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1. Introduction

Starting with the introductory work [21], where elliptic operators acting on suit-

able functions spaces on network have been �rst introduced, several works related to

a wide set of physical phenomena whose dynamics are carried out on graphs, have

appeared, e.g., concerning the study of heat di�usion, see, e.g. [23], applications to

quantum mechanics, see, e.g., [27], the stochastic modelisation of neurobiological ac-

tivities, particularly with respect to the analysis of the FitzHugh-Nagumo equation,
see, e.g., [1, 4, 5, 9], and references therein, the quest for invariant measures, see,

e.g., [2], the problem of suitable types of estimates, as in the case of the Gaussian

one, see, e.g., [17], and references therein, etc.

A powerful technique often used to address aforementioned problems, consists

in introducing a suitable in�nite dimensional product space and then study the
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di�usion problem exploiting a semigroup theory approach, see [24] and references

therein, for a detailed analysis of the latter subject. Moreover, to what concerns

standard problems of existence and uniqueness for the solution of a di�usion prob-

lem, as well as the spectral properties of related the leading semigroup, the attention

has often been put on the determination of proper boundary condition for the par-

ticular di�usion problem one is interested in.

When the focus is on di�usion problems governed by a second order di�eren-

tial operator, then typical boundary condition are the so-call generalized Kirchho�
conditions, see, e.g., [23]. Nevertheless, during recent years, also di�erent type of

rather general boundary conditions has been proposed. The latter is the case, e.g.,

of non-local boundary conditions, allowing for non-local interaction of non-adjacent

vertex of the graph, see, e.g., [9, 17], dynamic boundary conditions, see, e.g., [5, 25],

etc.

The main goal of the present work is to generalize previously mentioned ap-

proaches in order to achieve a uni�ed perspective. We will start from a completely

general non-local di�usion problem, endowed with non-local boundary conditions

which will be both dynamic and static. In such a setting, we state our main result,

namely we prove a Gaussian upper bound for the semigroup generated by a proper

in�nitesimal generator acting on a suitable Hilbert space. We would like to under-

line that latter type of bound turns out to be extremely powerful when one wants

to prove existence and uniqueness of a solution to a stochastic partial di�erential

equation (SPDE), since this immediately leads the operator to be Hilbert-Schmidt,
allowing to relax regularity assumptions on the coe�cients of the SPDE.

The general approach that can be used to show the Hilbert-Schmidt property
of the leading semigroup, typically relies on the study of its spectral properties.

However it is not always possible to give a precise characterization of the semigroup

eigenvalues, particularly whit respect to di�usive problems on a graph. In such a

case a complete characterization of the spectrum can be obtained by considering

the topological structure of the graph. Alternatively, one can try to derive a heat
kernel which leads to prove a Gaussian upper bound for the semigroup. The latter

approach will be the one we will pursue in the present paper.

The work is so structured, in Section 2, exploiting the theory of sesquilinear

form, we will introduce a suitable in�nite dimensional space, showing that our

equation can be rewritten as an in�nite dimensional problem where the di�erential

operator generates a strongly continuous analytic semigroup, hence obtaining the

well-posedness of the abstract Cauchy problem. Then, in Section 2.2, we will prove

a Gaussian estimates for the operator, while in Section 3 a suitable stochastic mul-

tiplicative perturbation will be introduced in order to show both the existence and

the uniqueness of a mild solution, in a suitable sense, under rather mild assumptions

on the coe�cients. Eventually, in Section 4, a stochastic optimal control application

will be proposed.
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2. General framework

Let us consider a �nite connected network identi�ed with a graph G composed

by a �nite number n ∈ N of vertices, indicated by v1, . . . , vn and linked by a �nite

number m ∈ N of edges, indicated by e1, . . . , em and assumed to be of unitary

length. For the sake of readability, let us also introduce the following notations:

we use Latin letters i, j, k = 1, . . . ,m, to denote quantities related to edges, so

that ui will stand for a function on the edge ei, for i = 1, . . . ,m; while we use

Greek letters α, β, γ = 1, . . . , n, to denote quantities related to vertices, so that dα,

α = 1, . . . , n, will be the values of the unknown function evaluated at the vertex

vα, with α = 1, . . . , n.

In order to describe the structure of the graph G we will exploit the incidence
matrix Φ := (φα,i)n×m, see, e.g., [24], which is de�ned as follows: Φ := Φ+ − Φ−,

where the sum is intended componentwise, with Φ+ =
(
φ+
α,i

)
n×m, resp. Φ− =(

φ−α,i
)
n×m, is the incoming incidence matrix, resp. the outgoing incidence matrix.

In particular, both of them have value 1, whenever the vertex vα is the initial point,

resp. the terminal point, of the edge ei, and 0 otherwise. The latter implies that

φ+
α,i =

{
1 vα = ei(0) ,

0 otherwise
, φ−α,i =

{
1 vα = ei(1) ,

0 otherwise .

Aforementioned de�nition is consistent with the idea that if |φα,i| = 1, then we the

edge ei is called incident to the vertex vα, and it remains de�ned the set

Γ(vα) = {i ∈ {1, . . . ,m} : |φαi| = 1} ,

of all the incident edges to the vertex vα.

In order to consider the most general framework, we allow the dynamic of the

unknown function u, de�ned on the network, to depend non-locally on the underly-

ing graph G, which implies to take into account non-local interactions, namely the

process taking place on the edge ei can be a�ected by the process that takes place

on the edge ej , i, j = 1, . . . ,m, even if the edge ej is not directly connected with

the edge ei.

We also introduce, see [11], the ephaptic incidence tensor, which is de�ned as

follows

I := I+ − I− , I+ := Φ+ ⊗ Φ+ , I− := Φ− ⊗ Φ− ,

being ⊗ the Kronecker product of two n×m matrices, de�ned as

(A⊗B)αiβj := aαibβj ,

in particular (A⊗ B) is a n2 ×m2 matrix and, in our case, it is worth to mention

that the matrix (A⊗B) is symmetric.

Using previous notation, in what follows we will denote by ιαiβj , resp.
+ια,iβ,j , resp.

−ιαiβj , the entries of the matrix I, resp. of the matrix I+, resp. of the matrix I−.
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Remark 2.1. We underline that the entry ιαiβj represents the in�uence that the vertex

vβ , as an endpoint of the edge ej , plays on the vertex vα which is an endpoint of

the edge ei.

We will thus de�ne the weighted incidence tensor D =
(
δα,iβ,j

)
, α, β = 1, . . . , n,

i, j = 1, . . . ,m, as follows

δαiβj = cij(vβ)ιαiβj , (2.1)

where the function c is a smooth enough function that we will specify later on.

Eventually, we consider two di�erent type of boundary conditions. In particular

we will assume that the vertices vα, α = 1, . . . , n0, 1 ≤ n0 ≤ n, have some non-local

static generalized Kirchho� type conditions, whereas we equip the remaining nodes

vα, α = n0 + 1, . . . , n, with some non-local dynamic boundary conditions.
Let us thus consider the following di�usion problem on a �nite and connected

graph G,


u̇j(t, x) =
∑m
i=1

(
ciju

′
i

)′
(t, x) +

∑m
i=1 pijui(t, x) , t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: duα(t) , t ≥ 0 , l, j ∈ Γ(vα) , j = 1, . . . ,m ,∑n
β=1 bαβd

u
β(t) =

∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vα) , t ≥ 0 , α = n0 + 1, . . . , n ,

ḋuα(t) = −
∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vβ) +

∑n
β=1 bαβd

u
β(t) , t ≥ 0 , α = 1, . . . , n0 ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dui (0) = d0i , i = 1, . . . , n0 ,

(2.2)

where we have denoted by u̇(t, x) the time derivative of the unknown function u,

whereas u′(t, x) denotes its space-derivative.

Moreover, for x ∈ [0, 1], t ∈ [0, T ], we de�ned the unknown functions u(t, x) and

du(t), by

u(t, x) = (u1(t, x), . . . , um(t, x))
T
, du(t) =

(
du1 (t), . . . , dun0

(t), dun0+1(t), . . . , dun(t)
)T

,

and we consider the n × n matrix B = (bα,β)α,β=1,...,n, de�ned as B := B1 + B2,

B1 being the n× n matrix de�ned as

B1 :=



b1,1 . . . b1,n
...

. . .
...

bn0,1 . . . bn0,n

0 . . . 0
...

. . .
...

0 . . . 0


, (2.3)
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while B2 is the n× n matrix de�ned as

B2 :=



0 . . . 0
...

. . .
...

0 . . . 0

bn0+1,1 . . . bn0+1,n

...
. . .

...

bn,1 . . . bn,n


.

If not stated otherwise, we use 〈·, ·〉m, resp. | · |m, to denote the standard scalar

product, resp. the related norm, in Rm.
Throughout the paper we will assume the following assumptions to hold:

Assumptions 2.2. (i) for any i, j = 1, . . . ,m, we have that cij(x) ∈ C1(0, 1), also

assuming that the matrix C := (cij)i,j=1,...,m is positive de�nite, uniformly

in [0, 1], namely for any x ∈ [0, 1], ȳ = (y1, . . . , ym) ∈ Rm, there exists

λC > 0 such that

〈C(x)ȳ, ȳ〉m =

m∑
i,j=1

cij(x)yjyi ≥ λC |ȳ|2m ; (2.4)

(ii) for any i, j = 1, . . . ,m we have that pij(x) ∈ L∞(0, 1), also assuming that

the matrix P := (pij)i,j=1,...,m is negative semi-de�nite, uniformly in [0, 1],

namely for any x ∈ [0, 1], ȳ = (y1, . . . , ym) ∈ Rm, there exists λP ≥ 0 such

that

〈P (x)ȳ, ȳ〉m =

m∑
i,j=1

pij(x)yjyi ≤ −λP |ȳ|2m ; (2.5)

2.1. The abstract setting

In what follows we introduce the abstract setting which allows us to rewrite

equation (2.2) as an abstract Cauchy problem. In particular, let us �rst consider

the following spaces

X2 :=
(
L2([0, 1])

)m
, resp. Rn ,

equipped with the standard inner products, denoted by 〈·, ·〉2, resp. 〈·〉n, and norms

denoted by |·|2, resp. |·|n. Then, we de�ne the product Hilbert space X 2 := X2×Rn ,
equipped with the inner product〈(

u

du

)
,

(
v

dv

)〉
X 2

:=

m∑
j=1

∫ 1

0

uj(x)vj(x)dx+

n∑
α=1

duαd
v
α ,

where u , v ∈ X2, du, dv ∈ Rn , with associated norm denoted by |·|X 2 . Analogously,

we de�ne the Banach space

Xp := (Lp([0, 1]))
m
, X p := Xp × Rn , p ∈ [1,∞] ,
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Remark 2.3. In [17, 25] the authors consider a di�usion problem similar to the one

represented by eq. (2.2), and where the boundary conditions depend on some phe-

nomenological positive constants µ and ν. For ease of notation, we have dropped

latter constants in the present work without loose of generality. In fact, our re-

sults remain valid also when previous constants are explicitly considered, since it is

su�cient to consider some weighted spaces of the form

X2
µ :=

m∏
j=1

L2([0, 1];µjdx) , Rnν :=

n∏
α=1

R
1

νi
.

Recalling the de�nition of incidence matrix Φ given in Sec. 2, we introduce the

associated Kirchho� operators Φ+
δ , Φ−δ : (H1(0, 1))m → Rn, which are de�ned as

follows

Φ+
δ u
′ :=

 m∑
i,j=1

n∑
α=1

+δαi1ju
′
i(v1), . . . ,

m∑
i,j=1

n∑
α=1

+δαinju
′
i(vn)

T

,

Φ−δ u
′ :=

 m∑
i,j=1

n∑
α=1

−δαi1ju
′
i(v1), . . . ,

m∑
i,j=1

n∑
α=1

−δαinju
′
i(vn)

T

,

where the notation +δ, resp. −δ, means that ι in equation (2.1) belongs to I+, resp.

I−, namely

+δαiβj =

{
cij(vβ)ιαiβj if ιαiβj ∈ I+ ,

0 otherwise ,
, −δαiβj =

{
cij(vβ)ιαiβj if ιαiβj ∈ I− ,
0 otherwise .

Let us then introduce the di�erential operator (A,D(A)) as

Au =

 (c1,1u
′
1)
′
+ p1,1u1 . . . (c1,mu

′
1)
′
+ p1,mum

...
. . .

...

(cm,1u
′
1)
′
+ pm,1u1 . . . (cm,mu

′
m)
′
+ pm,mum

 ,

which has domain de�ned as

D(A) =
{
u ∈

(
H2(0, 1)

)m
: ∃ du(t) ∈ Rn s.t.

(
Φ+
)T
du(t) = u(0) ,(

Φ−
)T
du(t) = u(1) , Φ+

δ u
′(0)− Φ−δ u

′(1) = B2d
u(t)

}
.

Then, we de�ne the operator matrix

A =

(
A 0

C B1

)
, (2.6)

where C represents the feedback operator acting from D(C) := D(A) to Rn and

de�ned as follows

Cu :=

− m∑
i,j=1

n∑
β=1

δ1i
βju
′
j(v1), . . . ,−

m∑
i,j=1

n∑
β=1

δn0i
βj u

′
j(vn0), 0, . . . , 0

T

,
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and

D(A) =

{(
u

du

)
∈ D(A)× Rn : ui(vα) = duα , ∀ i ∈ Γ(vα), α = 1, . . . , n

}
.

Exploiting previous de�nitions, we can rewrite equation (2.2) as the following

abstract in�nite dimensional equation stated on the Hilbert space X 2{
u̇(t) = Au(t) , t ≥ 0 ,

u(0) = u0 ,
(2.7)

where

u := (u, du)
T

=
(
u1, . . . , um, d

u
1 , . . . , d

u
n0
, dun0+1, . . . , d

u
n

)T ∈ X 2 ,

and

u0 :=
(
u1(0, x), . . . , um(0, x), du1 (0), . . . , dun0

(0), 0, . . . , 0
)T ∈ X 2 .

Then we introduce the sesquilinear form a : V × V → R, where the space V is a

suitable subspace of X 2, see below, de�ned as

a(u,v) := 〈Cu′, v′〉2 − 〈Pu, v〉2 − 〈B1d
u, dv〉n − 〈B2d

u, dv〉n =

=

m∑
i,j=1

∫ 1

0

(
ci,j(x)u′j(x)v′i(x)− pi,j(x)uj(x)vi(x)

)
dx−

n∑
α,β=1

bαβd
u
αd

v
β ,

(2.8)

for any u, v ∈ X 2.

In particular, the subspace V, domain of the form a, is de�ned by the following

lemma

Lemma 2.4. Let us consider the linear subspace

V :=

{(
u

du

)
∈
(
H1(0, 1)

)m × Rn : ui(vα) = duα , ∀ i ∈ Γ(vα), α = 1, . . . , n

}
,

then V is densely and compactly embedded in X 2. In particular V is a Hilbert space
equipped with the scalar product

〈u,v〉V :=

m∑
j=1

∫ 1

0

(
u′j(x)v′j(x) + uj(x)vj(x)

)
dx+

n∑
α=1

duαd
v
α . (2.9)

The corresponding norm will be denoted by | · |V .

Proof. See, e.g., [11, Lemma 3.1] or [25, Lemma 3.1].

Remark 2.5. One of the main advantages in using the theory of sesquilinear form

is that, under suitable assumptions, a sesquilinear form a can be uniquely associ-

ated to an in�nitesimal generator of an analytic strongly continuous semigroup. In

particular, if we prove that the form a satis�es some regularity conditions, then

we also have a corresponding regularity for the associated semigroup. In the next

proposition we gather several properties satis�ed by the form a de�ned in (2.8). We
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would like to underline that such results have already been proved separately, and

under a di�erent setting, in di�erent works, see, e.g., [5, 17, 23, 25] and reference

therein. Nevertheless, for the sake of completeness, we will provide for the latter a

sketch of their proofs.

Proposition 2.6.

(i) If Assumptions 2.2 hold, then the form a : V × V → R de�ned in (2.8) is:

• continuous, i.e. it exists M > 0, such that

|a(u,v)| ≤M |u|V |v|V ; (2.10)

• X 2−elliptic, i.e. there exist λ > 0 and ω ∈ R, such that

a(u,u) ≥ λ|u|2V − ω|u|2X 2 ; (2.11)

• closed, i.e. V is complete with respect to the following norm

‖u‖2a := a(u,u) + ‖u‖X 2 ; (2.12)

(ii) If Assumptions 2.2 hold and the matrix B is negative de�ned, i.e. there exists
µ > 0 such that

〈Bȳ, ȳ〉n ≤ −µ|ȳ|2n ,∀ ȳ ∈ Rn ,

then a is coercive, namely it is X 2−elliptic with ω = 0, hence

a(u,u) ≥ λ|u|2V ; (2.13)

(iii) If Assumptions 2.2 hold and the matrices C, P and B are all symmetric, then
the form a is symmetric as well.

Proof. (i) To simplify notations, let us de�ne the following quantities

c̄ := min
x∈[0,1]

m∑
i,j=1

ci,j(x) , C̄ := max
1≤j≤m

m∑
i,j=1

ci,j(x) ,

p̄ := min
1≤j≤m

m∑
i,j=1

(1− pi,j(x)) , P̄ := max
1≤j≤m

m∑
i,j=1

(1− pi,j(x)) ,

b̄ := min
i,l

bi,l , B̄ :=

n∑
α,β=1

bα,β .

Proceeding as in [25, Lemma 3.2], we have that V, equipped with the inner

product de�ned in equation (2.9), is a Hilbert space, moreover it is a closed

subspace of (H1(0, 1))m ×Rn. From the continuous embedding of H1(0, 1)

into C(0, 1), see, e.g., [25, Lemma 3.2], we obtain

|dui | ≤ max
1≤j≤m

max
x∈[0,1]

|uj(x)| ≤ max
1≤j≤m

|uj |H1(0,1) ≤
m∑
j=1

|uj |H1(0,1) ,
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hence the norm de�ned in eq. (2.9) is equivalent to

〈u,v〉V :=

m∑
j=1

(u′j(x)v′j(x) + uj(x)vj(x))µjdx , (2.14)

and, again by [25, Lemma 3.2], it also follows that there exists K > 0 such

that

|dui | ≤ K|u|V , i = 1, . . . , n ,

then, de�ning

c̃ := min{c̄, p̄} , C̃ := max{C̄, (1− B̄)K2, P̄} ,

we have that the norm generated by V is equivalent to the one generated

by a, which, from the completeness of V, implies the closure of a. In what

follows the Hilbert space V will be equipped with the inner product (2.14)

and the corresponding norm.

Concerning the continuity of a, from assumptions 2.2, we have

|a(u,v)| ≤
m∑

i,j=1

∫ 1

0

(
|ci,j(x)u′i(x)v′j(x)|+ |pi,j(x)ui(x)vj(x)|

)
dx+

−
n∑

α,β=1

bα,β |duα||dvβ | ≤

≤ 2L

m∑
i,j=1

〈ui, vj〉H1((0,1);µjdx) −K2B̄|u|V |v|V ≤

≤ 2L

 m∑
j=1

|uj |2H1((0,1);µjdx)

 1
2
 m∑
j=1

|vj |2H1((0,1);µjdx)

 1
2

+

−K2B̄|u|V |v|V =

=
(
2L− B̄K2

)
|u|V |v|V ≤M |u|V |v|V .

where L, resp.M , is de�ned by L := max{C̄, P̄}, resp. byM := (2L−K2B̄).

Moreover assumptions 2.2 also implies that the form

a1 := 〈Cu′, v′〉2 − 〈Pu, v〉2 ,

is X 2−elliptic. In fact, by [8, Cor. 4.11], see also [11], we have, for some

constant K > 0, that the following inequality holds

max
x∈[0,1]

u(x) ≤ K‖u‖
1
2

L2‖u‖
1
2

H1 ,

hence, introducing a2 := −〈Bdu, du〉, we can decompose a as a = a1 + a2,

so that the claim follows from [22, Lemma 2.1], see also [11, Th. 2.3] and

[10, Lemma 2.1, Cor. 2.2].
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(ii) from assumptions 2.2 and denoting by µC , resp. µP , the constant in equation

(2.4), resp. equation (2.5), we have that

a(u,u) =

∫ 1

0

(〈C(x)u′(x), u′(x)〉m − 〈P (x)u(x), u(x)〉m) dx− 〈Bdu, dv〉

≥
∫ 1

0

(
µC |u(x)|2m + µP |u(x)|2m

)
dx+ µB |du|2 ≥ λ‖u‖V .

(2.15)

(iii) it immediately follows from the very de�nition of a, see eq. (2.8).

In force of Proposition 2.6, we recall the following result, see [25, Lemma 3.3].

Proposition 2.7. The operator associated with the form a de�ned in (2.8) is the
operator (A, D(A)) de�ned in equation (2.6).

Proof. See [25, Lemma 3.3] or [26, Prop. 1.51, Th. 1.52],

We end the present subsection characterizing the semigroup generated by the

operator (A, D(A)) de�ned in equation (2.6). Such result will be used later on to

prove the Gaussian bound, see Sec. 2.2 below.

Proposition 2.8. If assumptions 2.2 hold, then the operator associated with the
form a de�ned in equation (2.8), is densely de�ned, sectorial and resolvent compact,
hence it generates an analytic and compact C0−semigroup T (t). We also have the
following properties for the semigroup

(i) if the matrix B is negative de�nite, then the semigroup is uniformly exponen-
tially stable;

(ii) if the matrices C, P and B are symmetric, then the semigroup is self-adjoint;

(iii) if the matrices C and P are diagonal, and the matrix B has entries that are
positive o�-diagonal and it also satis�es

bαα +
∑
β 6=α

bαβ ≤ 0 , for any α = 1, . . . , n ,

then the semigroup is positive and X∞−contractive in the sense of [26, Ch.
2].

Proof. The main claim follows exploiting Lemma 2.4, Proposition 2.6, Proposition

2.7 and [15, Th. 1.2.1]. Concerning (i) the uniformly exponential stability it is

enough to see that the shifted form λ − a(·, ·) is accreative, whereas point (ii)

follows from the fact that the form a is symmetric, while point (iii) follows from

[11, Th. 2.3] and [23, Cor. 3.4].
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2.2. Gaussian bounds

In what follows we state our main result concerning Gaussian estimates and, in

order to achieve the result, we require assumptions stated in (2.2) as well as the

following

Assumptions 2.9. The matrices C and P are diagonal and B has entries that are

positive o�-diagonal and it satis�es, for any α = 1, . . . , n,

bαα +
∑
β 6=α

|bαβ | < 0 ,

Under the current assumptions we have that the semigroup T generated by A is

analytic, compact, positive, X∞−contractive and uniformly exponential stable on

X 2, see Proposition 2.8.

Let us also recall, see [25, Lemma 5.2]. the following lemma,

Lemma 2.10. Let us consider a set of functions uj : [0, 1]→ R, j = 1, . . . ,m, and
let us then de�ne the map Uu : [0,m]→ R by

Uu(x) := uj(x− j + 1) , if x ∈ (j − 1, j) ,

then the map U is a one-to-one map from (L2(0, 1))m onto L2(0,m). Also U is an
isometry if we consider (L2(0, 1))m with the norm

|u|(L2(0,1))m =

 m∑
j=1

|uj |L2(0,1)

 1
2

.

We then consider the product space X 2 := (L2(0, 1))m×Rn, hence, in virtue of

Lemma 2.10, de�ning Ω := (0,m)× (0, n), and

µ := dx⊕ δ1 ⊕ · · · ⊕ δn ,

where δx0
is the Dirac measure centred at x0, then we have that the map U : X 2 →

L2(Ω, µ) is an isomorphism. Since we have required assumptions 2.2 to hold, then

we know that the operator associated with the form a, see eq. (2.8), generates an

analytic and compact C0−semigroup, which we have de�ned as T (t), moreover we

have

Theorem 2.11. The semigroup T (t), acting on the space X 2 and associated to a,
is ultracontractive, namely there exists a constant M > 0 such that

‖T (t)u‖X∞ ≤Mt−
1
4 ‖u‖X 2 , t ∈ [0, T ], u ∈ X 2 . (2.16)

Proof. By the Nash-type inequality for weighted Lp−space, we have that there exists
a constant M1 > 0 such that

‖f‖L2(Ω,µ) ≤M1

(
‖f ′‖L2(Ω,µ) + ‖f‖L2(Ω,µ)

) 1
3 ‖f‖

2
3

L2(Ω,µ) ≤M1‖f‖
1
3

H1(Ω,µ)‖f‖
2
3

L2(Ω,µ) ,
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hence, for u ∈ V0, we have

‖u‖2X 2 =

m∑
j=1

‖uj‖22 +

n∑
i=1

|dui | ≤M2
1

m∑
j=1

‖uj‖
2
3

H1‖uj‖
4
3
2 +

n∑
i=1

|dui | ,≤

≤M2
1

 m∑
j=1

‖uj‖2H1 +

n∑
i=1

|dui |

 1
3
 m∑
j=1

‖uj‖2L1 +

n∑
i=1

|dui |

 1
3

≤

≤M2‖u‖
2
3

V0
‖u‖

4
3

X 1 ,

and the claim follows from the equivalence between the norms ‖ · ‖a and ‖ · ‖V0
, as

have been shown in Prop. 2.6 and [26, Lemma 5.2].

Moreover, Th. 2.11 implies the following

Corollary 2.12. The semigroup T (t) on X 2 satis�es

‖T (t)u‖X∞ ≤M
(

1− tω
t

) 1
4

e1+tω‖u‖X 2 ,

where ω < 0 is the spectral bound of the semigroup T (t).

Proof. The claim follows from Prop. 2.8, Th. 2.11 and [26, Lemma 6.5].

Besides the ultracontrattivity of T (t) together with Cor. 2.12, implies that the

semigroup has an integral Kernel, see [15, Lemma 2.1.2.]. More precisely let us de-

note by T̃ (t) := U−1T (t)U the similar semigroup, see, e.g., [18], acting on L2(Ω, µ),

being U the isomorphism introduced above. Then, Lemma [15, Lemma 2.1.2] gives

us that the action of
(
T̃ (t)

)
t≥0

, reads as follow(
T̃ (t)g

)
(·) =

∫
Ω

Kt(·, y)g(y)µ(dy) , g ∈ L2(Ω, µ) ,

for a suitable kernel Kt ∈ L∞(Ω×Ω). Besides, we can rewrite eq. (2.16) as follows

‖T (t)u‖X∞ ≤ eκ(t)‖u‖X 2 , t ∈ [0, T ], ,u ∈ X 2 ,

where

κ(t) := logM − 1

4
log t .

Then, applying [15, Th. 2.2.3], we can derive the following logarithmic Sobolev

inequality ∫
Ω

ũ log ũdx ≤ εa(u,u) + κ(ε)‖u‖2X 2 + ‖u‖2X 2 log ‖u‖X 2 , (2.17)

for any u ≥ 0, u ∈ V0 and ε > 0, and where ũ ∈ L2(Ω, µ) denotes the function

isometric to u under the isomorphism U . Evenually, inequality (2.17) implies the

next result
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Theorem 2.13. The Gaussian upper bound

0 ≤ Kt(x, y) ≤ cδt−
1
2 e−

|x−y|2
σt , (2.18)

holds for the heat kernel Kt introduced above, such that it holds

[T (t)g] (x) =

∫
Ω

Kt(x, y)g(y)µ(dy) , y ∈ L2(Ω, µ) .

Proof. The claim follows from [15, Th. 3.2.7], taking into account the logarithmic

Sobolev inequality (2.17), see, e.g., [23, Th. 4.8] and [17].

Exploiting Th. 2.13 it is also possible to prove the existence of a mild solution,
in a suitable sense, to equation (2.2) perturbed by a multiplicative Gaussian noise.

Before state latter result, let us denote by L2(X 2) the class of Hilbert-Schmidt
operator from X 2 to X 2, while | · |HS denotes the standard Hilbert-Schmidt norm.

We refer the reader to, e.g., [13, Appendix. C], for a dense rÃ©sumÃ© of the main

properties of Hilbert-Schmidt operators.

Proposition 2.14. Let assumptions 2.2-2.9 hold, then, for any t > 0, the semigroup
T (t) ∈ L2(X 2), moreover there exists M > 0 such that

|T (t)|HS ≤Mt−
1
4 .

Proof. Since

|T (t)|HS = |T̃ (t)|HS = |Kt|L2(Ω×Ω) ,

where Kt is the kernel de�ned in equation (2.18), then, by Th. 2.13, eq. (2.18), see

also [17, Cor.2], we obtain the existence of a constant C > 0 such that, ∀ t ∈ [0, T ],

it holds

|T (t)|2HS =

∫
Ω×Ω

|Kt(x, y)|2dxdy ≤ C
√

2πσt−1 ,

which implies the existence of a positive constant M such that, ∀ t ∈ [0, T ], the

following hold

|T (t)|HS ≤Mt−
1
4 .

3. The perturbed stochastic problem

In the present section we focus our attention on the problem (2.2) by perturbing
it with multiplicative Gaussian noise. Let us �rst consider the following complete,

�ltered probability space
(

Ω,F , (Ft)t≥0 ,P
)
, with respect to which, we state the
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following system

u̇j(t, x) =
(
cju

′
i

)′
(t, x) + piui(t, x) + gj(t, x, uj(t, x))Ẇ 1

j (t, x) ,

for t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: duα(t) , t ≥ 0 , l, j ∈ Γ(vα) , j = 1, . . . ,m ,∑n
β=1 bαβd

u
β(t) =

∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vα) , t ≥ 0 , α = n0 + 1, . . . , n ,

ḋuα(t) = −
∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vβ) +

∑n
β=1 bαβd

u
β(t) + g̃α(t, duα(t))Ẇ 2

α(t, vα) ,

for t ≥ 0 , α = 1, . . . , n0 ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dui (0) = d0i , i = 1, . . . , n0 ,

(3.1)

where, for every (j, α) ∈ {1, . . . ,m} × {1, . . . , n0}, W 1
j and W 2

α are independent

Wiener processes adapted to Ft−, while Ẇ is the formal time derivative. In par-

ticular, for every j = 1, . . . ,m, W 1
j , is a space time Wiener process with values

in L2(0, 1). Then, we denote by W 1 := (W 1
1 , . . . ,W

1
m), a space time Wiener pro-

cess with values in the product space X2 :=
(
L2(0, 1)

)m
. Analogously, for every

α = 1, . . . , n, W 2
α is a space time Wiener process taking values in R, hence we

denote by W 2 := (W 2
1 , . . . ,W

2
n) the standard Wiener process with values in Rn.

Consequently, W := (W 1,W 2) indicates the standard space time Wiener process

with values in X 2 := X2 ×Rn, being (Ft)t∈[0,T ] the natural �ltration generated by

W , augmented by all P−null sets of FT .
Besides assumptions 2.2 and 2.9 we will also assume the following to hold.

Assumptions 3.1.
(i) For every j = 1, . . . ,m, the functions gj : [0, T ]× [0, 1]×R→ R, are measurable,

bounded and uniformly Lipschitz in the third component, namely there

exist constants Cj > 0 andKj such that, for any (t, x, y1) ∈ [0, T ]×[0, 1]×R
and (t, x, y2) ∈ [0, T ]× [0, 1]× R, the following holds

|gj(t, x, y1)| ≤ Cj , |gj(t, x, y1)− gj(t, x, y2)| ≤ Kj |y1 − y2| ;

(ii) For every α = 1, . . . , n0, the functions g̃α : [0, T ] × R → R, are measurable,

bounded and uniformly Lipschitz with respect to the second component,

namely there exist constants Cα > 0 and Kα such that, for any (t, y1) ∈
[0, T ]× R and (t, y2) ∈ [0, T ]× R, the following holds

|g̃α(t, y1)| ≤ Cα , |g̃α(t, y1)− g̃α(t, y2)| ≤ Kα|y1 − y2| .

With the help of the notations just introduced, see also Sec. 2.1, the problem

(3.1) can be rewritten as an abstract in�nite dimensional Cauchy problem of the

form {
du(t) = Au(t)dt+G(t,u(t))dW (t) , t ≥ 0 ,

u(0) = u0 ∈ X 2 ,
(3.2)

where A is the operator introduced in (2.6), while G : [0, T ]×X 2 → L(X 2), L(X 2)

being the space of linear and bounded operator from X 2 to X 2 equipped with
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standard operator norm | · |L, is de�ned as

G(t,u)v = (σ1(t, u)v, σ2(t, y)z)
T
, u = (u, y), v = (v, z) ∈ X 2, (3.3)

with

(σ1(t, u)v) (x) = (g1(t, x, u1(t, x)), . . . , gm(t, x, um(t, x)))
T
,

σ2(t, y)z = (g̃1(t, y1)z1, . . . , g̃n0
(t, yn0

)zn0
, 0, . . . , 0)

T
.

It is worth to mention that, in order to guarantee the existence and uniqueness of a

mild solution to equation (3.2), in a suitable sense to be introduced in a while, we

have to require the stronger property that G : [0, T ]×X 2 → L2(X 2), where L2(X 2)

is the space of Hilbert-Schmidt operator from X 2 into itself equipped with standard

Hilbert-Schmidt normdenoted by | · |HS , see, e.g., [13, Appendix C]. Nevertheless,

by Prop. 2.14, we can show that the semigroup T (t) is Hilbert-Schmidt, and that to

have a unique solution in a mild sense we can weaken the condition on G requiring

it to take values in L(X 2).

The aforementioned mild solution to equation (3.2), is intended in the following

sense

De�nition 3.1.1. We will say that u is a mild solution to equation (3.2), if it is a

mean square continuous X 2−valued process adapted to the �ltration generated by

W , such that for any t ≥ 0 we have that u ∈ L2
(
Ω, C([0, T ];X 2)

)
, and it holds

u(t) = T (t)u0 +

∫ t

0

T (t− s)G(s,u(s))dW (s) , t ≥ 0 . (3.4)

We thus have the following.

Proposition 3.2. Let assumptions 2.2-2.9-3.1 hold, then the map G : [0, T ]×X 2 →
L(X 2) de�ned in eq. (3.3) satis�es:

(i) for any u ∈ X 2, the map G(·, ·)u : [0, T ]×X 2 → X 2 is measurable;

(ii) T (t)G(s,u) ∈ L2(X 2), for any t > 0, s ∈ [0, T ] and u ∈ X 2;

(iii) for any t > 0, s ∈ [0, T ], u, v ∈ X 2, and for some constant M > 0, it holds

|T (t)G(s,u)|HS ≤Mt−
1
4 (1 + |u|X 2) , (3.5)

|T (t)G(s,u)− T (t)G(s,v)|HS ≤Mt−
1
4 |u− v|X 2 , (3.6)

|G(s,u)|L ≤M(1 + |u|X 2) . (3.7)

Proof. Point (i) immediately follows from assumptions 3.1, whereas (ii) follows

from equation (3.5). Concerning point (iii), we have that eq. (3.5) immediately

follows from assumptions 3.1. To derive eq. (3.6), we �rst denote by {φk}k∈N an

orthonormal basis in X 2. Then, denoting in what follows byM > 0 several di�erent
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constants, and exploiting assumptions 3.1, we have

|T (t)G(s,u)|2HS =
∑
j,k∈N

〈T (t)G(s,u)φj , φk〉2X 2 =

=
∑
j,k∈N

〈G(s,u)φj , T (t)φk〉2X 2 ≤ |G(s,u)|2L|T (t)|2HS ≤

≤M(1 + |u|2X 2)|T (t)|2HS ≤Mt−
1
4 (1 + |u|X 2) ,

(3.8)

where the last inequality follows from Prop. 2.14, hence, proceeding as for eq. (3.8),

we obtain eq. (3.6).

Theorem 3.3. Let assumptions 2.2-2.9-3.1 hold, then there exists a unique mild
solution in the sense of Def. 4.1.1.

Proof. The result can be derived exploiting [14, Th. 5.3.1], together with Prop. 3.2,

see also [17].

3.1. Existence and uniqueness for the non-linear equation

In what follows we generalize eq. (3.1), and consequently the abstract Cauchy
problem (3.2), taking into account a non-linear Lipschitz perturbation. The nota-
tion is as in previous sections. In particular we consider the following non-linear
stochastic boundary value problem

u̇j(t, x) =
(
cju

′
i

)′
(t, x) + piui(t, x) + fj(t, x, uj(t, x)) + gj(t, x, uj(t, x))Ẇ 1

j (t, x) ,

for t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: duα(t) , t ≥ 0 , l, j ∈ Γ(vα) , j = 1, . . . ,m ,∑n
β=1 bαβd

u
β(t) =

∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vα) , t ≥ 0 , α = n0 + 1, . . . , n ,

ḋuα(t) = −
∑m
i,j=1

∑n
β=1 δ

αi
βju

′
j(t, vβ) +

∑n
β=1 bαβd

u
β(t) + g̃α(t, duα(t))Ẇ 2

α(t, vα) ,

for t ≥ 0 , α = 1, . . . , n0 ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dui (0) = d0i , i = 1, . . . , n0 .

(3.9)

Besides the assumptions 2.2-2.9-3.1, we also require that

Assumptions 3.4. For every j = 1, . . . ,m, the functions fj : [0, T ]× [0, 1]×R→ R,
are measurable, bounded and uniformly Lipschitz continuous with respect to the

third component, namely there exist constants Cj > 0 and Kj , such that, for any

(t, x, y1) ∈ [0, T ]× [0, 1]× R and (t, x, y2) ∈ [0, T ]× [0, 1]× R, it holds

|fj(t, x, y1)| ≤ Cj , |fj(t, x, y1)− fj(t, x, y2)| ≤ Kj |u− v| .

Analogously to what has been made in Sec. 3, we reformulate eq. (3.9) as follows{
du(t) = [Au(t) + F (t,u(t))] dt+G(t,u(t))dW (t) , t ≥ 0 ,

u(0) = u0 ∈ X 2 ,
(3.10)

moreover we de�ne F : [0, T ]×X 2 → X 2, such that

F (t,u) := (f(t, u), 0)
T
, u = (u, y) ∈ X 2 := X2 × Rn, (3.11)
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with

(f(t, u)) (x) := (f1(t, x, u1(t, x)), . . . , fm(t, x, um(t, x)))
T
.

Then, we can state the following result for the existence and uniqueness of a mild
solution to the eq. (3.10)

Theorem 3.5. Let assumptions 2.2-2.9-3.1-3.4 hold, then there exists a unique
mild solution to eq. (3.10) in the sense of Def. 4.1.1.

Proof. It is enough to show that the map F de�ned in eq. (3.11) is Lipschitz con-

tinuous on the space X 2. In fact, from assumptions 3.4, it holds

|F (t,u)− F (t,v)|X 2 = |f(t, u)− f(t, v)|X2 ≤ K|u− v|X2 . (3.12)

Then, exploiting eq. (3.12) together with Prop.3.2, the existence of a unique mild

solution is a direct application of [14, Th. 5.3.1], see also [17].

Remark 3.6. A result similar to Th.3.5 can be also proved under the assumption of

F to be only a function of polynomial growth at in�nity, see, e.g., [6].

4. Application to stochastic optimal control

In the present section, in the light of previously obtained results, we consider

an optimal control problem related to a general nonlinear control system, written

in the following form
du(t)z = [Auz(t) + F (t,uz) +G(t,uu(t))R(t,u(t), z(t))] dt

+ G(t,uz(t))dW (t) , t ∈ [t0, T ] ,

uz(t0) = u0 ∈ X 2 ,

(4.1)

where z denotes the control and the subscript uz denotes the dependence of the

process u ∈ X 2 from the control z. In particular, we analyse the system (4.1)

following the approach given in [20], searching for its weak solutions, see, e.g., [19].

Let us �x t0 ≥ 0 and u0 ∈ X 2, then an admissible control system (ACS) is given

by
(

Ω,F , (Ft)t≥0 ,P, (W (t))t≥0 , z
)
, where

•
(

Ω,F , (Ft)t≥0 ,P
)
is a complete probability space;

• (Ft)t≥0 is a �ltration, in the aforementioned probability space, satisfying

the usual assumptions;

• (W (t))t≥0 is a Ft−adapted Wiener process with values in X 2;

• z is a process taking values in the space Z, predictable with respect to the

�ltration (Ft)t≥0, and such that z(t) ∈ Z P−a.s. , for almost any t ∈ [t0, T ],

Z being a suitable domain of Z.
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To each ACS we associate the mild solution of the abstract equation (4.1) uz ∈
C([t0, T ];L2(Ω;X 2)), and we introduce the following cost functional

J(t0,u0, z) := E
∫ T

t0

l (t,uz(t), z(t)) dt+ Eϕ(uz(T )) , (4.2)

where the function l, resp. the function ϕ, denotes the running cost, resp. the ter-
minal cost. Then, the main goal is to chose a control z belonging to a given set of

admissible controls, and such that it minimizes the cost functional (4.2). If such a

control z exists, it will be called optimal control.

In what follows, besides the assumptions 2.2-2.9-3.13.4, we will also require the

following to hold

Assumptions 4.1. (i) the map R : [0, T ] × X 2 × Z → X 2 is measurable and, for

some CR > 0, it satis�es

|R(t,u, z)−R(t,u, z)|X 2 ≤ CR(1 + |u|X 2 + |v|X 2)m|u− v|X 2 ,

|R(t,u, z)|X 2 ≤ CR ;

(ii) the map l : [0, T ]× X 2 × Z → R ∪ {+∞} is measurable and, for some Cl > 0

and C ≥ 0, it satis�es

|R(t,u, z)−R(t,u, z)| ≤ Cl(1 + |u|X 2 + |v|X 2)m|u− v|X 2 ,

|R(t, 0, z)|X 2 ≥ −C ,
inf
z∈Z

l(t, 0, z) ≤ Cl ;

(iii) for some Cϕ > 0 and m ≥ 0, the map ϕ : X 2 → R satis�es

|ϕ(u)− ϕ(v)| ≤ Cϕ(1 + |u|X 2 + |v|X 2)m|u− v|X 2 .

Following [20], if we let assumptions 2.2-2.9-3.13.4-4.1 to hold, then an ACS

can be constructed as follows: �rst we arbitrarily chose the probability space(
Ω,F , (Ft)t≥0 ,P

)
and W as above, then we consider the uncontrolled problem

{
du(t) = [Au(t) + F (t,u)] dt+G(t,u(t))dW (t) , t ≥ 0 ,

u(0) = u0 ∈ X 2 ,
(4.3)

under above assumptions. Then, by Th. 3.5, we have the existence for a unique mild

solution to eq. (4.3). Moreover, by the boundedness of R and applying the Girsanov
theorem, we obtain that, for any �xed ζ ∈ Z, there exists a probability measure Pζ
such that

W ζ(t) := W (t)−
∫ t∧T

t0∧t
R(s,u(s), ζ)ds ,

is a Wiener process, so that, for any t ∈ [0, T ], u, v ∈ X 2, we can classically de�ne

the Hamiltonian function associated to the problem (4.3), as follows

ψ(t,u,v) = − inf
z∈Z
{l(t,u, z) + vR(t,u, z)} ,

Γ(t,u,v) = {z ∈ Z : ψ(t,u,v) + l(t,u, z) + vR(t,u, z) = 0} ,
(4.4)
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where we note that Γ(t,u, w) is a (possibly empty) subset of Z, and the function

ψ satis�es assumptions 4.1. In the present setting we can apply [20, Th. 5.1] which

allows us to write the Hamilton-Jacobi-Bellman (HJB) equation for the problem

(4.1)-(4.2), as follows{
∂w(t,u)
∂t + Ltw(t,u) = ψ(t,u,∇w(t,u)G(t,u)) ,

w(T,u) = ϕ(u) ,
(4.5)

where

Ltw(u) :=
1

2
Tr
[
G(t,u)G(t,u)∗∇2w(u)

]
+ 〈Au,∇w(u)〉X 2 ,

is the in�nitesimal generator associated to the eq. (4.1), Tr denotes the trace, G∗ is

the adjoint of G and ∇ is a suitable notion of gradient to be introduced in a while.

In particular, see, e.g., [20, Def. 5.1], w is said to be a mild solution in the sense
of generalized gradient, or simply mild solution, according to the following de�nition

De�nition 4.1.1. We say that a function w : [0, T ] × X 2 → R is a mild solution

to equation (4.5) if the following hold:

(i) there exist C > 0 andm ≥ 0, such that for any t ∈ [0, T ], and for any u, v ∈ X 2,

it holds

|w(t,u)− w(t,v)| ≤ C(1 + |u|X 2 + |v|X 2)m|u− v|X 2 ,

|w(t, 0)| ≤ C ;

(ii) for any 0 ≤ t ≤ T , u ∈ X 2, we have that

w(t,u) = Pt,Tϕ(u)−
∫ T

t

Pt,sψ(s, ·, w(s, ·), ρ(s, ·))(u)ds ,

where ρ is an arbitrary element of the generalized directional gradient ∇Gw
de�ned in [20], while Pt,T is the Markov semigroup generated by the forward

process (4.1).

In particular we would like to underline that, thanks to the approach developed

in [20], we do not need to require any di�erentiability properties for the functions

F , G and w. In fact, the notion of gradient appearing in equation (4.5) is to be

intend in a weak sense, which is exactly the notion of the generalized directional
gradient we have reminded before, see [20]. In particular, the latter means that

if w is regular enough, then ∇w coincides with the standard notion of gradient,

namely, with respect to the present case, it coincides with the Fréchet derivative,
resp. with the Gâteaux derivative, if we assume w to be Fréchet di�erentiable, resp.
to be Gâteaux di�erentiable.

We thus have the following result.
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Proposition 4.2. Let us consider the optimal control problem (4.1)-(4.2), then the
associated HJB equation is represented by eq. (4.5). Moreover, if assumptions 2.2-
2.9-3.1-3.4-4.1 hold, then we have that the HJB equation (4.5) admits a unique mild
solution in the sense of de�nition 4.1.1.

Proof. The proof immediately follows from [20, Th. 5.1].

As a direct consequence of Proposition 4.2, we have the following

Theorem 4.3. Let assumptions 2.2-2.9-3.1-3.4-4.1 hold, w be a mild solution to
the HJB equation (4.5) and ρ is an element of the generalized directional gradient
∇Gw. Then, for all ACS, we have have J(t0,u0, z) ≥ w(t0,u0), and the equality
holds if and only if the following feedback law is veri�ed by z and uz

z(t) = Γ (t,uz(t), G(t, ρ(t,uz(t))) , P− a.s. for a.a. t ∈ [t0, T ] . (4.6)

Moreover, if there exists a measurable function γ : [0, T ]×X 2 ×X 2 → Z with

γ(t,u,v) ∈ Γ(t,u,v) , t ∈ [0, T ] , u , v ∈ X 2 ,

then there exists at least one ACS for which

z̄(t))γ(t,uz(t), ρ(t,uz(t))) , P− a.s. for a.a. t ∈ [t0, T ] .

Eventually, we have that uz̄ is a mild solution of equation (4.1).

Proof. See [20, Th. 7.2].

Example 4.1 (The heat equation with controlled stochastic boundary conditions
on a graph). In what follows we give an example concerning the heat equation
de�ned on a graph G, as it has been de�ned in Sec. 2. On every nodes of G we
assume local controlled dynamic boundary conditions. Hence, according with the
setting introduced in 1, we have m nodes and n0 = n nodes equipped with dynamic
boundary conditions. We also assume to do not have any noise on the heat equation,
whereas we assume the boundary condition to be perturbed by an additive Wiener
process. Then, we are considering a system of the following form

u̇j(t, x) =
(
cju

′
i

)′
(t, x) , t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: duα(t) , t ≥ 0 , l, j ∈ Γ(vα) , j = 1, . . . ,m ,

ḋuα(t) = −
∑m
j=1 φα,jcj(vα)u′j(t, vα) + bαduα(t) + g̃α(t)

(
z(t) + Ẇ 2

α(t)
)
, t ≥ 0 , α = 1, . . . , n ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dui (0) = d0i , i = 1, . . . , n .

(4.7)

Miming what we have done during previous section, we rewrite (4.7) as an abstract

Cauchy problem on the Hilbert space X 2, obtaining{
du(t)z = Auz(t)dt+G(t,uz(t)) (Rz(t) + dW (t)) , t ∈ [t0, T ] ,

uz(t0) = u0 ∈ X 2 ,
(4.8)

where R : Rn → X 2 is the immersion of the boundary space Rn into the product

space X 2 := X2×Rn. In the present setting the control z takes values in Rn, and Z
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is a subset of Rn. Then, if we consider a cost functional of the form (4.2), we have, by

Prop. 4.2 and Theorem 4.4, the existence of at least one ACS for the HJB equation

(4.5) which is associated to the stochastic control problem (4.8)-(4.2). Moreover, we

can derive the following

Theorem 4.4. Let assumptions 2.2-2.9-3.1-3.4-4.1 hold, and let w be a mild solution
to the HJB equation (4.5), and ρ be an element of the generalized directional gradient
∇Gw. Then, for all ACS, we have have J(t0,u0, z) ≥ w(t0,u0), and the equality
holds if and only of the following feedback law is veri�ed by z and uz

z(t) = Γ (t,uz(t), G(t, ρ(t,uz(t))) , P− a.s. for a.a. t ∈ [t0, T ] . (4.9)

Besides, if there exists a measurable function γ : [0, T ]×X 2 ×X 2 → Z, with

γ(t,u,v) ∈ Γ(t,u,v) , t ∈ [0, T ] , u , v ∈ X 2 ,

then there exists at least one ACS such that

z̄(t))γ(t,uz(t), ρ(t,uz(t))) , P− a.s. for a.a. t ∈ [t0, T ] .

Eventually, we have that uz̄ is a mild solution to the eq. (4.1).

5. Conclusions

In the present paper, we have generalized previously obtained results concerning

di�erent evolution problems on networks, by taking into account a di�usion problem

on a graph which has been endowed with non-local boundary static and dynamic

conditions, and also considering a stochastic perturbation. We would like to under-

line that assumptions we made throughout the paper, could be relaxed taking into

account the particular geometry of the graph, as it can be constructed according

with the peculiarities of the concrete problem in which one is interested.

A second possible generalization of the results presented here, consists in con-

sidering time-non-local boundary conditions. The latter, leads to a problem that,

as it is standard when dealing with delay equations, can be studied by introducing

a suitable path space, with its associated corresponding operator. The price to pay

regards the regularity of the leading operator, which is no longer analytic. This

implies that the Gaussian estimate, obtained in the present work, does not hold,

hence the Hilbert-Schmidt property of the semigroup has to be proved with di�erent

techniques.
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