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Abstract

In this paper an optimal control problem for a large system of interacting agents is

considered using a kinetic perspective. As a prototype model we analyze a microscopic

model of opinion formation under constraints. For this problem a Boltzmann–type

equation based on a model predictive control formulation is introduced and discussed.

In particular, the receding horizon strategy permits to embed the minimization of

suitable cost functional into binary particle interactions. The corresponding Fokker-

Planck asymptotic limit is also derived and explicit expressions of stationary solutions

are given. Several numerical results showing the robustness of the present approach

are finally reported.

Keywords: Boltzmann equation, opinion consensus modeling, optimal control, model pre-
dictive control, collective behavior, mean-field limit

1 Introduction

The development of mathematical models describing the collective behavior of systems
of interacting agents originated a large literature in the recent years with applications to
several fields, like biology, engineering, economy and sociology (see [5, 6, 14, 15, 16, 19, 24,
27, 32, 41, 42, 29, 30, 4, 28] and the references therein). Most of these models are at the level
of the microscopic dynamic described by a system of ordinary differential equations. Only
recently some of these models have been related to partial differential equations through
the corresponding kinetic and hydrodynamic description [2, 4, 9, 17, 18, 21, 25, 26, 29, 28,
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33, 42]. We refer to the recent surveys in [37, 38, 43] and to the book [39] for an introduction
to the subject.

In this paper we consider problems where the collective behavior corresponds to the
process of alignment, like in the opinion formation dynamic. Different to the classical
approach where individuals are assumed to freely interact with each other, here we are
particularly interested in such problems in a constrained setting. We consider feedback
type controls for the resulting process and present a kinetic modeling including those
controls. This can be used to study the exterior influence of the system dynamics to enforce
emergence of non spontaneous desired asymptotic states. Classical examples are given by
persuading voters to vote for a specific candidate or by influencing buyers towards a given
good or asset [7, 20, 32, 33]. In our model, the external intervention is introduced as
an additional control subject to certain bounds, representing the limitations, in terms of
economic resources, media availability, etc., of the opinion maker.

Control mechanisms of self-organized systems have been studied for macroscopic models
in [12, 13] and for kinetic and hydrodynamic models in [2, 20, 30]. However, in the above
references, the control is modeled as a leader dynamics. Therefore, it is given a priori and
represented by a supplementary differential model. Also, in [30] the control is modeled a
posteriori on the level of the kinetic equation mimicking a classical LQR control approach.
Recently, the control of emergent behaviors in multiagent systems has been studied in
[11, 22] where the authors develop the idea of sparse optimization (for sparse control it
is meant that the policy maker intervenes the minimal amount of times on the minimal
amount of individual agents) at the microscopic and kinetic level. We refer also to [8] for
results concerning the control of mean-field type systems. Contrary to all those approaches
we derive a controller using the model predicitive control framework on the microscopic
level and study the related kinetic description for large number of agents. In this way we
do not need to prescribe control dynamics a priori or a posteriori but these are obtained
automatically based only on the underlying microscopic interactions and a suitable cost
functional.

The starting point of our modeling is a general framework which embed several type
of collective alignment models. We consider the evolution of N agents where each agent
has an opinion wi = wi(t) ∈ I , I = [−1, 1], i = 1, . . . , N and this opinion can change over
time according to

ẇi =
1

N

N
∑

j=1

P (wi, wj)(wj − wi) + u, wi(0) = w0i, (1.1)

where the control u = u(t) is given by the minimization of the cost functional over a certain
time horizon T

u = argmin

∫ T

0

1

N

N
∑

j=1

(

1

2
(wj −wd)

2 +
ν

2
u2
)

ds, u(t) ∈ [uL, uR]. (1.2)

In the formulation (1.2) the value wd is the desired state and ν > 0 is a regularization
parameter. We chose a least–square type cost functional for simplicity but other costs can
be treated similarly. We additionally prescribe box constraints on the pointwise values of
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u(t) given by the constants uL and uR > uL. The bound constraints on u(t) are required
in order to preserve the bounds for wi. The dynamic in (1.1) describes an average process
of alignment between the opinions wi of the N agents. Typically, the function P (w, v)
is such that 0 ≤ P (w, v) ≤ 1 and represents a measure of the inclination of the agents
to change their opinion. Usually such function P follows the assumption that extreme
opinions are more difficult to be influenced by others [25, 41, 42]. Problem (1.1)-(1.2) may
be reformulated as Mayer’s problem and solved by Pontryagin’s maximum principle [40]
or dynamic programming. The main drawback of this approach relies on the fact that
the equation for the adjoint variable has to be solved backwards in time over the full time
interval [0, T ]. In particular, for large values of N the computational effort therefore renders
the problem unsolvable. Also, an approach u = P(x) where P fulfills a Riccati differential
equation cannot be pursued here due to the large dimension of P ∈ R

N×N and a possible
general nonlinearity in P . This approach is known as LQR controller in the engineering
literature [31]. A standard methodology, when dealing with such complex system, is based
on model predictive control where instead of solving the above control problem over the
whole time horizon, the system is approximated by an iterative solution over a sequence
of finite time steps [10, 35, 36].

In order to decrease the complexity of the model when the number of agents is large,
a possible approach is to rely on a kinetic description of the process. Along this line of
thought, in this work we introduce a Boltzmann model describing the microscopic model
in the model predictive control formulation. Moreover, a Fokker-Planck model is derived in
the so called quasi-invariant opinion limit. The kinetic models presented in this paper share
some common features with the Boltzmann model introduced in [42] in the unconstrained
case and with the mean-field constrained models in [11, 22]. Here, however, a remarkable
difference with respect to [11, 22] is that, thanks to the receding horizon strategy, the
minimization of the cost functional is embedded into the particle interactions. Similarly to
[42], this permits to compute explicitly the stationary solutions of the resulting constrained
dynamic.

The rest of the manuscript is organized as follows. In the next Section we introduce the
model predictive control formulation of system (1.1)-(1.2). In Section 3 a binary dynamic
corresponding to the constrained system is introduced and a the main properties of the
resulting Boltzmann-type kinetic equation are discussed. In particular, estimates for the
convergence of the solution towards the desired state are given. Section 4 is devoted to
the derivation of the Fokker-Planck model and the computation of explicit stationary
solutions for the resulting kinetic equation. Some modeling variants are discussed in Section
5. Finally, in Section 6 several numerical results are reported showing the robustness of the
present approach. Some conclusions and future research directions are made at the end of
the manuscript.

2 Model predictive control

In this section we adapt the idea of the moving horizon controller (or instantaneous control)
to derive a computable control u at any time t. Compared with the solution to (1.1)-(1.2)
this control will in general only be suboptimal. Rigorous results on the properties of u for
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quadratic cost functional and linear and nonlinear dynamics are available, for example,
in [10, 34]. The model predicitive control framework applied here is also called receding
horizon strategy or instantaneous control in the engineering literature.

2.1 A receding horizon strategy

We consider a receding horizon strategy with horizon of a single time interval. Hence,
instead of solving (1.1)-(1.2) on [0, T ], we proceeds as follows:

• Split the time interval [0, T ] in M time intervals of length ∆t and let tn = ∆t n.

• We assume that the control is piecewise constant on time intervals of length ∆t > 0,

u(t) =

M−1
∑

n=0

unχ[tn,tn+1](t).

• Determine the value of the control un ∈ R by solving for a state w̄i the (reduced)
optimization problem

ẇi =
1

N

N
∑

j=1

P (wi, wj)(wj − wi) + u, wi(t
n) = w̄i,

un = argminu∈R

∫ tn+1

tn

1

N

N
∑

j=1

(

1

2
(wj − wd)

2 +
ν

2
u2
)

ds, u ∈ [uL, uR].

(2.1)

• Having the control un on the interval [tn, tn+1], evolve wi according to the dynamics

ẇi =
1

N

N
∑

j=1

P (wi, wj)(wj − wi) + un (2.2)

to obtain the new state w̄i = wi(t
n+1).

• We again solve (2.1) to obtain un+1 with the modified initial data.

• Repeat this procedure until we reach n∆t = T.

The advantage compared with the problem (1.1)-(1.2) is the reduced complexity of (2.1)
being an optimization problem in a single real–valued variable un. Furthermore, for the
quadratic cost and a suitable discretization of (2.2) the solution to (2.1) allows an explicit
representation of un in terms of w̄i and wi(t

n+1) provided uL = −∞ and uR = ∞. As shown
in section 2.2 this allows to reformulate the previous algorithm as a feedback controlled
system which in discretized form reads

wn+1
i = wn

i +
∆t

N

N
∑

j=1

Pn
ij(w

n
j − wn

i ) + ∆tun, w0
i = w0i, (2.3a)

un = −
∆t

νN

N
∑

j=1

(wn+1
j − wd). (2.3b)
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Remark 1. Later on, bounds on the control u as in (2.1) are required in order to guarantee
that opinions wi ∈ I for all times. Instead of considering the constrained problem (2.1) we
will present a condition on ν ensuring this property in the case of a binary interaction
model in Proposition 3.1 below. This allows to treat (2.1) as an unconstrained problem
and does not require to a priori prescribe bounds uL and uR. Also note that in general the
expression of the control u in terms of wn+1

i and wd as in equation (2.3b) would be much
more involved if the bound constraints uL, uR are present.

2.2 Derivation of the feedback controller

We assume for now that uL = −∞ and uR = +∞ and assume sufficient regularity con-
ditions such that any minimizer u ≡ un ∈ R to problem (2.1) fulfills the necessary first
order optimality conditions. We further assume that those conditions are also sufficient for
optimality and refer to [40] for more details.

The optimality conditions on [tn, tn+1] and for w̄i = w(tn)i are given by the set of the
following equations.

∆t νu = −
1

N

N
∑

i=1

∫ tn+1

tn
λidt,

ẇi =
1

N

N
∑

j=1

P (wi, wj)(wj − wi) + u, wi(t
n) = w̄i,

λ̇i = −(wi − wd)−
1

N

N
∑

j=1

Rij , λi(t
n+1) = 0,

Rij = λi∂wi
{P (wi, wj)(wj − wi)}+ λj∂wj

{P (wj , wi)(wi − wj)}.

The function λn
i = λi(t) is the (Lagrange) multiplier. If we discretize the adjoint equa-

tion (backwards in time) by the implicit Euler scheme we obtain due to the boundary
conditions

λn
i = −∆t (wn+1

i − wd)

Further, we may solve for u after discretizing the integral as
∫ tn+1

tn f(t)dt = ∆t fn to obtain

u = −
∆t

Nν

N
∑

i=1

(wn+1
i − wd)

Applying an explicit Euler discretization to the dynamics for wi on the time interval
[tn, tn+1] and substituting the control we obtained, we observe that the feedback control u
is given by (2.3b) and hence the final equation is given by (2.3a).

The previous derivation is obtained by first computing the continuous optimality sys-
tem and then applying a suitable discretization. However, applying first an explicit Euler
discretization and then computing the discrete optimality system leads to the same re-
sult. Indeed, consider the discretization of (1.1)–(1.2) in the interval [tn, tn+1] for constant
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control u and with Pn
ij = P (wn

i , w
n
j ):

wn+1
i = wn

i +
∆t

N

N
∑

j=1

Pn
ij(w

n
j − wn

i ) + ∆tu, wn
i = w̄i,

u = argmin
∆t

N

N
∑

j=1

(

1

2
(wn

j −wd)
2 +

ν

2
(un)2

)

,

(2.4)

The discrete Lagrangian is given by

L(w, λ, u) =∆t

(

1

N

N
∑

k=1

(wn+1
k − wd)

2 +
ν

2
u2

)

+
1

N

N
∑

k=1

λ0
k(w

n
k − w̄k)

+
1

N

N
∑

k=1

λn+1
k



wn
k − wn+1

k +
∆t

N

N
∑

j=1

Pn
kj(w

n
j −wn

k ) + ∆tu





(2.5)

A minimizer to equation (2.4) fulfills under suitable regularity assumptions the equations
(2.4), (2.6) and (2.7).

λn+1
i = λn

i −∆t(wn
i − wd)−

∆t

N

N
∑

j=1

R(wi(t
n), wj(t

n))λn+1
i , λn+1

i = 0. (2.6)

0 = ∆tνun +
∆t

N

N
∑

j=1

λn+1
j . (2.7)

Upon substituting the terminal condition for λn+1
j and expressing u in terms of λn+1

j we
obtain the feedback control (2.3b).

Remark 2. In order to generalize the idea we may assume that the control acts differently
on each agent. For example, one can consider the situation where action of the control u,
acting on the single agents, is influenced by the individual opinion. Therefore we replace
u in (1.1) by uQ(wi), where Q(w) is such that qm ≤ Q(w) ≤ qM . Following the previous
computation, the action of the control, at discrete time, is driven by

unQn
i = −

∆t

νN

N
∑

j=1

(wn+1
j − wd)Q

n
jQ

n
i (2.8)

where Qn
i = Q(wn

i ). Then the control dynamics on the opinion is described by

wn+1
i = wn

i +
∆t

N

N
∑

j=1

Pn
ij(w

n
j − wn

i ) + ∆tunQn
i , w0

i = w0i. (2.9)
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3 Boltzmann description of constrained opinion consensus

In this section, we consider a binary Boltzmann dynamic corresponding to the above model
predictive control formulation. We emphasize that the assumption that opinions are formed
mainly by binary interactions is rather common, see for example [9, 25, 39, 42]. Following
[1, 21, 39] the first step is to reduce the dynamic to binary interactions. Let consider the
model predictive control system (2.3a)–(2.3b) in the simplified case of only two interacting
agents, numbered i and j. Their opinions are modified in the following way

wn+1
i = wn

i +
∆t

2
Pn
ij(w

n
j − wn

i ) + ∆tun,

wn+1
j = wn

j +
∆t

2
Pn
ji(w

n
i − wn

j ) + ∆tun,

(3.1)

where the control

un = −
∆t

2ν

(

(wn+1
j − wd) + (wn+1

i − wd))
)

, (3.2)

is implicitly defined in terms of the opinions pair at the time n + 1. The above linear
system, however, can be easily inverted and its solutions can be written again in the form
(3.1) where now the control is expressed explicitly in terms of the opinions pair at time n
as

un = −
1

2

∆t

ν +∆t2
(

(wn
j − wd) + (wn

i − wd))
)

−
1

2

∆t2

ν +∆t2
(Pij − Pji) (w

n
j − wn

i ). (3.3)

Note that, as a result of the inversion of the 2× 2 matrix characterizing the linear system
(3.1)-(3.2), in the explicit formulation the control contains a term of order ∆t2.

3.1 Binary interaction models

In order to derive a kinetic equation we introduce a density distribution of particles f(w, t)
depending on the opinion variable w ∈ I and time t ≥ 0. The precise meaning of the
density f is the following. Given the population of agents under study, if the opinions are
defined on a subdomain Ω ⊂ I , the integral

∫

Ω
f(w, t) dw

represents the number density of individuals with opinion included in Ω at time t > 0. It
is assumed that the density function is normalized to 1, that is

∫

I

f(w, t) dw = 1.

The kinetic model can be derived by considering the change in time of f(w, t) depending on
the interactions with the other individuals. This change depends on the balance between
the gain and loss due to the binary interactions.
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Accordingly to the explicit binary interaction (3.1), two agents with opinion w and v
modify their opinion as

w∗ = (1− αP (w, v))w + αP (w, v)v −
β

2
((v − wd) + (w − wd))

− α
β

2
((P (w, v) − P (v,w))(w − v)) + Θ1D(w),

v∗ = (1− αP (v,w)) v + αP (v,w)w −
β

2
((v − wd) + (w − wd))

− α
β

2
((P (v,w) − P (w, v))(v − w)) + Θ2D(w),

(3.4)

where we included an additional noise term as in [42], to take into account effects falling
outside the description of the model, like changes of opinion due to personal access to
information. In (3.4) we defined the following nonnegative quantities

α =
∆t

2
, β =

4α2

ν + 4α2
, (3.5)

which represent the strength of the compromise and of the control respectively. The noise
term is characterized by the random variables Θ1 and Θ2 taking values on a set B ⊂ R, with
identical distribution of mean zero and variance σ2 measuring the the degree of spreading
of opinion due to diffusion. The function D(·) represents the local relevance of diffusion for
a given opinion, and is such that 0 ≤ D(w) ≤ 1.

In the absence of diffusion, from (3.4) it follows that

w∗ + v∗ = (1− β) (v + w) + 2βwd + α(1 − β)(P (w, v) − P (v,w))(v − w) (3.6a)

w∗ − v∗ = (w − v)(1− α(P (w, v) + P (v,w))), (3.6b)

thus in general the mean opinion is not conserved. Since 0 ≤ P (w, v) ≤ 1, if we assume
0 ≤ α ≤ 1/2 from (3.6b) we have

|w∗ − v∗| = (1− α(P (w, v) + P (v,w)) |w − v| ≤ (1− 2α)|w − v|, (3.7)

which tells that the relative distance in opinion between two agents cannot increase after
each interaction.

When dealing with a kinetic problem in which the variable belongs to a bounded
domain we must deal with additional mathematical difficulties in the definition of agents
interactions. In fact, it is essential to consider only interactions that do not produce values
outside the finite interval. The following proposition gives a sufficient condition to preserve
the bounds.

Proposition 3.1. Let us assume that 0 < P (w, v) ≤ 1 and

β

2
≤ αp, |Θi| < d

(

1−
β

2

)

, i = 1, 2 (3.8)

where p = minw,v∈I {P (w, v)} > 0 and d = minw∈I {(1− w)/D(w),D(w) 6= 0} > 0, then
the binary interaction (3.4) preserves the bounds, i.e. the post-interaction opinions w∗, v∗

are contained in I = [−1, 1].

8



Proof. We will proceed in two subsequent steps, first by considering the case of interactions
without noise and second by including the noise action. Let us define the following quantity

γ = α

(

1−
β

2

)

P (w, v) + α
β

2
P (v,w), (3.9)

where 0 ≤ β ≤ 1/2 by definition.
Thus relation (3.4) in absence of noise can be rewritten as

w∗ =

(

1− γ −
β

2

)

w +

(

γ −
β

2

)

v + βwd, (3.10)

therefore it is sufficient that the following bounds are satisfied

β

2
≤ γ ≤ 1−

β

2
(3.11)

to have a convex combination of w, v and wd. From equation (3.9), by the assumption on
P (w, v), we have αp ≤ γ ≤ α. Therefore the left bound requires that αp ≤ β/2, which
gives the first assumption in (3.8).

If we now consider the presence of noise, we have

w∗ =

(

1− γ −
β

2

)

w +

(

γ −
β

2

)

v + βwd +D(w)Θ1. (3.12)

Equation (3.12) implies the following inequalities

w∗ ≤

(

1− γ −
β

2

)

w +

(

γ −
β

2

)

+ βwd +D(w)Θ1

≤

(

1− γ −
β

2

)

w +

(

γ +
β

2

)

+D(w)Θ1.

Finally, the last relation is bounded by one if

Θ1 ≤

(

1− γ −
β

2

)

(1− w)

D(w)
, D(w) 6= 0.

which yields the second condition in (3.8). The same results are readily obtained for the
post interacting opinion v∗.

Remark 3. From the above proposition it is clear that agents should have a minimal
amount of propensity to change their opinion in order for the control to act without risking
to violate the opinion bounds. This reflects the fact that extreme opinions are very difficult
to change and cannot be controlled in general without some additional assumption or model
modification. In the case of Θi = 0, α 6= 0 we obtain from (3.8) the condition

2α

ν + 4α2
≤ p.

This condition can be satisfied provided either α is sufficiently small or ν sufficiently large.
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3.2 Main properties of the Boltzmann description

In general we can recover the time evolution of the density f(w, t) through (3.4) considering
for a suitable test function ϕ(w) an integro-differential equation of Boltzmann type in weak
form [39]

d

dt

∫

I

ϕ(w)f(w, t)dw = (Q(f, f), ϕ), (3.13)

where

(Q(f, f), ϕ) =

〈∫

I2

Bint (ϕ(w
∗)− ϕ(w)) f(w, t)f(v, t) dw dv

〉

. (3.14)

In (3.14), as usual, 〈 · 〉 denotes the expectation with respect to the random variables
Θi, i = 1, 2 and the nonnegative interaction kernel Bint is related to the probability of
the microscopic interactions. The simplest choice which assures that the post interacting
opinions preserves the bounds is given by

Bint = Bint(w, v,Θ1,Θ2) = ηχ(|w∗| ≤ 1)χ(|v∗| ≤ 1) (3.15)

where η > 0 is a constant rate and χ( · ) is the indicator function. A main simplification
occurs if the bounds of w∗, v∗ are preserved by (3.4) itself and the interaction kernel is
independent on w, v, this will corresponds the classical Boltzmann equation for Maxwell
molecules. In the rest of the paper, thanks to Proposition 3.1, we will pursue this direction.
Following the derivation in [14, 39] the present results can be extended to kernels in the
form (3.15).

Let us assume that |w∗| ≤ 1 and |v∗| ≤ 1, therefore the interaction dynamic of f(w, t)
can be described by the following Boltzmann operator

(Q(f, f), ϕ) = η

〈∫

I2

(ϕ(w∗)− ϕ(w)) f(w, t)f(v, t) dw dv

〉

. (3.16)

The above collisional operator guarantees the conservation of the total number of agents,
corresponding to ϕ(w) = 1, which is the only conserved quantity of the process. Let us
remark that, since f(w, t) is compactly supported in I then by conservation of the moment
of order zero all the moments are bounded. By the same arguments in [42] the existence of
a uniform bound on moments implies that the class of probability densities {f(w, t)}t≥0 is
tight, so that any sequence {f(w, tn)}tn≥0 contains an infinite subsequence which converges
weakly as t → ∞ to some probability measure f∞.

For ϕ(w) = w, we obtain the evolution of the average opinion. We have

d

dt

∫

I

wf(w, t)dw = η

〈∫

I2

(w∗ −w) f(w, t)f(v, t) dw dv

〉

(3.17)

or equivalently

d

dt

∫

I

wf(w, t)dw =
η

2

〈
∫

I2

(w∗ + v∗ −w − v) f(w, t)f(v, t) dw dv

〉

. (3.18)
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Indicating the average opinion as

m(t) =

∫

I

wf(w, t) dw, (3.19)

from relation (3.18) and (3.6a), since Θi, i = 1, 2 have zero mean, we obtain

d

dt
m(t) =

η

2
β

∫

I2

(2wd − w − v) f(v)f(w) dw dv+

+
η

2
α(1− β)

∫

I2

(P (w, v) − P (v,w)) (v − w)f(v)f(w) dw dv

= ηβ(wd −m(t)) + ηα(1 − β)

∫

I2

(P (w, v) − P (v,w))vf(v)f(w) dw dv. (3.20)

Note that the above equation for a general P is not closed. Since 0 ≤ P (w, v) ≤ 1 we have
|P (w, v) − P (v,w)| ≤ 1, then we can bound the derivative

ηβwd − η(β + α(1 − β))m(t) ≤
d

dt
m(t) ≤ ηβwd − η(β − α(1 − β))m(t)

solving on both sides we obtain the following estimate

m(t) ≥
β

β + α(1 − β)

(

1− e−η(β+α(1−β))t
)

wd +m(0)e−η(β+α(1−β))t

m(t) ≤
β

β − α(1 − β)

(

1− e−η(β−α(1−β))t
)

wd +m(0)e−η(β−α(1−β))t .

If we now assume that
ν < 4α, (3.21)

then β − α(1 − β) > 0 and if the average m(t) → m∞ as t → ∞ we have the bounds

4α

4α + ν
wd ≤ m∞ ≤

4α

4α− ν
wd. (3.22)

Therefore small values of ν force the mean opinion towards the desired state. In the sym-
metric case P (v,w) = P (w, v), equation (3.20) is in closed form and can be solved explicitly

m(t) =
(

1− e−ηβt
)

wd +m(0)e−ηβt (3.23)

which in the limit t → ∞ converges to wd, for any choice of the control parameters.
Let us now consider the case ϕ(w) = w2 in the simplified situation of P (w, v) = 1. We

have

d

dt

∫

I

w2f(w, t)dw =
η

2

〈∫

I2

(

(w∗)2 + (v∗)2 − w2 − v2
)

f(w, t)f(v, t) dw dv

〉

. (3.24)

Denoting by

E(t) =

∫

I

w2f(w, t)dw, (3.25)
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easy computations show that

d

dt
E(t) =− η

(

2α(1 − α) + β

(

1−
β

2

))

(E(t)−m(t)2)− 2ηβ
(

β(m(t)2 − w2
d)

(3.26)

+(1− β)m(t)(m(t) − wd)) + ησ2

∫

I

D(w)f(w, t) dw,

where we used the fact that Θi, i = 1, 2 have zero mean and variance σ2. In absence of
diffusion, since m(t) → wd as t → ∞, we obtain that E(t) converges exponentially to w2

d

for large times. Therefore the quantity

∫

I

f(w, t)(w − wd)
2 dv = E(t)2 + w2

d − 2m(t)wd, (3.27)

goes to zero as t → ∞. This shows that, under the above assumptions, the steady state
solution has the form of a Dirac delta f∞(w) = δ(w −wd) centered in the desired opinion
state.

4 Fokker-Planck modeling

In the general case, it is quite difficult to obtain analytic results on the large time behavior
of the kinetic equation (3.16). As it is usual in kinetic theory, particular asymptotic limit
of the Boltzmann model result in simplified models, generally of Fokker-Planck type, for
which the study of the theoretical properties is often easier [39].

4.1 The quasi-invariant opinion limit

The main idea is to rescale the interaction frequency η, the propensity strength α, the
diffusion variance σ2 and the action of the control ν at the same time, in order to maintain
at level of the asymptotic procedure the memory of the microscopic interactions (3.4). This
approach is usually referred to as quasi–invariant opinion limit [39, 42] and is closely related
to the grazing collision limit of the Boltzmann equation for Coulombian interactions (see
[23, 44]).

We make the following scaling assumptions

α = ε, η =
1

ε
, σ2 = ες, ν = εκ, (4.1)

where ε > 0 and as a consequence the coefficient β in (3.4) takes the form

β =
4ε

κ+ 4ε
.

This corresponds to the situation where the interaction operator concentrates on binary in-
teractions which produce a very small change in the opinion of the agents. From a modeling
viewpoint, we require that scaling (4.1) in the limit ε → 0 preserves the main macroscopic
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properties of the kinetic system. To this aim, let us observe that the evolution of the scaled
first two moments for P (w, v) = 1 reads

d

dt
m(t) =

4

κ+ 4ε
(wd −m(t)),

d

dt
E(t) =− 2

(

(1− ε) +
2

κ+ 4ε

(

1−
2ε

κ+ 4ε

))

(E(t)−m(t)2)

−
8

κ+ 4ε

(

4ε

κ+ 4ε
(m(t)2 − w2

d) +

(

1−
4ε

κ+ 4ε

)

m(t)(m(t)− wd)

)

+ ς

∫

I

D(w)f(w, t) dw,

which in the limit ε → 0 gives

d

dt
m(t) =

4

κ
(wd −m(t)), (4.2)

d

dt
E(t) =− 2

(

1 +
2

κ

)

(E(t)−m(t)2)

(4.3)

−
8

κ
m(t)(m(t)− wd) + ς

∫

I

D(w)f(w, t) dw.

This shows that in order to keep the effects of the control and the diffusion in the limit it
is essential that both ν and σ2 scale as ε.

In the sequel we show how this approach leads to a constrained Fokker–Planck equa-
tion for the description of the opinion distribution. Even if our computations are formal,
following the same arguments in [39, 42] it is possible to give a rigorous mathematical basis
to the derivation. Here we omit the details for brevity.
The scaled equation (3.16) reads

d

dt

∫

I

ϕ(w)f(w, t)dw =
1

ε

〈
∫

I2

(ϕ(w∗)− ϕ(w)) f(w, t)f(v, t) dw dv

〉

(4.4)

where the scaled binary interaction dynamic (3.4) can be written as

w∗ − w = εP (w, v)(v − w) +
2ε

κ+ 4ε
(2wd − (w + v)) + Θε

1D(w) +O(ε2), (4.5)

where Θε
1 is a random variable with zero mean and variance ες.

In order to recover the limit as ε → 0 we consider the second-order Taylor expansion
of ϕ around w

ϕ(w∗)− ϕ(w) = (w∗ − w)ϕ′(w) +
1

2
(w∗ − w)2ϕ′′(w̃) (4.6)

where for some 0 ≤ ϑ ≤ 1 ,
w̃ = ϑw∗ + (1− ϑ)w.

Therefore, inserting this expansion in the interaction integral (4.4) we get

1

ε

〈∫

I2

(

(w∗ − w)ϕ′(w) +
1

2
(w∗ − w)2 ϕ′′(w)

)

f(w)f(v) dwdv

〉

+R(ε). (4.7)
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The term R(ε) denotes the remainder and is given by

R(ε) =
1

2ε

〈
∫

I2

(w∗ − w)2 (ϕ′′(w̃)− ϕ′′(w))f(w)f(v) dwdv

〉

. (4.8)

Using now (4.5) we can write

1

ε

∫

I2

[(

P (w, v)(v − w) +
2ε

κ+ 4ε
(2wd − (w + v))

)

ϕ′(w)

+
ς

2
D(w)2ϕ′′(w)

]

f(w)f(v) dwdv +R(ε) +O(ε),

(4.9)

where we used the fact that Θε
1 has zero mean and variance ες.

By the same arguments in [42] it is possible to show rigorously that (4.8) converges to
zero as soon as ε → 0. Therefore we have as limiting operator of (3.16) the following

d

dt

∫

I

ϕ(w)f(w, t)dw =

∫

I2

(

P (w, v)(v − w) +
4

κ

(

wd −
w + v

2

))

ϕ′(w)f(w)f(v) dwdv

+
ς

2

∫

I

D(w)2ϕ′′(w)f(w) dw.

Integrating back by parts the last expression we obtain the following Fokker–Planck equa-
tion

∂

∂t
f +

∂

∂w
H[f ](w)f(w) +

∂

∂w
K[f ](w)f(w) dv =

ς

2

∂2

∂w2
(D(w)2f(w)), (4.10)

where

K[f ](w) =

∫

I

P (w, v)(v − w)f(v) dv, (4.11)

H[f ](w) =
4

κ

∫

I

(

wd −
w + v

2

)

f(v) dv =
4

κ

(

wd −
w +m

2

)

. (4.12)

Remark 4. The ratio between σ2/α = ς is of paramount importance in order to obtain
in the limit the contribution of both controlled compromise propensity and diffusion [42].
Other limiting behaviors can be considered like diffusion dominated (ς → ∞) or controlled
compromise dominated (ς → 0).

4.2 Stationary solutions

In this section we analyze the steady solutions of the Fokker–Planck model (4.10), for
particular choices of the microscopic interaction of the Boltzmann dynamic.

Let consider the case in which P (w, v) = 1. In presence of the control the average
opinion in general is not conserved in time, but since m(t) converges exponentially in time
to wd, the steady state opinion solves

ς

2
∂w(D(w)2f) =

(

1 +
2

κ

)

(wd − w)f. (4.13)
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Figure 1: Continuous line and dashed lines represent the steady solutions f∞ and fκ
∞,

respectively. On the left wd = m(0) = 0 with diffusion parameter ς = 5, on the right
wd = m(0) = 0 with diffusion parameter ς = 2. In both cases the steady solution changes
from a bimodal distribution to an unimodal distribution around wd.

If we now consider as diffusion function D(w) = (1 − w2), then it is possible explicitly
compute the solution of (4.13) as follows [42]

fκ
∞(w) =

Cwd,ς,κ

(1− w2)2

(

1 + w

1− w

)m/(2ς)

exp

{

−
1−mw

ς (1− w2)

(

1 +
2

κ

)}

(4.14)

where Cwd,ς,κ is a normalization constant such that
∫

f∞ dw = 1. We remark that the
solution is such that f(±1) = 0, moreover due to the general non symmetry of f , the
desired state reflects on the steady state through the mean opinion. Note that in the case
κ → ∞ we obtain the steady state of the uncontrolled equation [42]. We denote by f∞(w)
this latter uncontrolled stationary behavior. We plot in Figure 1 the steady profile f∞ and
fκ
∞ for different choices of the parameters κ and ς. The initial average opinion m(0) is taken

equal to the desired opinion wd, in this way we can see that for κ → ∞ the constrained
steady profile approaches the unconstrained one, fκ

∞ → f∞. On the other hand small values
of κ give the desired distribution concentrated around wd.

In Figure 2 we show the steady profile fκ
∞ for different choice of the parameters κ

and the desired state wd. We can see that decreasing the value of κ lead the profiles to
concentrate around the requested value of wd.

Let consider P (w, v) = P (w) then stationary solutions of (4.10) satisfy the following

ς

2
∂w(D(w)2f) =

(

P (w) +
2

κ

)

(wd − w)f. (4.15)

Taking P (w) = 1−w2 and D(w) = 1− w2 we can compute [42]

fκ
∞(w) = Cς,m(1− w)−2−

wd−1

ς
−

wd
κς (1 + w)−2+

wd+1

ς
+

wd
κς exp

{

−
2

κ

1− wdw

ς (1− w2)

}

(4.16)

We present in Figure 3 different profiles of fκ
∞ for m(0) = wd, where we switch from the

steady profile of the uncontrolled case to the steady profile (4.16).

15



−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9
ς = 5, k = 0.1

w

 

 

wd = −0.75
wd = −0.5
wd = 0
wd = 0.25

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9
ς = 5, k = 0.01

w

 

 

wd = −0.75
wd = −0.5
wd = 0
wd = 0.25

Figure 2: Steady state solutions in the controlled case for different values of κ and wd.
From left to right we change values of κ = 0.1 and κ = 0.01 for a fixed value of ς = 5 and
different desired states wd = {−0.75,−0.5, 0, 0.25}.

5 Other constrained kinetic models

The constrained binary collision rule (3.4) admits several variants accordingly to the dif-
ferent ways we realize the diffusion and control dynamics.

From the modeling point of view we decided to introduce noise at the level of the
explicit binary formulation (3.1),(3.3) as an external factor which can not be affected by
the opinion maker. In contrast, adding noise from the very beginning in (1.1)-(1.2), or
equivalently in the implicit formulation (2.3a)-(2.3b), would imply a different action of the
control over the spreading of the noise. More precisely, for the binary interaction model
this will originate the dynamic

w∗ = (1− αP (w, v))w + αP (w, v)v −
β

2
((v − wd) + (w − wd))

− α
β

2
((P (w, v) − P (v,w))(w − v)) +

(

1−
β

2

)

Θ1D(w)−
β

2
Θ2D(v),

v∗ = (1− αP (v,w)) v + αP (v,w)w −
β

2
((v − wd) + (w − wd))

− α
β

2
((P (v,w) − P (w, v))(v − w)) +

(

1−
β

2

)

Θ2D(v)−
β

2
Θ1D(w).

(5.1)

For this binary dynamic preservation of the bounds is more delicate and the corresponding
Boltzmann model is typically written using the kernel (3.15). Note, however, that in the
quasi-invariant opinion limit due to the rescaling (4.1) we have β → 0 and therefore the
limiting Fokker-Planck equation is again (4.10).

Next we remark that the microscopic constrained system (2.3a)-(2.3b) can be written
in explicit form by solving the corresponding linear system for wn+1

1 , . . . , wn+1
N . Straight-
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Figure 3: Continuous line and dashed lines represent the steady solutions f∞ and fκ
∞,

respectively. On the left wd = m(0) = 0 with diffusion parameter ς = 0.9, on the right
wd = m(0) = 0 with diffusion parameter ς = 0.5, in this last case note that f∞ is a uniform
distribution on [−1, 1].

forward computations yields the explicit formulation

wn+1
i = wn

i +
∆t

N

N
∑

j=1

Pn
ij(w

n
j − wn

i ) + ∆tun, w0
i = w0i, (5.2)

where now

un =
(∆t)2

ν + (∆t)2





1

N2

N
∑

h,j=1

P (wh, wj)(w
n
j − wn

h)



+
∆t

ν + (∆t)2
(wd −mn), (5.3)

and we denoted by

mn =
1

N

N
∑

j=1

wn
j

the mean opinion value. This show that a different way to realize the constrained binary
dynamic (3.4) is given by

w∗ = (1− αP (w, v))w + αP (w, v)v − β (m(t)− wd)

− α
β

2
((P (w, v) − P (v,w))(w − v)) + Θ1D(w),

v∗ = (1− αP (v,w)) v + αP (v,w)w − β (m(t)− wd)

− α
β

2
((P (v,w) − P (w, v))(v − w)) + Θ2D(w).

(5.4)

Again preservation of the bounds is a difficult task and the Boltzmann equation is written
in the general form (3.14). Performing the same computations as in Section 4.1 we obtain
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the limiting Fokker-Planck equation (4.10) with the simplified control term

H[f ](w) =
4

κ
(wd −m) . (5.5)

The main difference now, is that when m(t) → wd the contribution of the control vanish,
H[f ](w) → 0, and the steady states corresponds to those of the unconstrained equation
by Toscani [42] in the case where the mean opinion is given by the desired state. In other
words, in the examples of Section 4.2, they are given by (4.14) and (4.16) in the limit case
κ → ∞. Therefore, in this case, the action of the control is weaker, since it is not able to
act on any opinion distribution with mean opinion given by the desired state.

Finally, from system (2.8)-(2.9), we can also generalize (3.4) with an agent dependent
action of the control. Following the same derivation as in Section 3 we have the binary
interaction rule

w∗ = (1− αP (w, v))w + αP (w, v)v −
β(w, v)

2
(Q(v)(v − wd) +Q(w)(w − wd))

− α
β(w, v)

2
(Q(w)P (w, v) −Q(v)P (v,w))(v − w) + Θ1D(w),

v∗ = (1− αP (v,w)) v + αP (v,w)w −
β(v,w)

2
(Q(v)(v − wd) +Q(w)(w − wd))

− α
β(v,w)

2
(Q(v)P (v,w) −Q(w)P (w, v))(w − v) + Θ2D(v),

(5.6)

where

β(w, v) =
4α2Q(w)

ν + 2α2(Q(v)2 +Q(w)2)
,

with property β(w, v)Q(v) = β(v,w)Q(w). In this case, sufficient condition for the preser-
vation of the bounds can be found provided that a minimal action of the control is admitted
by the agents, namely assuming that 0 < Q( · ) ≤ 1. Under the scaling (4.1) we obtain the
general Fokker-Plank equation (4.10) where now the control term reads

H[f ](w) =

(

2

κ

∫

I

(Q(w)(wd − w) +Q(v)(wd − v)) f(v) dv

)

Q(w). (5.7)

6 Numerical examples

In this section we report some numerical test obtained by solving the constrained Boltz-
mann equation with the binary interaction rule (3.4) for different kind of opinion models.
In the numerical simulations we use a Monte Carlo methods as described in Chapter 4
of [39]. We simulate equation (4.10) for particular choices of the parameters of the model
comparing the stationary solutions obtained in absence of control [42, 3] with different
increasing actions of the control term.

Quasi-invariant opinion limit

In the first numerical example we compare the solutions obtained with the Monte Carlo
method in the quasi-invariant opinion limit with the exact profile of the steady solution of

18



−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

k =10

 

 
ε =0.1
ε =0.01
ε =0.001
Exact

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

k =1

 

 
ε =0.1
ε =0.01
ε =0.001
Exact

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

k =0.1

 

 
ε =0.1
ε =0.01
ε =0.001
Exact

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

k =0.01

 

 
ε =0.1
ε =0.01
ε =0.001
Exact

Figure 4: Steady solutions of the Boltzmann equation with P (w, v) = 1 and D(w) = 1−w2

in the scaling (4.1) for different values of ε and ς = 3. Continuous lines represent the steady
profile of the Fokker–Planck equation. From left to right from top to bottom, we increase
the control action, diminishing the value of κ.

the Fokker–Planck model (4.10). We consider the particular case

P (w, v) = 1, D(w) = 1− w2, (6.1)

then exact solutions are described by (4.14).
In Figure 4 we simulate the evolution of the probability density f(w, t), using a sample

of Ns = 105 agents each of them interacting through the binary dynamic (4.5) for different
scaling values ε and Θ distributed uniformly on (−σ, σ), with σ2 = 3ες, ς = 3. Note that
the discrepancy of the steady profiles in Figure 4 is due to the fact we are simulating
the convergence of the Boltzmann equation towards its Fokker-Planck limit. Therefore
decreasing ε and increasing the size of the sample Ns we can obtain better approximations
of the Fokker–Planck profiles.

Sznajd-type model

In this test we consider a compromise propensity of the form

P (w, v) = γ(1− w2), γ ∈ R (6.2)
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Figure 5: Sznajd-type model at different times. The effect of concentration (γ = 1) on the
left, and separation (γ = −1) are visible for the uncontrolled case (κ = ∞). The action
of a mild control κ = 1 and a strong control κ = 0.1 forces the dynamic towards different
desired states, respectively wd = −0.25 and wd = 0.5. As expected the process needs a
larger amount of time to control the separation dynamic.

in absence of diffusion D(w) = 0. Note that, when the initial mean opinion m(0) = 0, the
quasi-invariant opinion limit in absence of control is governed by the mean-field Sznajd’s
model [41, 3]

∂tf = γ∂w
(

w(1 − w2)f
)

. (6.3)

The model (6.3) can be solved explicitly and gives [3]

f(w, t) =
e−2γt

((1 −w2)e−2γt + w2)3/2
f0

(

w

((1− w2)e−2γt + w2)1/2

)

, (6.4)

where f0(x) is the initial distribution. For γ > 0 we have concentration of the profile around
zero, conversely for γ < 0 a separation phenomena is observed and the distribution tends
to concentrate around w = 1 and w = −1.
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wd = 0.25 wd = 0.5 wd = 0.75 wd = 0.95

κ = 10 1.7139e-01 3.428e-01 5.1351e-01 6.5032e-01

κ = 5 1.1468e-01 2.2653e-01 3.3844e-01 4.2362e-01

κ = 1 1.0592e-03 1.6027e-03 1.5460e-03 1.2877e-03

κ = 0.5 7.0990e-07 9.0454e-07 6.9543e-07 4.9742e-07

Table 1: L2 distance between wd and the average opinion m at time T = 2 for the controlled
Sznajd-type model with separation interactions.

We simulate the binary dynamic with control corresponding to the above choices start-
ing from an initial mean opinion m(0) = 0. Our aim is to explore the differences between
the controlled concentration and separation dynamics. We choose a scaling parameter
ε = 0.005 and a number of sample agents of N = 105.

In Figure 5 we simulate the evolution of f(w, t) for the concentration (γ = 1) and
separation (γ = −1) cases. Starting from the uniform distribution on I , we investigate
three different cases: uncontrolled (κ = ∞), mild control (κ = 1) towards desired state
wd = −0.25 and strong control (κ = 0.1) towards wd = 0.5. The solution profiles in the
uncontrolled case, κ = ∞ coincides with the exact solution profile given by (6.4). Observe
that separation phenomena implies a slower convergence towards the desired states.

We complete the tests just presented with Table 1, where we measure the L2 distance
between the average opinion m at final time T = 2 and the desired state wd, in the
separation case, (γ = −1). We compare the errors for decreasing values of κ and for
different values of the desired state wd, showing that more effective control implies faster
convergence.

Bounded confidence model

Next, we consider the case of bounded confidence models, where the possible interaction
between agents depends on the level of confidence they have [27, 25]. This can be model
through a compromise function which accounts the exchange of opinion only inside a fixed
distance ∆ between the agent opinions

P (w, v) = χ(|w − v| ≤ ∆), (6.5)

where χ( · ) is the indicator function.
In Figure 6, we simulate the dynamic of the agents starting from an uniform distribution

of the opinions on the interval I = [−1, 1]. The confidence bound is taken ∆ = 0.2 and
the diffusion parameter σ = 0.01. We consider the case without control and with control,
letting the system evolve in the time interval [0 T ], with T = 200. In the left column figures
we represents the weak controlled case, with penalization parameter ν = 5000, and three
mainstream opinions emerge, on the right the presence of the control, ν = 5 is able to lead
the opinions to concentrate around the desired opinion, wd = 0.

Top row of plots shows the evolution of the dynamic at the particle level, with N = 200.
Bottom row represents the same dynamic at the kinetic level, simulation is performed with
a sample of Ns = 2× 105 particles with ε = 0.05.
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Figure 6: Bounded confidence model. On the left the control parameter ν = 5000 on the
right ν = 5. In the top row the result of a particle simulation with N = 200 agents where
the color scale depicts the opinion value. Bottom row represents the evolution of the kinetic
density. In both cases the simulation is performed for σ = 0.01 and ∆ = 0.2.

7 Conclusions

In this paper we introduced a general way to construct a Boltzmann description of optimal
control problems for large systems of interacting agents. The approach has been applied to
a constrained microscopic model of opinion formation. The main feature of the method is
that, thanks to a model predictive approximation, the control is explicitly embedded in the
resulting binary interaction dynamic. In particular in the so-called quasi invariant opinion
limit simplified Fokker-Planck models have been derived which admit explicit computations
of the steady states. The robustness of the controlled dynamics has been illustrated by
several numerical examples which confirm the theoretical results. Different generalizations
of the presented approach are possible, like the introduction of the same control dynamic
through leaders or the application of this same control methodology to swarming and
flocking models.
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