AODVv2-16: performance vs. loop freedom
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Abstract. We compare two evolutions of Ad-hoc On-demand Distance
Vector (AODV) routing protocol, i.e. DYMO and AODVv2-16. In partic-
ular, we apply statistical model checking to investigate the performance
of these two protocols in terms of routes established and looping routes.
Our modelling and analysis are carried out by the Uppaal Statistical
Model Checker on 3x3 grids, with possibly lossy communication.

1 Introduction

Ad hoc networking has gained popularity and is applied in a wide range of
applications, such as public safety and emergency response networks. Mobile Ad-
hoc Networks (MANETS) are self-configuring networks that support broadband
communication without relying on wired infrastructure. Routing protocols of ad-
hoc networks are main factors determining performance and reliability of these
networks. They specify the way of communication among different nodes by
finding appropriate paths on which data packets must be sent.

In this work, we focus on two evolutions of the Ad-hoc On-demand Distance
Vector (AODV) [20] protocol to investigate their performance and to analyse if
they may yield routing loops. AODV is one of the four protocols standardised
by the IETF MANET working group. The protocol finds alternative routes on
demand whenever needed, meaning that it is intended to first establish a route
between a source node and a destination (route discovery), and then maintain a
route between the two nodes during topology changes (route maintenance).

Different studies of protocols, especially for large scale networks, are mostly
done by simulation techniques and test-bed experiments. These are valuable
techniques for performance analysis, however they do not allow us to simulate
the systems for all possible scenarios. As a consequence, unexpected behaviours
and flaws appear many years after the development of protocols. Formal analysis
techniques allow to screen protocols for flaws and to exhibit counterexamples to
diagnose them. For instance, model checking [6] provides both an exhaustive
search of all possible behaviours of the system, and exact quantitative results.

Statistical Model checking (SMC) [24] is a technique combining model check-
ing and simulation, aiming at providing support for quantitative analysis as well
as addressing the size barrier to allow analysis of large models. It relies on choos-
ing sampling traces of the system and verifying if they satisfy the given property
with a certain probability. In contrast to exhaustive approach, statistical model
checking does not assure a 100% correct result, but it is possible to restrict the



probability of an error occurring. In this work, we apply Uppaal SMC [8], the
statistical extension of the Uppaal model checker [2] to support the composition
of timed and/or probabilistic automata. In Uppaal SMC, two main statistical
parameters a and €, in the interval [0, 1], must be specified by the user; the num-
ber of necessary runs is then computed by the tool using the Chernoff-Hoeffding
bounds. The tool provides a value in the confidence interval [p—e, p+e] indicat-
ing the probability p of the intended property. Parameters « and € represent the
probability of false negatives and probabilistic uncertainty, respectively.

Since its first definition, AODV has seen several versions and improvements.
In particular, DYMO [21] is an evolution of AODV supporting path accumula-
tion: whenever a control message travels via more than one node, information
about all intermediate nodes is accumulated in the message and distributed to
its recipients [7]. Several studies have shown that both AODV and DYMO suffer
from routing loops [5,10,14,19], i.e. an established route stored in the routing
tables at a specific point in time that visits the same node more than once before
the intended destination is reached [11]. Caught packets in a routing loop can
saturate the links and decrease the network performance. Thus, loop freedom is
a critical and challenging property for any routing protocol.

Contributions. Our work has been strongly motivated by a recent version of
the AODVv2-16 Internet draft [23], containing a number of modifications to
overcome the looping problem of AODV and DYMO. As a first contribution,
we have modelled in Uppaal SMC the core functionality of both AODVv2-16
and DYMO protocols for 3x3 grid topologies (9 nodes). While the model for
AODVv2-16 is completely new, the model for DYMO is a refinement of those
appearing in [7,15]. In both cases, we have adopted a probabilistic model for
wireless communication to take into account both message loss and link breakage
at different rates. As a second contribution, we have compared the performance
of DYMO and AODVv2-16 w.r.t. four different workbenches: (i) route discovery,
(ii) number of routes found, (iii) optimal route finding, (iv) and packet delivery.
From our analysis, it emerges that DYMO performs significantly better than
AODVv2-16 w.r.t. all workbenches, in particular in the presence of a significant
message loss rate. Finally, as the third contribution, we investigate whether the
models for the two protocols may yield routing loops under extreme conditions,
such as message loss and link breakage. As expected, our model of DYMO faces
a number of loops; however the corresponding Uppaal model for AODVv2-16 is
loop free, with an accuracy of 99%, suggesting that the changes introduced in
this version of the protocol helps to reduce/remove loops.

Outline. In Sec. 2, we overview both DYMO and AODVv2-16. In Sec. 3, we
briefly discuss the Uppaal models of the two protocols based on their RFCs [21,
23]. In Sec. 4 and 5, we present the results of our analysis w.r.t. performance
and loop occurrences. In Sec. 6, we draw conclusions and review related work.

2 DYMO and AODVv2-16: two evolutions of AODV

This section provides a brief overview of DYMO and AODVv2-16 protocols. In
both protocols, each node maintains a routing table (RT) containing information
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about the routes to be followed when sending messages to the other nodes of
the network. The collective information in the nodes’ routing table is at best a
partial representation of network connectivity as it was at some times in the past;
in the most general scenario, mobility together with node and communication
failures continually modify that representation.

We report a scheme of the DYMO protocol [21] with an injected packet having
the source node s and destination node d. When s receives the data packet, it first
looks up an entry for d in its routing table. If there is no such entry, it broadcasts
a rreq message through the network. Afterwards when an intermediate node
receives the rreq, it first checks whether or not the information in the message
is new. If this is not the case, the receiving intermediate node discards the rreq
and the processing stops. If the information is new, the receiving node updates
its routing table based on the information in the rreq. Then, it checks if it
has a route to the destination d. If this information is provided, intermediate
node sends a rrep back to the source s as well as to the destination d. By this,
DYMO establishes bidirectional routes between originator and destination. On
the other hand, if the intermediate node does not have any route to d, it adds
its own address to the rreq and rebroadcasts the message.

When next intermediate node receives the rebroadcast rreq, it updates (if the
message is new) the routing table entry associated with s and the corresponding
intermediate sender node and repeats the same steps executed by the former
intermediate node. Finally when the destination d receives the rreq, it updates
its routing table for the source node s and all the intermediate nodes that have
rebroadcast the rreq, and then sends a unicast rrep that follows the reverse
path towards s. Each node receiving the rrep will update the routing table
entry associated with d and intermediate nodes.

Nodes also monitor the status of alternative active routes to different destina-
tions. Upon detecting the breakage of a link in an active route, an rerr message
is broadcast to notify the other nodes about the link failure. The rerr message
contains the information about those destinations that are no longer reachable
toward the broken link. When a node receives an rerr from its neighbours, it
invalidates the corresponding route entry for the unreachable destinations.

The architecture of the AODVv2-16 protocol [23] is quite similar to that of
DYMO considering some differences. One of the main differences of AODVv2-16
is to avoid sending rrep by intermediate nodes. When AODVv2-16 broadcasts
a rreq, it waits to get the rrep back only from the destination of the rreq. It
means that intermediate nodes do not send the rreps to the source of the rreq
even if they have active routes through the destination node. This behaviour will
increase the time needed for route discovery (routing tables in AODVv2-16 are
not updated as often as in DYMO), decreasing the performance of the protocol®.

2.1 Degrading performance to avoid routing loops

Different studies have proved the presence of loops in both AODV and DYMO
protocol [5,10,14,19]. Here, we report a simple example to show how a loop can
occur in DYMO, and how this is avoided in AODVv2-16.

3 Due to lack of space, we highlight the design differences between two protocols in [16].
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Fig. 1. Presence of a loop in DYMO.

The network in Fig. 1 consists of three nodes that are connected in a linear
topology. Let’s assume that node s has a pkt to send to node d. It initiates
the route discovery and broadcasts a rreq. Node i gets the rreq, updates its
routing table for node s, adds itself as an intermediate node in the rreq of s,
and rebroadcasts the rreq, Fig. 1(1). Node s and 4 receive the rreq. Node s
drops the message since the received message is its own rreq and node d updates
its routing table for node s and i and since it is the rreq destination, it sends a
rrep back through the path to the originator of the rreq, i.e. node s. Node i gets
the rrep from d, updates its routing table for d, adds itself as an intermediate
node in rrep of d and sends the rrep to s. Finally, node s receives the rrep of
d, Fig. 1(1), updates its routing table for i and d and sends the pkt to node i
to be delivered to d, Fig. 1(2).

Afterwards, the link between s and i breaks and node i has a pkt to send
to s. Node i becomes aware of the link breakage and broadcasts an rerr to its
neighbours. Assume the rerr from i is lost in the reception of d, resulting in
node d not being notified about the link breakage, Fig. 1(3). Next when node i
has another pkt to send to s, and it knows already that there is no valid route
to s, it initiates a rreq to its neighbours. Node d receives the rreq and it has
the valid route to s. Node d, as the intermediate node, sends the rrep to i, Fig.
1(4). Node i receives the rrep from d and updates its routing table for node s
with new information. In this situation, node i sends its pkt to d since node 1i’s
next hop through s is d. Node d then sends the pkt to i as node d’s next hop
through s is i. Finally, the pkt is circulated in a loop, Fig. 1(5).

Protocol designers have overcome the looping problem of DYMO by incorpo-
rating several changes in the new version (AODVv2-16). In this current version,
if route discovery is initiated the intermediate nodes which have active routes
through the destination do not send the rrep to the originator, meaning that
the destination of the rreq has sole responsibility for sending the rrep back
to the originator. By this, they have solved the problem of having loops in the
network, but the performance level has decreased.

In AODVv2-16, the routing tables can be updated if:
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— “If AdvRte is more recent than all matching LocalRoutes.
— “If the sequence numbers are equal, Check that AdvRte is safe against routing loops
compared to all matching LocalRoutes, If LoopFree(AdvRte, LocalRoute) returns TRUE,
compare route costs:
—If AdvRte is better than all matching LocalRoutes, it MUST be used to update the
Local Route Set because it offers improvement.
—If AdvRte is not better (i.e. it is worse or equal) but LocalRoute is Invalid, AdvRte
SHOULD be used to update the Local Route Set because it can safely repair the existing
Invalid LocalRoute.” [ [23], page 28]

Here, LocalRoutes stores previously received messages, AdvRte contains the in-
formation about newly received message, and LoopFree (AdvRte, LocalRoute):=
(Cost (AdvRte) <= Cost(LocalRoute)).

There are more conditions in the specification of the AODVv2-16 indicating
when to update routing tables, leading to less information being stored, hereby
decreasing the performance. For instance, routing tables in AODVv2-16 are not
updated in the scenario where sequence numbers are the same, the message is
received via a longer path, and the link toward a destination is broken, although
updating would have helped to fix broken paths. In addition, the sending of rrep
by intermediate nodes is not specified in AODVv2-16. This leads to routes being
established more slowly than in DYMO, since the rreq has to travel all the way
to the destination node and rrep has to be sent back along the whole path, from
the rreq destination to the rreq originator.

3 Uppaal models of AODVv2-16 and DYMO

In this section, we briefly explain our AODVv2-16 automata and provide some
modifications of the Uppaal SMC model of [15] for DYMO®?. As in [15], both
protocols are represented as parallel compositions of node processes, where each
process is a parallel composition of two timed automata, the Handler and the
Queue. This is because each node maintains a message queue to store incoming
messages and a process for handling these messages; the workflow of the handler
depends on the type of the message. Communication between nodes i and j is
only feasible if they are neighbours, i.e. in the transmission range of each other.
This is modelled by predicates of the form isconnected[i|[j] which are true if
and only if i and j can communicate. Communication between different nodes i
and j are on channels with different names, according to the type of the control
message being delivered (rrep, rreq, rerr).

Messages (arriving from other nodes) are stored in the queue, by using a
function addmsg(). Only messages sent by nodes within the transmission range
may be received. Unlike the model of [15] our Queue is essentially a probabilistic
timed automata. Uppaal SMC features branching edges with associated weights
for the probabilistic extension. Thus we define an integer constant loss, with
0 <loss < 100, and a node can either lose a message with weight loss or receive
it with weight (100—loss).

* The reader can consult our models at http://users.abo.fi/mokamali/SOFSEM2018.



The Handler automaton, modelling the message-handling protocol, is far
more complicated and has around 22 locations. The implementation of the two
protocols differs for this automaton. The Handler is busy while sending mes-
sages, and can only accept one message from the Queue once it has completely
finished handling the previous message. Whenever it is not processing a mes-
sage and there are messages stored in the Queue, the Queue and the Handler
synchronise via channel imsg[ip|, transferring the relevant message data from
the Queue to the Handler. According to the specification of the protocols, the
most time consuming activity is the communication between nodes, which takes
40 ms on average [21,23]. This is modelled in the Handler by means of a clock
variable t, set to 0 before transmission, so that a delay between 35 and 45 ms is
selected uniformly at random.

Based on DYMO and AODVv2-16 specifications, rreqs can be resent the
maximum of 3 times in the presence of message loss. The major differences
between AODVv2-16 and DYMO, are the absence of intermediate rreps and also
conditions regarding updates of the routing tables. As we explained in Section
2, AODVv2-16 tries to find the whole path through the destination node and it
does not rely on the rreps from intermediate nodes that have routes through the
destination node (intermediate nodes do not generate any rrep message even if
they have active routes through the destination node).

Finally, we report the main changes which have been introduced in our Up-
paal SMC model of DYMO w.r.t. that proposed in [15]:

— In the DYMO model by [15], two connected nodes could get disconnected
while a node is waiting to transmit a message (waiting time of 40ms), which
could cause a potential deadlock in the system. For our experiments, we
modify this behaviour and assume that two connected nodes cannot get
disconnected during this period of time which is the case in reality (the
probability that two nodes disconnect upon communication is too low).

— We minimised the DYMO automaton of [15] by removing a number of re-
dundant locations and transitions that were modelling the same procedure.

— We have also modelled the resending of rreq for the maximum number of 3
times, when control messages, i.e. rreq, rrep and rerr, can get lost. This
was done by adding new locations and transitions.

— In the current version of DYMO Uppaal model, when a node receives a
message from its neighbour it first checks the message sequence number. If
it is recent then it updates its routing table for the message originator and
for the stored intermediate nodes in the message. If the sequence number is
not recent, the message is simply dropped without any routing table update.

For further details the reader is referred to our technical report [16].

4 Performance analysis on static grids

We replay the experiments of [7,15] to compare DYMO and AODVv2-16 on
3x3 grid topologies with possibly lossy channels. Furthermore, we investigate



one more property, namely packet delivery. More precisely, we consider four
different workbenches to compare the two protocols: 1. a probabilistic analysis
to estimate the ability to successfully complete the protocol finding the requested
routes for a number of properly chosen scenarios; 2. a quantitative analysis to
determine the average number of routes found during the routing process in the
same scenarios; 3. a qualitative analysis to verify how good (i.e. short) are the
routes found by the routing protocol. 4. a probabilistic analysis to investigate
the number of delivered packets to their corresponding destinations. We conduct
our experiments using the following set-up: (i) 2.3 GHz Intel Quad-Core i7, with
16GB memory, running the Mac OS X 10.9 “Maverick” operating system; (ii)
Uppaal SMC model-checker 64-bit version 4.1.19. The statistical parameters of
false negatives («) and probabilistic uncertainty (€) are both set to 0.01, leading
to a confidence level of 99%. For each experiment with these parameters, Uppaal
SMC checks several hundred runs of the model, up to 26492 runs (cf. Chernoff-
Hoeffding bound). We run our experiments for the message loss rates used in [7],
namely 0%, 10% and 30%, and then also for 40% to obtain more precise results.

4.1 Successful route requests

In the first set of experiments we consider four specific nodes: A, B, C and D; each
with particular originator/destination roles. Our scenarios are a generalisation
of those of [15] (as we consider larger networks) and assign roles as follows:

(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) A is sending to B first and then B is also sending to C;

(iii) A is sending to B first and then C is sending to D.

Up to symmetry, varying the nodes A, B, C and D on a 3x3 grid, we have
5184 different configurations. From this number we deduct 4518 configurations
because they make little sense in our analysis, as the source and the destination
node coincide. This calculation yields 666 different configurations. As we will
repeat our simulations for four different loss rates, this makes in total 2664
experiments.

Initially, for each scenario no routes are known, i.e. the routing tables of each
node are empty. Then, with a time gap of 35-45 ms, two of the distinct nodes
receive a data packet and have to find routes to the packet’s destinations. The
query in Uppaal SMC syntax has the following shape:

Pr[<=10000] (<>(tester.final && emptybuffers() &&
art [0IP1][DIP1].nhop!=0 && art[0IP2][DIP2].nhop!=0))

The first two conditions require the protocol to complete; here, tester refers
to a process which injects to the originators nodes (tester.final means that
all data packets have been injected), and the function emptybuffers() checks
whether the nodes’ message queue are empty and the Handler is idle (is not
busy with processing messages). The third and the fourth conditions require
that two different route requests are established. Here, art [o][d].nhop is the
next hop in o’s routing table entry for destination d. As soon as this value
is set (is different to 0), a route to d has been established. Thus, the whole



‘ loss=0% ‘ st. dev. ‘ loss=10% ‘ s. dev. ‘ loss=30% ‘ st. dev. ‘ loss=40% ‘ st. dev.

DYMO 0.99 0.00 0.99 0.00 0.89 0.06 0.65 0.14
AODVv2-16| 0.99 0.00 0.98 0.00 0.72 0.14 0.45 0.20

Table 1. Route establishment on 3x3 grid networks (o = ¢ = 0.01).

query asks for the probability estimate (Pr) satisfying the CTL-path expres-
sion <>(tester.final && emptybuffers() && art[0IP1][DIP1].nhop!=0
&% art[0IP2][DIP2].nhop!=0) within 10000 time units (ms); as in [15] this
bound is chosen as a conservative upper bound to ensure that the analyser ex-
plores paths to a depth where the protocol is guaranteed to have terminated.

In Table 1 we provide the results of our query for both models. More precisely,
we report the average probability to satisfy the required property in all 666
configurations. This is done for four different loss rates. Note that in the case of
perfect communication, our analysis shows that the probability to successfully
establish a required route in our setting can be estimated to be at least 0.99. We
should add here that increasing message loss rate leads an increase in the number
of runs to complete the simulation. This is because unreliable communication
channels make the routing process longer in order to resent control messages.
In other words, the number of runs is affected by the lower success probability
which requires a larger number of runs to provide confidence intervals.

We can see that on the 3x3 grid with perfect communication the reliabil-
ity of the two protocols is quite similar. However, in the presence of message
loss, DYMO performs better than AODVv2-16. In fact, the higher the loss rate,
the bigger the gap between the two protocols. More precisely, with a 10% loss
rate DYMO performs better than AODVv2-16, whereas with 30% and 40% loss
rate the gap between two protocols becomes more obvious (DYMO performs
much better than AODVv2-16). It should be also noticed that the results of the
simulations on DYMO are more homogeneously distributed around the average
probability, as it appears from the smaller standard deviation.

4.2 Number of route entries

The second analysis proposed in [15] takes into account the capability to build
other routes while establishing a route between two specific nodes. Routing tables
are updated whenever control messages are received. Both protocols update for
the whole discovered paths by forcing path accumulation (storing the information
about intermediate nodes in control messages).

We check the property:

E[<=10000,26492] (max:total knowledge())

where the function total knowledge () counts the number of non-empty entries
appearing in all routing tables built along a run of the protocol, and the function
max returns for all runs of the simulation, the maximum number of non-empty
entries. This calculation is done for all different configurations; the result of the
analysis is the average over all configurations. The reader should notice that this



‘ loss 0% ‘ st. dev. ‘ loss 10% ‘ st. dev. ‘ loss 30% ‘ st. dev. ‘ loss=40% ‘ st. dev.
DYMO| 37.27 7.68 37.42 6.18 34.68 5.86 31.27 5.39
AODVv2-16| 34.01 5.93 34.38 5.76 34.57 5.91 31.66 5.36

Table 2. Route quantity on 3x3 grid networks (26492 runs for each experiment).

kind of query is different from the previous one. It has the form E[..](..),
where the letter “E” stands for expected value estimation, as the result of the
query is a value and not a probability. Since the number of runs is not determined
by value estimation, we set 26492 runs for our simulations to guarantee a 99%
confidence level. The time bound remains as 10000.

We repeat the same analysis of [15] on our 3x3 grid by considering four
different loss rates. In total we did 2664 experiments, one for each configuration
with a different loss rate. The results of our analysis are reported in Table 2.
Table 2 shows that during the routing process DYMO establishes more routes
than AODVv2-16 (37 versus 34 routes), in the absence of message loss. This gap
remains the same when having 10% message loss rate. The analysis shows that
increasing the rate of the message loss leads to have similar behaviour of DYMO
and AODVv2-16 (having the same number of route entries).

4.3 Optimal routes

The results of the previous section tell us that in our 3x3 grid, DYMO is more ef-
ficient than AODVv2-16 in populating routing tables while establishing routing
requests. In this section, we provide a class of experiments to compare the abil-
ity of two protocols in establishing optimal routes, i.e. routes of minimal length,
according to the network topology. As explained in [15, 18], all ad-hoc routing
protocols based on rreg-broadcast can establish non-optimal routes when, for
instance, the destination node does not forward the rreg-message. This phe-
nomenon is more evident in a scenario with unreliable communication.

We replay the same experiments of [15]. We checked the following property:

Pr[<=10000] (<>(tester.final && emptybuffers() &&
art [0IP1][DIP1].hops==min_path && art[0IP2][DIP2].hops==min_pathl)).

Here, the third and the fourth conditions require that two different route requests
are established. In fact, art [0o][d].hops returns the number of hops necessary
to reach the destination node d from the originator o, according to o’s routing
table. Furthermore, we require this number to be equal to the length of the
corresponding optimal route (which has been previously computed).

In this experiment we are not interested in checking all non-empty routing
entries but only those which are directly involved in the two routing requests.
This property is checked on all 666 configurations with four different loss rates.
Notice that this time we ask for a probability estimation, so the result is going to
be a probability. The statistical parameters of our simulations are o = ¢ = 0.01.

Table 3 says that the probability to establish optimal routes in the two rout-
ing protocols is very close when having no message loss. Actually, in the presence



‘ loss 0% ‘ stand. dev. ‘ loss 10% ‘ stand. dev. ‘ loss 30% ‘ stand. dev. ‘ loss=40% ‘ stand. dev.

DYMO| 0.94 0.20 0.84 0.18 0.67 0.17 0.48 0.17
AODVv2-16| 0.95 0.19 0.86 0.18 0.58 0.19 0.37 0.19

Table 3. Optimal routing on 3x3 grid network. (o = € = 0.01).

of message loss, there is still a gap in favour of DYMO. This gap would become
bigger if we would focus only on the optimality of the second route request, which
is launched slightly after the first one. This is because DYMO works better than
AODVv2-16 when routing tables are not completely empty.

4.4 Packet delivery

The packet delivery property differs from the successful route request property,
in that the route establishment property only checks if the source node has the
information about the destination node, however the packet delivery property
checks if the injected packets are delivered to the destination at the end. Indeed,
there might be a situation where an originator node has the information about
the destination node and sends its packet to the next node along the path to
the destination node, but the next node itself does not have valid information
about the destination node. As a consequence, all the packets stemming from the
originator node will be lost, hence the packets cannot arrive at the destinations.
This property in Uppaal SMC syntax is as following:

Pr[<=10000] (<>(tester.final && emptybuffers() && empty_queues()==0
&& packet_delivered()==2))

Here, the third and the fourth conditions require that the two packets are de-
livered at their destinations; empty_queues() is a function checking whether
or not there is any packet in the queue of any nodes. When this function re-
turns 0, it shows that there is no more packet in the queues of nodes. Function
packet_delivered() returns the number of delivered packets which must be 2 at
the end, given that we have injected two packets for our experiments. Thus, the
whole query asks for the probability estimate (Pr) satisfying the CTL-path ex-
pression <>(tester.final && emptybuffers() &% empty_queues()==0
&% packet_delivered()==2) within 10000 time units (ms); as in [15] this
bound is chosen as a conservative upper bound to ensure that the analyser
explores to a depth where the protocol is ensured to have terminated.

The results in Table 4 show that AODVv2-16 works worse than DYMO w.r.t.
the packet delivery property as it tries to find the whole path to the destina-
tion node, whereas DYMO relies on replying back from the intermediate nodes.
Moreover, routing tables in AODVv2-16 are not updated regularly due to the
more restricted routing table updates in AODVv2-16. Therefore, the probability
that all packets are delivered to the destination nodes is lower in AODVv2-16.

5 Loop analysis on grids with link breakage

We run our experiments, looking for loops on 3x3 grids during the routing pro-
cess, under the assumption that links between nodes can break with a high
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‘ loss 0% ‘ stand. dev. ‘ loss 10% ‘ stand. dev. ‘ loss 30% ‘ stand. dev. ‘ loss=40% ‘ stand. dev.

DYMO| 0.99 0.00 0.98 0.00 0.78 0.09 0.50 0.16
AODVv2-16| 0.99 0.00 0.97 0.01 0.60 0.16 0.35 0.18

Table 4. Packet delivery on 3x3 grid networks (o = ¢ = 0.01).

probability. We model link breakage by modifying the Queue automaton so that
when a control message is received by the queue of a node (using a function
addmsg()) with probability of 100-1oss, the link between the sender node and
the receiver can break with a fixed probability breaks. Since link breakage is
one of the main factors causing routing loops, we assign this value to 80, so
that with a very high probability the link between the sender and the receiver
fails. Furthermore, in order to increase the traffic in the network we inject three
packets in total. The slightly new scenario is explained below.

We consider again four specific nodes: A, B, C and D; each with particular
originator /destination roles. We assign roles as follows: (i) A is the only origi-
nator sending the first packet to B, and afterwards sends the second and third
packets to C; (ii) A is sending to B first and then B is also sending the second
and third packets to C; (iii) A is sending to B first and then C is sending the
second and third packets to D.

For simplicity, in order to work with a reasonable number of experiments,
second and third packets have the same originators and destinations, so the
number of configurations up to symmetry will remain the same, i.e. 666. In our
experiments we check the number of loops in all 666 different configurations
(how many loops exist in the network) and we show how many configurations
have routing loops i.e. in how many configurations an injected packet can be
circulated between nodes. This gives 2664 experiments in total for each protocol.
Our experiments can be represented using the following Uppaal SMC syntax:

E[<=10000;26492] (max :numberofloops())

Function numberofloops() counts the number of loops found along a run
of the protocol, and the function max returns for all runs of the simulation,
the maximum number of loops. We maintain the same number of runs as for
performance analysis, i.e. 26492, to guarantee a 99% accuracy.

Table 5 depicts the maximum number of loops considering different message
loss rate in different configurations for both protocols. The results of our analysis
show that when message loss rate increases, the number of loops in the networks
for DYMO also increases. For instance when having 0% message loss, the number
of loops in the network is 1 and when message loss increases to 10% or more
number of loops in the network increases to 2. Unlike DYMO, the rate of message
loss rate does not have any effect on the number of loops in the network for
AODVv2-16 as we cannot find routing loops while verifying AODVv2-16.

Table 6 shows the number of configurations having loops. Results for DYMO
show with 0% message loss there are 10 configurations out of 666 that have loops
in the network. This value is increased to 11 with 10% message loss, and when
message loss is increased to 30%, the number of configurations that have loops
goes up to 13. The table depicts when message loss increases to 40%, the number
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| loss 0% | loss 10% | loss 30% | loss 40% | loss 0% | loss 10% | loss 30% | loss 40%
1 2 2 2 DYMO 10 11 13 11
0 0 0 0 AODVv2-16 0 0 0 0

DYMO
AODVv2-16

Table 5. Number of loops in different = Table 6. Number of configurations that
configurations. have loops.

of configurations that have loops decreases to 11. In contrast to DYMO, there
is no configuration in AODVv2-16 that has routing loops.

6 Conclusions and related work

Our work has been strongly inspired by recent version of AODVv2-16 [23] where
several modifications were proposed to overcome looping problem of DYMO (and
previous versions of AODVv2). We believe that the protocol designers accepted
the performance hit in order to ensure that the protocol is loop free. To the best
of our knowledge, our work is the first to investigate the looping property of
AODVv2-16 and compare the performance of DYMO and AODVv2-16.

In this paper, we modelled the AODVv2-16 protocol and investigated the
performance of the protocols DYMO and AODVv2-16 in 3x3 grids, with possibly
lossy communication, as well as checking the loop freedom property for both
protocols. Our analysis is performed using the Uppaal SMC (release 4.1.19). We
were able to show how the performance of the more recent AODVv2-16 has
been worsened compared to the preceding DYMO, especially in the case of lossy
communication. DYMO can cause routing loops whereas our extensive analysis
was not able to find loops in AODVv2-16. This result encourages us to pursue
towards a formal proof of loop freedom for AODVv2-16.

Formal analysis of MANETSs and their protocols is a challenging task, and
their formal verification have attracted the attentions from formal methods com-
munity [1,3,4,7,13,15,17,19]. There are number of papers which apply (statis-
tical) model checking to AODV and its variants, to test the performances of
the protocol(s). Fehnker et al. [9] used the Uppaal model checker [2] to analyse
systematically basic qualitative properties of the AODV routing protocol in all
network topologies up to five nodes. Hofner and Mclver [15] compare AODV
and DYMO on arbitrary networks up to 5 nodes with perfect communication,
relying on the Uppaal SMC model checker (release 4.1.11). Dal Corso et al. [7]
extends and generalises the work of [15] to 4x3 grids with lossy communication.

There are also several studies on loop freedom of AODV and DYMO. Van
Glabbeek et al. [14] have studied the loop freedom of the AODV protocol and
they have showed that AODV is not loop free and sequence numbers do not guar-
antee loop freedom. Namjoshi et al. [19] have investigated the looping property
of DYMO and they have proved this protocol causes routing loops. There are
several other studies that confirm existence of routing loops in AODV [5,10,12].
In a recent paper, Yousefi et al. [25] have applied their extension of actor-based
modelling language bRebeca to model AODVv2-11 [22] (a previous version of
AODVv2) where they have proved that the loop freedom property of AODVv2-
11 does not hold. The authors had reported the existing loop scenario to protocol
designers and the protocol has been modified in the newer version (AODVv2-13).
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This appendix is for refereeing only; it depicts the timed automata Queue for
reliable and unreliable communication as well as for link breakage.

A Queue Automaton in presence of reliable and unreliable
communication

100-loss  100-loss
addmsg(msg_global) addmsg(msg_global)

c P ©

!
sip:IP loss H i loss
isconnected(sip,ip) : H :
rrep[sipllip]? L ¥ K
|
\ 1! / .
—————————————— sip:IP
:/ ng—Io(ss lobal) ™ N ,’/isconnecpted(sip,ip)
CTRIIEIT N rerr[sip]? J
l0ss AN sip:IP h
sip:IP isconnected(sip,ip)
isconnected(sip,ip) pkt[sip][ip]?
rreq[sip]? addmsg(msg_global)
nextmsg()!=0 && idle[ip] o h
create_msg(), newpkt[ip][tip]?
delete_msg() addmsg(createpkt(tip,ip)) )

B Queue Automaton in presence of link breakage

sip:IP sip:IP
drop(ip,sip) drop(ip,sip)
_breaks ______ _breaks
______ 3 / -
\ | | i
| | ! 1
100—breaksi | i :100—breaks: 100-loss
! _
! ! ' i i addmsg(msgglobal)
_______ | | ! 1 |
\: : : : | loss |
isconnected(sip,ip) | | | i | .'"_d)
¥ rreplsip]lip]? i ! ! : : !
! A
H ! E S ! | | @)
< T R | I i | .
100—Ioss(4)'\ | ) | | i iD.i
____________________ ! ——————- isconnected(sip,ip)
addmsg(msgglobal) | less ________ V. ) i rerr[sip]?
I

sip:IP
isconnected(sip,ip)

@ rreq[sip]?

(Mextmsg(1=0 && idle[ip] _ siplP
imsg[ip]! newpkt[ip][tip]? |sconnec_ted_(5|p,|p)
pkt[sip]lip]?

msgglobal=msglocal[0],
deletemsg()

ddmsg(createpkt(tip,ip)) addmsg(msgglobal)

-
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