

measures obtained from the control and the patient groups

were compared using the unpaired t-test (p < 0.05). Note-

worthy, two sets of distances are available for patients to be

compared to that of controls.

2.5. Classification Model

In order to automatically separate patients from controls,

a classification approach combining a training and testing

pools was applied. These datasets were created using a

cross-validation process leave-N-out (where N = 1:5), while

LASSO has been used to model the classifier [7]. It derives

the linear combination of connections for all features and

distances of each index, estimating the weight vector w by

minimizing the standard least square error function:

E(w) =

N
∑

m=1

(ym − wTxm)2, (6)

where ym is a binary identifier of each class, and xm rapre-

sents the vector with variations value between tp1 and tp2 of

connections (indipendent variable). The vector w was used to

classify the test pool and to extract a robust measure of accu-

racy for each feature and distance.

3. RESULTS & DISCUSSION

3.1. Statistical Analysis

In the control group, the longitudinal percentage absolute

change of all features for each index is always under 17%

(worst case: 16.6 ± 13.5 [%] for GFA k), as shown in the first

bar column in Fig. 2. This points at a good reproducibility
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Fig. 2: Longitudinal features changes in percent absolute

values in controls and patients (*p < 0.05, **p < 0.01,

***p < 0.001).

of the whole set of extended features. In particular, for all

indices, mean has always an higher reproducibility (worst

case: 7.8 ± 8.6 [%] for RTAP) in agreement with previous

studies [1, 8, 2, 4]. Skewness and kurtosis presented a large

variability over time, except for RTAP in which these two

features have lower percentage absolute change (< 10%).

Moreover, Fig. 2 also reports the longitudinal changes in

the patient group for both short (tp12) and long (tp13) term

changes, along with the results of the statistical comparison

with control group. For all indices, mean is the feature with

the highest statistical significant difference between groups

(p < 0.001) in both longitudinal comparisons. Variance

shows statistical significativity in all indices except for RTAP.

Kurtosis detects significant differences in both longitudinal

terms in GFA and RTAP, it is present in long term in R, and

absent in PA. Skewness exhibits significativity in both longi-

tudinal short and long term of GFA, R and RTAP, while it has

statistical significativity only in long term for PA. GFA and

PA show an overall match in terms of longitudinal changes

for all the features, confirming the similarity of their nature

as indices of anisotropy.
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Fig. 3: Probability distribution function distances in controls

and patients (*p < 0.05, **p < 0.01, ***p < 0.001).

Distances’ values for each index are reported in Fig. 3 apply-

ing the same scale for visualization purposes despite their dif-

ferent order of magnitude (MSE and H: e−03, KLD: e−02).

For both patients and controls, MSE shows the lowest inter-

subject variability, with consistent results among the different

indices. Moreover, a significant difference between groups is

detected by MSE both for ∆tp12c,i vs ∆tp12,i and ∆tp12c,i

vs ∆tp13,i in all indices except for R. GFA presents statisti-

cally significant variations in KLD as well, for both patients

vs controls comparisons.

3.2. Classification Analysis

Classification models based on both feature and distance vari-

ables are reported for all indices in Fig. 4 as curves of perfor-

mance in terms of accuracy [0:1] across the different cross-

validation levels. PA reaches the best accuracy with H (best
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case: leave-2-out = 0.95), in addition H shows the highest

level of accuracy also for GFA (best case: leave-4-out = 0.79).

R reaches the best accuracy with both variance and H (best

case: leave-1-out = 0.7). Conversely, RTAP exhibits differ-

ent trends in comparison to the other indices, in particular the

best accuracy is obtained with MSE (best case: leave-2-out

= 0.7). This result is in agreement with the statical analysis

findings (Fig. 3), further confirming the ability of MSE in

differentiating patients from healthy subjects.
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Fig. 4: Leave-N-out method cross-validation accuracy.

4. CONCLUSIONS

In this work, the SHORE-derived indices and related set

of features were assessed on cortico-subcortical connections.

Despite having considered motor connections with deep brain

structures, the statistical analysis confirmed an overall good

reproducibility of the new indices, in agreement with previous

findings on cortical motor networks. Moreover, statistically

significant differences between patients and controls were

detected, not only for the classical mean feature but also

for the extended set of features which demonstrated their

potential for being considered additional biomarkers. The

complementary classification method was succesfully ex-

ploited, revealing the prediction power of atipically features

like Hausdorff distance in PA. In conclusion, the proposed

analysis strategies suggest that a combination of features can

be used to model a classifier aiming at differentiating patho-

logical from physiological patterns. Future works will be

focused on a feature selection procedure across the different

possibilities for finding the optimal combination of variables

(in terms of features and distances) and indices in order to

optimize the classifier model.
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a b s t r a c t 

Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cy- 
toarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and 
extracting information to constitute new families of numerical indices. Two main categories of recon- 
struction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average 
propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidat- 
ing the underlying microstructural architecture. While compartmental models indices directly quantify 
the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative mea- 
sure and the effect of the different microstructural configurations on the indices is still unclear. In this 
paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Recon- 
struction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal 
microstructural configurations. We take advantage of the state of the art simulations to quantify the vari- 
ations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices 
with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imag- 
ing (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices 
convey information on the tissue microstructure and that their combined values directly reflect the con- 
figuration of the different compartments in each voxel. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Diffusion MRI is a non-invasive imaging method that is able to 
provide information in-vivo on the cerebral tissue microstructure. 
The EAP, indicating the likelihood for a particles to undergo a net 
displacement r in the unit time, can be recovered from the diffu- 
sion weighted signal attenuation E ( q ) under the narrow pulse as- 
sumption ( Stejskal and Tanner, 1965 ) from the Fourier relationship 

P (r ) = 

∫ 

q ∈ R 3 
E(q ) e 2 πq ·r dq (1) 

where P ( r ) is the EAP, q = q u is the sampling position, with u unit 
vector of the reciprocal space, or q -space, and E(q ) = E(q ) /E(0) 

is the ratio between the value of the signal at q and its value at 
q = 0 . 

∗ Corresponding author. Tel.: +393477838267. 

E-mail address: mauro.zucchelli@univr.it (M. Zucchelli). 

The vector q depends on the gyromagnetic ratio γ , the diffusion 
gradient G and the gradient duration δ according to q = γ δG / (2 π ) . 
The norm of q , | q | = q is related to the so-called b-value through 
δ and the diffusion pulse separation time � as b = 4 π2 q 2 τ with 
τ = � − δ/ 3 . 

Last years have witnessed a proliferation of modeling meth- 
ods aiming at inferring microstructural features from the diffusion 
signal. Overall, two main approaches can be identified: EAP mod- 
els and compartmental models. EAP models aim at recovering the 
probability density function of the water molecules displacement 
P ( r ), while compartmental models ground on the representation 
of the diffusion signal as the sum of the contributions originat- 
ing from a set of pre-defined biophysical models of the tissues. 
These categorization of reconstruction models are not mutually ex- 
clusive and several hybrid models have been proposed in the lit- 
erature ( Tuch et al., 2002; Scherrer et al., 2015 ). From both fami- 
lies of models, numerical descriptors expressing different features 
of the underlying structural architecture and thus holding the po- 
tential for being the next generation of microstructural biomarkers 
can be inferred. 

http://dx.doi.org/10.1016/j.media.2016.03.008 
1361-8415/© 2016 Elsevier B.V. All rights reserved. 
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The most widely used EAP model is the Diffusion Tensor Imag- 
ing (DTI) ( Basser et al., 1994 ). DTI models the EAP as a single 
multivariate Gaussian function called diffusion tensor. Although 
this model has been proved to be suitable for describing weakly 
constrained diffusion (extracellular, cerebrospinal fluid) and sim- 
ple white matter topologies (single dominant diffusion direction, 
as in the corpus callosum), it cannot cope with complex architec- 
tures like fiber crossing, fanning and kissing, neither with the non- 
Gaussianity of the diffusion process inside a restricted medium 

such as the white matter (WM) ( Santis et al., 2011 ). In Diffusion 
Spectrum Imaging (DSI) ( Wedeen et al., 2005 ) the dense sampling 
of q -space on a Cartesian grid including high b-values allowed 
to overcome such a limitation improving the accuracy in the de- 
tection of the WM configurations. However, even though such a 
model-free reconstruction is quite appealing also due to its in- 
trinsic simplicity (the EAP is recovered by taking the discrete Fast 
Fourier Transform (FFT) of the signal, eventually using a smoothing 
window for avoiding spectral leakage), the long acquisition time 
seriously limits its applicability in clinics. 

Among the more widespread EAP models proposed so far, one 
of the most accurate is the Simple Harmonic Oscillator Based Re- 
construction and Estimation (SHORE), first introduced in Ozarslan 
et al. (2009) . In the original version, called 3D-SHORE, the same 
scaling parameter was used in all directions (isotropic scaling). A 

minor change to the 3D-SHORE model was introduced in Cheng 
et al. (2011) and in Merlet and Deriche (2013) where the orthonor- 
mality property of the basis was imposed. 3D-SHORE showed good 
performance in detecting multiple diffusion directions and EAP in- 
dices ( Merlet and Deriche, 2013; Zucchelli et al., 2015; Fick et al., 
2015b ). The isotropic scaling constraint was removed in Ozarslan 
et al. (2013) where a tensorial scale parameter was introduced al- 
lowing for a separable solution in the Cartesian space and lead- 
ing to the so-called Mean Apparent Propagator (MAP) MRI model. 
Both 3D-SHORE and MAP-MRI are among the most promising EAP 
models for the characterization of tissue microstructure, as re- 
cently highlighted at the SPARC-dMRI contest ( Ning et al., 2015 ). 
Among the other EAP models, it is worth mentioning the Spherical 
Polar Fourier Imaging (SPFI) ( Assemlal et al., 2009; Cheng et al., 
2010 ), exploiting Laguerre polynomials and Spherical Harmonics 
(SH) for modeling the radial and the angular parts of the dif- 
fusion signal, respectively, and the Diffusion Propagator Imaging 
(DPI) ( Descoteaux et al., 2011 ) where E ( q ) was obtained by solv- 
ing the 3D Laplace equation. Finally, the Bessel Fourier Orientation 
Reconstruction (BFOR) ( Hosseinbor et al., 2013 ) model was derived 
as the solution of the heat equation that can be seen as a general- 
ization of the Laplace equation. All these models provide close ap- 
proximations of the diffusion signal and allow deriving important 
EAP features such as the Orientation Distribution Function (ODF) 
in a reliable manner. From EAP models, it is also possible to de- 
rived microstructure related indices, namely the Return To the Ori- 
gin Probability (RTOP), the Return To the Axis Probability (RTAP), 
and the Return To the Plane Probability (RTPP) ( Ozarslan et al., 
2013 ). These indices reflect the degree of restriction of the water 
molecules in the voxel, which is directly linked to the underlying 
pore shape. However, a complete characterization of the behavior 
of these indices in regard to microstructural variations is still lack- 
ing in the literature. 

Compartmental models ground on the assumption that the dif- 
fusion signal can be represented as a mixture of components each 
resulting from spin motion in geometrically constrained compart- 
ments having different biophysical characteristics ( Latour et al., 
1994; Stanisz et al., 1997; Pfeuffer et al., 1998; Mulkern et al., 
1999 ). In the most general form, compartments correspond to glial 
cells, axons and extracellular space, respectively. In axon compart- 
ments diffusion is restricted , where restriction is due to geometry. 
In particular, restriction is assumed to be anisotropic in white mat- 

ter tracts. Then, diffusion is hindered in extracellular space and glial 
cells, where the EAP is assumed to be Gaussian ( Assaf et al., 2004 ). 
Among compartmental models a well known example is the Ball 
and Sticks ( Behrens et al., 2003 ) in which the white matter ax- 
ons were modeled as zero-radius cylinders ( sticks ) and the extra- 
cellular compartment as isotropic Gaussian ( ball ). Assaf and Basser 
(2005) proposed the Composite Hindered and Restricted Model 
(CHARMED) which represented the intracellular compartment as a 
cylinder with a given radius, while diffusion in the extracellular 
compartment was described by a diffusion tensor. Alexander et al. 
(2010) improved CHARMED by adding an extra compartment to 
model the cerebrospinal fluid (CSF) as an isotropic Gaussian func- 
tion with constant diffusivity. Several studies showed that white 
matter fibers are generally not coherently oriented ( Jones, 2003; 
Koay et al., 2008 ). Zhang et al. (2011) further improved compart- 
mental models allowing the cylinders of the intracellular compart- 
ment to be dispersed according to the Watson distribution on the 
sphere. A simplified version of this model, called the NODDI was 
proposed in Zhang et al. (2012) . NODDI principal innovation was 
the replacement of the cylinder with sticks for the intracellular 
compartment. The NODDI model has been extensively tested on 
different datasets ( Zhang et al., 2012 ) taking the classical DTI mea- 
sures, like fractional anisotropy (FA) and mean diffusivity (MD), as 
benchmarks. From NODDI indices it is possible to obtain informa- 
tion on the tissue intracellular volume fraction, the isotropic vol- 
ume fraction and the orientation dispersion in the voxel. 

The aim of this study is to characterize how EAP derived 
indices change in different tissue microstructure configurations. 
This is done via a systematic comparison between RTOP, RTAP, 
and RTPP with( i ) axon diameter, ( ii ) intracellular volume fraction, 
( iii ) isotropic volume fraction, and ( iv ) axon orientation dispersion 
in both simulated and in-vivo data. The use of simulated data en- 
ables the benchmarking of the variation of the indices as a function 
of the model parameters and provides a guideline for the interpre- 
tation of the results on in-vivo data in both healthy and patholog- 
ical conditions. In this study we consider a non-clinical DSI acqui- 
sition with 257 diffusion directions, but 3D-SHORE and other EAP 
models could be employed also on multi-shell data with only 60 
gradients ( Fick et al., 2015b ) that makes the calculation of the EAP 
indices more suitable for clinical studies. 

This paper is organized as follows: Section 2 illustrates the 
main features of the 3D-SHORE model, highlighting the differences 
from the previous ones, revisits the NODDI model and describes 
the simulated and in-vivo data. Section 3 illustrates and discusses 
the results and Section 4 derives conclusions. 

2. Materials and methods 

2.1. The 3D-SHORE model 

Functional bases decompose the diffusion signal E ( q ) as a linear 
combination of basis functions �( q u ) 

E(q ) = 

N 
∑ 

n =0 

c n �n (q u ) (2) 

Thanks to the linearity of the representation, the EAP is recovered 
by applying the Fourier operator to (2) . Accordingly, the EAP results 
from the linear combination of the dual basis functions �( r u ) 

P (r ) = F { E(q ) } = F 

{

N 
∑ 

n =0 

c n �n (q u ) 

}

(3) 

= 

N 
∑ 

n =0 

c n F { �n (q u ) } = 

N 
∑ 

n =0 

c n �n (ru ) 
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where �n ( r ) is the Fourier transform of the basis function �n ( q ). 
As it is the case for SPFI, DPI and BFOR, the basis is separable in 
both the radial and the angular coordinates. In particular, while 
these methods differ in the choice of the radial part, all rely on SH 

for expressing the angular dependence. According to Cheng et al. 
(2011) , the basis functions �n ( q u ) can be written as 

�n (q u ) = R n (q ) Y n (u ) (4) 

where R n ( q ) models the radial part of the signal and { Y n ( u )} are 
the real SH of even degree as in Descoteaux et al. (2007) . 

In this work, the orthonormal formulation of the 3D-SHORE 
model was chosen ( Merlet and Deriche, 2013 ) 

E (q u ) = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �nlm (q u ) 

�nlm (q u ) = 

[

2(n − l)! 

ζ 3 / 2 Ŵ(n + 3 / 2) 

]1 / 2 (
q 2 

ζ

)l/ 2 

exp 

(

−q 2 

2 ζ

)

L l+1 / 2 
n −l 

(

q 2 

ζ

)

Y m 
l (u ) (5) 

where �nlm ( q ) is the orthonormal 3D-SHORE basis, N max is the 
maximal order of the functions in the truncated series, Ŵ is the 
Gamma function and ζ is a scaling parameter. 

It could be useful to point out that the ordering of the ba- 
sis functions presented here is the same as in Eq. 58 in Ozarslan 
et al. (2013) , after the reworking implied by the use of Merlet 
and Deriche (2013) basis (see Appendix A ). In particular, the first 
N max / 2 + 1 components of the basis are isotropic ( l = 0 and m = 0 ). 
The scale factor ζ was derived by forcing the zero order term �0 0 0 

to be the DTI-derived Gaussian function exp (−4 π2 τq 2 D ) leading 

to ζ = 
1 

8 π2 τD 
as in Merlet and Deriche (2013) . Accordingly, the 

scale factor depends on two parameters: the diffusion time τ and 
the diffusivity D . In the 3D-SHORE model D is assumed to be con- 
stant across the angular directions, which corresponds to isotropic 
diffusion, and is calculated as the diffusion tensor derived mean 
diffusivity. We are aware of the fact that such an assumption is not 
suitable where diffusion is either restricted or hindered as it is the 
case in WM and, to a lesser extent, in GM ( Ozarslan et al., 2013 ). 
This constraint cannot easily be removed because the radial term 

of the 3D-SHORE model is not separable since it only depends on 
the norm of the reciprocal vector. Angular dependency is recovered 
by SH. In case of high anisotropy this limits the accuracy of the 
signal representation. Nevertheless, the 3D-SHORE model provides 
competitive performance in terms of both signal reconstruction er- 
ror and estimation of main fiber directions ( Fick et al., 2015b; Ning 
et al., 2015 ). The closed form expression for the EAP is obtained by 
solving Eq. 4 

P (ru ) = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �nlm (ru ) (6) 

�nlm = (−1) n −l/ 2 

[

2(4 π2 ζ ) 3 / 2 (n − l)! 

Ŵ( n + 3 / 2) 

]1 / 2 

× (4 π2 ζ r 2 ) l/ 2 exp (−2 π2 ζ r 2 ) L l+1 / 2 
n −l 

(4 π2 ζ r 2 ) Y m 
l (u ) (7) 

One of the main advantages of 3D-SHORE is that the coefficients 
c nlm are the same for the signal and the EAP, which is extremely 
important from the computational point of view. 

2.1.1. 3D-SHORE indices 

The three EAP indices proposed in Ozarslan et al. (2013) , the 
RTOP, RTAP, and RTPP are linked to the underlying mean pore ge- 

ometry irrespectively of the pore shape. These indices can be cal- 
culated in a dual manner, either from the signal or from the EAP 

RT OP = 

∫ 

R 3 
E(q ) d 3 q = P (0 ) (8) 

RT AP = 

∫ 

R 2 
E(q ⊥ ) d 

2 q ⊥ = 

∫ 

R 
P ( � r ‖ ) dr (9) 

RT P P = 

∫ 

R 
E( � q ‖ ) dq = 

∫ 

R 2 
P (r ⊥ ) d 

2 r ⊥ (10) 

RTOP is calculated as the volume integral of the signal or, alter- 
nately, following the properties of the Fourier transform, as the 
EAP in zero. Similarly, RTAP can be obtained either as the integral 
of the signal in the plane passing through the origin and perpen- 
dicular to the main diffusion direction, q ⊥ , or as the integral of the 
EAP along the main diffusion direction � r ‖ . Finally, RTPP can be ob- 
tained as the integral of the signal along the main diffusion direc- 
tion or as the integral of the EAP over the plane passing through 
the origin and perpendicular to the main diffusion direction. 

Under long diffusion time and narrow pulse assumptions ( �
≫ δ, δ ∼ 0) these indices are respectively related to the appar- 
ent mean volume 〈 V 〉 , apparent mean cross sectional area 〈 A 〉 , and 
apparent mean length 〈 L 〉 of the pores inside the voxel as follow: 

RTOP = 
1 

〈 V 〉 (11) 

RTAP = 
1 

〈 A 〉 (12) 

RTPP = 
1 

〈 L 〉 (13) 

Several attempts have been made in order to estimate the axon di- 
ameter using the relationship between RTAP and 〈 A 〉 ( Fick et al., 
2015b; 2015a ). Results shows that when diffusion is restricted 
within cylindrical pores, � ≫ δ, and δ � 0, it is actually possible 
to retrieve the cylinder diameter in simulated data. Unfortunately, 
it is impossible to acquire data satisfying such a constraint in-vivo 
with the current MRI technology, at the b -values that are required 
to detect the signal decay in cylinders with small diameter. More- 
over the brain tissue is not composed purely by coherently ori- 
ented axons, and the diffusion signal is influenced also by extra- 
cellular water and dispersion in the axons direction which both 
contribute to the RTAP and, therefore, the axon diameter estima- 
tion. 

The RTOP, RTAP and RTPP expressions resulting from the 3D- 
SHORE model after replacing Eq. 8 in Eq. 10 are as follows: 

RT OP = 

N max / 2 
∑ 

n =0 

c n 00 (−1) n 
[

4 π2 ζ 3 / 2 (n )! 

Ŵ(n + 3 / 2) 

]1 / 2 

L 1 / 2 n ( 0) (14) 

RT AP = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

[

ζ 1 / 2 2 l+3 π2 Ŵ(l/ 2 + 1) 2 Ŵ(n + 3 / 2) 

(n − l)! Ŵ(l + 3 / 2) 2 

]1 / 2 

×

× 2 F 1 (l − n, l/ 2 + 1 , l + 3 / 2 , 2) P l (0) Y m l ( � u ‖ ) (15) 

RT PP = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

[

Ŵ(l/ 2 + 1 / 2) 2 Ŵ(n + 3 / 2) 2 l 

ζ 1 / 2 (n − l)! Ŵ(l + 3 / 2) 2 

]1 / 2 

× 2 F 1 (l − n, l/ 2 + 1 / 2 , l + 3 / 2 , 2) Y m l ( � u ‖ ) (16) 

where P l (0) is the l -degree Legendre polynomial at zero and � u ‖ 
the main diffusion direction as detected by the initial diffusion 
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tensor estimation. The derivation of the indices is illustrated in 
Appendix B . 

Another possibility for calculating � u ‖ is to consider the maximal 
peak of the ODF as the principal direction. While these methods 
perform equally well in case of single diffusion direction, they lead 
to different results in case of crossings. In particular, in crossings of 
two fibers with an angle less than 90 degrees, the tensor principal 
direction will be likely placed midway, leading to an underestima- 
tion of the ground truth RTAP and RTPP, while the ODF peaks will 
be aligned with the two fibers, respectively. Although using the 
ODF we could calculate two different indices, one for each peak, 
these will not be the same as the ground truth RTAP and RTPP 
of the two fibers, because the integrals cannot separate the mixed 
contribution of the two compartments. A complete characteriza- 
tion of this phenomenon is beyond the scope of this paper. In this 
work we choose to use the diffusion tensor to detect the principal 
direction, following the same approach as in Ozarslan et al. (2013) , 
where the RTAP and RTPP were initially introduced for MAPMRI. 

2.2. NODDI biomarkers 

In the NODDI model the diffusion signal E is represented as the 
sum of the contributions from the intracellular ( E ic ), the extracellu- 
lar ( E ec ) and the isotropic ( E iso ) compartments ( Zhang et al., 2012 ). 
Accordingly, the full normalized signal can be written as 

E = (1 − νiso )(ν
0 
ic E ic + (1 − ν0 

ic ) E ec ) + νiso E iso (17) 

where ν0 
ic 

and ν iso are respectively the initial estimates of the in- 
tracellular and the isotropic volume fractions, respectively. The ex- 
tracellular volume fraction is then obtained as 

(

1 − ν0 
ic 

)

. The model 
does not guarantee that the three volume fractions sum up to one 
and this happens to generate an odd behavior of the indices that 
require a post-processing for use. In particular, fitting in voxels 
where isotropic diffusion dominates, corresponding to high ν iso , re- 
sults in the divergence of the unconstrained ν0 

ic 
that takes values 

that are clearly out of range. In order to overcome this limitation, 
the intracellular volume fraction has to be corrected a-posteriori as 
follows 

νic = ν0 
ic (1 − νiso ) (18) 

This normalization is derived from Eq. 17 where the estimated 
ν0 
ic 

is multiplied by (1 − νiso ) . The model also provides an addi- 
tional parameter that accounts for the orientation dispersion of the 
fibers within the voxels. Jointly with v ic , this allows disambiguating 
regions of pseudo-isotropic diffusion, as gray matter (GM), from 

crossing fibers, where high v ic corresponds to high dispersion in- 
dices. This is a clear advantage over classical DTI indices like FA 

that takes low values in both cases. Orientation dispersion is mod- 
elled using a Watson distribution ( Zhang et al., 2011 ) of sticks rep- 
resenting WM fibers 

f (u ) = M 

(

1 

2 
, 
3 

2 
, κ

)−1 

exp κ( μ·u ) 2 (19) 

where μ is the principal direction of the sticks population, M is the 
confluent hypergeometric function and κ is a concentration param- 
eter measuring the extent of the orientation dispersion around μ. 
From κ , the Orientation Dispersion Index ODI ( Zhang et al., 2012 ) 
is calculated as 

ODI = 
2 

π
arctan 

(

1 

κ

)

(20) 

ODI is lower in voxels with highly coherent stick orientations (sin- 
gle fiber white matter areas, like the corpus callosum) and larger 
where a principal orientation direction cannot be identified (cross- 
ing, kissing, GM, CSF). 

2.3. Datasets 

2.3.1. Simulated data 

We simulate the diffusion signal in the three compartments 
model proposed in Zhang et al. (2011) , in which the total signal 
E ( q ) can be calculated as 

E(q ) = νic E ic (q ) + νec E ec (q ) + νiso E iso (q ) (21) 

with νic + νec + νiso = 1 . The intracellular signal results from a set 
of impermeable cylinders, in which the main cylinders axis are dis- 
persed around a global direction μ, following the Kent distribution 
on the sphere [19] . 

In order to model the diffusivity inside each cylinder, tak- 
ing into account also the diffusion time, we use the Multiple 
Correlation Function (MCF) approach proposed in Özarslan et al. 
(2009) after adapting it for single pulse spin echo. Within the MCF 
framework it is possible to simulate the diffusion in the plane 
perpendicular to the main cylinder axis E ic ( q ⊥ ) as a function of 
the cylinder diameter, the pulse separation time �, the pulse du- 
ration δ, the gradient strength G and the bulk diffusivity coeffi- 
cient D 0 . The diffusion along the cylinder main axis E ic ( � q ‖ ) is as- 
sumed to be Gaussian with diffusion D 0 . The total intracellular sig- 
nal can then be obtained by the product of the two contributions 
as E ic (q ) = E ic (q ⊥ ) E ic ( � q ‖ ) . 

The Kent distribution represents the analogous of the 2D mul- 
tivariate Gaussian function on the sphere. The probability density 
function ρ given an unit vector u is defined as 

ρ(u | β, κ, μ) = 
1 

c (κ, β) 
exp { κμ · u + β[( γ1 · u ) 2 − ( γ2 · u ) 2 ] } 

(22) 

where γ1 , γ2 are the two orthogonal directions of elliptical disper- 
sion centered in μ and 

c(κ, β) = 2 π
∞ 

∑ 

j=0 

Ŵ( j + 
1 
2 ) 

Ŵ( j + 1) 
β2 j 

(

1 

2 
κ
)−2 j− 1 

2 
I 2 j+ 1 2 

(κ ) (23) 

with I v ( κ) the modified Bessel function. The parameter κ con- 
trols the concentration of the orientation and corresponds to the 
standard deviation of the Gaussian function, and the parameter β
controls the ellipticity ( Koay et al., 2008 ) of the directions ( β = 0 
isotropic dispersion around μ). As in Zhang et al. (2012) it is pos- 
sible to derive the ODI from κ using Eq. 20 . 

In order to simulate the orientation dispersion we sample a cer- 
tain number of directions N dir from the Kent distribution such that 
the global intracellular signal can be calculated as 

E ic (q | μ) = 
1 

N dir 

N dir 
∑ 

j=0 

E ic (q | u j ) (24) 

where u j identifies the direction sampled from the Kent distribu- 
tion centered on μ. 

The extracellular signal is simulated as proposed by Zhang et al. 
(2011) , as a Gaussian function: 

E ec (q ) = exp (−4 π2 (� − δ/ 3) q T D ec (νec , μ) q ) (25) 

with the axially symmetric tensor D ec calculated using the follow- 
ing tortuosity model: 

D ec (νec , μ) = 
1 

N dir 

N dir 
∑ 

j=0 

(D 0 − d ⊥ ) u 
T 
j u j + d ⊥ I (26) 

where d ⊥ = D 0 νec , and I is the 3 × 3 identity matrix. 
The isotropic term ν iso is designed to model the cerebrospinal 

fluid and is represented as an isotropic Gaussian function: 

E iso (q ) = exp (−4 π2 (� − δ/ 3)3 e −03 ‖ q ‖ 
2 ) (27) 
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Fig. 1. Variation of RTOP, RTAP, and RTPP with respect to microstructural parameters: top left cylinders diameter, top right intracellular volume fraction, bottom left isotropic 
volume fraction, bottom right orientation dispersion. Bold symbols (triangles and circle) represent the median of the indices, while the crosses represent the interquartile 
range. 

with 3 · 10 −03 mm 2 / s the water diffusivity coefficient at 37 Celsius 
degrees. 

In order to disambiguate the effect of the compartments on 
the EAP derived indices, a single simulation with predefined pa- 
rameters (reference simulation) was fixed and only one param- 
eter at a time was changed. The reference simulation parame- 
ters were: νic = 0 . 85 , cylinder diameter 1 μ m , κ = 128 , νec = 

0 . 15 , D 0 = 1 . 7 · 10 −3 mm 2 / s , and νiso = 0 . Intracellular volume frac- 
tion was changed between νic = 0 . 05 and νic = 0 . 95 (step = 0.05), 
keeping νiso = 0 . Cylinder diameter was varied from 0 . 5 μ m to 
4 μ m (step =0 . 5 μ m ). The isotropic volume fraction was changed 
between νiso = 0 . 05 and νiso = 0 . 95 (step = 0.05), while keeping 
νic = 0 . 85 · νiso , and νec = 0 . 15 · νiso . The concentration parame- 
ter ranged from 128, corresponding to very high concentration, 
to zero, corresponding to completely dispersed cylinders: κ = 

[128 , 4 , 2 , 1 , 0 . 8 , 0 . 4 , 0 . 2 , 0 . 1 , 0] . 
All simulations were performed changing the main orientation 

μ in 11 different directions and for each orientation and combina- 
tion of parameters 30 instances of Rician noise with signal to noise 
ratio SNR = 20 were used, for a total of 330 voxels for each param- 
eter set. The number of samples of the Kent distribution was set 
to 30 for all the simulations with κ = 128 , while N dir = 10 0 0 was 
used for the simulation with the varying κ . For these simulations, 
we used the DSI sampling scheme, �, and δ used for the in-vivo 
data. 

2.3.2. Data acquisition and processing 

One healthy subject and one stroke patient underwent a DSI ac- 
quisition using the following protocol: TR/TE = 60 0 0/136 ms, FoV = 

212 × 212 mm 2 , 34 slices, 2 . 2 × 2 . 2 × 3 mm 3 resolution, 257 dif- 
fusion directions, b-max =80 0 0 s / mm 2 , � = 32 . 2 ms , δ = 27 . 7 ms , 

scan time: 25.8 min. A 3T (Magnetom Trio a Tim System, Siemens, 
Erlangen, Germany) using a 32-channels head matrix coil was used 
for the acquisitions reported in Granziera and et al. (2012) . For the 
healthy subject, the DSI acquisition was repeated after one month. 
In this work we will refer to the first acquisition as time point one 
(TP1) and the second acquisition as time point two (TP2). 

High-resolution MPRAGE images (TR/TE = 2300/3 ms, voxel = 

1 × 1 × 1 . 2 mm 3 , FoV = 256 × 240 mm 2 , scan time: 6.13 min) 
and T2 weighted images (TR/TE = 30 0 0/84 ms, voxel =0 . 5 ×
0 . 5 × 3 mm 3 , scan time: 2.4 min) were acquired for anatomico- 
pathological reference. Total scan time was 34 min. Both subjects 
provided informed consent before the acquisition and the Lau- 
sanne University Hospital review board approved the study pro- 
tocol. Segmentation of high-resolution MPRAGE images into the 
grey matter and white matter was performed using Freesurfer 
( http://freesurfer.net/ ). The masks were manually corrected to en- 
sure a correct representation of the tissues. WM and GM masks 
were used for extracting the microstructural indices in the corre- 
sponding tissues for the healthy subject. 

2.4. Data analysis 

3D-SHORE indices were analyzed with respect to microstruc- 
tural changes on both synthetic and in-vivo data. While in syn- 
thetic data the ground truth microstructure is known, the lack of 
a ground truth impedes the direct assessment of the 3D-SHORE- 
based indices in-vivo . Accordingly, a shortcut was followed, consist- 
ing in comparing the results with NODDI microstructural indices. 
Although NODDI compartments are not guaranteed to correspond 
to the real underlying tissues microstructure it is a well established 
model which could give an insight of the tissues composition. The 
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Fig. 2. Results of the indices for one healthy subject. First row: signal at b-value = 

0 s / mm 2 , fractional anisotropy (FA), mean diffusivity (MD); Second row: scalar 3D- 
SHORE indic es RTOP, RTAP, and RTPP; Third row NODDI indices intracellular volume 
fraction v ic , isotropic volume fraction v iso , orientation dispersion index (ODI). 

precision of the indices was assessed through a test-retest proce- 
dure. The control subject went through two successive scans one 
month apart and the distributions of the indices at the two time- 
points were extracted and compared. The results on simulated data 
were used for guiding the interpretation of the measurements per- 
formed in-vivo , based on the assumption that the trends observed 
on synthetic data in voxels simulating WM and GM provide an 
indication of the plausibility of results on the DSI data. A maxi- 
mal radial order of N max = 8 was used for 3D-SHORE leading to 95 
coefficients. This parameter was obtained evaluating the NMSE of 
simulated voxels using different radial orders, with SNR = 20 , with 
respect to the ground truth. The RTOP, RTAP, and RTPP were calcu- 
lated as described in Section 2 . All the computations for 3D-SHORE 
were performed using the Dipy software library 3D-SHORE imple- 
mentation ( http://dipy.org ). NODDI was fitted using the standard 
parameters using Matlab (The Mathworks) NODDI toolbox ( http:// 
mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab ). As mentioned 
before, ν ic was subsequently modulated as in Eq. 18 . 

3. Results and discussion 

3.1. Simulated data 

Fig. 1 summarizes the values of RTOP, RTAP, and RTPP 
while changing the microstructural parameters as explained in 
Section 2.3.1 . In order to keep the same units ( 1 / mm ) for all the 
indices the cube root of RTOP and the square root of RTAP were 
calculated as in Ozarslan et al. (2013) . Although the EAP indices 
RTOP and RTAP at long diffusion time are respectively sensitive 

to the pore volume and cross sectional area, changing the cylin- 
ders diameter ( Fig. 1 , top left) does not have any effect on the 3D- 
SHORE derived indices when the DSI acquisition scheme is used. 
This could be due to the fact that the signal component perpen- 
dicular to the main diffusion direction E ic ( q ⊥ ) for the range of con- 
sidered diameters [0.5-4.0] µm is close to one and features a very 
low decay, even at b-value 80 0 0 s / mm 2 . This results shed new light 
on previous studies that used RTAP as an estimator of the apparent 
mean axon diameter in-vivo ( Fick et al., 2015a; Brusini et al., 2015 ). 
Since RTAP is calculated as the integral of the signal in the per- 
pendicular plane with respect to the main diffusion direction, RTAP 
values remain substantially constant in the diameter-changing sim- 
ulation. This particular diameter range was chosen according on 
the recent results reported for human WM and based on histology 
( Liewald et al., 2014 ). 

In simulated data the 3D-SHORE derived indices decrease with 
the decreasing of the intracellular volume fraction. This was ob- 
served both when the extracellular volume fraction was increased 
( Fig. 1 , top right), and when the isotropic volume fraction was in- 
creased ( Fig. 1 , bottom left). Although the diffusivity coefficient is 
different for 100% isotropic compartment voxel and 100% extracel- 
lular compartment voxel, all the indices take similar values in both 
cases. This is most probably due to errors in the fitting caused by 
the fast signal decay of CSF-like isotropic signal as well as to the 
presence of noise. 3D-SHORE with radial order set to 8 was pre- 
ferred for its ability to model highly anisotropic voxels (pure white 
matter), as in the reference simulation. In case of voxels with ei- 
ther low intracellular volume fraction, or high isotropic volume 
fraction a lower radial order should be preferred, in particular at 
low SNR. 

Fig. 1 (bottom right) shows the variation of 3D-SHORE indices 
while varying the orientation dispersion. While RTOP is insensitive 
to ODI variations, RTAP and RTPP show a complementary trend, 
that is RTAP decreases and RTPP increases at increasing ODI. This 
allows disambiguating the effect of intracellular volume fraction 
and ODI on RTAP variations being the changes of RTPP of the 
same sign as RTAP for decreasing intracellular VF (RTPP decreases 
as well) and of opposite sign for increasing ODI (RTPP increases). 
This is important because it allows disambiguating whether an ob- 
served change in tissue RTAP is most probably due to an increase 
of dispersion of WM fiber directionality or to partial volume effects 
(i.e., decrease in the WM volume fraction). This moves a step for- 
ward in the interpretation of the link between 3D-SHORE-based in- 
dices and the microstructrural properties as recorded in-vivo , pro- 
viding further evidence of their suitability as numerical biomark- 
ers. With an orientation dispersion above 0.5 all the EAP indices 
reach a plateau. This can be explained by the fact that with such a 
dispersed distribution the cylinders orientation already covered al- 
most the entire hemisphere of possible directions. Further increas- 
ing the dispersion of the cylinders does not change significantly 
the range of directions in the simulations, thus the values of the 
indices do not change further. RTOP geometrical meaning directly 
correlates with the volume of the pore 〈 V 〉 in � ≫ δ and δ � 0 
conditions. Since the volume can be viewed as the product of the 
cross sectional area times the length of the pore we can expect 
that the RTOP value strongly depends of RTAP and RTPP values. 
This holds true also in our simulations, even if � and δ do not 
satisfy the long diffusion time and narrow pulse assumptions. For 
example when RTAP decreases and RTPP increases, RTOP value re- 
mains approximately constant (see Fig. 1 , bottom left). 

3.2. DSI data 

In-vivo tissue microstructure characterization is not possible 
without histology. However, compartmental models provide an es- 
timation of the microstructural parameters in living tissues. In 
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Fig. 3. Scatterplots of NODDI ν ic (left) and ODI (right) versus 3D-SHORE RTOP (top), RTAP (middle), and RTPP (bottom) obtained from a subsample of the WM voxels. 

our simulation we observed that EAP indices are sensitive to in- 
tracellular volume fraction ( ν ic ), isotropic volume fraction ( ν iso ), 
and orientation dispersion variations. We compared RTOP, RTAP, 
and RTPP with NODDI estimated compartmental parameters as a 
pseudo ground truth for the DSI data, using the simulation results 
as a benchmark. Fig. 2 shows ( i ) the b 0 image and the traditional 
DTI-derived indices, MD and FA as reference (first row); ( ii ) the 3D- 
SHORE derived RTOP, RTAP, RTPP (second row); ( iii ) the NODDI ν ic , 

ν iso , and ODI (third row). 
In agreement with the results described in Ozarslan et al. 

(2013) , for the formalin fixed marmoset brain, RTPP shows low 

contrast between GM and WM, since the diffusion is not restricted 
along the main diffusion direction, while it presents higher val- 
ues in crossing regions. RTAP values are higher in regions of highly 
coherent WM, like the corpus callosum (CC), and presents higher 
contrast than RTPP at the WM-GM boundary. Coherently with 
what observed on simulated data, in presence of fiber crossings 
the RTAP is lower than in regions where only one fiber bundle is 
present (low orientation dispersion). RTOP contrast is very similar 
to RTAP, but presents lower contrast between crossing and single 
fibers regions with respect to the RTAP. These results are in agree- 
ment with the simulation results in Fig. 1 . 

With regards to NODDI maps, the resulting indices for our data 
are coherent with the results presented in Zhang et al. (2012) : ν ic 

is higher for white matter voxels (high FA), ν iso is equal to one in 
CSF regions (high MD), and ODI presents an opposite contrast with 
respect to FA. 

Fig. 3 shows NODDI ν ic and ODI versus RTOP, RTAP, and RTPP 
in WM. In this case we omitted ν iso because its values were ex- 
tremely low ( < 0.1) and non-informative. As in the simulations, a 

Table 1 

Spearman correlation coefficients ρ
for WM and GM between EAP in- 
dices and NODDI microstructural 
indices for the healthy subject. The 
maximum p-value among all the 
results presented in the table is 1 ·
10 −20 . 

WM GM 

ν ic vs RTOP 0.87 0.82 
ν ic vs RTAP 0.82 0.82 
ν ic vs RTPP 0.48 0.79 
ν iso vs RTOP 0.06 –0.24 
ν iso vs RTAP 0.06 –0.27 
ν iso vs RTPP –0.14 –0.45 
ODI vs RTOP –0.05 –0.22 
ODI vs RTAP –0.43 –0.34 
ODI vs RTPP 0.55 0.09 

positive correlation can be observed between NODDI ν ic and RTOP, 
RTAP, and RTPP, as well as between NODDI ODI and RTPP, while a 
negative correlation links NODDI ODI and RTAP. 

In order to quantify these relationships we calculated the Spear- 
man correlation coefficient ( ρ) for all the indices in WM and GM. 
Results are summarized in Table 1 . Spearman ρ assesses if be- 
tween two variables there is a monotonic relationship. We con- 
sidered this index to be more appropriate to our case with respect 
to others(e.g., Pearson’s r ) because the relation between the EAP 
indices and the ODI was non-linear in our simulations. Results re- 
vealed high correlation of ν ic with both RTOP and RTAP ( ρ > 0.8 
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Fig. 4. Test-retest plots for the EAP indices RTOP (top), RTAP (center), and RTPP (bottom) for GM (left column) and WM (right column). The interpolating line is shown in 
black and its equation is reported jointly with the Pearson correlation coefficients, r (p-values < 0.05). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

) and a weaker correlation with RTPP ( ρ ∼ 0.5) in WM. In GM all 
the correlation coefficients are slightly lower with the exception 
of RTPP. The correlation coefficient is very low between ν iso and 
3D-SHORE indices in white matter ( ρ < 0.2) and presents weak 
negative values for GM (| ρ| < 0.5 ). 

As it was the case in simulations, the correlation coefficient be- 
tween ODI and RTOP is close to zero. On the contrary, the corre- 
lation coefficient between ODI and RTAP is negative ( ρ = −0 . 43 ) 
while it is positive between ODI and RTPP ( ρ = 0 . 55 ) for WM in 
agreement with the trend highlighted in Fig. 1 . In GM all the ODI 
ρ values are very low (| ρ| < 0.35). All the p-values for both WM 

and GM are close to zero, with a maximum p-value of 1 · 10 −20 , 

thus all the indices are significantly correlated. Although NODDI 
was extensively validated ( Zhang et al., 2012 ), it does not represent 
the real ground truth for our data. In particular, NODDI ν ic is cor- 
related with ODI in-vivo ( Zhang et al., 2012 ), and while this can be 
actually true in WM, it makes difficult the disambiguation of tissue 
microstructural changes. Of particular interest is the case crossing 
areas, where ν ic decreases and ODI increases. The increase of RTPP 
jointly with the reduction of RTAP suggest that only the orienta- 
tion dispersion increases in crossing area, while intracellular vol- 
ume fraction remains constant. This provides a more anatomically 
plausible characterization of the microstructure and provides in- 
formation that goes beyond what can be inferred from the NODDI 
model. 

EAP indices stability was measured via a test-retest procedure. 
The corresponding plots are provided in Fig. 4 for WM and GM. 
Pearson correlation coefficients r between the two time points (TP1 

and TP2) for all the indices are above 0.8 in WM, and above 0.65 in 
GM. The lower values observed in GM could be due to the promi- 
nence of partial volume effects. 

In order to assess the sensitivity of the considered indices in 
detecting microstructural properties, probability density functions 
as approximated by the histograms were extracted and compared 
in GM and WM in two time points, as illustrated in Fig. 5 . In the 
figure, the red-magenta line represents GM and the blue-cyan line 
the WM. The 3D-SHORE-derived indices allow to clearly distin- 
guish between WM and GM (in particular RTOP and RTAP), as it is 
also the case for ν ic and ODI; ν iso tends to shrink to values at the 
extremes of the available range being close to zero in the majority 
of the WM and GM voxels. The histograms for all the indices at the 
two time points present comparable distributions, which provides 
some evidence of the reliability for the indices as biomarker candi- 
dates for in-vivo data. A comprehensive analysis in this respect can 
be found in Brusini et al. (2015) . 

Preliminary results on stroke data revealed that the 3D-SHORE- 
based indices hold potential for characterizing pathology-induced 
microstructural changes. As an illustration Fig. 6 shows the cor- 
responding maps for one patient affected by stroke, that was ac- 
quired one week after the onset of the pathology using the ac- 
quisition protocol described in Section 2.3.2 . The stroke lesion ap- 
pears hyperintense in b 0 , while MD and FA show reduced contrast. 
All the EAP indices appear brighter, which supports the hypothesis 
of an augmented restriction of diffusion in the lesion area. This is 
also confirmed by NODDI ν ic which saturates in the majority of the 
voxels in the lesion. ODI values are higher than in the contralateral 
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Fig. 5. Normalized histograms of NODDI indices ( ν ic , ν iso , ODI) and 3D-SHORE indices (RTOP, RTAP, RTPP) in GM (red-magenta) and WM (blue-cyan) for one healthy subject 
acquired at two different time points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Results of the indices for one ischemic stroke patient. First row: signal at 
b-value = 0 s / mm 2 , FA, MD; Second row: scalar 3D-SHORE indices RTOP, RTAP and 
RTPP; Third row NODDI indices. 

part, which is in agreement with the FA reduction. White matter 
areas inside the lesion are still partially visible in FA, RTOP, RTAP, 
and RTPP. On the contrary,the contrast between GM and WM in 
the lesion is reduced in all the NODDI indices. 

4. Conclusions 

In this paper we illustrate the effect that tissue microstructural 
variations have on 3D-SHORE-derived EAP indices: RTOP, RTAP, and 
RTPP. Although RTOP and RTAP are correlated with pore shape 
descriptors under long diffusion time and narrow pulse assump- 
tions, we were not able to see any variation in these indices while 
changing the cylinder diameter. Instead, we found that EAP indices 
values variations are related to changes in the intracellular vol- 
ume fraction and orientation dispersion of the axons. These results 
were confirmed in-vivo by comparing the 3D-SHORE indices with 
NODDI derived microstructural parameters. Results on stroke pa- 
tient suggest the suitability of the EAP indices for characterizing 
pathologically-induced microstructural changes in brain tissues. 

In this work, we focused on 3D-SHORE derived indices. The 
comparison with other EAP models including MAPMRI and also DTI 
was out of the scope of the paper and is currently under investiga- 
tion. Future work will also include the study of the effects of dif- 
ferent models of orientation dispersion and fiber crossings on the 
EAP indices, as well as the use of the indices for tissue classifica- 
tion. 

Appendix A. Ordering of the 3D-SHORE bases 

The signal reconstruction equation for Ozarslan et al. (2013) , ba- 
sis �O is: 

S(q ) = 

N O max 
∑ 

N=0 

∑ 

( j,l) 

l 
∑ 

m = −l 

c jlm �
O (q ) (A.1) 

Where j ≥ 1, l ≥ 0 with the constrain 2 j + l = N + 2 . In Merlet and 
Deriche (2013) , 3D-SHORE basis �M , the terms of the summation 
used were different: 

S(q ) = 

N M max 
∑ 

n =0 

n 
∑ 

l=0 

l 
∑ 

m = −l 

c jlm �
M (q ) (A.2) 

In this notation N O max is equal to two times N M 
max , used in Merlet 

and Deriche (2013) . If the signal is symmetric, the odd terms 
for both N and l vanished with both bases. The two basis are 
equivalent, but the ordering of the basis functions are different. 
For example, considering N M 

max = 2 (corresponding to N O max = 4 ) for 
Merlet and Deriche (2013) 3D-SHORE basis the Laguerre polyno- 
mial term in the basis L l+0 . 5 

n −l 
consist of 4 elements: 
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n = 0 → l = 0 ⇒ L 0 . 5 0 

n = 1 → l = 0 ⇒ L 0 . 5 1 

n = 2 → l = 0 ⇒ L 0 . 5 2 

n = 2 → l = 2 ⇒ L 2 . 5 0 
In Ozarslan et al. (2013) , notation, the Laguerre polynomial are 

calculated as L l+0 . 5 
j−1 

and corresponds to 6 elements: 

N = 0 → ( j = 1 , l = 0) ⇒ L 0 . 5 0 

N = 2 → ( j = 2 , l = 0) ⇒ L 0 . 5 1 

N = 2 → ( j = 1 , l = 2) ⇒ L 2 . 5 0 

N = 4 → ( j = 3 , l = 0) ⇒ L 0 . 5 2 

N = 4 → ( j = 2 , l = 2) ⇒ L 2 . 5 1 

N = 4 → ( j = 1 , l = 4) ⇒ L 4 . 5 0 
which include two more terms with respect to Merlet and Deriche 
(2013) notation. 

In this paper, in order to have the proper 3D-SHORE basis, the 
summation order for Merlet and Deriche (2013) basis �M has been 
corrected in 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �
M (q ) (A.3) 

With N max the same as Ozarslan et al. (2013) . For N max = 4 the La- 
guerre polynomials of the corrected 3D-SHORE basis are l = 0 → 

n = 0 ⇒ L 0 . 5 0 
l = 0 → n = 1 ⇒ L 0 . 5 0 

l = 0 → n = 2 ⇒ L 0 . 5 2 

l = 2 → n = 2 ⇒ L 2 . 5 0 

l = 2 → n = 3 ⇒ L 2 . 5 1 

l = 4 → n = 4 ⇒ L 4 . 5 0 
which are exactly the same as the one calculated for �O . 

Appendix B. EAP indices derivation for 3D-SHORE 

In this section we provide the analytic derivation of EAP indices 
for 3D-SHORE basis. 

B1. 3D-SHORE RTOP 

By definition ( Eq. 8 ) RTOP can be written as: 

RTOP = 

∫ 

R 3 
E(q ) d 3 q = P (0) (B.1) 

If we consider the EAP formula ( Eq. 6 ), its value in zero can be 
calculated as: 

P (0 u ) = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �nlm (0 u ) (B.2) 

�nlm (0 u ) = (−1) n −l/ 2 

[

2(4 π2 ζ ) 3 / 2 (n − l)! 

Ŵ( n + 3 / 2) 

]1 / 2 

× (0) l/ 2 exp (0) L l+1 / 2 
n −l 

(0) Y m 
l (u ) (B.3) 

Analyzing the term (0) l/ 2 exp (0) L l+1 / 2 
n −l 

(0) we note the radial func- 
tion vanish every time when l � = 0 for r = 0 . The global formula 
can thus be rewritten as: 

P (0 u ) = 

N max / 2 
∑ 

n =0 

c n 00 �n 00 (0 u ) (B.4) 

�n 00 (0 u ) = (−1) n 
[

2(4 π2 ζ ) 3 / 2 n ! 

Ŵ(n + 3 / 2) 

]1 / 2 

L 1 / 2 n ( 0) Y 0 0 ( u ) (B.5) 

The spherical harmonic of order [ l = 0 , m = 0] is the constant har- 
monic and its value is equal to 1 √ 

4 π
. Y 0 0 (u ) can then be replaced 

and the final formula become: 

P (0 u ) = 
1 

√ 
4 π

N max / 2 
∑ 

n =0 

c n 00 k n 0 L 
1 / 2 
n (0) 

= 
1 

√ 
4 π

N max / 2 
∑ 

n =0 

c n 00 (−1) n 
[

16 π3 ζ 3 / 2 (n )! 

Ŵ(n + 3 / 2) 

]1 / 2 

L 1 / 2 n ( 0) 

= 

N max / 2 
∑ 

n =0 

c n 00 (−1) n 
[

4 π2 ζ 3 / 2 (n )! 

Ŵ(n + 3 / 2) 

]1 / 2 

L 1 / 2 n ( 0) (B.6) 

B2. 3D-SHORE RTAP 

By definition ( Eq. 9 ) RTAP can be written as: 

RTAP = 

∫ 

R 2 
E(q ⊥ ) d 

2 q ⊥ 

= 

∫ 

R 2 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �(q ⊥ ) dq ⊥ 

= 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

∫ 

R 2 
�nlm (q ⊥ ) dq ⊥ (B.7) 

We can subdivide 3D-SHORE basis � ( Eq. 5 ) in three parts: the 
constant term K nl , the radial term R nl ( q ), and the angular term 

Y m 
l 

(u ) . With 

K nl = 

[

2(n − l)! 

ζ 3 / 2 Ŵ(n + 3 / 2) 

]1 / 2 

R nl (q ) = 

(

q 2 

ζ

)l/ 2 

exp 

(

−q 2 

2 ζ

)

L l+1 / 2 
n −l 

(

q 2 

ζ

)

(B.8) 

3D-SHORE basis after these substitutions become: 

�nlm (q u ) = K nl R nl (q ) Y 
m 
l (u ) (B.9) 

We can solve the angular part of the integral of the basis function 
using the Funk-Hecke Theorem ( Descoteaux et al., 2007 ): 
∫ 

R 2 
�nlm (q ⊥ ) dq ⊥ = 

∫ 

R 2 
K nl R nl (q ) Y 

m 
l (u ⊥ ) dq ⊥ 

= K nl 

∫ ∞ 

0 
R nl (q ) qdq 

∫ 

R 
Y m 
l (u ⊥ ) du ⊥ 

= K nl 

∫ ∞ 

0 
R nl (q ) qdq 

∫ 

| w | =1 
δ( � u T ‖ w ) Y m 

l (w ) dw 

= K nl 

∫ ∞ 

0 
R nl (q ) qdq 2 πP l (0) Y m 

l ( � u ‖ ) (B.10) 

With � u ‖ the vector pointing in the direction perpendicular to the 
perpendicular plane u ⊥ . For what concern the radial integral it 
can be solve applying the following identity ( Jeffrey, Zwillinger, 
2007 ): 
∫ ∞ 

0 
(t) β exp (−st) L αη (t) dt 

= 
Ŵ(β+1)Ŵ(α+η + 1) 

η!Ŵ(α + 1) 
s −β−1 

2 F 1 (−η, β + 1 , α + 1 , 1 /s ) (B.11) 

Using B.11 we obtain 

∫ ∞ 

0 
R nl (q ) qdq = 

∫ ∞ 

0 

(

q 2 

ζ

)l/ 2 

exp 

(

−q 2 

2 ζ

)

L l+1 / 2 
n −l 

(

q 2 

ζ

)

qdq 

= 
ζ

2 

∫ ∞ 

0 

(

q 2 

ζ

)l/ 2 

exp 

(

−q 2 

2 ζ

)

L l+1 / 2 
n −l 

(

q 2 

ζ

)

2 q 

ζ
dq 
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= 
ζ

2 

∫ ∞ 

0 
(t) l/ 2 exp (−t/ 2) L l+1 / 2 

n −l 
(t) dt 

= 
ζ

2 

Ŵ(l/ 2 + 1 / 2)Ŵ(n + 3 / 2) 

(n −l)!Ŵ(l+ 3 / 2) 
2 l/ 2+1 

2 F 1 (l−n, l/ 2 + 1 , 

l + 3 / 2 , 2) (B.12) 

The final RTAP equation can then be calculated as 

RTAP = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm K nl 
ζ

2 

Ŵ(l/ 2 + 1)Ŵ(n + 3 / 2) 

(n − l)!Ŵ(l + 3 / 2) 
2 l/ 2+1 

×2 F 1 (l − n, l/ 2 + 1 , l + 3 / 2 , 2) 2 πP l (0) Y m l ( � u ‖ ) 

= 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

[

ζ 1 / 2 2 l+3 π2 Ŵ(l/ 2 + 1) 2 Ŵ(n + 3 / 2) 

(n − l)! Ŵ(l + 3 / 2) 2 

]1 / 2 

×2 F 1 (l − n, l/ 2 + 1 , l + 3 / 2 , 2) P l (0) Y m l ( � u ‖ ) (B.13) 

where 

P l (0) = (−1) l/ 2 
1 · 3 · 5 · · · (l − 1) 

2 · 4 · · · (l) 
(B.14) 

with l even. 

B3. 3D-SHORE RTPP 

By definition ( Eq. 10 ) RTPP can be written as: 

RT P P = 

∫ 

R 
E( � q ‖ ) d � q ‖ 

= 

∫ 

R 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm �( � q ‖ ) d � q ‖ 

= 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

∫ 

R 
�nlm ( � q ‖ ) d � q ‖ (B.15) 

As in the case of RTAP the integral of the basis can be rewritten 
as 
∫ 

R 
�nlm (q ‖ ) dq ‖ = 

∫ 

R 
K nl R nl (q ) Y 

m 
l ( � u ‖ ) dq ‖ 

= K nl 

∫ ∞ 

0 
R nl (q ) dqY 

m 
l ( � u ‖ ) 

= K nl 

∫ ∞ 

0 

(

q 2 

ζ

)l/ 2 

exp 

(

−q 2 

2 ζ

)

L l+1 / 2 
n −l 

(

q 2 

ζ

)

dq Y m 
l ( � u ‖ ) (B.16) 

This integral can be solved applying Eq. B.11 and the RTPP can be 
written as: 

RT PP = 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm K nl 
ζ 1 / 2 

2 

Ŵ(l/ 2 + 1 / 2)Ŵ(n + 3 / 2) 

(n − l)!Ŵ(l + 3 / 2) 
2 l/ 2+1 / 2 

× 2 F 1 (l − n, l/ 2 + 1 / 2 , l + 3 / 2 , 2) Y m l ( � u ‖ ) 

= 

N max 
∑ 

l=0 , even 

(N max + l) / 2 
∑ 

n = l 

l 
∑ 

m = −l 

c nlm 

[

Ŵ(l/ 2 + 1 / 2) 2 Ŵ(n + 3 / 2) 2 l 

ζ 1 / 2 (n − l)! Ŵ(l + 3 / 2) 2 

]1 / 2 

× 2 F 1 (l − n, l/ 2 + 1 / 2 , l + 3 / 2 , 2) Y m l ( � u ‖ ) (B.17) 

Appendix C. Multiple correlation function for cylindrical pore 

Multiple Correlation Function (MCF) is a powerful mathemati- 
cal framework to calculate the analytic expression of the diffusion 
signal in predefined compartment shapes as cylinders and spheres 

Table C.2 

The first ten roots of the m th or- 
der Bessel function. 

P osition α m k 

1 th 0 0 0 
2 th 1.8411 1 0 
3 th 3.0542 2 0 
4 th 3.8317 0 1 
5 th 4.2011 3 0 
6 th 5.3175 4 0 
7 th 5.3314 1 1 
8 th 6.4156 5 0 
9 th 6.7061 2 1 
10 th 7.0155 0 2 

( Grebenkov, 2008; Özarslan et al., 2009 ). The main idea is to rep- 
resent the temporal effects of the gradients as matrices exponen- 
tials. The elements of these matrices depends on the geometry of 
the pore. 

The MCF for single PGF is based on the calculation of two ma- 
trices the square diagonal matrix � and the square matrix A . These 
matrices are theoretically infinite and their values are ordered ac- 
cording to the roots of the zeros of the derivative of the m th order 
Bessel function, αmk : 

J ′ m (αmk ) = 0 (m = 0 , 1 , 2 , 3 , 4 ... ) (C.1) 

where k indicates the k th root of the m th order Bessel function, 
(including the zero). These are ordered in ascending order accord- 
ing to their values. In Table C.2 we present the first ten α and the 
corresponding indices. The matrix � can be calculated using the 
Bessel roots as follows: 

�km,k ′ m ′ = δkk ′ δmm ′ 
α2 
km 

D 0 

r 2 0 
(C.2) 

where D 0 is the initial diffusivity, δxx ′ is a function that is one if 
x = x ′ and zero otherwise, and r 0 is the cylinder radius. In order to 
calculate the matrix A first is useful to define B km as 

B km = 

{ 
1 i f k = m = 0 

αkm 
(α2 

km −m 2 ) 
1 / 2 otherwise . 

(C.3) 

From B km it is possible to calculate the matrix A as: 

A km,k ′ m ′ = r 0 δm,m ′ ±1 (1 + δm, 0 + δm ′ , 0 ) 
1 / 2 

×B km B k ′ m ′ 
α2 
km 

+ α2 
k ′ m ′ − 2 m m ′ 

(α2 
km 

− α2 
k ′ m ′ ) 

2 
(C.4) 

These matrices are designed to be infinite dimensional, so for prac- 
tical reason they are truncated up to the 30 th Bessel root. This 
number is empirically set to the point when your simulated sig- 
nal does not change any more even if you double the number of 
α. 

The final step is to calculate the signal in the plane perpendic- 
ular to the cylinder main axis, E ( q ⊥ ), as 

E(q ⊥ ) = 〈 0 | e −�δ+ i 2 πq ·A † e −�(�−δ) e −�δ−i 2 πq ·A † | 0 〉 (C.5) 

Where q = 
Gδγ
2 π is a point in the direction perpendicular to the 

cylinder axis, 〈 0| M |0 〉 is the so-called bra-ket notation and indi- 
cates the element [0,0] of the matrix M . �, δ, and γ are respec- 
tively the pulse separation time, the pulse duration time, and pro- 
ton gyromagnetic ratio. 
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Abstract

Purpose New analytical reconstruction techniques of diffu-
sion weighted signal have been proposed. A previous work
evidenced the exploitability of some indices derived from the
simple harmonic oscillator-based reconstruction and estima-
tion (3D-SHORE) model as numerical biomarkers of neural
plasticity after stroke. Here, the analysis is extended to two
additional indices: return to the plane/origin (RTPP/RTOP)
probabilities. Moreover, several motor networks were intro-
duced and the results were analyzed at different time scales.
Methods Ten patients underwent three diffusion spectrum
imaging (DSI) scans [1 week (tp1), 1 month (tp2) and
6 months (tp3) after stroke]. Ten matched controls under-
went two DSI scans 1 month apart. 3D-SHORE was used for
reconstructing the signal and the microstructural indices were
derived. Tract-based analysis was performed along motor
cortical, subcortical and transcallosal networks in the con-
tralesional area.
Results The optimal intra-class correlation coefficient (ICC)
was obtained in the subcortical loop for propagator anisotropy
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(ICC=0.96), followed by generalized fractional anisotropy
(ICC=0.94). The new indices reached the highest stability
in the transcallosal network and performed well in the cor-
tical and subcortical networks with the exception of RTOP
in the cortical loop (ICC=0.59). They allowed discriminat-
ing patients from controls at the majority of the timescales.
Finally, the regression model using indices calculated along
the subcortical loop at tp1 resulted in the best prediction of
clinical outcome.
Conclusions The whole set of microstructural indices pro-
vide measurements featuring high precision. The new indices
allow discriminating patients from controls in all networks,
except for RTPP in the cortical loop. Moreover, the 3D-
SHORE indices in subcortical connections constitute a good
regression model for predicting the clinical outcome at
6 months, supporting their suitability as numerical biomark-
ers for neuronal plasticity after stroke.

Keywords Stroke · 3D-SHORE · GFA · Biomarker

Introduction

Stroke is the second most common cause of morbidity world-
wide and is the leading cause of acquired disability [1].
Following initial damage, stroke patients can recover to some
extent, partially due to the resolution of edema and pos-
sibly because of structural and functional modifications in
surviving brain tissue. In particular, several experimental
studies on both animal models and patients showed that this
spontaneous recovery mainly depends on brain plastic reor-
ganization of the infarct and peri-infarct areas [2,3].

Important insights into the underlying remodeling and
reorganization processes of functional recovery can nowa-
days be derived in human patients via advanced neuroimag-
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ing methods and brain mapping [4]. In addition, the recent
developments in connectivity analyses from multiple mag-
netic resonance imaging (MRI) data have provided new
details about the network pathophysiology and stroke recov-
ery, although the role of the non-injured hemisphere in this
process is still controversial. At functional level, positron
emission tomography (PET) and subsequently functional
MRI (fMRI) studies have evidenced task-related brain acti-
vations in both lesional and contralateral hemispheres, which
were highly dependent on the degree of brain damage [5,6].
In particular, Ward et al. [7] investigated a series of patients
who went through a good recovery after stroke and suggested
that the recruitment of other contralateral motor-related net-
works would have subserved the recovery and played an
essential role for compensation of the impaired functions.
At structural level, diffusion imaging (dMRI) has recently
generated considerable interest due to its ability to disclose
early pathophysiological changes in acute stroke, both in
terms of structural changes of fiber tracts and microstruc-
tural properties of the tissues. Several studies demonstrated
structural remodeling in ipsilateral and contralesional cor-
ticospinal tracts [8] and changes in the number of neural
pathways in areas both ipsilateral and contralateral to the
stroke [9], especially for the specific fiber trajectories con-
necting cortical regions in both hemispheres [10]. In addition,
dMRI studies performed in well-recovered stroke patients
revealed increased fractional anisotropy (FA) in both ipsi-
and contralesional corticospinal tracts in comparison with
controls, and that tracts’ FA asymmetries in the contralateral
corticospinal tract may play a role in motor recovery after
unilateral stroke [11].

Current literature works suggest that dMRI may be one
of the most sensitive neuroimaging biomarkers of vascular
damage in stroke patients [12]. Among the different vari-
ants currently available, diffusion spectrum imaging (DSI)
is a particular technique that is sensitive to intra-voxel het-
erogeneities in diffusion directions caused by crossing fiber
tracts and thus allows more accurate mapping of axonal
trajectories than other diffusion imaging approaches [13].
Generalized fractional anisotropy (GFA), as measured from
DSI data, had been previously successfully exploited to pro-
vide evidence of plasticity in the uninjured motor networks
in stroke patients [14,15]. Although anisotropy is the most
widely studied diffusion index, there is a growing interest
in investigating white matter (WM) microstructural proper-
ties and changes by analyzing different diffusion indices. To
this end, the application of a recently proposed new ana-
lytical reconstruction model referred to as simple harmonic
oscillator-based reconstruction and estimation (3D-SHORE)
[16] can provide a more complete set of new genera-
tion indices describing different microstructural properties.
In [17], the 3D-SHORE model was introduced and some
microstructural indices were derived and analyzed. In par-

ticular, propagator anisotropy (PA) and return to the axis
probability (RTAP) were considered. These indices are of
particular interest as the first provides a measure of the
ensemble average propagator (EAP) directional predomi-
nance and highly correlates with GFA [18], while the second
provides an estimation of the axon’s cross-sectional area and
thus of the axon’s diameter. Even though many factors affect
the accuracy of such an estimation, including acquisition
parameters such as diffusion time, diffusion gradient dura-
tion, gradient strength, partial volume effects due to limited
resolution and, last but not least, the presence of crossing
fibers, this measure is of particular interest because it natu-
rally maps to a very clear property of WM. Following the
same line, in this paper other two indices were considered:
return to the origin probability (RTOP) and return to the plane
probability (RTPP) [18]. In addition, the scope of the study
was widened by including the transcallosal circuit and the
subcortical motor loops as well as multiple temporal scales
from injury.

Materials and methods

The same cohort of patients and controls as in [17] was con-
sidered. Ten stroke patients [6 males, age 60.3 ± 12.3 years,
mean± standard deviation (SD)] underwent three acqui-
sitions within 1 week (tp1), 1 month (±1 week, tp2) and
6 months (±15 days, tp3) after the injury, respectively. Ten
age- and gender-matched controls were scanned twice
1 month apart (tp1c and tp2c). The same imaging protocol
was used: DSI (TR/TE=6600/138 ms, FOV=212 × 212
mm2, 34 slices, 2.2 × 2.2 × 3 mm3 resolution, 258 gradient
directions, bmax = 8000 s/mm2, scan time=25.8 min), high-
resolution 3D T1-weighted imaging (TR/TE=2300/3 ms,
FOV = 256 × 240 mm2, 160 slices, 1 × 1 × 1.2 mm resolu-
tion, scan time=6.13 min) using a 3T Siemens scanner (Trio,
Siemens, Erlangen, Germany) equipped with a 32-channel
head coil. Out of clinical assessment, the motor part of the
NIHSS scale (NIHSS motor) was retained and used for mod-
eling purposes as well as stroke volume and patients’ age. All
subjects provided written informed consent prior to imaging
and the Lausanne University Hospital review board approved
the study protocol, which has been performed in agreement
with the Declaration of Helsinki.

Microstructural indices

The 3D-SHORE model approximates the diffusion signal
E(qu) as a linear combination of functions Φnlm(qu) that are
the solutions to the three-dimensional quantum mechanical
harmonic oscillator
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E(qu) =
Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΦnlm(qu) (1)

Φnlm(qu) =
[

2(n − l)!
ζ 3/2Γ (n + 3/2)

]1/2

×
(

q2

ζ

)l/2

exp

(

−q2

2ζ

)

L
l+1/2
n−l

(

q2

ζ

)

Y m
l (u)

where Nmax is the maximal order in the truncated series, ζ

is an isotropic scaling parameter, Γ is the Gamma function,
L is the Laguerre polynomial and Y are the real symmetric
spherical harmonics. The coefficients cnlm are determined
by quadratic programming and positivity constraints are
imposed to the EAP [18]. The corresponding EAP is recov-
ered by Fourier transformation

P(ru) =
Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlmΨnlm(ru) (2)

where, due to the linearity of the transform operator, the coef-
ficients cnlm are the same as in Eq. (1) and Ψnlm(ru) is the
Fourier transform of Φnlm(qu)

Ψnlm(ru)= (−1)n−l/2
[

2(4π2ζ )3/2(n−l)!
Γ (n+3/2)

]1/2(

4π2ζr2
)l/2

× exp

(

4π2ζr2
)

L
l+1/2
n−l

(

4π2ζr2
)

Y m
l (u) (3)

The RTOP, RTAP and RTPP indices can then be derived from
the EAP as follows [18]

RTOP = P(0) =
Nmax/2
∑

n=0

cn00(−1)n

×

[

16πζ
3
2 Γ (n + 3/2)

n!

]1/2

(4)

RTAP =
∫

R

P(u‖)dr

=
Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlm

×
[

ζ 1/2 2l+3π2 Γ (l/2 + 1)2 Γ (n + 3/2)

(n − l)! Γ (l + 3/2)2

]1/2

× 2 F1(l − n, l/2 + 1, l + 3/2, 2) Pl(0) Y m
l (u‖)

(5)

RTPP =
∫

R2
P(r⊥)d2r⊥

=
Nmax
∑

l=0,even

(Nmax+l)/2
∑

n=l

l
∑

m=−l

cnlm

×
[

Γ (l/2 + 1/2)2 Γ (n + 3/2) 2l

ζ 1/2 (n − l)! Γ (l + 3/2)2

]1/2

× 2 F1(l − n, l/2 + 1/2, l + 3/2, 2)Y m
l (u‖) (6)

where u‖ is the main diffusion direction, 2 F1 is the Gaussian
hypergeometric function, Pl(0) is the l-degree Legendre
polynomial in zero, r⊥ is the plane passing through the origin
and perpendicular to the main diffusion direction.

RTOP, RTAP and RTPP represent the probabilities of zero
absolute net displacement, zero net displacement in the plane
perpendicular to the main diffusion direction and zero net dis-
placement in the main diffusion direction, respectively. More
in details, Ozarslan et al. [18] proved the equivalence between
RTOP, RTAP and RTPP and the reciprocal of the ensemble
average of the pores’ geometrical properties under the long
diffusion time and narrow pulse separation assumptions. In
particular, the estimation of the apparent mean axon’s radius
can be obtained as R =

√
1/πRTAP under the assumption

of cylindrical pore. Finally, PA represents a measure of the
anisotropy of the EAP and is defined as

P A =

√

√

√

√1 −
∑Nmax/2+1

l=0 c2
l00

∑Nmax
l=0,even

∑(Nmax+l)/2
n=l

∑l
m=−l c2

nlm

(7)

Due to the fact that the apparent geometric features are
obtained as ensemble averages, they map exactly to pores’
properties only if a single type of pore with fixed shape and
orientation is present in the voxel (e.g., only impermeable
cylinders aligned in the same direction) [19]. The analysis of
the robustness of the indices at changing acquisition parame-
ters was out of the scope of this paper. It is well recognized in
the literature that the pulse separation, pulse width and gradi-
ent strength impact on the estimated parameters [21–23] and
a complete characterization in this respect is required for
assessing the sensitivity of the indices to such changes and,
in consequence, their suitability as biomarkers. However, this
work provides evidence in support of their precision and their
ability of capturing stroke induced microstructural changes,
which are among the set of features that are required in this
respect [24], marking a step in that direction. Although the
assumptions on the diffusion time and gradient duration in
general are not satisfied for in-vivo data, it is still possible
to estimate the geometrical features of interest. In this man-
uscript, we refer to the estimated quantities using the prefix
apparent (e.g., apparent mean diameter) to distinguish them
from the real measures.

Tract-based analysis

For each subject, dMRI images were processed using the Dif-
fusion Toolkit (CMTK; www.cmtk.org) in order to derive the
orientation distribution functions (ODFs) needed for fiber
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tracking, subsequently performed via a streamline-based
algorithm. Individual high-resolution T1-weighted images
were segmented using Freesurfer (http://www.surfer.nmr.
mgh.harvard.edu) and further subdivided into a subject-
specific 84-region atlas through a brain parcellation proce-
dure. More in details, the Desikan–Killany atlas for cortical
parcellation (32 regions per hemisphere) and the automated
subcortical segmentation (20 regions) provided by Freesurfer
were used. The parcellation mask was then created with an
in-house Matlab script. A linear (affine) image registration
to the diffusion space (b0 volume) was performed using FSL
FLIRT (www.fmrib.ox.ac.uk/fsl) in order to back-project the
subject-specific atlas from anatomical to diffusion space. A
series of networks involved in different motor skills were
identified in collaboration with the neurologists. These net-
works were practically created by selecting the respective
regions of interest (ROIs) from the whole set of regions
derived from the automatic brain parcellation and all the
subsequent analysis were performed on these networks in
order to study the specific contralateral motor mechanisms.
The considered cortical and subcortical ROIs include the pri-
mary motor area (M1), supplementary motor area (SMA),
somatosensory cortex (SC) and premotor area (PM), thala-
mus (Thl), caudatus (Cau), putamen (Put) and globus pallidus
(GPi). In particular, the following ensembles of tracts were
considered: (1) the set of connections between each region
cited above in the contralesional area and the corpus callo-

sum (Fig. 1a) that we call here transcallosal circuit (CC); (2)
the ensemble of connections linking the cortical regions that
we define cortical loop (CORT) (Fig. 1b); (3) the ensemble
of connections linking subcortical regions called subcortical
loop (SUBCORT) (Fig. 1c). The latter has been further inves-
tigated, identifying its five main sub-networks, in order to
provide a more detailed description of the SUBCORT motor
pathways: (a) M1 loop (Fig. 1d), (b) SMA1 loop (Fig. 1e),
(c) SMA2 loop (Fig. 1f), (d) PM1 loop (Fig. 1g), (e) PM2
loop (Fig. 1h).

The six 3D-SHORE indices (GFA, PA, RTAP, R, RTOP,
RTPP) were collected along the different pairs of ROI links
shaping each of the aforementioned networks. To this end,
an in-house software was used to extract the mean of values
along each fiber connecting two specific ROIs. After that, the
mean of fibers’ values was calculated for each fiber bundle to
obtain a value for each index and each particular connection
of the considered networks.

Statistical analysis

Precision of the measurements

In order to demonstrate the longitudinal stability of the
different 3D-SHORE indices, a repeatability analysis was
performed on the test–retest data from the control group.

First, for each index and each network the degree of corre-
lation as assessed by the square of the Pearson’s correlation
coefficient (r2) was calculated between tp1c and tp2c data.
Second, the Bland–Altman plot was derived for illustrating
the variations of the differences between paired data for each
of the main networks, together with the percent coefficient of
variation (CV%), and the intra-class correlation coefficient
(ICC). More in details, the ICC estimates the reliability of
the measurements by comparing the within-subject (WS) to
the between-subject (BS) variability:

ICC =
BSMSS − WSMSS

BSMSS + WSMSS
(8)

where MSS represents the mean sum of squares and is cal-
culated for the WS and the BS as follows:

WSMSS =
∑N

i=1

∑2
k=1(mik − mi )

2

N
(9)

BSMSS =
∑N

i=1 2(mi − m)2

N − 1
(10)

where N is the number of subjects, mik is the value of the
kth measurement session for subject i , mi is the mean of
the measurements for subject i across all sessions and m the
overall mean across all subjects and sessions. The ICC values
were interpreted as follows: >0.75 as excellent, 0.40–0.75 as
fair to good and <0.40 as poor [20].

Comparison of absolute GFA, PA, R, RTAP, RTOP and

RTPP changes in patients and controls

After the stability analysis, on both groups the percentage
absolute changes in mean values between time points were
calculated for each index and each network as:

∆tp12c(m) = |(mtp2c − mtp1c)|/mtp1c (11)

∆tp12(m) = |(mtp2 − mtp1)|/mtp1

∆tp23(m) = |(mtp3 − mtp2)|/mtp2

∆tp13(m) = |(mtp3 − mtp1)|/mtp1

where m denotes the mean value of the considered index
along the fibers of a given connection and loop, and the
subscript c denotes the control group. Since Kolmogorov–
Smirnov normality test informed about the normal distri-
bution of the percentage values, unpaired t-test (corrected
for multiple comparisons with a false discovery rate of
0.05) was performed to detect significant differences between
∆tp12c(m) and ∆tp12(m), ∆tp12c(m) and ∆tp23(m), and
∆tp12c(m) and ∆tp13(m).
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M1 = Primary Motor Area Thl = Thalamus

SMA = Supplementary Motor Area Cau = Caudatus

SC = Somatosensory Cortex Put   = Putamen

PM = Premotor Area Gpi = Globus Pallidus
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Fig. 1 Schematic representation of the transcallosal (CC), cortical (CORT) and subcortical (SUBCORT) networks. The five sub-networks of this
latter circuit are also reported on the right panel (d–h)

Predictive model

In order to assess the predictive power of the 3D-SHORE
indices, different linear regression models were considered
for prediction of the motor outcome at 6 months after stroke
(NIHSS at tp3). First, a linear regression model including
only age, stroke size, and NIHSS motor scores at tp1 as
predictors was calculated. Then, for each of the three main
networks, the mean value of each index along the connections
of the set at tp1 was calculated and included as predictor
together with age, stroke size and NIHSS motor scores at
tp1. Moreover, a predictive model was derived for each index
separately using its ∆tp12 values and including all the net-
works shown in Fig. 1 and NIHSS at tp1. The optimal model
was identified by a backward selection process (significance
threshold: p = 0.05).

Results

Precision of the measurements

The repeatability of the measurements was assessed on the
three main networks using the Bland–Altman plots.

The Bland–Altman plots comparing the mean index val-
ues across the CC connections for tp1c and tp2c are reported

in Fig. 2. The corresponding correlation scatter plots are pro-
vided in the Supplementary Materials. As shown in Table 1,
a strong correlation between tp1c and tp2c was detected for
all the indices. The best degree of association was achieved
for GFA (r2 = 0.85, p < 0.05), followed by PA (r2 = 0.83,
p < 0.05) while R showed the lowest correlation value
(r2 = 0.78, p < 0.05). High ICC values, close to unity,
were found in all cases, with GFA and R showing also the
highest and lowest ICC values (0.92 and 0.88), respectively.
Regarding the relative variability expressed by the CV index,
RTPP resulted the index with the best performance and low-
est value, below 3 %. In all cases, the Bland–Altman plots
showed a mean difference close to zero (except for RTOP,
due to the values’ range for this index) with a limited spread
of values.

The Bland–Altman plots for the CORT and SUBCORT
loops are reported in Figs. 3 and 4, respectively, while the
corresponding repeatability indices are given in Table 1. For
the CORT network, the correlation plots evidenced a positive
association between time points for all the indices (Supple-
mentary Materials), with the highest correlation obtained for
RTOP (r2 = 0.82, p < 0.05), while RTPP showed a poor
degree of correlation between values along time. RTOP and
RTPP also displayed, respectively, the highest and lowest
agreement in terms of ICC values between repeated measures
in the test–retest procedure (0.91 and 0.59, respectively). For
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Fig. 2 Bland Altman plot for each index in the transcallosal (CC) network. The solid line represent the mean value, while the dashed lines represent
the ±1.96 SD values, respectively

all the indices, the CV values between the repeated measures
were well below 6 %. Also in this network, the Bland–Altman
plots confirmed a good reproducibility for all the indices, with
a limited spread of the values around the mean (close to zero)
and almost entirely within ±1.96 SD.

For SUBCORT, PA showed the highest temporal stability
both in terms of correlation and ICC (r2 = 0.90, p < 0.05;
ICC = 0.96). Differently from the other two sets of con-
nections, RTPP and RTOP showed, respectively, the lowest
correlation and repeatability values relatively to the other
indices (RTPP r2 = 0.73, p < 0.05; RTOP ICC = 0.85).
RTOP also showed a larger CV value in comparison with
the other networks (11 %). The good reproducibility of the
indices for this loop was further confirmed by the Bland–
Altman plots, with almost all the values concentrated within
the agreement limits for all the indices.

Overall, all the microstructural indices resulted to be stable
across acquisition sessions guaranteeing precise measure-
ments.

Comparison of absolute GFA, PA, R, RTAP, RTOP, and

RTPP changes in patients and controls

The mean absolute percent changes for ∆tp12c, ∆tp12, ∆tp23

and ∆tp13 for each index and for each of the main networks
are reported in Fig. 5. Regarding the CC network, a signifi-
cant difference was reached in all the comparisons between
temporal changes. In particular, a marked statistically sig-
nificant difference was detected in all the indices, except
R, between the pairs {∆tp12c,∆tp12} and {∆tp12c,∆tp13}
with the same range of p values (0.001 < p ≤ 0.01,
corrected) while ∆tp23 appeared to be less different from
the control variations in this loop. Regarding the CORT
network, this failed to show statistically significant differ-
ences for RTPP at all time scales as well as for the pair
{∆tp12c,∆tp23} in all the considered indices. In the other
cases, the differences with the control group appeared to
be equally or less strongly significant in comparison with
the other two networks at all the time scales. Finally, the
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Table 1 Repeatability performance in terms of correlation coefficient
(r2), intra-class correlation coefficient (ICC) and coefficient of variation
(CV%) for all the indices for each set of connections

Network Index r2 ICC CV %

CC GFA 0.85 0.92 4.8

PA 0.83 0.90 4.0

R 0.78 0.88 4.6

RTAP 0.84 0.91 5.7

RTOP 0.81 0.90 7.4

RTPP 0.82 0.90 2.8

CORT GFA 0.80 0.89 5.2

PA 0.68 0.82 5.2

R 0.49 0.69 5.3

RTAP 0.79 0.89 5.1

RTOP 0.82 0.91 5.6

RTPP 0.35 0.59 4.9

SUBCORT GFA 0.88 0.94 5.0

PA 0.90 0.96 4.7

R 0.82 0.91 3.1

RTAP 0.77 0.88 6.2

RTOP 0.76 0.85 11.0

RTPP 0.73 0.88 3.1

In all the networks, correlation values were statistically significant (p <

0.05)

SUBCORT network presents the same results as for the CC
connections for GFA and PA. A higher significance than
for the CC network could be observed for R and RTAP
for the comparison between ∆tp12c and ∆tp12, while a
lower significance is shown for the comparison between the
pairs {∆tp12c,∆tp12} and {∆tp12c,∆tp23} in RTPP. More-
over, RTOP had no significant differences for the pair
{∆tp12c,∆tp23}.

RTPP results revealed that this index has lower percent-
age absolute changes over time in comparison with the other
indices, both for controls and patients, while RTOP trends in
all the networks are in line with those of RTAP.

Overall, mean absolute changes of the set of microstruc-
tural indices along the CORT network resulted less effective
in discriminating patient and control groups. We thus decided
to investigate further the role of the SUBCORT network by
considering the five SUBCORT loops that are illustrated in
Fig. 1. This allows a finer granularity in the analysis while still
keeping the loop as the basic structural element. Notewor-
thy, splitting the CC network in its basic constituents would
have brought to the level of single connections between
each region and the corpus callosum. We consider this to
be the next level of analysis and leave it for future investiga-
tion.

Splitting the SUBCORT network to the set of five sub-
network components (Figs. 1d–h, 6) highlighted the leading

role of the M1 loop since it allowed discriminating the
two groups at all time scales for GFA, PA and R (p <

0.05, corrected). On the other end, the PM2 sub-network
had a less prominent role detecting significant differences
only at longer time scales using PA and RTAP as shown in
Fig. 6.

Focusing on the indices, GFA was highlighted as the index
reaching the highest significant differences for all the three
temporal conditions and all the sub-networks. Furthermore,
R showed a good ability to differentiate controls from patients
in all loops, followed by PA and, to a lesser extent, RTAP.
Finally, RTOP and RTPP changes failed to reach significance
in all conditions, namely for all sub-networks and tempo-
ral scales. However, a positive trend could be observed in
the absolute percent change ∆tp13 between tp1 and tp3 in
patients, which indicates a change in the absolute value of
the corresponding index. Even though such changes did not
reach statistical significance, they witness the ability of RTOP
and RTPP indices of capturing microstructural remodeling in
patients. It could be useful to highlight that the method used
for correction for multiple comparisons strongly influences
the results. A clear indication does not emerge from the lit-
erature in this respect so far and this aspect deserves further
investigation.

Predictive model

Two families of predictive models were considered: the first
targeting the identification of the networks playing a domi-
nant role in the prediction of the clinical outcomes at tp3 and
the second aiming at disambiguating the role of a specific
index in the same predictive task by gathering the different
circuits.

In the patients cohort, a linear regression model including
only age, stroke size and NIHSS at tp1 has shown to predict
the NIHSS outcome at tp3 with low correlation (R2 = 0.546;
adjusted R2 = 0.489; p = 0.772). The R index was not
considered because of its dependence on RTAP [17]. Con-
versely, the construction of a predictive model for each of the
three networks including all together the corresponding tp1

values of GFA, PA, RTAP, RTOP and RTPP, increased the
prediction capability, except for the CORT loop, as shown
in Fig. 7 (R2 = 0.558; adjusted R2 = 0.431; p = 0.057).
Notably, the best results were obtained in the SUBCORT
set (R2 = 0.997; adjusted R2 = 0.988; p = 0.009), even
though the regression model for the CC network proved
to have a high correlation as well (R2 = 0.994; adjusted
R2 = 0.973; p = 0.021). Moreover, all the prediction mod-
els retain RTOP as a significant predictor while GFA was
the only one rejected in the model composed by SUBCORT
connections.

When the 3D-SHORE indices were considered separately,
the advantage of taking into account RTOP to determine a
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Fig. 3 Bland–Altman plot for each index in the cortical (CORT) network. The solid line represents the mean value, while the dashed lines represent
the ±1.96 SD values, respectively

good prediction of clinical outcome was further confirmed as
shown in Fig. 8. Indeed, the predictive model for this index
showed the highest correlation value (R2 = 0.998; adjusted
R2 = 0.983; p = 0.096). The models using GFA (R2 =
0.992; adjusted R2 = 0.976; p = 0.003), RTPP (R2 =
0.956; adjusted R2 = 0.802; p = 0.146), and PA (R2 =
0.861; adjusted R2 = 0.688; p = 0.073) also showed a good
correlation and prediction power. Conversely, no meaningful
prediction models could be derived for RTAP using these sets
of connections.

For all the different optimal models, the relative impor-
tance of each predictor was evaluated by the Fisher test and
the results are reported in the Supplementary Materials.

Discussion

This longitudinal study on motor stroke patients demon-
strates the suitability of 3D-SHORE indices for charac-

terizing the contralesional structural changes of the main
motor pathways. In particular, our findings suggest that the
complete microstructural characterization provided by these
indices over the contralateral white matter connections can
enable a more detailed knowledge of axonal remodeling
after stroke, confirming and extending recent studies based
on anisotropy measures [14,15] and on a different and less
extended set microstructural indices [17].

The potential of 3D-SHORE derived indices as new
markers of disease-induced changes has been further demon-
strated by the test–retest study on healthy volunteers which
proved the high stability of all these indices over time.
Finally, our results stress the indication that the different
3D-SHORE measures within 1 week from the insult, com-
bined with clinical status in the acute phase, can predict
the motor outcome at 6 months after stroke with strong
correlation.

While previous studies focused on the plastic changes con-
sidering individually the contralateral intrahemispheric and
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interhemispheric motor connections [6,10,14], here the con-
cept of network has been introduced and fully investigated.
Acute ischemic strokes can indeed disrupt the nodes and
edges of the circuits and lead to time- and recovery-dependent
changes in the specific structural network characteristics
[25]. Thus, studying different CORT and SUBCORT circuits
we could identify which are more involved in the recovery
process and which allow to more clearly discriminate acute
stroke patients from controls. Our findings demonstrate the
detection of microstructural changes in all the considered
networks. More in details, the changes in all the indices of
the CC and SUBCORT network loops, which differ sub-
stantially between patients and healthy subjects, put forth
the important role played by these two interacting networks
which have been largely neglected for a long time. Our results
about the CC network are in line with previous findings from
functional imaging and electrophysiological studies applying
transcranial magnetic stimulation (TMS) that have suggested
a critical importance of interhemispheric connections for
stroke recovery [26].

Regarding the different indices, GFA and PA appeared
to be the most sensitive to longitudinal changes in stroke
patients and the most specific in discriminating patients
from controls for all the loops. The remodeling of the con-
tralesional white matter in post-stroke functional improve-
ment was reported in many studies [6,9,11,27] and spec-
ified as possibly caused by axonal sprouting, axonal out-
growth, dendritic plasticity or new connections [28,29].
The new indices, in particular RTAP, RTOP and RTPP,
help us to disentangle the different sources of the contrale-
sional compensation. More in details, GFA permits to only
enhance differences in the diffusivity while RTAP, RTOP
and RTPP can specify the changes in the axonal struc-
tures.

In terms of longitudinal stability and repeatability, the
statistical measures applied to the test–retest data from
the control group confirmed strong and significant corre-
lations between time points for all the indices and sets of
connections, with higher and consistent values for the inter-
hemispheric connections and SUBCORT loop. The ICC
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Fig. 5 Longitudinal changes in percent mean absolute values in controls and patients for each index in transcallosal (CC), cortical (CORT) and
subcortical (SUBCORT) networks (*p < 0.05; **p < 0.01; ***p < 0.001)

values for these two circuits demonstrated excellent agree-
ment for all the indices, while those for the CORT network
resulted to be slightly inferior for R and RTOP, although
still excellent for the remaining four indices. Finally, the
Bland–Altman plots further elucidated a strong repeatabil-
ity of the indices in test–retest trials showing narrow limits
of agreement and small mean differences between the two
repetitions. Overall, the CC and SUBCORT connections
appeared to be the most stable and reproducible networks
for all the indices, suggesting their importance as circuits to
take into consideration for assessing patients’ changes over
time.

Regarding the prediction power of these indices, the pre-
dictive models introduced in this study further demonstrated
how 3D-SHORE measures calculated over specific circuits,
in combination with clinical and functional status, can pro-
vide a powerful and easy-to-use tool to evaluate acute stroke
patients and predict their motor recovery. In particular, two
types of models have been presented. First, a predictive

model for each of the three main networks have been derived,
considering all the indices’ values at tp1 together. Again,
the interhemispheric (CC) circuit and the SUBCORT loop
highlighted the beyond suspicious importance of taking into
account these brain circuits. For these models, the inclu-
sion of RTOP as predictor in all the regressions, instead
of the conventional GFA, evidenced the role played by the
3D-SHORE indices in the creation of an effective predic-
tion model. Second, we defined a predictive model for each
index, considering all together the circuits as predictors.
However, different from our previous work [17] in which
we focused on a subset of these 3D-SHORE indices, along
with several clinical scales including NIHSS at tp2, here we
considered the mean absolute changes rather than the indi-
vidual values at tp1 and only included the clinical variables
at tp1 demonstrating that early changes can provide a good
prediction of the clinical outcome. While GFA results fur-
ther confirmed previous findings in the literature about its
strong prediction power [14,15], RTOP and RTPP results
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Fig. 6 Longitudinal changes in percent mean absolute values in controls and patients for each index in the five sub-networks (*p < 0.05,
**p < 0.01, ***p < 0.001)
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Fig. 7 Representation of the measured and predicted NIHSS at tp3 using the models described above

are novel and permit an improved prediction, especially in
the case of RTOP, in comparison with the conventional mod-
els including only clinical variables and/or GFA measures.
Future studies will be performed to broaden both the inclu-

sion criteria and the number of patients, in order to fully
validate these promising findings for a wider clinical use and
for a better planning of the rehabilitation processes in stroke
patients.
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Fig. 8 Representation of the measured and predicted NIHSS at tp3 for each index

Conclusions

The 3D-SHORE indices convey information regarding the
cerebral microstructure which are different from one to
each other. This makes possible a more thorough char-
acterization of the type of microscopic differences that
arise between healthy and diseased subjects and opens the
way for an accurate automatic discrimination. The repro-
ducibility of the indices as evidenced by the repeatability
analyses, the accuracy in the estimation of microstructural
features and the capability to predict the clinical outcome
provide elements in favor of the suitability of the 3D-
SHORE indices as numerical biomarkers for cerebral stroke
recovery. This study emphasizes the importance of hav-
ing more information than standard clinical variables to
predict the clinical outcome at 6 months after the onset
of a stroke as early as the first week of affection of the
injury. Moreover, in addition to confirming the importance
of the remodeling of interhemispheric connections in the
recovery of the motor deficit, it reveals the unsuspected
importance of the role of subcortical regions. The results
also emphasize the importance of using networks’ informa-
tion rather than the single connections considered one by
one, possibly highlighting the highly cooperative behavior
of the brain. Overall, the 3D-SHORE indices could be a
support for clinical activity and in particular for the prog-
nosis phase as suggested by the timely prediction of the
clinical outcome at 6 months after only 1 week from the
injury.
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paoli C, Basser P (2013) Mean apparent propagator (MAP) MRI: a
novel diffusion imaging method for mapping tissue microstructure.
NeuroImage 78:16–32

19. Zucchelli M, Brusini L, Mendez CA, Daducci A, Granziera C,
Menegaz G (2016) What lies beneath? Diffusion EAP-based study
of brain tissue microstructure. Med Image Anal 32:145–156

20. Fleiss JL (1981) Methods for rates and proportions, 2nd edn. Wiley,
New York

21. Bar-Shir A, Avram L, Özarslan E, Basser PJ, Cohen Y (2008) The
effect of the diffusion time and pulse gradient duration ratio on the
diffraction pattern and the structural information estimated from q-
space diffusion MR: experiments and simulations. J Magn Reson
194:230–236

22. Avram L, Özarslan E, Assaf Y, Bar-Shir A, Cohen Y, Basser PJ
(2008) Three-dimensional water diffusion in impermeable cylin-
drical tubes: theory versus experiments. NMR Biomed 21:888–898

23. Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J,
Wald LL, McNab JA (2015) The impact of gradient strength on
in vivo diffusion MRI estimates of axon diameter. Neuroimage
106:464–472

24. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV
AIDS 5(6):463–466

25. Koch P, Schulz R, Hummel FC (2016) Structural connectivity
analyses in motor recovery research after stroke. Ann Clin Transl
Neurol 3(3):233–244

26. Schulz R, Gerloff C, Hummel FC (2013) Non-invasive brain stim-
ulation in neurological diseases. Neuropharmacology 64:579–587

27. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C
(2006) The role of multiple contralesional motor areas for complex
hand movements after internal capsular lesion. J Neurosci 26:6096–
6102

28. Granziera C, D’Arceuil H, Zai L, Magistretti PJ, Sorensen AG, de
Crespigny AJ (2007) Long-term monitoring of poststroke plasticity
after transient cerebral ischemia in mice using in vivo and ex vivo
diffusion tensor MRI. Open Neuroimag J 1:10–17

29. Ueno Y, Chopp M, Zhang L, Buller B, Liu Z, Lehman N, Liu X,
Zhang Y, Roberts C, Zhang Z (2012) Axonal outgrowth and den-
dritic plasticity in the cortical peri-infarct area after experimental
stroke. Stroke 43(8):2221–2228

123



ORIGINAL RESEARCH
published: 21 February 2018

doi: 10.3389/fnins.2018.00092

Frontiers in Neuroscience | www.frontiersin.org 1 February 2018 | Volume 12 | Article 92

Edited by:

Julien Valette,

Commissariat à l’Energie Atomique et

aux Energies Alternatives (CEA),

France

Reviewed by:

Matthew D. Budde,

Medical College of Wisconsin,

United States

Alexandru Vlad Avram,

National Institutes of Health (NIH),

United States

*Correspondence:

Ilaria Boscolo Galazzo

ilaria.boscologalazzo@univr.it

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 30 November 2017

Accepted: 05 February 2018

Published: 21 February 2018

Citation:

Boscolo Galazzo I, Brusini L,

Obertino S, Zucchelli M, Granziera C

and Menegaz G (2018) On the Viability

of Diffusion MRI-Based

Microstructural Biomarkers in

Ischemic Stroke.

Front. Neurosci. 12:92.

doi: 10.3389/fnins.2018.00092

On the Viability of Diffusion
MRI-Based Microstructural
Biomarkers in Ischemic Stroke
Ilaria Boscolo Galazzo 1*, Lorenza Brusini 1, Silvia Obertino 1, Mauro Zucchelli 1,

Cristina Granziera 2 and Gloria Menegaz 1

1Department of Computer Science, University of Verona, Verona, Italy, 2 Translational Imaging in Neurology Group,

Department of Neurology, Basel University Hospital, Basel, Switzerland

Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE

microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter

(WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative

analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA)

and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter

(GM). Although signal modeling in GM is still largely unexplored, we investigated their

sensibility to stroke-induced microstructural modifications occurring in the contralateral

hemisphere. A more complete picture could provide hints for investigating the interplay

of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy

controls were enrolled in the study and underwent diffusion spectrum imaging (DSI).

Acquisitions at three and two time points (tp) were performed on patients and controls,

respectively. For all subjects and acquisitions, FA and MD were computed along

with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA), Propagator

Anisotropy (PA), Return To the Axis Probability (RTAP), Return To the Plane Probability

(RTPP), and Mean Square Displacement (MSD)]. Tract-based analysis involving the

cortical, subcortical and transcallosal motor networks and region-based analysis in GM

were successively performed, focusing on the contralateral hemisphere to the stroke.

Reproducibility of all the indices on both WM and GM was quantitatively proved on

controls. For tract-based, longitudinal group analyses revealed the highest significant

differences across the subcortical and transcallosal networks for all the indices. The

optimal regression model for predicting the clinical motor outcome at tp3 included

GFA, PA, RTPP, and MSD in the subcortical network in combination with the main

clinical information at baseline. Region-based analysis in the contralateral GM highlighted

the ability of anisotropy indices in discriminating between groups mainly at tp1, while

diffusivity indices appeared to be altered at tp2. 3D-SHORE indices proved to be suitable

in probing plasticity in both WM and GM, further confirming their viability as a novel family

of biomarkers in ischemic stroke in WM and revealing their potential exploitability in GM.

Their combination with tensor-derived indices can provide more detailed insights of the

different tissue modulations related to stroke pathology.

Keywords: diffusion propagator, tensor model, 3D-SHORE model, reproducibility, tract-based, gray matter,

ischemic stroke
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INTRODUCTION

In the last 30 years, diffusion magnetic resonance imaging
(dMRI) has been proven to be a valuable tool for characterizing
physiological and pathological conditions in-vivo (Le Bihan
et al., 1986; Beaulieu, 2002). An increasing number of modeling
methods have been proposed for inferring tissue microstructural
properties from the acquired diffusion signal (for a detailed
overview see Novikov et al., 2016), many of which rely only on
the reconstruction of the ensemble average propagator (EAP),
i.e., the probability distribution function of the water molecules
displacements. The EAP, under some optimality assumptions,
contains the full information about the diffusion process and
therefore can inform about the underlying tissue architecture
(Zucchelli et al., 2016b), leading to numerical indices that can
indirectly quantify the different microstructural features.

Diffusion Tensor Imaging (DTI) (Basser et al., 1994a) was
the first EAP model introduced to describe the anisotropic
nature of the diffusion process in biological tissues and is
still the preferred method in clinical settings thanks to its
ability to estimate the principal diffusion direction from very
few dMRI measurements. The scalar indices obtained from
DTI, mainly the mean diffusivity (MD) and the fractional
anisotropy (FA) (Pierpaoli and Basser, 1996), have become
precious tools for characterizing pathological conditions such
as tumors, stroke and neurodegenerative disorders (Sundgren
et al., 2004). Nonetheless, DTI has an inherent strong modeling
constraint related to the description of the EAP as a single
multivariate Gaussian function. This assumption is rarely
adequate in real conditions where complex white matter (WM)
topologies featuring crossing, fanning and kissing fibers are most
often encountered, severely limiting its applicability. Among
the widespread EAP models proposed for circumventing this
limitation, one of the most accurate is the Simple Harmonic
Oscillator Based Reconstruction and Estimation (SHORE), firstly
introduced in Özarslan et al. (2008). 3D-SHORE and its
extensions, asMeanApparent Propagator (MAP)-MRI (Özarslan
et al., 2013), demonstrated good performance in detecting
multiple diffusion directions and are among the most promising
EAP-based models for characterizing the tissue microstructure,
as recently highlighted at the SPARC-dMRI contest (Ning et al.,
2015). Under some assumptions, reliable measures of tissue
anisotropy can be derived from these EAP models, such as the
Generalized Fractional Anisotropy (GFA) and the Propagator
Anisotropy (PA), along withmeasures of the EAP variance (Mean
Square Displacement, MSD). In addition, they provide indices
that quantify various features of the three-dimensional diffusion
process, namely the Return to the Origin Probability (RTOP),
the Return To the Axis Probability (RTAP) and the Return
To the Plane Probability (RTPP). When the diffusion time is
long enough and under narrow pulse assumptions (Özarslan
et al., 2013), these indices reflect the degree of restriction
of the water molecules in the voxel, which is linked to the
underlying pore shape and thus represent relevant descriptors of
the microstructural properties (Zucchelli et al., 2016a).

Since their first introduction, 3D-SHORE indices have been
increasingly explored as novel potential biomarkers of brain

microstructure. This has been shown both on synthetic data and
in ex-vivo experiments on a marmoset brain (Özarslan et al.,
2013) as well as in in-vivo studies on healthy subjects (Avram
et al., 2014; Fick et al., 2015; Mendez et al., 2016; Zucchelli et al.,
2016a). Very few studies have tried to pursue their potentialities
as clinical biomarkers in pathologies, with promising results to
date only on Alzheimer’s animal models (Fick et al., 2016) and
on ischemic stroke (Brusini et al., 2015; Obertino et al., 2016).
In the latter case, albeit DTI scalar indices have been used to
assess stroke features in several longitudinal studies (Maniega
et al., 2004; Yu et al., 2009), the characterisation of the network
pathophysiology with advanced EAP-based indices would add
insights into the reorganization processes that can be combined
with clinical information to draw a more precise picture of the
disease. A recent study (Brusini et al., 2016) investigated these
aspects on a group of ischemic stroke patients and assessed the
performance of selected 3D-SHORE indices along WM tracts of
different motor networks (cortical, subcortical, and transcallosal
circuits). Results highlighted how 3D-SHORE-based indices
(mainly GFA, PA, RTAP, and RTPP) could providemeasurements
featuring high precision and allow discriminating patients from
controls, supporting their suitability for mapping longitudinal
changes after stroke.

Although the available findings for these numerical indices
are encouraging, a quantitative comparison with the classical
tensor-derivedmetrics is currently lacking but essential to further
probing their potentialities as biologically specific markers.
Indeed, MD and FA remain the standard measures in clinical
settings, especially for acute stroke imaging. Therefore, 3D-
SHORE-based indices have to be carefully related to tensor-
derived indices in terms of precision, consistency, discriminative
and predictive power in patients, all essential requirements to be
eligible as numerical biomarkers. Avram et al. (2016) reported a
first attempt to assess the feasibility of novel EAP-indices (from
MAP-MRI modeling rather than 3D-SHORE) in comparison
to classical DTI indices, demonstrating good consistency across
subjects and reproducibility in test–retest experiments on three
controls. However, despite the promising results, the authors
dealt with a very limited number of healthy subjects and relied
only on qualitative visual comparisons, acknowledging the need
for further studies on patient populations that, to the best of our
knowledge, are still missing in recent literature.

Whereas a great research effort has been devoted to dMRI
signal modeling in WM, its exploitability for characterizing gray
matter (GM) structures is still largely unexplored. In fact, there
is a growing need for a more comprehensive assessment of
GM tissue changes using dMRI. The intrinsic complexity of
GM microstructure which, as opposed to WM, lacks coherent
tissue orientation complicates the modeling and interpretation
of the diffusion process, and casts shadows on the suitability
of the currently available models. Some previous studies with
classical DTI indices have highlighted MD as a promising
marker of GM diffusivity changes in several pathologies such
as Alzheimer’s disease (Weston et al., 2015), multiple sclerosis
(Ceccarelli et al., 2007), and Parkinson (Kim et al., 2013).
However, DTI is scarcely employed in the assessment of GM
regions, especially in the cortex, and its ability of capturing
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microstructural features and feature modulations in GM is still
under debate. Conversely, thanks to the ability of capturing the
EAP in complex tissue microstructures, the 3D-SHORE model
might allow characterizing the signatures of hindered diffusion in
GM regions as well as providing information about GM changes
occurring over time.

The goal of this study was twofold. First, to complete the
assessment of the potential of the 3D-SHORE-derived indices
in capturing the microstructural feature modulations induced
by ischemic stroke in WM by providing a comparative analysis
of their performance with respect to the classical DTI-based
FA and MD indices. Second, to start bridging WM and GM
modeling by investigating the ability of the considered models
(DTI and 3D-SHORE) for the identification of microstructural
feature variations in GM, possibly hinting at plasticity processes.

MATERIALS AND METHODS

Dataset
Ten ischemic stroke patients (6 males, mean age: 60.3 ±

12.3 years) and ten age- and gender-matched healthy subjects
were enrolled in the study and underwent longitudinal MRI
acquisitions on a 3T Siemens scanner (Trio, Siemens, Erlangen,
Germany), as firstly reported in Granziera et al. (2012b). Of note,
an optimized protocol and a dedicated 32-channel head coil with
excellent signal-to-noise (SNR) properties (based on Wiggins
et al., 2006) were employed, aiming at maximizing the SNR in
the acquired data (as in Granziera et al., 2009). Acquisitions were
performed at three time points in patients (within 1 week (tp1),
1 month (± 1 week, tp2), and 6 months (± 15 days, tp3) after
the injury), and at two time points in controls (1 month apart,
tp1c, and tp2c). The same structural imaging protocol was used in
all cases. In particular, Diffusion Spectrum Imaging (DSI), a high
angular resolution diffusion technique (Wedeen et al., 2005), was
performed using a single-shot spin-echo echo-planar imaging
(EPI) product sequence and the following parameters: TR/TE
= 6,600/138ms, FOV = 212 × 212 mm2, 34 slices, 2.2 × 2.2
× 3mm3 resolution, GRAPPA = 2, scan time = 25.8min. The
sampling scheme consisted of a keyhole Cartesian acquisition
with 258 diffusion directions covering a half q-space 3D grid
with radial grid size of 5. Thirty-four different b-values (from
300 up to 8,000 s/mm2) were included in the acquisition and one
image was acquired at b = 0 s/mm2 (b0 volume). Because of the
inherent antipodal symmetry, the signal was duplicated on the
other hemisphere yielding to 515 points.

In order to provide a measure of the diffusion data quality,
SNR values were calculated for all the b0 volumes as the ratio
of the mean of the signal divided by the standard deviation
of the underlying Gaussian noise (Descoteaux et al., 2011). A
uniform ROI in the background was chosen for deriving the
noise standard deviation while the mean signal was extracted
from the corpus callosum, selected as representative ROI for
the SNR calculation. The estimated values are reported in
Table 1. High-resolution 3DT1-weighted images were also added
to the protocol (TR/TE = 2,300/3ms, FOV = 256 × 256
mm2, 160 slices, 1 × 1 × 1.2 mm3 resolution, scan time =

6.13min). Besides MRI acquisitions, patients underwent clinical

TABLE 1 | Signal-to-Noise (SNR) ratio for the diffusion datasets.

SNR-corpus callosum

Controls tp1 28.47 ± 5.33

tp2 28.63 ± 4.38

Patients tp1 28.21 ± 4.60

tp2 29.65 ± 6.24

tp3 27.25 ± 4.55

SNR values were calculated on the b0 volume of each subject. In particular, a uniform

ROI in the background was chosen for estimating the noise standard deviation while the

mean signal was extracted from the corpus callosum, selected as representative ROI for

the SNR calculation. Mean ± standard deviation values across subjects are reported,

considering each time point and group separately.

neurological assessment following the National Institutes of
Health Stroke Scale (NIHSS) at each tp. Only the motor part
of the NIHSS score was retained for further analysis. Stroke
volumes were derived from the individual high-resolution T1-
weighted images using the statistical parametric mapping (SPM)
lesion segmentation toolbox (www.fil.ion.ucl.ac.uk/spm/). All the
subjects signed the written informed consent to the imaging in
accordance with the Declaration of Helsinki and the Lausanne
University Hospital approved the protocol. Patient demographics
and main clinical information are reported in Supplementary
Table 1.

Signal Modeling and Microstructural
Descriptors
The classical DTI (Basser et al., 1994a,b) and the 3D-SHORE
(Özarslan et al., 2008, 2013) models were used to reconstruct
the EAP from which the microstructural descriptors were then
derived.

The EAP can be recovered from the diffusion weighted signal
attenuation E

(

q
)

under the narrow pulse assumption (Stejskal
and Tanner, 1965) via the Fourier relationship:

P (r) =

∫

q∈R3
E
(

q
)

ei2πqrdq (1)

where P (r) is the EAP, indicating the likelihood for a particle to
undergo a net displacement r in the unit time and q = qu is
the sampling position, with u being unit vector of the reciprocal
space, or q-space.

DTI assumes that the diffusion propagator can be described
by a single 3D Gaussian distribution (Basser et al., 1994a,b) from
which a 3 × 3 symmetric positive-definite matrix is derived (D,
diffusion tensor) and used to compute the classical tensor-based
indices (MD and FA) as follows:

MD =
(λ1 + λ2 + λ3)

3
(2)

FA =

√

1

2

(λ1 − λ2)
2 + (λ2 − λ3)

2 + (λ1 − λ3)
2

λ21 + λ22 + λ23
(3)
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where λ1, λ2, λ3 are the eigenvalues of D. Only b < 1,500 mm2/s
were used for the DTI analysis, corresponding to 32 gradient
directions.

The novel microstructural indices explored in this work were
calculated by fitting the SHORE model (Özarslan et al., 2008,
2013) based on the solutions of the 3D quantum harmonic
oscillator in the formulation using the orthonormalized basis:

E
(

q
)

=

Nmax
∑

l=0,even

(Nmax+l)
2
∑

n=l

l
∑

m=−l

cnlmΦnlm

(

q
)

(4)

In this equation, Nmax is the maximal order of the functions,
8nlm

(

q
)

are the functions forming the 3D-SHORE orthonormal
basis and are given by:

8nlm

(

q
)

=

[

2
(

n− l
)

!

ζ
3
2 Ŵ
(

n+ 3
2

)

]
1
2 (

q2

ζ

)

l
2

exp

(

−q2

2ζ

)

L
l+ 1

2
n−l

(

q2

ζ

)

Ym
l (u) (5)

where Ŵ is the Gamma function and ζ is a scaling parameter
determined by the diffusion time and themean diffusivity (Merlet
and Deriche, 2013; Zucchelli et al., 2016a). For the 3D-SHORE
model, the EAP is obtained by plugging Equation (4) into
Equation (1) (Özarslan et al., 2013; Zucchelli et al., 2016a). Due
to the linearity of the Fourier transform, the EAP basis is thus
expressed in terms of the same set of coefficients cnlm as the
diffusion signal.

RTAP and RTPP (Özarslan et al., 2013) represent the integral
of the EAP along the main diffusion direction and over the
plane passing through the origin and perpendicular to the main
diffusion direction, respectively:

RTAP =

∫

R
P
(

r‖
)

dr‖ (6)

RTPP =

∫

R2
P (r⊥) d2r⊥ (7)

where r‖ is the main diffusion direction, and r⊥ indicates
the plane orthogonal to the main diffusion direction and
passing through the origin. It has been shown (Özarslan et al.,
2013; Zucchelli et al., 2016b) that, under the assumptions of
narrow pulses and long diffusion time, RTAP and RTPP are
proportional to the inverse of the mean apparent cross-sectional
area and length of the compartment where diffusion takes place,
respectively.

The MSD represents the mean square displacement of the
water molecules in the unit time and is computed as follows:

MSD =

∫

R3
P (r) r2d3r (8)

MSD has been proven to be closely related to the classical MD
index, sharing similar patterns (Wu and Alexander, 2007).

From the EAP it is possible to derive a propagator anisotropy
index, depending on the angular distance between the isotropic

part of the EAP, that is encoded in the coefficients cn00, and the
full EAP as in Özarslan et al. (2013):

PA =

√

√

√

√1−

∑Nmax
n=0 c2n00

∑Nmax
n,l,m c2

nlm

(9)

Finally, the Orientation Distribution Function (ODF) can be
analytically obtained from the 3D-SHORE by taking the radial
integral of the EAP along a given direction (Merlet and Deriche,
2013; Özarslan et al., 2013). From the ODF it is possible to derive
another measure of anisotropy, the GFA index, which can be
viewed as the normalized variance of the ODF:

GFA =

√

n
∑n

i=1 (ODF (ui) − 〈ODF〉)2

(n− 1)
∑n

i=1 ODF (ui)
2 (10)

where ODF (ui) is the value of the ODF in the direction ui, and
〈ODF〉 is the mean ODF value across all directions.

In this work, we used both classical tensor-based indices (MD,
FA) along with the aforementioned 3D-SHORE-based indices
(RTAP, RTPP, MSD, PA, and GFA) to detect microstructural
modulations by both tract-based analyses in WM and by ROI-
based analyses in GM, respectively. While the first allowed
assessing the performance of the 3D-SHORE-based indices with
respect to FA and MD in the motor cortical and subcortical
networks, the second targets the GM in order to provide a more
complete picture of changes occurring after stroke and possibly
pointing at plasticity processes.

Tract-Based Analysis of WM
The tractogram was obtained via a streamline-based algorithm
with diffusion tensor ODFs computed from the DSI images
(Diffusion Toolkit, CMTK, www.connectomics.org). Individual
high-resolution T1-weighted images were parcellated using
Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and the
Desikan-Killiany anatomical atlas at 83-region scale (sixty-four
cortical and nineteen subcortical regions) plus the corpus
callosum was employed. The FLIRT tool from the FMRIB
FSL software (www.fmrib.ox.ac.uk/fsl) was used for the linear
(affine) registration of the T1-weighted scan to diffusion data.
In particular, the diffusion baseline images (b0 volumes) were
considered as reference images for estimating the registration
transformation subsequently applied to back-project the
subject-specific anatomical parcellation into the DSI space.

Among all the parcels, a subset of the motor regions of
interest (ROIs) was considered for the analyses. For the cortical
area we selected the primary motor area (M1), supplementary
motor area (SMA), somatosensory cortex (SC) and premotor
area (PM), which was considered as a unique region given by
the joint combination of the dorsal and ventral parts from the
Freesurfer parcellation, while thalamus (Thl), caudatus (Cau),
putamen (Put), and globus pallidus (GPi) were selected for the
subcortical part. Then, three loops involved in themotor network
and linking these cortical-subcortical ROIs were considered in
the analysis as in Brusini et al. (2016). In details, the transcallosal
circuit (CC) gathers the set of fibers linking the corpus callosum
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FIGURE 1 | Schematic representation of transcallosal (A), cortical (B), and subcortical (C) networks. Cortical areas (white): M1, primary motor area; SMA,

supplementary motor area; SC, somatosensory cortex; PM, premotor area. Subcortical nuclei (gray): Thl, thalamus; Cau, caudatus; Put, putamen; GPi, globus

pallidus. Bundle of neural fibers (light gray): CC, corpus callosum.

with each considered ROI (Figure 1A). The cortical loop (CORT)
consists of fibers linking the four cortical ROIs (Figure 1B), while
the subcortical loop (SUBCORT) includes the set of fibers linking
cortical (except SC) with subcortical ROIs (Figure 1C).

Tensor-based and 3D-SHORE-based indices were finally
calculated along each fiber bundle linking every pair of regions in
the proposed networks. To this end, the values of the considered
microstructural parameter were firstly mapped onto each fiber
connecting two specific ROIs, then averaged across the whole
fiber bundle. In this way, a representative microstructural value
was derived for each connection of the considered network.

Region-Based Analysis of GM
The individual high-resolution T1-weighted images were
segmented into WM, GM, and cerebrospinal fluid (CSF) tissues
using the SPM toolbox (Friston et al., 1995). A binary mask
was derived for GM using a conservative 95% threshold on the
individual probability maps.

Eighty regions from the Freesurfer parcellation were
considered (brainstem and corpus callosum were excluded) and
masked with the binary GMmask. Four small subcortical regions
per hemisphere resulted to be empty after GM masking and
were excluded from further analyses, for a total of seventy-two
regions. For all indices, the mean GM value across each masked
ROI was then calculated. In particular, average measures were
calculated across corresponding regions in both hemispheres for
controls, while averaging was constrained to the contralateral
hemisphere for patients, leading in both cases to thirty-six
representative GM values for each index and subject. The list of
the considered regions and relative abbreviations is provided in
Supplementary Table 2.

Test–Retest Reproducibility Analysis
Before comparing the performance of the indices in the two
groups and assessing their discriminative/predictive power, a
preliminary step for analyzing their variability and longitudinal

stability was performed following the test-retest paradigm on
controls (tp1c and tp2c). This allowed to quantitatively assess
their reproducibility in physiological conditions and thus to
estimate the precision of the measurements. These elements
were quantified for all the microstructural indices, relying on all
the representative measures coming from both tract-based and
region-based analysis.

The following metrics were computed for each measure to
assess the reproducibility: the intraclass correlation coefficients
(ICC) and the intra- and inter-subject coefficients of variation
(CVintra and CVinter) (Bland and Altman, 1996; Chen et al., 2011;
Pinto et al., 2016). ICC is one of the most important methods
to assess the reliability of a measure, reflecting both intra- and
inter-subject variability. It allows evaluating how measurements
derived from the same subject are reproducible across sessions,
taking into account the intra/inter-subject variability as follows:

ICC =
σ 2
bs

σ 2
bs
+ σ 2

ws

(11)

where σbs is the between-subject standard deviation and σws is the
within-subject standard deviation for repeated measurements.
ICC levels and reliability can be evaluated using the following
recommendations: poor (<0.4), fair (0.41–0.59), good (0.60–
0.74) and excellent (>0.75) (Fleiss, 1981; Cicchetti, 2010).

The CVintra (within-subject CV) measures the variability
between sessions of the same subject, reflecting both
physiological variations that can occur in a natural way
and possible measurement errors (Pinto et al., 2016). CVintra was
computed as:

CVintra =
σws

µ
· 100 [%] (12)

where µ is the mean value of the parameter across subjects and
sessions (overall mean). Since only twomeasurements per subject
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were available, σws can be calculated as:

σws =

√

√

√

√

(

∑k
i=1

(

aitp1 − aitp2
)2

2× k

)

(13)

where k is the number of subjects, and aitp1and aitp2 are the
measurements for subject i on test (tp1) and retest (tp2) sessions,
respectively (Bland and Altman, 1996).

Finally, the CVinter (between-subject CV) measures the
stability across the group, reflecting the inter-individual
variability. For each index, the CVinter was initially computed for
each session as follows:

CVinterj =
σtpj

µtpj
· 100 [%] (14)

where tpj represents the session j (j = 1, 2), µtpj and σtpj are
the mean and standard deviation values, respectively, calculated
across all the subjects for the considered session tpj. The
representative CVinter measure was then computed as the mean
of the CVinterj from the two sessions.

For biological measurements from MRI, CVintra ≤ 10% and
CVinter < 15% are considered as acceptable (Heiervang et al.,
2006; Marenco et al., 2006).

For tract-based measures, ICC and CVintra were a single
measure for each loop, as all the connections belonging to the
corresponding network were grouped for providing a global
representative measure of network reproducibility, in line with
(Brusini et al., 2016). Conversely, the representative CVinter

metric was first computed for each tract and then summarized for
each loop by the mean ± standard deviation (SD) values across
connections. This allowed to evaluate the stability across subjects
and also the inter-subject variability across the different structural
links of each network.

For region-based analysis, CVintra and ICC were computed
for each ROI individually (mean ± SD values across GM ROIs),
while the representative CVinter metric was initially calculated for
each region and then reported as mean ± SD values across GM
ROIs. This again allowed to appreciate the variability across the
GM structures.

Statistical Analysis on Tract-Based
Outcomes–Patients and Controls
After the reproducibility analysis, the outcome measures
from tract-based analysis were assessed for depicting possible
differences between patients and controls and determining the
discriminative power of the different indices. In particular, for
each index and network, the percentage absolute changes inmean
values between tp (1tp) were calculated as in Brusini et al. (2016).

Since the Kolmogorov–Smirnov normality test confirmed
the normal distribution of the percentage values, statistical
comparisons with the unpaired t-test were performed to detect
significant differences between delta changes in controls (1tp12c)
and 1tp12, 1tp23, 1tp13 calculated in the patient cohort. While
in our previous work (Brusini et al., 2016) the False Discovery
Rate (FDR) correction was applied to the statistical results, here
a more conservative Bonferroni adjustment (α = 0.05) was used

to correct for multiple comparisons across indices. This approach
was chosen in order to further strengthen the statistical findings
and highly reduce false positive results.

In addition, in order to assess the predictive power of both
tensor-derived and 3D-SHORE-derived indices, different linear
regression models were considered and their performance in
predicting the clinical motor outcome at 6 months (NIHSS at
tp3) was tested. First, a linear regression model including only
clinical information at baseline (age, stroke size, and NIHSS
motor scores at tp1) as predictors was calculated for reference.
Then, for each network, three types of regression models were
built and compared as opposed to what was done in our previous
work (Brusini et al., 2016), where a single model combining
clinical information with a set of 3D-SHORE-based descriptors
(GFA, PA, R, RTAP, RTOP, RTPP) was considered. In detail, the
following models were considered:

1) Tensor-based model (TBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (MD, FA) and both mean values were included as
predictors along with age, stroke size and NIHSS at tp1.

2) 3D-SHORE-based model (SBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (GFA, PA, RTAP, RTPP, MSD) and these mean
values were included as predictors along with age, stroke size
and NIHSS at tp1.

3) Global microstructural model (GBM): all the indices at tp1
(both tensor-derived and 3D-SHORE-derived) were included
as predictors, after having calculated their individual mean
value across all the connections of the considered loop. No
clinical information was included.

All the linear regression analyses were performed in SPSS,
version 18 (SPSS, Inc., Chicago, Illinois), setting p = 0.05 as
significance threshold of the overall F-test to determine whether
the regression model significantly predicts the clinical motor
outcome. A backward elimination strategy was utilized to obtain
a parsimonious regression model. In details, a full model that
includes all the predictor variables was initially created. Then,
each subsequent step removed the least significant variable in the
model until all the remaining variables had individual p-values
smaller than the selected criterion. The default criterion in SPSS
(based on the probability of F-to-remove, with pout = 0.10) was
chosen for deleting a predictor that had little or no influence on
the dependent variable. For each optimal model, the calculated
R2 value was adjusted for the number of predictors included,
in order to perform a valid comparison across the different
regression models and penalize the addition of extraneous
predictors. The following equation, as implemented in SPSS
(Ezekiel, 1930; Kirk, 1996), was applied:

R2adj = 1−
(1− R2)(N − 1)

N − k− 1
(15)

where N is the sample size and k is the number of predictors in
the corresponding model, i.e., those that were not deleted by the
backward selection process, excluding the constant.
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Statistical Analysis on GM Region-Based
Outcomes–Patients and Controls
In order to compare the GM region-based measures, a three-
way mixed (within-between) analysis of variance (ANOVA)
was firstly performed for each microstructural index to test
the significance of different factors, using the mean index
value as dependent variable. Three independent variables were
considered: Time with two levels and Region with thirty-six levels
(within-subject factors) plus Group with two levels as between-
subject factor. In addition, a further two-way repeated measures
ANOVA was performed on the patient group data in order to
assess for the presence of longitudinal changes in contralateral
GM structures across all temporal scales. Also in this case the
mean value for each index was used as dependent variable in
the corresponding ANOVA, while two independent variables
were included: Time with three levels and Region with thirty-six
levels.

For each ANOVA, Mauchley test was used to assess
the sphericity assumption and Greenhouse-Geisser epsilon
adjustments for non-sphericity were applied where appropriate.
Post-hoc tests adjusted for multiple comparisons with the
Bonferroni correction were used when significant interactions
were found. For all statistical tests, performed in SPSS v.18, p <

0.05 was considered to be significant.

RESULTS

Qualitative Assessment of dMRI-Based
Indices
Classical tensor-derived and 3D-SHORE-derived indices were
estimated in all subjects and tp. Figures 2, 3 show the different
maps calculated for each index across times in a representative
control and a representative ischemic stroke patient, respectively.
For ease of visualization and for the sake of clearer presentation,
the three anisotropy measures were normalized to the respective
maximum index value, while the square-root of the RTAP maps
was extracted to report the values in the same range of RTPP, as
in Avram et al. (2016).

All the anisotropy measures as well as RTAP and RTPP maps
revealed high values in WM, while lower values were reached
in GM and especially in voxels with strong CSF contribution.
The opposite pattern was visible in MD and MSD maps, where
WM appeared to be hypointense due to restricted diffusion
while higher values were reached in GM and CSF tissues.
These patterns were consistent across subjects and temporal
scales. Comparing GFA, PA, and FA, both control and patient
representative slices revealed a higher WM/GM contrast for the
normalized 3D-SHORE-derived anisotropy measures that also
appeared to be less noisy and more uniform throughout WM in
comparison to the classical FA. Moreover, FA appeared to have
lower values in regions with large fiber orientation dispersions
where the single tensor representation precludes the possibility to
cope with complex structures leading to drops. RTAP maps were
hyperintense in regions of coherently packed WM fibers, while
RTPP was similar in GM andWM tissues. Finally, MSD, andMD
visually demonstrated a correlated behavior, appearing brighter

in regions where water particles are free to diffuse like ventricles
and darker in regions of restriction like WM.

In the stroke patient reported in Figure 3, a large ischemic
lesion can be appreciated in the left hemisphere (cortico-
subcortical areas) and the modulation of tissue microstructure is
visible across the different tp. The lesion was hypointense in GFA,
PA, MSD, FA, and MD at tp1, while markedly brighter than the
other tissues in RTAP and RTPP. After 1 month from the injury
(tp2), the contrast was reversed for these two indices, such that
the lesion appeared hypointense as in the anisotropy measures,
where hyperintensities within the lesion became visible in MSD
andMD. Such a trend persisted at 6 months after the initial brain
damage (tp3).

For all the subsequent quantitative analyses, we investigated
the contralateral hemisphere only, where microstructural
changes after stroke might be subtle and not visually
detectable.

Test-Retest Reproducibility on Healthy
Controls
In terms of test-retest reproducibility, tract-based results
highlighted excellent consistency across sessions in the three
networks for tensor-derived as well as 3D-SHORE indices, with
ICC > 0.8 in almost all cases and values close to unity for the
SUBCORT loop (Supplementary Table 3). Indeed, the highest
ICC was obtained for PA in SUBCORT (ICC = 0.96), followed
by MSD in the same network (ICC = 0.95). Conversely, MSD
together with RTPP reached the lowest values in CORT, although
still amenable to be judged as having good reliability (ICC= 0.67
and ICC = 0.59, respectively). This high reliability was matched
with high intra-subject stability across sessions as measured by
CVintra values, well below 10% and, in most of the cases, also
below 5%. The lowest stability was found in the CC loop for
MD (CVintra = 7.7%), while MSD resulted to be the index with
the highest stability in all the loops, reaching a remarkable 1.1%
within-subject variability in the SUBCORT network.

GM region-based reproducibility results are reported in
Table 2 in terms of mean and SD values across ROIs. RTAP,
RTPP, MSD, and MD reached excellent consistency, with mean
ICC > 0.90 and very low SD across ROIs (<0.10). Conversely, all
the anisotropy measures showed only good reliability and more
variability across the different GM structures. This was further
confirmed by the CVintra measure, reporting mean values <10%
in all cases albeit higher for GFA, PA, and FA in comparison to the
other microstructural indices. Also in this case, MSD reached the
lowest variability values with a limited spread around the mean.

Figure 4 shows the inter-subject variability results (CVinter)
represented as mean ± SD across all the connections of a given
loop for tract-based analysis, and across ROIs for region-based
analysis on GM. As expected, the between-subject variability was
higher than the within-subject, although the mean CVinter values
were ≤ 15% in all cases. Regarding the network analysis, similar
patterns in the three loops were observed for each index, with
RTPP and MSD featuring the lowest variability across subjects
(RTPP: CVinter = 4.67± 2.53 % in CORT;MSD: CVinter = 2.36±
1.82 % in SUBCORT). Conversely, RTAP was the index showing
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FIGURE 2 | dMRI-based indices on a representative control. Axial slices of a representative control are reported for each index (columns) and each time point (rows).

Images are displayed in radiological convention.

FIGURE 3 | dMRI-based indices on a representative patient. Axial slices of a representative patient (ischemic stroke in left cortico-subcortical areas) are reported for

each index (columns) and each time point (rows). Images are displayed in radiological convention.

more variability in all loops, especially in CC. The same trend was
observed in the ROI-based analysis on GM, where the CVinter

values were similar to those resulting from tract-based analysis
with RTPP andMSD reaching the highest stability (RTPP: CVinter

= 4.87 ± 1.34 %; MSD: CVinter = 6.49 ± 1.72 %). It is worthy of
note that all the values were within the recommended 15% range
(Heiervang et al., 2006;Marenco et al., 2006), even though tensor-
derived indices featured relatively lower stability across subjects

in GM, with the highest values reached by FA (CVinter = 11.68±
3.09 %).

Quantitative Assessment on Tract-Based
Outcomes–Patients and Controls
For each index and network, the mean of the percentage absolute
changes between tp is reported in Figure 5 along with SD across
subjects. The p-values resulting from the statistical analysis are
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shown as stars with three levels of significance (∗p < 0.05, ∗∗p
< 0.01, ∗∗∗p < 0.001). In all cases, data from the control group
confirmed the limited percentage changes between time points,
with mean values <5%, in agreement with the reproducibility
results from the previous section.

Regarding the CC network, all the anisotropy measures (GFA,
PA, and FA) reached the highest significance when comparing
1tp12c and 1tp12 as well as 1tp12c and 1tp13 (p < 0.001).
Moreover, GFA and FA showed higher significance than the
other microstructural indices in the comparison between 1tp12c

and 1tp23 (p < 0.01). MSD and MD highlighted the same
patterns across time and the same statistical differences, with
no significant changes between 1tp12c and 1tp23. In the CORT
network, only few significant differences were detected between
controls and patients (1tp12) by GFA and RTAP, while for all
the other indices the longitudinal changes, although appreciable,
did not reach the statistical threshold. Conversely, several
significant differences were detected again in the SUBCORT
loop by all the indices at multiple time scales, except for
RTAP and RTPP which did not depict significant changes
between1tp12c and1tp23. All the anisotropymeasures confirmed
the presence of marked changes over time involving also

TABLE 2 | Reproducibility for gray matter (GM) outcomes.

ICC CVintra %

GFA 0.63 ± 0.22 7.36 ± 2.96

PA 0.61 ± 0.24 6.82 ± 2.42

RTAP 0.91 ± 0.07 3.40 ± 1.63

RTPP 0.92 ± 0.07 1.73 ± 0.78

MSD 0.93 ± 0.09 1.97 ± 0.75

FA 0.66 ± 0.17 9.25 ± 3.59

MD 0.94 ± 0.08 3.09 ± 1.71

Results are quantified in terms of intra-class correlation coefficient (ICC) and intra-subject

coefficient of variation (CVintra) for all the indices. In particular, mean ± standard deviation

values across all the considered GM regions are reported.

this network, with similar patterns to the findings shown
in CC.

Extending the preliminary analyses on predictive models
reported in Brusini et al. (2016), the tract-based results in patients
were further used to predict the clinical motor outcome at tp3
by relying on several regression models. The reference linear
regression model including only clinical variables at baseline
(age, stroke size and NIHSS motor score at tp1) and avoiding
microstructural indices could predict the NIHSS outcome at tp3
with low correlation (R2 = 0.546; adjusted R2 = 0.489; p < 0.05).
The TBM, enclosing MD-FA at tp1 plus the clinical variables,
allowed increasing the prediction capability of the reference
model in the CORT and SUBCORT networks (Figure 6, first
row). In detail, the TBM for SUBCORT presented the best
performance (R2 = 0.975; adjusted R2 = 0.955; p < 0.001)
holding MD, FA, stroke size and age as relevant predictors. In
the case of the CORT network, a higher correlation than the
reference model was found with the TBM retaining only stroke
size and MD as significant predictors (R2 = 0.700; adjusted R2

= 0.614; p < 0.05). Conversely, the TBM for CC did not include
any microstructural index, returning the reference model as the
optimal one.

The SBM, embedding the five 3D-SHORE indices at tp1
plus the clinical variables, reached the highest correlation in
the SUBCORT network (R2 = 1; adjusted R2 = 0.998; p <

0.001) (Figure 6, second row). The optimal predictive model held
clinical variables plus GFA, MSD, RTPP, and PA as significant
predictors. The SBM for CORT excluded all the microstructural
indices, leading to the referencemodel as the optimal one. Finally,
in the CC network the SBM presented a slightly lower correlation
than the reference (R2 = 0.454; adjusted R2 = 0.385; p < 0.05)
but highlighting RTPP as the only significant predictor.

The GBM, including only the dMRI-based indices, allowed to
substantially increase the capability to timely predict the motor
outcome compared to the clinical reference model (Figure 6,
third row). In detail, the SUBCORT network provided again
the highest correlation (R2 = 0.728; adjusted R2 = 0.694; p <

0.01) keeping only RTPP as significant predictor. The predictive

FIGURE 4 | Reproducibility in terms of inter-subject coefficient of variation (CVinter) for all the indices and for all the outcome measures. Results are expressed as

percentage and reported as mean ± standard deviation across connections (for tract-based) and regions (for region-based on gray matter), respectively. CC,

transcallosal network; CORT, cortical network; SUBCORT, subcortical network.
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FIGURE 5 | Group-based analyses on controls and patients over time. Longitudinal changes in percent absolute values in controls and patients are reported. The

significant differences between cohort distributions are indicated in figure (*p < 0.05, **p < 0.01, ***p< 0.001) for each index in transcallosal (CC), cortical (CORT), and

subcortical (SUBCORT) networks. Mean ± standard deviation values across subjects are reported.

model for the CC network also featured high correlation (R2 =
0.713; adjusted R2 = 0.631; p < 0.05) maintaining MD and RTPP
as predictors, while GFA, RTAP, and MD were retained in the
predictive model for CORT. This network led to the GBM with
the lowest correlation (R2 = 0.724; adjustedR2 = 0.586; p< 0.05),
but still higher than the reference model. Further details on the
predictive models and the retained predictors are reported in the
Supplementary Tables 4.

Quantitative Assessment on GM
Region-Based Outcomes–Patients and
Controls
Regarding the control vs. patient analyses on the outcomes
from the region-based quantification in GM tissues, the mixed
ANOVA revealed a significant three-way interaction between
Group, Time (TP) and Region (ROI) for all the anisotropy
measures (GFA, PA, and FA) and RTPP. Details about these
statistical results are reported in Table 3. For the four indices,
post-hoc Bonferroni tests revealed significant between-group
differences in several regions at both time scales, showing in
these cases higher values in patients than controls (Figure 7).
While the most widespread changes were detected in terms
of anisotropy at tp1, four common regions were identified as
significantly altered (Patients>Controls) also by RTPP. In detail,
the inferior temporal gyrus (ITG) and the lateral occipital cortex
(LOC) were in common at both tp, while the lateral orbitofrontal
cortex (lOFC) and the middle temporal gyrus (MTG) presented
high significance (p ≤ 0.01) at tp1 and tp2 in GFA, PA, and
RTPP and only at tp1 in FA (Figure 7). RTPP changes were
more visible at tp2, with several regions showing higher values
in patients compared to controls and non-significant anisotropic
differences. The remaining indices failed to reach a significant
three-way interaction even though control vs. patient differences
can be visually appreciated in Figure 7A. In particular, for RTAP
a similar trend to the anisotropy measures was detected in all
the regions, especially at tp1 over motor areas and subcortical

nuclei as PM, SMA, SC, M1 and Thal, Cau and Put (Patients >

Controls). For MSD, while few ROIs presented relatively higher
values in patients at tp1, there was an overall increase in all
regions at tp2 (Patients > Controls), except for the temporal pole
where lower values were found over time in this group. Finally,
MD patterns were in line with MSD results, although with less
marked changes between groups.

Moving a step backward in the mixed ANOVA, all the indices
except RTAP revealed a significant two-way interaction between
Group and ROI confirming that, considering the overall time
scales, there were differences in specific GM regions between the
two groups (Table 3; Supplementary Figure 1). The anisotropy
measures were highly consistent, with FA highlighting more
widespread increased values in GM for patients as before. Finally,
only GFA, PA, and FA revealed an overall significant main effect
of Group (between-subject factor), as reported in Table 3.

Considering the longitudinal analysis on the patient measures
only, again all the anisotropy indices along with RTPP and
MD revealed a significant interaction between TP and ROI. In
details, for GFA F(70, 630) = 1.61, p = 0.002; for PA F(70, 630)
= 1.52, p = 0.006; for RTPP F(70, 630) = 1.47, p = 0.01; for
FA F(70, 630) = 1.92, p < 0.0001; and for MD F(70, 630) =

1.76, p = 0.0003 (Supplementary Table 5). Post-hoc Bonferroni
tests (Figure 8) highlighted for the three anisotropy measures
consistently significant differences over the lingual gyrus (LgG)
for tp1 vs. tp2, and in the medial orbitofrontal cortex (mOFC)
for tp1 vs. tp3. Moreover, FA presented LgG differences for
tp1 vs. tp3, and in the precuneus (PCN) for both tp1 vs. tp2
and tp1 vs. tp3. In all these statistically significant changes,
higher values were detected just after the stroke event (tp1) in
comparison to tp2 and tp3. Conversely, an opposite trend was
found for RTPP detecting a single region [frontal pole (FP)]
with higher values at tp2 compared to tp1. For MD, despite
the significant interaction no regions survived the Bonferroni
corrections of the post-hoc paired tests (Figure 8). When using
a less conservative approach [Least Significant Different (LSD)
post-hoc tests], five regions, including PM, SC, and Thal, turned
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FIGURE 6 | Linear regression models. Representation of the measured and predicted NIHSS-motor score at tp3 using tensor-based (TBM), 3D-SHORE-based

(SBM), and global (GBM) predictive models. For each model, the adjusted R2 and corresponding p-values are reported.

out to be significantly increased at tp3 compared to tp2 and tp1
(Supplementary Figure 2). Applying LSD post-hoc tests also to the
other indices, the anisotropy measures revealed more widespread
regions of increased values in the early phase (tp1) in comparison
to the other two time points, consistently with the results from
the mixed ANOVA. GFA and PA, in addition, showed higher
values at tp3 compared to tp2 over two motor regions, e.g.,
Put and M1, respectively. Finally, RTPP confirmed a significant
increase over time (both tp2 and tp3) in comparison to tp1 in the
FP region.

Regarding the other two indices that did not show a significant
interaction (RTAP and MSD) and were thus precluded to
be evaluated with post-hoc tests, a different trend was visible
across time with a series of appreciable longitudinal differences
(Figure 8A). In particular, RTAP revealed a similar behavior to

the anisotropy measures, with higher values at tp1 that decreased
over time, especially at tp3. Conversely, MSD highlighted higher
values over time, as in the case of MD, with marked visual
increases at tp3 over several regions (as PM, SC, FP, Thal, Put,
Cau).

DISCUSSION

In this study, our results suggest that 3D-SHORE-based
microstructural descriptors obtained from DSI data are capable
to quantify the remodeling of WM tracts and GM regions
involved in motor recovery after ischemic stroke. 3D-SHORE-
based indices proved to perform similarly to the classical DTI
indices (FA and MD) and revealed common patterns across the
networks and ROI evaluated in the analyses.
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TABLE 3 | ANOVA results (three-way mixed ANOVA) for the control vs. patient comparison of gray matter outcomes.

Between-subject Within-subject

Group Group*ROI Group*TP*ROI

F-ratio (1, 18) p-value F-ratio (35, 630) p-value F-ratio (35, 630) p-value

GFA 6.205 0.023* 2.340 <0.001* 2.235 <0.001*

PA 6.256 0.022* 2.218 <0.001* 1.669 0.010*

RTAP 1.548 0.229 1.249 0.157 1.326 0.102

RTPP 2.064 0.168 2.152 <0.001* 1.843 0.003*

MSD 2.681 0.119 2.601 <0.001* 0.552 0.990

FA 7.346 0.014* 2.082 <0.001* 2.731 <0.001*

MD 0.186 0.671 1.825 0.003* 1.105 0.314

The three independent variables were Group (between-subject factor), Time Point (TP) and Region (ROI) (within-subject factors), while the dependent variable was the mean index value.

Group, along with Group*ROI and Group*TP*ROI interactions, are expressed in terms of F-ratio (degree of freedom, error) and p-values. *, significant values.

FIGURE 7 | Post-hoc test results for the three-way mixed ANOVA (controls vs. patients). (A) For each index and each time point (tp) block, the first column represents

the mean values for the controls while the second column the mean values for the patients. (B) Post-hoc results expressed in terms of p-values for the significant

interactions between Group, TP and Region (ROI). Two different colormaps are used to display the p-values for the ROIs with significant differences between control

and patient mean values (hot: Controls < Patients; cold: Controls > Patients). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

Considering their performance and different nature, their
combination in clinical studies would allow to provide a
more detailed and specific tissue characterization, allowing to
disentangle different conditions where tensor-based indices take
the same values. For instance, DTI cannot distinguish between
a reduction of FA caused by crossing fibers and one caused by
a decrease of neural density in a voxel. Conversely, the joint
exploitation of RTAP and RTPP can allow disentangling such

ambiguity, as RTAP and RTPP both diminish in the case of
neuronal density reduction, while RTAP decreases and RTPP
increases for crossing fibers, as previously reported (Zucchelli
et al., 2016a). In addition, the combination of tensor-based
and SHORE-based indices in the linear regression models
allowed to greatly increase their ability to predict the clinical
motor outcome in all the considered networks. To the best
of our knowledge, this is the first study focusing on the
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FIGURE 8 | Post-hoc test results for the two-way ANOVA for repeated measures on patients. (A) For each index, the first column represents the mean values at tp1,

the second column at tp2 and the third at tp3. (B) Post-hoc results expressed in terms of p-values for the significant interactions between Time Point (TP) and Region

(ROI). Each column in the matrix refers to a specific statistical comparison between time scales, i.e. tpi vs. tpj with i = 1, 2 and j = 2, 3 (first: tp1 vs. tp2; second: tp2

vs. tp3; third: tp1 vs. tp3). Two different colormaps are used to display the p-values for the ROIs with significantly different values between the considered time scales

(hot: positive difference, tpi > tpj; cold: negative difference, tpi < tpj). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

quantitative comparison between 3D-SHORE-based and tensor-
based descriptors in healthy subjects and in a patient population,
aiming at demonstrating their behavior in different brain
conditions/tissues and accomplishing an essential step toward
their applicability as viable tissue markers.

Qualitative Assessment of dMRI-Based
Indices
A growing body of literature is currently reporting the advantages
of using multiple b-values in terms of both detecting fiber
crossings (Sotiropoulos et al., 2013; Jeurissen et al., 2014) and
recovering the tissue microstructure (Assaf and Basser, 2005;
Zhang et al., 2012; Kaden et al., 2016). Because of these facts,
nowadays, sampling schemes presenting higher b-values (as DSI
and multi-shell) are becoming popular in research and started
to appear also in clinical application. In order to fully exploit
advanced dMRI datasets, reconstruction models that require
multiple b-values such as the 3D-SHORE are necessary and
therefore will become more common in this field. In this context,
it is therefore necessary to provide an extensive characterization
of these indices in describing tissues in physiological and
pathological condition, as we did for stroke patients. In line
with the findings firstly described by Özarslan et al. (2008,
2013), our results suggest that 3D-SHORE-based indices can
provide a wide set of information, reflecting meaningful tissue

properties as visually appreciable from the different maps. In
particular, the values estimated in our healthy population for
each index and their spatial distribution across the different
anatomical structures appear to be in agreement with the
available literature results (Özarslan et al., 2013; Avram et al.,
2016; Zucchelli et al., 2016a), with a high consistency across
subjects and time. These 3D-SHORE-based metrics are able to
provide accurate microstructural information especially in brain
regions characterized by complex architectures and geometries,
to which the classical indices have low sensitivity. GFA and
PA represent alternative measures of anisotropy to the classical
FA, based on different mathematical formulations. Indeed, while
GFA is a measure of the ODF variance, PA is derived from the
EAP as a measure of its deviation from the isotropic component,
and FA is computed from the tensor eigenvalues. In consequence,
they provide different descriptors of the diffusion anisotropy with
a high degree of correlation. However, GFA and PA are able to
more properly quantify the anisotropy, presenting more contrast
between the GM and regions with multiple fiber crossings in
which the FA usually results in the same value. The two zero-
displacement probability measures derived from SHORE reflect
diffusion restriction in different directions, respectively radially
(RTAP) and axially (RTPP) to the main diffusion direction
(Özarslan et al., 2013). Consistently, RTAP maps exhibited high
values in regions of coherently packed WM fibers, as the corpus
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callosum which is less contaminated by partial volume effects.
RTPP values were similar in both GM and WM tissues featuring
less WM/GM contrast. This could suggest similar apparent axial
diffusivity for WM and GM, even though the mapping of this
measurement to real tissue microstructural properties is still an
open issue. Finally, MSD and MD were consistently higher in
regions featuring free diffusion, like the CSF and in areas with
ischemic oedema (Alexander et al., 2007). These two indices are
directly related via the Einstein diffusion equation as reported
in the works of Wu and Alexander (2007) and Hosseinbor et al.
(2013) and, accordingly, are visually correlated.

Evaluating qualitatively the longitudinal maps derived from
the stroke patients, the microstructural indices exhibited a
different behavior in the voxels belonging to the damaged area
but with a consistent pattern. Indeed, while all the anisotropy
measures revealed low values within the lesion that persisted
over time, RTAP and RTPP shifted from initial hyperintensities
toward hypointensities after 1 month from the event (tp2),
highlighting an opposite trend for anisotropy and restriction.
This stresses the complementarity of the information brought by
those indices. Furthermore, considering their opposite trend in
comparison to MSD and MD (from hypo- to hyperintensities)
and the ischemic nature of the stroke, these findings support
the hypothesis of Avram et al. (2016) according to which the
zero-displacement measures are more specific biomarkers of
the presence of restricting barriers to diffusion. Interestingly,
RTAP and RTPP featured the highest values at tp1 highlighting
restricted diffusion in the lesion. Moreover, we found MSD to
be more contrasted than MD inside the ischemic lesion in all
cases. In particular, this index seems to identify and characterize
different portions of the lesion, while MD appears to be more
homogeneous in the same areas. Some patients (mainly those
with extensive lesions) also revealed increased MSD values in the
periphery. However, as this pattern was not confirmed in all cases,
a larger sample size and more focused analyses on the stroke
lesion would be necessary to draw robust conclusions on this
aspect, possibly pointing at an inflammatory reaction which has
been previously described (Wang et al., 2007; Kim et al., 2016).
Finally, the heterogeneous patterns of RTAP, RTPP, and MSD
visible within the lesion 1 week after stroke could be of help for
distinguishing the ischemic core from the penumbra area. This
issue deserves further investigation.

Reproducibility Analyses on Controls
The quantitative analysis of possible plasticity processes was
focused on the contralateral hemisphere to the stroke. The
contralesional GM and WM tissues have been widely considered
as normal appearing, although the plasticity and compensatory
processes that might take place in the non-injured areas are still
not well understood. First of all, several complementary aspects
were evaluated on healthy controls in order to quantify the
reliability of these microstructural indices through a test-retest
paradigm and their potentialities as novel biomarkers for stroke
recovery. In particular, both 3D-SHORE-based and DTI indices
exhibited high reproducibility, as quantified by ICC, and high
stability, as quantified by intra/inter-subject CV parameters, on
both tract and region-based outcomes.

Interestingly, for tract measures the 3D-SHORE index MSD,
rarely considered in previous studies, showed the lowest intra-
subject variability (CVintra) in all cases, and the highest reliability
(ICC) in CC and SUBCORT. Conversely, it revealed lower,
although still good, ICC values in CORT along with RTPP
that resulted to be the index with the lowest reliability in this
network. This is possibly related to the fact that these two indices
exhibited here a relatively higher within-subject SD for repeated
measurements than in the other cases, which resulted to be closer
to the between-subject SD values and therefore led to lower ICC
values for this loop. Despite this consideration concerning the
CORT loop only, the reliability and discriminative power of MSD
and RTPP were not compromised as further proven by the other
group-based analyses performed in this study. To note that beside
Brusini et al. (2016), where some of these indices were initially
evaluated along WM tracts, no other studies have quantified the
reproducibility of 3D-SHORE-based metrics across subjects and
sessions. Moreover, the previous reports aiming at quantifying
the reliability of classical tensor-basedmeasures generally focused
only on few major fiber tracts (e.g., corpus callosum, cingulum,
fornix and arcuate fasciculus) (Heiervang et al., 2006; Danielian
et al., 2010; Wang et al., 2012) rather than considering specific
brain networks with different sets of tracts. Despite this main
difference, our findings are in line with the results of these
studies, which demonstrated reliable measurements for FA and
MD featuring both inter-session CVintra ≤ 10% and ICC ≥ 0.70,
with some variability related to the considered tract.

Regarding region-based outcomes, the reproducibility
analysis in GM ROIs revealed a higher intra-subject variability
for the three anisotropy measures (GFA, PA, and FA) in
comparison to the other indices, with mean values still well
within the 10% range, matched with a good reliability from ICC.
This is possibly due to the lack of directed orientation in a tissue
as GM (Basser and Ozarslan, 2009) and is in agreement with
previous studies showing a two-three times higher variation
of FA in regions of GM compared to WM structures (Vollmar
et al., 2010; Bouix et al., 2013). Conversely, MSD and RTPP
appeared again as featuring the lowest intra-subject variability
and, along with MD, reached the highest ICC reliability values.
The performance of FA for GM ROIs appears to be in line
with previous reports evaluating DTI indices in this tissue
(Veenith et al., 2013; Grech-Sollars et al., 2015), showing higher
CVintra values for the whole GM than for MD (8–11% vs.
2–5%, respectively) and a wide range of variation across the
different GM structures (3.3–19.2%). Conversely, no studies
have previously quantified the measurement precision of 3D-
SHORE-based indices in GM regions, therefore our findings
add an important step to the current literature on the topic and
their reassurance in terms of reliability encourages their use for
evaluating GM tissues as well.

Considering as additional reliability measure the between-
subject variability, we found average CVinter values well below the
15% threshold for both tract- and region-based outcome. Among
the seven variables, RTPP and MSD generally had lower CVinter

than the other metrics with average values ≤ 6%. Tensor-based
measures revealed overall lower between-subject stability than
3D-SHORE-based indices, especially in the GM ROIs where the
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average values were around 10%. Previous studies have indicated
FA and MD as the measures with lower CVinter in different WM
fiber tracts, for example Wang et al. (2012) reported average
values in the range 2.4–7.6% for FA and 1.7–9.9% for MD
respectively, while Grech-Sollars et al. (2015) showedmean inter-
subject values <6% for the whole GM and WM regions (not
tracts). Our results confirmed the good inter-subject stability
for FA and MD but demonstrated that the 3D-SHORE-based
indices improve on the classical measures in terms of between-
subject variability in most of the cases. The latter observation
demonstrated the gain in using a multi-b-values model such as
3D-SHORE. In particular, GFA and MSD were already defined
the analogs of FA and MD for multi-b-values acquisitions by
Hosseinbor et al. (2013). The combined high stability over time,
relatively higher inter-subject variability (CVintra << CVinter)
shown by the 3D-SHORE based indices, which is a pattern
that can help detecting group differences between subjects, and
excellent inter-session ICC values for most of the cases reinforce
their potentialities as microstructural biomarkers for revealing
longitudinal changes.

Quantitative Analyses on Tract-Based
Outcomes of WM
Longitudinal group-based analyses were performed to
statistically compare the mean absolute changes between
time points calculated for each network. Regarding 3D-SHORE-
based indices, the Bonferroni corrected t-tests revealed several
highly significant differences between patients and controls in
the SUBCORT and CC networks, also for the newly introduced
MSD index. These findings further confirm and strengthen our
preliminary results on a subset of 3D-SHORE indices (Brusini
et al., 2016), where the t-tests were corrected for multiple
comparisons with FDR. Conversely, a more conservative
correction was employed here in order to quantify with
additional confidence the longitudinal changes detected by the
different indices and to reduce false positive results. Tensor-
derived indices also exhibited similar patterns to 3D-SHORE
descriptors, in terms of both evolutions of changes over time and
level of significance.

In all cases, the highest levels of significance were reached
in the patient group for the tp1-tp2 and tp1-tp3 relative
changes, suggesting the presence of marked modifications in the
contralateral hemisphere just 1 week after the stroke event (tp1).
Interestingly, 3D-SHORE-based indices appeared to be the only
capable of depicting statistically significant changes across the
CORT loop. Indeed, only GFA and RTAP found a significant
patient vs. control difference in the first phase (tp1-tp2), further
highlighting the relevance of this time scale in the course of the
disease.

These findings are in line with the few previous works
reporting changes in the WM tracts of the contralesional
hemisphere after stroke. Indeed, the possible modifications in
the contralateral hemisphere with respect to the lesion have
been scarcely investigated in literature, especially in humans,
as these tissues have been widely disregarded as considered
healthy and not directly involved in any rearrangement process
(Maniega et al., 2004; Ozsunar et al., 2004). However, as the field

moved forward, it became apparent that also the non-injured
hemisphere undergoes marked changes and has a fundamental
role in stroke recovery, as recognized by several authors relying
on different MRI techniques (Ward et al., 2003; Gerloff et al.,
2006; Crofts et al., 2011; Granziera et al., 2012b; Lin et al., 2015).
Specifically, Crofts et al. (2011) showed how communicability
values, derived from complex network analysis, were reduced in
both ipsilateral and homologous contralateral regions. Moreover,
Granziera et al. (2012a) reported significantly increased apparent
diffusion coefficient (ADC) values in the infarct region (in both
GM and WM tissues) moving from acute to chronic, whereas
WM FA significantly decreased in the mirror regions. Our
study extends the available literature on the topic and the novel
biomarkers derived by the 3D-SHORE model possibly add new
metrics that can be employed in this context (for a detailed
overview see Kim and Winstein, 2017).

In addition, the predictive power of all the microstructural
indices for patientmotor outcome at tp3were investigated relying
on the tract-based values and comparing several regression
models for the prediction. Notably, among the three loops, the
SUBCORT was the only one for which all the three types of
models created (tensor-based model, 3D-SHORE-based model,
global microstructural model) reached excellent performance. In
particular, the 3D-SHORE-based model, combining a subset of
these indices together with clinical patient information, led to
the best linear regression model featuring a very high predictive
power (R2adj = 0.998, p < 0.001), which slightly outperformed the

optimal model we found in our previous work (R2adj = 0.988, p

= 0.009) (Brusini et al., 2016). The set of indices in the optimal
model of this work embedsMSD, suggesting that this index holds
a higher potential in probing stroke-induced microstructural
changes during the early phase.

The model using all the microstructural indices led to the
best performance in the SUBCORT loop, reaching the highest
correlation score (R2adj = 0.694, p < 0.01) and keeping RTPP

as key predictor. The relevance of RTPP for subcortical WM
tracts appears to be coherent with another observation of Avram
et al. (2016) according to which RTPP is very sensitive to deep
structures, showing higher intensity in nuclei like thalamus.
RTPP also highlighted high predictive power in CC, contributing
to the optimal model for both the 3D-SHORE-based and global
model, in combination with MD in this latter case. These results,
jointly with the high precision and the ability to detect significant
changes between patients and controls, stress the potential of this
index in the considered task.

Quantitative Analyses on ROI-Based
Outcomes of GM
Besides evaluating the performance of the different indices along
the WM connections of specific brain networks, we performed
a quantitative comparison of their patterns within contralateral
GM regions. GM tissue changes related to the disease are
generally quantified by volume or density analyses and are very
rarely investigated with dMRI-based indices. A growing body of
literature is emerging to endorse the use of dMRI techniques
for detecting microscopic changes in GM in different disorders.
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Indeed, the analysis of diffusivity GM changes using MD has
shown to be promising for detecting abnormalities in Alzheimer
disease (Weston et al., 2015) and multiple sclerosis (Ceccarelli
et al., 2007). GM FA alterations were also demonstrated in
schizophrenic patients in Situ et al. (2015), reporting increased
MD and decreased FA values in patients compared to controls.
In stroke patients, studies in GM are less consistent and generally
consider the tissues in the contralateral hemisphere as normal
appearing, although regions remote (upstream or downstream)
from the infarct have been demonstrated to undergo marked
changes over a time course of 2 days to 1 year (Sotak, 2002).
In one of these studies using the contralateral part as reference,
Maniega et al. (2004) showed a trend of increased MD/decreased
FA values within the lesion, which just started the first week from
the event.

In our study, the longitudinal analyses on the patient
group demonstrated a similar pattern but in the contralateral
hemisphere, revealing an increase in MD values over time which
mainly involved GM motor regions. Conversely, FA exhibited
an initial widespread increase at tp1 over temporo-frontal and
motor areas, followed by a gradual decrease toward normality at
tp3. This was further confirmed by the group-based comparisons
with ANOVA, highlighting in most of these regions significantly
higher FA values at tp1 in patients vs. controls, whereas the
increased pattern remained restricted to few ROIs when tp2
values were evaluated. Similar patterns of alterations were
detected also by SHORE-based indices, in particular by GFA,
PA, RTPP and MSD. The group comparisons 1 week after the
stroke revealed several GM regions (cACC, FuG, IGG, mOFC,
PORB, rMFG, FP, ITG, LOC, IOFC, MTG) in which the patients
exhibit significantly higher values for all the anisotropy indices
(GFA, PA, FA) with respect to the controls. Considering that in
the same regions, at the same time point, the MD and MSD
appear to be increasing (Figure 7A), although not significantly,
we can speculate that we are observing a general increase of the
diffusivity along the main diffusion direction in the GM. More
difficult to interpret is the simultaneous increase of the RTPP
in some of these regions (ITG, LOC, IOFC, MTG). RTPP is
generally inversely proportional to anisotropy inWM, e.g., RTPP
is low in single fiber bundle areas such as the CC, and higher
in crossing regions (Özarslan et al., 2013; Avram et al., 2016;
Zucchelli et al., 2016a). Understanding the possible causes of this
contemporary increase of RTPP and anisotropy in the GMwill be
one of the aims of our future works.

Contralateral changes in GM involved not only regions in
the motor systems, but also areas playing an important role in
cognition and behavior, as the FP and frontal areas, supporting
the hypothesis of extensive rearrangements during stroke
recovery. These indices therefore confirm their potentialities in
describing not only WM but also GM properties, with high
reliability and discriminative power. However, RTAP and MSD,
which resulted to be suitable to characterize WM tracts in all the
networks, appeared to be less sensitive to GM changes. Indeed,
these indices failed to highlight statistically significant differences
in the GM areas, especially when comparing the patient data over
time. However, they deserve further investigations considering
their good stability over time and their physiological relevance.

It is worthmentioning that the impact of partial volume effects
was minimized by restricting the analysis to voxels where the
GM contribution was above the 95%. This further enhances the
hypothesis of extensive contralateral changes involving also the
GM, reducing the contamination by other tissues.

As a side note, we also extracted for each patient and
time point the average volumes of GM ROIs (results not
shown). However, when statistically compared by means of
a two-way repeated measure ANOVA, no significant changes
were detected, possibly because of the small sample size and
the limitations of such morphometric measure that might be
not sensitive enough to subtle changes in the contralateral
hemisphere. A larger sample size and more sophisticated
analyses, for example based on cortical thickness measures or
voxel-based morphometry, might be more suitable for depicting
GM longitudinal changes following stroke, as often done in
literature (Stebbins et al., 2008; Brodtmann et al., 2012). Our
results, though preliminary, support the hypothesis that SHORE-
based indices might hold the potential of revealing GM plasticity
processes in the contralesional stroke area. We are aware of the
fact that the interpretation in terms of geometrical restriction of
the diffusion of the SHORE-derived indices in GM is prone to
criticism because the real tissue architecture cannot be directly
mapped to the underlying reference model (i.e., the pore).
However, the fact that differences across time within a patient
population and across groups can be detected using such indices
provide evidence in favor of their exploitability as potential
numerical biomarkers for GM plasticity in disease, leaving their
interpretation in terms of microstructural properties an open
issue.

Some limitations have to be acknowledged. This work has
to be considered as a preliminary comparison between DTI
and SHORE-based EAP derived indices in stroke. Here, we
considered only the two most used DTI derived indices (FA
and MD) and some of the principal EAP derived indices (RTAP,
RTPP, MSD, PA, GFA). However, it will be interesting to extend
the analyses to further indices that can be derived, e.g., the
radial and axial diffusivity for the DTI, RTOP and the MAP-
MRI non-gaussianity for the EAP. Moreover, our findings are
based on the comparison between 10 healthy subjects and 10
ischemic stroke patients. A higher number of subjects would
be necessary in future studies to fully exploit the potentialities
and discriminative/predictive power of these rather novel indices.
In particular, the linear regression analyses have to be carefully
evaluated bearing in mind they are preliminary, although
encouraging, findings. Indeed, the limited sample size precluded
the possibility of identifying the optimal model in a subset of
the population and testing it in a different validation cohort,
as normally does in the machine learning/classification field.
Moreover, a large number of predictors was initially included
in the models, possibly leading to over-fitting problems that
should be carefully considered when dealing with a limited
number of subjects. Adding more data will allow to increase
the power of the statistical analyses performed in this work and
to further validate the promising findings about contralateral
WM and GM changes suggesting the presence of plasticity
processes.
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CONCLUSIONS

In conclusion, this work provided new evidence in favor of the
suitability of dMRI-based microstructural indices for probing
WMmodifications and highlighted their potential as descriptors
of microstructural feature changes in GM in ischemic stroke
patients. To the best of our knowledge this is the first attempt
of using 3D-SHORE-derived indices for studying microstructure
in GM in both controls and patients, contributing a first step in
bridging WM and GM diffusion signal modeling. In particular,
the RTPP seems to be able to convey relevant information while
being consistent across groups and time.

From the clinical point of view, our results provide additional
evidence in favor of the hypothesis of the contralateral
remodeling after stroke. The 3D-SHORE-derived indices
performed as well as classical tensor-derived indices (FA and
MD), achieving a high predictive power for clinical outcome
over cortico-subcortical connections and a good discrimination
between patients and controls at different time scales, further
confirming their viability in ischemic stroke. Their combination
can allow to convey a more detailed microstructural description,
marking a step forward in the definition of a novel family of

biomarkers. Finally, the detection of significant changes in
GM across groups and in the patient longitudinal comparison
provides a new perspective along the path of characterizing
disease-related microstructural modulations which deserves
further investigation.
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Freddy St̊ahlberg, and Daniel Topgaard. Noninvasive mapping of water diffusional
exchange in the human brain using filter-exchange imaging. Magnetic resonance in
medicine, 69(6):1572–1580, 2013.

153. Lipeng Ning, Frederik Laun, Yaniv Gur, Edward VR DiBella, Samuel Deslauriers-
Gauthier, Thinhinane Megherbi, Aurobrata Ghosh, Mauro Zucchelli, Gloria
Menegaz, Rutger Fick, et al. Sparse reconstruction challenge for diffusion mri: Val-
idation on a physical phantom to determine which acquisition scheme and analysis
method to use? Medical image analysis, 26(1):316–331, 2015.

154. David G Norris. The effects of microscopic tissue parameters on the diffusion
weighted magnetic resonance imaging experiment. NMR in Biomedicine, 14(2):77–
93, 2001.

155. Dmitry S Novikov, Jens H Jensen, Joseph A Helpern, and Els Fieremans. Reveal-
ing mesoscopic structural universality with diffusion. Proceedings of the National
Academy of Sciences, 111(14):5088–5093, 2014.

156. Silvia Obertino, Lorenza Brusini, I Boscolo Galazzo, Mauro Zucchelli, Cristina
Granziera, Marco Cristani, and Gloria Menegaz. Shore-based biomarkers allow
patient versus control classification in stroke. In Biomedical Imaging (ISBI), 2016
IEEE 13th International Symposium on, pages 1097–1100. IEEE, 2016.

157. E Ozarslan, C Koay, TM Shepherd, SJ Blackb, and PJ Basser. Simple harmonic
oscillator based reconstruction and estimation for three-dimensional q-space mri.
2009.
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gained a bit of this thesis!



Sommario

L’imaging di risonanza magnetica in diffusione (dMRI) consente una caratteriz-
zazione in vivo non invasiva del tessuto. Il discernimento di ciascuna proprietà
microstrutturale riflessa sul segnale dMRI totale è uno degli argomenti più caldi
del settore. Le tecniche di ricostruzione dMRI si basano su ipotesi sul modello del
segnale e considerano gli assoni neuronali come cilindri impermeabili. Tuttavia,
le interazioni con l’ambiente sono una caratteristica della vita biologica e avviene
uno scambio d’acqua attraverso le membrane cellulari. La mielina avvolge gli as-
soni con più strati costituendo una barriera che modula lo scambio tra l’assone e
il tessuto extracellulare. A causa del breve tempo di rilassamento trasversale (T2)
dell’acqua intrappolata tra gli strati, il contributo della mielina al segnale di diffu-
sione è spesso trascurato. Questa tesi punta a esplorare come lo scambio influenza
il segnale dMRI e come questo può essere informativo sulla struttura della mielina.
Abbiamo anche cercato di esplorare come le recenti tecniche di ricostruzione del
segnale dMRI potrebbero essere applicate in clinica, proponendo una strategia per
indagare il potenziale dei descrittori tissutali derivati come biomarcatori.

Il primo obiettivo della tesi è stato affrontato effettuando simulazioni Monte
Carlo di un sistema con tre compartimenti: intra-assonale, spirale mielinica e extra-
assonale. Gli esperimenti hanno mostrato che il tempo di scambio tra i comparti-
menti intra ed extra-assonale era inferiore al secondo (e quindi possibilmente os-
servabile) per geometrie con piccolo diametro assonale e basso numero di involucri
come nel cervello del bambino e nelle malattie demielinizzanti. Il secondo obiettivo
della tesi è stato raggiunto caratterizzando gli indici derivati dalla ricostruzione e
stima basate sull’oscillatore armonico semplice tridimensionale (3D-SHORE) ap-
plicate all’ictus. Sono state eseguite le analisi basata sul tratto coinvolgendo le
reti motorie e basata sulle regioni in sostanza grigia (GM). Gli indici 3D-SHORE
si sono rivelati sensibili alla plasticità sia in sostanza bianca (WM) che in GM,
evidenziando la loro potenzialità come biomarcatori nell’ictus.

Lo studio complessivo può considerarsi il punto di partenza per una futura
indagine sull’interdipendenza di diversi fenomeni come scambio e rilassamento
correlati agli indici dMRI stabiliti. Questo è utile per l’accurata interpretazione
dei dati dMRI in tessuti eterogenei e in diverse condizioni fisiologiche.
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