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Abstract 9 

In this study, we investigate the effects of electric field assisted ion exchange, EF-IE, on 10 

potassium exchange for sodium ion exchanges in of the soda borosilicate and soda lime silicate 11 

glasses. The results show that applying an electric field with the intensity of 1000 V cm-1 for 12 

few minutes produces an exchanged layer with a thickness comparable to the conventional 13 

chemical strengthening for 4h. There is a critical E-field that increases the mobility and, 14 

therefore, the diffusion coefficient of the potassium in the glasses. The increase is, perhaps, 15 

related to the evolution of the glass structure due to the penetration of potassium ions under an 16 

E-field. Structural studies by micro-Raman spectroscopies reveal that the structure of 17 

exchanged layer changes by subjecting to EF-IE: the changes can be explained by the theory 18 

of Cation Induced Relaxation of Network, CIRON.  19 

According to the Vickers’ indentations, strong compressive stress is generated in the glass by 20 

EF-IE; however, the bending strength improvement is limited because of the presence of large 21 

surface defects and the stress distribution inhomogeneity. 22 
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Introduction  3 

Glass has a fundamental role in different everyday-life applications such as electronics, cell 4 

phones, solar cells, architectural components, and containers, although its typical brittleness. 5 

Theoretically, glass is considered as the strongest human- made material; in practice, flaws 6 

make it unreliable and weak from the mechanical point of view1, 2, 3, 4. Among the several 7 

reinforcement techniques proposed during the years, chemical tempering is a straightforward 8 

and efficient technique for improving the mechanical performances of alkali silicate glasses2, 9 

5, 6, 7. 10 

A compressive stress is produced on the glass surface by chemical tempering, or chemical 11 

strengthening, which prevents and limits the formation and propagation of cracks. In a typical 12 

process, small sodium or lithium ions are swapped for larger potassium ions diffusing into the 13 

glass. Because of the diffusion nature of the process, treatments have to be carried out at 14 

relatively high temperature for several hours; for this reason, stress relaxation can occur and 15 

make strengthening less efficient than expected 1, 2, 3, 6, 8, 9. The process can be enhanced by 16 

applying ultrasonic waves, microwave heating or electric fields (E-Fields) 10, 11, 12. In particular, 17 

electric field assisted ion exchange, EF-IE, has been carried outconducted to modify the 18 

refractive index of glass by producing a concentration of elements, like silver or chromium, for 19 

optical devices 13, 14, 15, 16.  20 

The application of an E-field can change the governing mechanism of ion exchange from 21 

diffusion to forced migration, thus accelerating the process and modifying the concentration 22 

profiles, i.e., its shape and depth 3, 17, 18. The EF-IE produces inhomogeneous stress distribution 23 

in glass that be neglected in optical applications because of the limited depth of exchanged 24 



layer. Nevertheless, the thick exchanged layer required for mechanical applications, which is a 1 

must for improving the strength 5, 6, can change the geometry and, in extreme cases, it can lead 2 

to sample failure. Therefore, controlling the depth of the ion-exchanged layer during the 3 

process represents a critical and open issue. Nontheless, particular geometries, i.e. cylinders, 4 

can fulfill the required uniformity of compressive stress in the sample.  5 

In the present work, we investigated the E-field assisted ion exchange in alkali borosilicate and 6 

soda lime silicate glasses with specific attention to the generated potassium profile, the glass 7 

structure evolution, and final strength. 8 

Experimental procedure 9 

Soda borosilicate (BS, Fiolax) and soda lime silicate (SLS, Ar-Glas) glass tubes with outer 10 

diameter of 9.8 mm and the thickness of 0.6 mm and 1 mm, respectively, were, bought from 11 

SCHOTT AG to be used in the present work. The glass transition temperature was measured 12 

by a differential scanning calorimeter (DSC) (DSC2010, TA Instruments, USA); glass powder 13 

with a size lower than 200 µm was prepared by crushing the tubes in an agate mortar; then, the 14 

powder was poured into an aluminium pas and placed in the DSC instrument. The samples 15 

were heated up to 600°C with a heating rate of 10°C min-1; the glass-transition temperature 16 

was estimated according to ASTM E1356 norm19; The glass-transition temperature and the 17 

chemical composition are reported in Table 1.  18 

The tubes were ultrasonically cleaned in distilled water, washed with acetone and air-dried. 19 

Ion exchange treatments (IE) were carried out in pure potassium nitrate, Haifa – Eurochemicals 20 

(technical grade, ≥99.4%). Conventional chemical tempering was performed by a semi-21 

automatic furnace, TC 20A Lema, Parma, Italy, at 450°C for 4 h. The samples were kept 20 22 

min over the salt bath before and after the treatment to avoid thermal shocks. 23 
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Electric field-assisted ion exchange treatments (EF-IE) were performed by a modified chemical 1 

tempering furnace, TC 20S Lema, Parma, Italy. The salt bath temperature was kept at 2 

400±10°C during the treatment. The electrical field was varied between 100 V cm-1 to 2000 V 3 

cm-1 by a power supply, DLM 600 Sorensen; the current density limit was fixed at 8 mA cm-2 4 

to prevent spark formation because of the salt electrolysis near the electrodes. The applied 5 

voltage and current were monitored by a digital multimeter (DMM 2000, Keithley, Cleveland, 6 

USA); A a schematic of the setup used for samples preparations is drawn in Figure 1. 7 

Borosilicate glass samples were subjected to the electric field for duration as long as 10 min, 8 

while soda lime silicate tubes were treated by applying the field for 5 min because of the 9 

shattering of samples, which is observed for longer treatments. The glass resistivity variation 10 

against the applied electric field was measured by 4-point probe configuration and using time-11 

variant E-fields. The applied voltage was increased step by step, 5 V at each level, and dwelling 12 

time of 5 s. The electrodes resistivity in the salt was measured as a function of the electric 13 

current; the interference of electrodes, associated with salt electrolysis, was measured and 14 

removed from the recorded data according to the following steps. First, the variations of the 15 

electrode’s resistance were estimated as a function of electric current until the formed passive 16 

oxide layer on the electrodes is destroyed, and the resistivity drops. Then corresponding 17 

resistance to the electrodes is removed from the experimental data. The influence of generated 18 

gas can be neglected because of its limited production rate due to the applied current density 19 

limit (8 mA cm-2). . 20 

The mechanical strength of the samples was determined in air by four-point bending tests, 21 

using spans of 18 mm and 40 mm and loading rate of 1.1 MPa s-1. In this case, the samples 22 

were produced using 1000 V cm-1 E-field until the amount of potassium sent into the glass was 23 

comparable with that obtained by conventional ion-exchange at 450°C. The surface stress 24 
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generated by ion-exchange was estimated indirectly by Vickers indentations produced with 1 

maximum load of 20 N and dwelling time of 15 s. 2 

The potassium concentration profile was determined on the fracture surface of some tubes 3 

fragments; such pieces were stuck on an aluminum disc by using conductive carbon paste and 4 

then slightly coated with Pt-Pd alloy. The potassium concentration profiles were recorded by 5 

scanning electron microscope (JEOL, JSM5500) equipped with an electron dispersion x-ray 6 

spectrometer (EDS 2000, IXRF system, USA). The noise of the microprobe analysis was 7 

filtered by smoothing it with a low pass filter and considering the potassium concentration of 8 

the raw glass as the baseline, and afterward the experimental data was fitted using a modified 9 

complementary error function18. The chemical composition on the glass surface was also 10 

measured by EDS on the tubes before and after ion exchange.  11 

Micro-Raman analysis was carried out at room temperature under the excitation of 514.5 nm 12 

line of Ar-Kr gas laser.  The spectra were collected from two different points of the samples 13 

treated under E-field of 2000 V cm-1, using the same experimental setup described in a previous 14 

work20. The spectra collected from the region that underwent ion-exchange near the surface of 15 

glass are called “Edge”. The other group of spectra was collected from an area in the middle of 16 

glass, which has been not affected by ion exchange, is called “Bulk”. surface layer, underwent 17 

ion exchange, and the region unaffected by the exchange were called “Edge” and “Bulk”, 18 

respectively. The background of each spectrum was removed, and the spectrum was filtered to 19 

eliminate the high-frequency noise 21. The peaks corresponding to vibrational modes of silicon-20 

oxygen tetrahedra occurring in the wavenumbers   of 850 to 1300 cm-1 were fitted, and the peak 21 

integrals were used to calculate the relative distribution of the glass former units.  22 
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Results 1 

Figure 2 shows the current density as a function of time in BS samples subjected to the E-fields 2 

up to 2000 V cm-1 with a current density limit equal to 8 mA cm-2; the treatments were 3 

conducted in a molten potassium nitrate bath kept at 40010°C. The current density, gradually 4 

decreasing, is larger for higher applied fields. The current limit is achieved under an electric 5 

field of 2000 V cm-1. The current density is proportional to the E-field intensity and the inverse 6 

of glass resistance; one can conclude that the current density decrease is due to the larger 7 

resistance of the exchanged surface layer 22.  8 

The evolution of current density with time for SLS tubes, which are treated with the same 9 

condition to BS glass, is reported in Figure 3. The behavior is quite similar to that observed in 10 

borosilicate glass although the current limit is reached at 1000 V cm-1. SLS glass contains more 11 

alkali ions compared to BS one tubes and, therefore, its conductivity and current density are 12 

higher 23, 24, 25. This probably can account for the lower E-field at the current limit. 13 

The molar ratio between potassium oxide and the total amount of alkali oxides (Na and K), 14 

K2O/(K2O+Na2O), on the glass surface after EF-IE carried out conducted under 1000 V cm-1 is 15 

shown in Table 2. The molar ratio of the raw glass and of tubes simply only immersed in the 16 

salt at 450°C  for 5 min or treated by conventional ion exchange is shown for comparison.  We 17 

see that potassium completely replaces sodiumsodium is completely replaced with potassium  18 

on the external surface of EF-IE samples. A limited amount of potassium can be detected on 19 

the inner surface of the glass, which is probably related to the limited diffusion of potassium 20 

into the glass during the process26, 27.  21 

The potassium concentration profiles measured in BS samples subjected to EF-IE are shown 22 

in Figure 4; the experimental data was were smoothed and fitted by a modified complementary 23 

error which will be discussed later on (Eq. 1). The curves resemble a step-like profile and the 24 
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depth increases with the applied E-field. The profiles can be divided into three main regions: a 1 

first region ,where potassium is constant and maximum, is followed by a second one where the 2 

concentration suddenly decreases  to the raw glass situationamount. The exchanged layer 3 

thickness reaches 15 µm after subjecting to E-field of 1000 V cm-1 for 600 s, which is 4 

considerably deeper than the layer produced by conventional ion exchange at 450°C for 4 h, 5 

shown in Figure 4.. 6 

Figure 5 shows the potassium concentration profiles in SLS, the shape being similar to that 7 

revealed in BS glass. In this case, the E-field with the intensity of 100 V cm-1 is not strong 8 

enough to produce the constant concentration zone in 300 s.  By applying E-fields stronger 9 

than 500 V cm-1, it is possible to produce an exchanged layer with a depth comparable to that 10 

obtained by chemical strengthening at 450°C for 4 h, equal to 15 µm.  11 

The potassium concentration, CK(x,t), reported in Figure 4 and Figure 5 can be fitted by a 12 

modified complementary error function as suggested in a previous work 18: 13 

𝐶𝐾(𝑥, 𝑡) =
𝐶𝐾

𝑆

2
 𝑒𝑟𝑓𝑐(

𝑥−(
𝐷𝐸𝑡

𝑘𝐵𝑇
)

2√𝐷𝑡
)                           (1) 14 

where x is the distance from the surface, t the timeand t are the distance from the surface and 15 

time, respectively, , CKS the surface concentration, D the diffusion coefficient of potassium. E 16 

is the E-field intensity, T the absolute temperature and kB the Boltzmann constant.  17 

The diffusion coefficient, estimated by Eq. 1 for different applied E-Fields, is shown in Figure 18 

6. For BS glass it the coefficent is around 610-12 cm2 s-1 for E-field up to 1000 V cm-1; then it 19 

increases up to 1210-12 cm2 s-1 for E-field with intensity ofwhen 2000 V cm-1 is applied.. The 20 

diffusion coefficient for SLS glass is larger for SLS glassthan BS samples:; the coefficent  it is 21 

around 1010-12 cm2 s-1 for very limited E-field (up to 200 V cm-1) for the E-fields of 100 and 22 

200 V cm-1. We see that the coeffiencet increases with the applied E-field increase and it 23 Formatted: Superscript



becomes ; then, it increases up to  2010-12 cm2 s-1;  when the E-field is at 1000 V cm-1 or 1 

larger. 2 

.  The diffusion coefficient is related to the mobility of ions, µ, through Einstein relation, 3 

D=µkBT. Therefore, the different ion mobility in the two considered glasses can be accounted 4 

for explaining the observed differences in the diffusion coefficient. 5 

Figure 7 shows the glass resistivity evolution as a function of the “actual E-field,” which is 6 

estimated by removing the interference of electrodes. We see that the resistivity reaches a 7 

constant value for limited E-field intensities in SLS glass, while it is an increasing function of 8 

the E-field for BS glass; this is probably related to the different required activation energy for 9 

diffusion and structural evolution of glasses. It must be mention that the BS behavior might 10 

change under stronger E-field which can not be applied by using the mentioned  power supply. 11 

The BS glass behavior under strong E-fields is a fundamental question needed to be answered. 12 

Typical Vickers indentation patterns produced using load of 20 N are shown in Figure 8.  The 13 

compressive stress generated by ion exchange at 450°C for 4 h inhibits the crack propagation28, 14 

29. In glasses subjected to EF-IE, a relatively high compressive stress is generated on the surface 15 

that prevents also the nucleation of cracks 30, 31. 16 

The bending strength of samples subjected to EF-IE and conventional ion-exchange is reported 17 

in Table 3.  Ion exchange clearly improves the mechanical resistance of the glasses. The BS 18 

glass contains less sodium than SLS (Table 1); therefore, surface compression produced by IE 19 

in BS is lower than in SLS. The strength of BS samples subjected to EF-IE is larger than in 20 

conventionally treated onessamples. Conversely, for SLS tubes, EF-IE is less efficient than 21 

conventional treatment, if we consider the final strength as a gauge of ion-exchange effciency. 22 

Additional features regarding the strength can be pointed out from the Weibull distributions 23 

shown in Figure 9; the strength corresponding the failure probability, F, of 63.2% which is 24 

known as the characteristic strength, is also reported in the plots. The characteristic strength of 25 



BS glass increases from 72 MPa to 121 MPa after ion exchange; EF-IE improves the 1 

characteristic strength a bit more, up to 141 MPa although failure resistance is more scattered. 2 

Conventional ion exchange is also beneficial for SLS tubes, the characteristic strength 3 

increasing from 420 MPa to 133 MPa, much more than EF-IE. 4 

 5 

Discussion  6 

The chemical strengthening efficiency depends on the stress production by stuffing larger 7 

potassium ions into the glass. The EF-IE produces potassium concentration profiles with the 8 

same depth as conventional ion exchange and a slightly higher K concentration.  One may 9 

expect that the EF-IE strengthening is more efficient than the conventional strengthening 10 

because of the larger compression on the surface, as we can see in the case of BS glass. 11 

Conversely, the SLS tubes treated by EF-IE show significantly lower strength compared to the 12 

SLS samples treated by conventional ion exchange strengthening. but EF-IE strengthening of 13 

SLS tubes is not as influential as that expected from BS samples, especially when it is compared 14 

with conventional ion exchange strengthening. The distinction between the ion mobility and 15 

the diffusion of ions, which is probably related to the structural evolutions, may be accounted 16 

for the limited improvement of SLS glass using EF-IE.  17 

E-field pushes the alkali ions into the glass surface and an E-field, strong enough, can also 18 

change the governing mechanism of mass transfer. ; tThis occurs for example, in SLS samples 19 

treated under E-field in excess of 100 V cm-1 (Figure 2) sodium ions being completely replaced 20 

by potassium. 21 

Ingram et al. have reported that the exchanged layer has a higher resistivity compared to the 22 

raw glass 32, 33; consequently, the glass resistivity increases by increasing the depth of 23 

exchanged layer and the current density decreases.  The formation of an exchanged layer, which 24 



is more resistive, generates an inhomogeneous distribution of the E-field in the glass, the inner 1 

surface being subjected to a weaker E-field; this is responsible for the limited potassium 2 

diffusion into the glass on the inner surface of tubes (Table 2). The glass resistivity is the 3 

representative of the mobility of alkali ions under E-fields and, hence, the diffusion coefficient. 4 

The glass subjected to ion exchange can be considered as a bilayer material composed of bulk 5 

glass (i.e. the raw glass) and the exchanged layer. The resistivity resistiance can be described 6 

by an equivalent electrical circuit consisting of two resistances resistors in series; a schematic 7 

drawing of the circuit is shown in Figure 1210. The total resistivity resistance of sample, Rtotal,  8 

is a function of each layer thickness and resistivity, which can be expressed as: 9 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑥𝑅𝑒𝑥𝑐ℎ + (1 − 𝑥)𝑅𝑏𝑢𝑙𝑘     (2) 10 

where Rexch and Rbulk are the resistivity resistance of the exchanged layer and of the bulk, 11 

respectively. x is the ratio between the exchanged layer and the glass thickness. The resistivity 12 

resistance of the exchanged layer can be considered constant because of the constant 13 

concentration of potassium; therefore, the resistivity resistance of the exchanged layer and the 14 

total glass resistivity resistance can be calculated as: 15 

𝑅𝑒𝑥𝑐ℎ = 𝑅𝑏𝑢𝑙𝑘 + ∆𝑅                                         (3) 16 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑁𝑎(𝑥
∆𝑅

𝑅𝑁𝑎
+ 1)                                  (4) 17 

Considering the actual thickness of exchanged layer actual thickness, which is less than one 18 

percent of the overall glass thickness, the influence of the exchanged layer in Eq. 4 can be 19 

neglected and, therefore, the resistivity resistance of glass can be assumed equal to the 20 

resistivity of the bulk glass subjected to ion exchange. At constant temperature, the resistivity 21 

of glass containing only monovalent cations is a function of the E-field,E, and the drift 22 

velocity,, of cation4, 34:  23 

𝑅 = 𝜑
𝐸

𝜈
                                                          (5) 24 
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where  is a proportinality constant depending on the mpbility of ions which can be be 1 

estimated from: 2 

𝜑 =
𝐶𝐹2𝑘𝐵

𝑅𝑇𝑒
                                                       (6) 3 

where ν is the drift velocity of the charge carriers in the glass, F is the Faraday’s constant, R 4 

the perfect gas constanT temperaturet, C the ratio of charge carriers (sodium ions) n, over the 5 

total amount of mobile cations, N.; C can be considered equal to 1 here. e  is the electron 6 

charge=1e, kB Boltzmann constant. Due to the constant temperature of treatments,  can be 7 

considered constant.   8 

According to Eq. 5, glass resistivity is a linear function of the applied E-field unless the drift 9 

velocity of ions changes non-linearly with the E-field, which accounts for non-ohmic behavior. 10 

Figure 6 shows that the resistivity of SLS glass becomes constant at a certain E-field. 11 

Conversely, the resistivity of BS continuously increases although with decreasing rate. This is 12 

indicative of a non-linear increase of drift velocity with E-field. Similar behavior has been 13 

previously reported in silver-containing glasses subjected to E-field, silver clusters producing 14 

channels for ion conduction35, 36, 37, 38. The formation of such channels is probably responsible 15 

for the larger drift velocity and, therefore, for the abrupt increase of potassium diffusion 16 

coefficient at certain E-field as shown in Figure 6. The movement of larger potassium ions via 17 

sodium sites in the silicate glass structure might occur with breakig and rearrenging of the bods 18 

through cation-induced-relaxation-of-network (CIRON) as proposed by Ingram et. al. It is 19 

known that the alkali ion transport through the glass occurs by rearranging the Qn species 22, 20 

39. Vareshneya A.K. suggested that the movement of invading potassium ions and the 21 

accommodation of them in the sodium sites occur by bending or stretching of the bonds 22 

surrounding the host site beyond the strain limit. This causes a permanent change in the glass 23 

structure that might be responsible for the facilitated ions mobility and, consequently, the 24 

diffusion coefficient 6, 22, 39, which can be described as Q2+Q42Q3 (Table 4) 40. The new glass 25 
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structure contains more Q3 species, which are probably oriented to facilitate the alkali ions 1 

movement. The E-field of sufficient intensity can provide the required energy for breaking and 2 

reforming of the bonds. 3 

It is possible to observe the evolution of glass structure from comparing the Raman spectra 4 

collected from the layer undergone the Na/K exchange, called edge, and the bulk glass, which 5 

is not influenced by the invading potassium ions. In order to ease the comparison of the 6 

collected spectra, the background noise and fluorescence are removed: Figure 11 shows the 7 

final Raman spectra in the 800 to 1250 cm-1 region. The peak envelope in this window is 8 

corresponding to the region where the Raman peaks are mainly associated with the silicon-9 

oxygen stretching vibrations in silicate Qn units 41. This region is a convolution of different 10 

peaks mainly corresponding to the Q2, Q3 and Q4 species41, 42. We see that the peak shape of 11 

exchanged layer is different from the bulk in the BS sample which reveals a change of the 12 

degree of connectivity of the glass network (concentration of Qn units). In the case of SLS 13 

glass, the location of the peak maximum shifts to the higher wavenumbers. Such changes of 14 

Raman spectra unveil the generation of a new structure in the ion-exchanged layer. More 15 

studies are required in order to get a clear picture of the structural evolution during ion 16 

exchange and possible transitions such as phase separation particularly in the case of 17 

borosilicate glasses. Phase separation causes an abrupt change in glass resistivity of samples 18 

because of the production of two different phases (glasses); this phenomenon appears as a 19 

spontaneous change in the current density curves of samples. Since the current density of 20 

samples does not change in such a fashion, it is fair to state that no phase separations occur in 21 

these treatments.  22 

It seems that an E-field, sufficently strong, can provide the required energy ofor the possible 23 

structral modifications. The current passing through the glass can also increase the temperature 24 

because of Joule heating and cause structural and stress relaxation39, 43. Nevertheless, due to 25 



the limited thickness of the tubes, 0.6 mm (BS) and 1 mm (SLS), the sample temperature can 1 

be considered constant and in equilibrium with the molten salt, at a temperature below the 2 

stress relaxation temperature. The limited cracking after Vickers indentations (Figure 9) also 3 

confirms the presence of surface compression in samples subjected to EF-IE. 4 

The strengthening efficiency depends on the amount of replaced alkali ions on the surface 2, 6; 5 

since SLS glass has twice sodium than BS, one should expect larger compressive stress and 6 

higher strength in the former; this matches reasonably with the obtained experimental 7 

dataresults from Vickers’ indentations. It is worth mentioning that some original defects are 8 

larger than the exchange layer and can not be completely “reinforced” by IE process; such 9 

flaws are responsible for limited strength values and account for the small Weibull modulus 10 

estimated for EF-IE samples. It should be noted that only the exterior surface of the tubes was 11 

subjected to EF-IE; therefore, the influence of original defects on the interior surface is crucial. 12 

This can be clearly observed in the limited Weibull modulus for BS glass treated by EF-IE. 13 

According to Vickers indentations results (Figure 8), there is strong compression on the surface 14 

of EF-IE samples and the thickness of the exchanged layer is comparable to that produced by 15 

IE; one can conclude that the limited strength of SLS samples treated by EF-IE is rather related 16 

tocorrelates with the non-symmetric stress distribution along the thickness than to ana thin 17 

compression layer in the surface insufficient surface compression. As the outer surface is 18 

strongly compressed, the inner one undergoes under a significant, if not huge, tension; 19 

consequently, the glass becomes very vulnerable to the defects of the inner surface and during 20 

bending tests, failure can start from the inner surface at relatively small loads. 11  This also 21 

explains the lower Weibull modulus calculated for samples treated by EF-IE.  22 



Summary and Conclusions 1 

Electric field assisted ion exchange, EF-IE, was used to accelerate replacing sodium by with 2 

potassium on the surface of soda-lime silicate and soda borosilicate glasses. EF-IE produces 3 

step-like concentration profiles in glasses with a depth comparable to the conventional ion 4 

exchange in a significantly shorter time. The diffusion coefficient of potassium in glass changes 5 

when it is subjected to E-fields; it seems that there is a critical E-field that can increase the 6 

mobility of ions significantly; this phenomenon needs to be studied in detail.During the EF-IE, 7 

the glass structure changes by rearranging the Qn species according to Q2+Q42Q3; this 8 

facilitates the ion movement.   EF-IE produces a strong compressive stress on the surface of 9 

glass that prevents crack nucleation during Vickers’ indentation; however, in this study, the 10 

strength augmentation is probably hindered by the presence of large surface defects.  11 

The electric field assisted ion exchange can be used in principle to produce a strong 12 

compressive stress in soda lime silicate and soda borosilicate glass; however, the process 13 

should be accurately controlled. This requires a deeper look into the stress build-up of stress in 14 

glass by EF-IE; moreover, procedures for balancing the residual stress such as inverting the 15 

polarization should be proposed and investigated.  16 
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Figure 1 Schematic of the experimental setup for sample preparation and the instrumentation 

for monitoring and controlling the electric field 

 

Figure 2 Current density as a function of time in BS tubes subjected to different E-fields 

(current density limit: 8 mA cm-2). 

 

Figure 3 Current density as a function of time in SLS tubes subjected to different E-fields 

(current density limit: 8 mA cm-2). 

 

Figure 4 Relative potassium concentration profiles for BS tubes subjected to electric field-

assisted ion exchange (EF-IE) at 400°C, and conventional ion exchange at 450°C for 4h   

 

Figure 5 Relative potassium concentration profiles for SLS tubes subjected to electric field-

assisted ion exchange (EF-IE) at 400°C, and conventional ion exchange at 450°C for 4h   

 

Figure 6 Diffusion coefficient estimated for variable electric fieldsfor samples treated at 400 

°C. (a) borosilicate, (b) soda lime silicate glass 

 

Figure 7 Evolution of resistivity as a function of applied electric field for glasses immersed in 

potassium nitrate at 400°C; The second x-axis presents the applied E-field regarding the power 

supply out put voltage 

 

Figure 8 Vickers indentations on glasses, borosilicate and soda lime silicate glass: (a) and (d) 

as cut, (b) and (e) conventional ion exchanged, (c) and (f) exchanged inder E-filed (2000 V cm-

1 



 

Figure 9 Weibull distributions of : (a) BS; (b) SLS glass.  Fitting lines used for the 

determination of Weibull modulus (m) and specific characteristic strength (reported values) are 

shown ( F is the failure probability) 

 

Figure 10 Equivalent circuit model of a glass subjected to electric field assisted ion exchange 

 

Figure 11 Micro-Raman spectra of glasses subjected to EF-IE (2000 V cm-1) in 800-1250 cm-

1 region: (a) borosilicate glass, (b) soda lime silicate glass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 Chemical composition and transition temperature of the glass tubes used in this work. 

 
Chemical composition (wt%) Glass 

transition 
temperature SiO2 B2O3 Al2O3 CaO MgO BaO Na2O K2O 

Borosilicate (Fiolax) 75.0 10.5 5.0 1.5 -- -- 7.0 -- 565.0°C 
 Soda lime silicate (AR-Glas) 69.0 1.0 4.0 5.0 3.0 2.0 13.0 3.0 525.0°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 K2O/(Na2O+K2O) molar ratio (%) on the tubes surface in different conditions: as 

bought raw glass, after ion exchange (IE), simply kept in the salt bath for 5 min and after E-

Field assisted ion exchange (EF-IE) 

 Raw glass IE 5 min 
EF-IE 

Outer surface Inner surface 

Borosilicate 0 90 60 100 60 

Soda lime silicate 10 80 80 100 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Average bending strength and corresponding standard deviation for raw glass tubes 

and samples subjected to conventional ion exchange (IE) and E-Field assisted ion exchange 

(EF-IE). 

 Borosilicate Soda Lime Silicate 
Raw glass IE EF-IE Raw glass IE EF-IE 

Average strength 
 (MPa) 

64 122 137 122 387 199 

Standard deviation 
 (MPa) 18 17 36 26 74 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 Relative concentration of Qn species in glass estimated from Raman spectra in Figure 

9; numbers in parentheses show the random error cumulated upon fitting. 

 

 
Soda Borosilicate 

Soda Lime 
Silicate 

Bulk Edge Bulk Edge 
Q1 10.6(0.4) 8.4(0.8) 8.5(0.7) 8.7(0.0) 
Q2 29.9(0.9) 24.9(0.3) 18.2(0.6) 13.9(0.1) 
Q3 37.0(0.2) 44.7(0.1) 53.9(0.2) 59.6(0.1) 
Q4 22.5(0.4) 22.1(0.0) 19.3(0.1) 17.8(0.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




