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Abstract

A proper edge-coloring of a graph G is an assignment of colors to the
edges of G such that adjacent edges receive distinct colors. A proper
edge-coloring defines at each vertex the set of colors of its incident edges.
Following the terminology introduced by Horňák, Kalinowski, Meszka and
Woźniak, we call such a set of colors the palette of the vertex. What is the
minimum number of distinct palettes taken over all proper edge-colorings
of G? A complete answer is known for complete graphs and cubic graphs.
We study in some detail the problem for 4-regular graphs.

Keywords: palette index, 4-regular graphs, edge-coloring, even cycle decompo-
sition, even 2-factor. MSC(2010): 05C15

1 Introduction

Throughout this paper, a graph G always means a simple finite graph (with-
out loops and parallel edges). We refer to any introductory book for graph-
theoretical notation and terminology not described in this paper (see for instance
[1]).

An edge-coloring of a graph G is an assignment of colors to the edges of G:
it is proper if adjacent edges receive distinct colors. The minimum number of
colors used in a proper edge-coloring of G is the chromatic index of G and is
denoted by χ′(G). By Vizing’s Theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, where
∆(G) is the maximum degree of G. A graph is said to be class 1 if χ′(G) = ∆(G)
and class 2 if χ′(G) = ∆(G) + 1.

Let f be a proper edge-coloring of G and let v be a vertex of G. Denote by
Pf (v) the set of colors assigned by f to the edges incident to v. The set Pf (v)
is called the palette of v (with respect to f). For every proper edge-coloring of
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G it is possible to define the set Pf = ∪v∈V (G)Pf (v). The set Pf is the set of
distinct palettes of f and its cardinality is at most |V (G)|.

Definitions similar to that of Pf (v) can be given also for vertex-colorings (see
[5] and [8]). These definitions offer a wide range of problems. For instance, some
authors study the problem of finding a vertex-distinguish proper edge-coloring
with the minimum number of colors (see [4] or [6]). A proper edge-coloring of
a graph G is said to be vertex-distinguish if distinct vertices of G have distinct
palettes. The set Pf of a vertex-distinguish coloring has cardinality |V (G)|,
that is, Pf is as big as possible. Here, we are looking for proper edge-colorings
with Pf as small as possible. As far as we know, this kind of proper colorings
have been studied for the first time in [7], where the authors define the palette
index, denoted by š(G), of a simple graph G as follows:

š(G) = min{|Pf | : f proper edge-coloring of G}

In [7] the authors also determine the palette index of cubic graphs and
complete graphs and observe that the palette index of a d-regular graph is 1 if
and only if the graph is class 1. A classical result by Robinson and Wormald
[11] assures that, for any fixed d ≥ 3, almost all d-regular graphs of even order
are class 1. This result is equivalent to say that almost all d-regular graphs of
even order have palette index 1.

What about the palette index of class 2 d-regular graphs?
It is shown in [7] that the palette index of a regular graph is different from 2.

Furthermore, the palette index of a d-regular graph is at most d+1: by Vizing’s
Theorem, a d-regular graph G of class 2 possesses a proper edge-coloring f
whose color-set C has cardinality d+ 1; since each palette is a d-subset of C, the
cardinality of Pf is at most

(
d+1
d

)
, that is, š(G) ≤ d+ 1. Therefore, the palette

index of a class 2 d-regular graph satisfies the inequalities

3 ≤ š(G) ≤ d+ 1.

We wonder whether this upper bound for the palette index of a d-regular
graph is really achieved. In other words, we wonder whether, for any fixed d ≥ 2,
a d-regular graph with palette index d+ 1 does exist.

For d = 2 and 3 there exist d-regular graphs with palette index 3 and 4,
respectively. We can consider a cycle with at least one circuit of odd length for
d = 2, and a cubic graph with no perfect matching for d = 3 (see [7]).

In the present paper, we consider the case d = 4. We will make use of the
following standard definitions: a circuit is a 2-regular connected graph and a
cycle is a 2-regular graph whose connected components are circuits. A spanning
cycle of a graph G is a 2-factor of G. A cycle (a 2-factor) is even if it has no
circuit of odd length. An even cycle decomposition of a graph G is a partition
E of the edge-set of G into even cycles. If E consists of m cycles, then we say
that G has an even cycle decomposition of size m.

It is conjectured in [10] that a random 4-regular graph of order 2n + 1
asymptotically almost surely decomposes into a circuit of length 2n and two
other circuits of even length intersecting in exactly one vertex. In other words,
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a random 4-regular graph of odd order asymptotically almost surely has an even
cycle decomposition of size 3. From an even cycle decomposition of size 3 of a
4-regular graph G we can easily obtain a proper edge-coloring of G with exactly
3 palettes (see Proposition 11). Hence, almost all 4-regular graphs should have
palette index 1 or 3. Hence, 4-regular graphs with palette index 4 and 5, in
particular the connected ones, should be rare.

In Section 2.2, we construct non-connected 4-regular graphs with palette
index 4 and 5. The construction of connected 4-regular graphs with palette
index 5 turns out to be harder to achieve than non-connected case. Nevertheless,
we are able to furnish in Proposition 9 a construction of an infinite family of
4-regular graphs with palette index 5.

The concept of š-minimal coloring (see Section 2.1 for a definition) is relevant
in the study of 4-regular graphs with large palette index. A detailed study of
š-minimal colorings allows us to say that in a 4-regular graph G with palette
index 3 at least one of the following cases occurs:

(i) G has an even cycle decomposition of size 3;
(ii) G has an even 2-factor.
By this result, a 4-regular graph with palette index 3 and no perfect match-

ing always admits an even cycle decomposition of size 3. We can extend this
property to 4r-regular graphs: we can prove that a 4r-regular graph, r ≥ 1,
with palette index 3 and no perfect matching has an even cycle decomposition
of size 3r (see Section 3).

In Section 3 we also note that the family of 4-regular graphs with an even
cycle decomposition of size m ≤ 3 is strictly contained in the family of 4-regular
graphs with palette index ≤ 3. We do not know whether all 4-regular graphs
with an even cycle decomposition have palette index ≤ 3 or not, but we can
prove that a 4-regular graph with an even cycle decomposition and palette index
> 3 has no even cycle decomposition of size m ≤ 3 (see the remarks in Section
3). A natural question about even cycle decompositions of 4-regular graphs
arise from these considerations:

Does there exist a 4-regular graph with all even cycle decompositions of size
larger than 3?

In Section 2.3 we also study connected 4-regular graphs with palette index
4. A 4-regular graph with palette index 4 might or might not have a perfect
matching. We can construct many examples of 4-regular graphs with no perfect
matching and palette index 4 (see Proposition 6). The construction of a 4-
regular graph with a perfect matching and palette index 4 is more complicated:
we exhibit an example in Proposition 8. Finally, we note that a 4-regular graph
with a perfect matching and palette index 4 has no even 2-factor, nevertheless
the non-existence of an even 2-factor does not guarantee that the graph has
palette index > 3, see Proposition 7.

In the last section we list some open problems. In particular, we leave as
open problems the construction of a d-regular graph with palette index d + 1
for every integer d ≥ 5.
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2 4-regular graphs.

As already remarked in the introduction, the palette index of a class 2 d-regular
graph G satisfies the inequalities 3 ≤ š(G) ≤ d + 1. We recall that š(G) = 1
if and only if G is of class 1 and a simple counting argument excludes the case
š(G) = 2 (see [7]). For a 4-regular graph of class 2 the previous inequalities
become 3 ≤ š(G) ≤ 5. In this section we construct 4-regular graphs with
palette index 5. First of all, we show that the disjoint union of two graphs could
have palette index larger than the maximum between the palettes indices of the
two graphs. In particular, we show that the palette index of a non-connected
4-regular graph, with at least two connected components having palette index 3,
might be bigger than 3. We use this fact to construct non-connected 4-regular
graphs with palette index 4 and 5 (see Section 2.2). Finally, in Section 2.3 we
consider the connected case.

2.1 š-minimal colorings

Given a graph G, we denote by F(G) the set of proper edge-colorings of G
having the minimum number of palettes š(G). The elements of F(G) will be
called š-colorings. We say that an š-coloring f ∈ F(G), f : C → E(G), is š-
minimal if |C| ≤ |C′| for every f ′ ∈ F(G), with f ′ : C′ → E(G). We recall that
an edge-coloring using χ′(G) colors is called minimum. As remarked in [7], a
minimum edge-coloring might not be š-minimal.

We say that two edge-colorings f : C → E(G) and f ′ : C′ → E(G) with set
of palettes Pf and Pf ′ , respectively, are equivalent if there exists a bijection
α : C → C′ such that α(P ) ∈ Pf ′ for every P ∈ Pf . If we need to specify the
permutation α, then we will say that f and f ′ are equivalent by the bijection
α.

Lemma 1. Let G be a d-regular graph with palette index š(G) and let f be an
š-minimal coloring of G with color-set C. Let n(a) be the number of palettes of
f containing the color a ∈ C. The followings hold:

(i) d(|C| − 1)/(d− 1)e ≤ n(a) ≤ š(G);

(ii)
∑

a∈C n(a) = d · š(G);

(iii) (|C| − 1)|C| ≤ d(d− 1)š(G).

Proof. We denote by R the multiset defined by R = ∪P∈Pf
{{a, b} : {a, b} ⊂

P} and by C2 the set of all possible 2-subsets of C. We show that C2 ⊆ R, that is,
every 2-subset {a, b} ∈ C2 is a subset of at least one palette of f . Assume, on the
contrary, that no palette of f contains the 2-subset {a, b}, then we can replace
a and b by a unique color c 6∈ C. We obtain a new proper edge-coloring f ′ with
color-set C′ = (Cr {a, b})∪{c} of cardinality |C′| = |C| − 1. The replacement of
the colors a and b by the new color c does not increase the number of palettes
of f , that is, |Pf ′ | ≤ |Pf |. Since no proper edge-coloring of G has less than
š(G) palettes and |Pf | = š(G), also the set Pf ′ has cardinality š(G), that is,
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f ′ ∈ F(G). That yields a contradiction, since |C′| < |C| and f is š-minimal.
It is thus proved that C2 ⊆ R. The set inclusion relation C2 ⊆ R means that,
for every color a ∈ C, the multiset R contains all the 2-subsets {a, x}, with
x ∈ C r {a}. Since each palette P ∈ Pf containing the color a provides exactly
(d− 1) 2-subsets {a, x}, each color a ∈ C belongs to at least d(|C| − 1)/(d− 1)e
palettes of f , that is, n(a) ≥ d(|C| − 1)/(d− 1)e. Obviously, n(a) ≤ š(G). It is
straightforward to see that the relation

∑
a∈C n(a) = d · š(G) holds, since each

palette of f contains exactly d distinct colors and |Pf | = š(G).
We show that the inequality (|C|−1)|C| ≤ d(d−1)š(G) holds. Since C2 ⊆ R,

the inequality
(|C|

2

)
≤ |R| holds. Since each palette P ∈ Pf contains exactly(

d
2

)
elements of C2 and |Pf | = š(G), the multiset R consists of exactly

(
d
2

)
š(G)

elements of C2. Therefore,
(|C|

2

)
≤ |R| =

(
d
2

)
š(G), that is, (|C| − 1)|C| ≤ d(d −

1)š(G).

As a consequence of Lemma 1, the following statements hold.

Proposition 1. Let G be a 4-regular graph with palette index 3. Then every
š-minimal coloring f ∈ F(G) has color-set of cardinality at most 6.

Every š-minimal coloring of G with 5 colors is equivalent to the edge-coloring
f1 with color-set C1 = {aj : 1 ≤ j ≤ 5} and palettes P1 = {a1, a2, a3, a4},
P2 = {a1, a2, a3, a5}, P3 = {a1, a2, a4, a5}.

Every š-minimal coloring of G whit 6 colors is equivalent to the edge-coloring
f2 with color-set C2 = {aj : 1 ≤ j ≤ 6} and palettes P1 = {a1, a2, a3, a4},
P2 = {a1, a2, a5, a6}, P3 = {a3, a4, a5, a6}.

Proof. Let f be an š-minimal coloring of G with color-set C and Pf = {P ′i :
1 ≤ i ≤ 3}. Since G is class 2, the cardinality of C is at least 5; by Lemma 1, the
cardinality of C satisfies the inequality |C|(|C|−1) ≤ 4 ·3 ·3, that is, 5 ≤ |C| ≤ 6.
We show that f is equivalent to f1 or f2, according to whether the cardinality
of C is 5 or 6, respectively.

Consider C = {bj : 1 ≤ j ≤ 5}. We show that f is equivalent to the edge-
coloring f1. By Lemma 1, the relation

∑
bj∈C n(bj) = 3·4 = 12, with 2 ≤ n(bj) ≤

3, holds. From this relation one can see that exactly two colors of C belong to the
three palettes of f , whereas the remaining three colors of C belong to exactly
two palettes of f . Without loss of generality, we can set n(b1) = n(b2) = 3
and n(bj) = 2 for 3 ≤ j ≤ 5. Since the 2-subset {b1, b2} is contained in each
P ′i ∈ Pf , each palette P ′i contains exactly one of the three 2-subsets {b3, b4},
{b3, b5}, {b4, b5}. Therefore, Pf ={{b1, b2, b3, b4}, {b1, b2, b3, b5}, {b1, b2, b4, b5}}.
It is straightforward to see that the colorings f and f1 are equivalent.

Consider C = {bj : 1 ≤ j ≤ 6}. We show that f is equivalent to the edge-
coloring f2. By Lemma 1, the relation

∑
bj∈C n(bj) = 3·4 = 12, with 2 ≤ n(bj) ≤

3, holds. From this relation one can see that n(bj) = 2 for every bj ∈ C. It is
straightforward to see that at least two palettes of f share two colors. Without
loss of generality we can set {b1, b2} ⊂ P ′1, P ′2, whence P ′3 = {b3, b4, b5, b6} and
{P ′1, P ′2} ={{b1, b2, a, b}, {b1, b2, c, d}}, with {a, b, c, d} = {b3, b4, b5, b6}. One
can verify that the colorings f and f2 are equivalent by the bijection α : C → C2
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such that {α(b1), α(b2)} = {a1, a2} and {{α(a), α(b)}, {α(c), α(d)}} ={{a3, a4},
{a5, a6}}.

Corollary 1. Let G be a 4-regular graph with palette index 3. Then at least
one of the following cases occurs:

(i) if G has an edge-coloring f1 with color-set C1 = {aj : 1 ≤ j ≤ 5} and palettes
P1 = {a1, a2, a3, a4}, P2 = {a1, a2, a3, a5}, P3 = {a1, a2, a4, a5}, then G
has an even 2-factor;

(ii) if G has an edge-coloring f2 with color-set C2 = {aj : 1 ≤ j ≤ 6} and
palettes P1 = {a1, a2, a3, a4}, P2 = {a1, a2, a5, a6}, P3 = {a3, a4, a5, a6},
then G has an even cycle decomposition of size 3.

Proof. By Proposition 1, the graph G has an š-minimal coloring f ∈ F(G)
which is equivalent to the edge-coloring f1 or f2. If f is equivalent to f1, then
the edges with colors a1 and a2 induce an even 2-factor of G. If f is equivalent to
f2, then the edges with colors aj and aj+1, with j = 1, 3, 5, form a cycle Fj with
no circuit of odd length. The set {F1, F3, F5} is an even cycle decomposition of
G of size 3.

Note that if G admits both colorings f1 and f2, then G has an even 2-factor
and an even cycle decomposition of size 3 (see for instance the graph in Figure
1).

v3v4

v5 v2

v1

w3 w4

w1

w2

w6

w5

v6

v0 w0

Figure 1: A 4-regular graph G of class 2 with palette index 3 admitting both
colorings f1 and f2; the graph G has an even 2-factor consisting of the circuits
(v1, v2, v6, v5, v1) and (v0, v4, v3, w3, w4, w5, w6, w2, w1, w0, v0); the graph G also
has an even cycle decomposition given by the cycles F1 = {(v0, v4, v5, v6, v0),
(w0, w4, w5, w6, w0)}, F2 = {(v1, v5, v3, v2, v1), (w1, w6, w2, w4, w3, w5, w1)},
F3 = {(v0, w0, w1, w2, w3, v3, v4, v2, v6, v1, v0)}.
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Proposition 2. Let G be a 4-regular graph with no perfect matching and š(G) =
4. Then every š-minimal coloring of G is equivalent to the edge-coloring f3

having color-set C3 = {aj : 1 ≤ j ≤ 6} and palettes P1 = {a1, a2, a3, a4},
P2 = {a1, a2, a3, a5}, P3 = {a1, a2, a4, a6}, P4 = {a3, a4, a5, a6}.

Proof. Let f be an š-minimal coloring of G with color-set C and Pf = {P ′i :
1 ≤ i ≤ 4}. We denote by R the multiset R = ∪P∈Pf

{{a, b} : {a, b} ⊂ P} and
by C2 the set of all possible 2-subsets of C.

Since G is a class 2, the cardinality of C is at least 5; by Lemma 1, (|C| −
1)|C| ≤ 4 ·3 ·4, that is, 5 ≤ |C| ≤ 7. By Lemma 1, also the relation

∑
a∈C n(a) =

4·4, with 2 ≤ n(a) ≤ 4, holds. Since G has no perfect matching, each color a ∈ C
belongs to at most three palettes of f , that is, n(a) ≤ 3 for every a ∈ C. From
the relation

∑
a∈C n(a) = 16, with 2 ≤ n(a) ≤ 3, one can see that |C| ≥ 16/3,

that is, 6 ≤ |C| ≤ 7. We prove that |C| = 6. Suppose, on the contrary, that
|C| = 7. We set C = {bj : 1 ≤ j ≤ 7}. From the relation

∑
bj∈C n(bj) = 16,

with 2 ≤ n(a) ≤ 3, one can see that exactly two colors of C belong to exactly
three palettes of f , whereas the remaining five colors of C belong to exactly
two palettes of f . Without loss of generality, we can set n(b1) =n(b2) = 3 and
b1 6∈ P ′4. Since |P ′4| = 4, at least one of the five colors in C r {b1, b2} does
not belong to P ′4, say b3. Therefore, the color b3 belongs to exactly two of the
palettes P ′1, P ′2, P ′3, as n(b3) = 2. Since b1 belongs to the three palettes P ′1,
P ′2, P ′3, the 2-subset {b1, b3} is contained in exactly two of the palettes P ′1, P ′2,
P ′3. Consequently, the 2-subset {b1, b3} appears exactly twice in the multiset R,
that is, the multiset R does not contain the subset {{b3, x} : x ∈ C, x 6= b3} of
C2. That yields a contradiction, since C2 ⊆ R (see the proof of Lemma 1). It is
thus proved that |C| 6= 7, that is, |C| = 6.

Now, we show that f is equivalent to f3. We can always consider C3 = C,
since |C3| = |C|. From the relation

∑
a∈C n(a) = 16, with 2 ≤ n(a) ≤ 3, one

can see that four colors of C belong to exactly three palettes of f , whereas the
remaining two colors of C belong to exactly two palettes of f . Without loss of
generality, we can set n(aj) = 3 for 1 ≤ j ≤ 4. First of all, we show that at least
one of the possible 2-subsets of the set of colors {a1, a2, a3, a4} is contained in
three palettes of f . Suppose that this is not the case, then Pf ={{a1, a2, a3, x1},
{a1, a2, a4, x2}, {a1, a3, a4, x3}, {a2, a3, a4, x4}}, with {xi : 1 ≤ i ≤ 4} =
{a5, a6}. The 2-subset {a5, a6} does not belong to the multiset R. That
yields a contradiction, since C2 ⊆ R (see the proof of Lemma 1). It is thus
proved that at least one of the possible 2-subsets of the set {a1, a2, a3, a4}
is contained in three palettes of f . Without loss of generality we can set
{a1, a2} ⊂ P ′1 ∩ P ′2 ∩ P ′3, whence P ′4 = {a3, a4, a5, a6}. Since n(a3) = n(a4) = 3,
we can set P ′1 = {a1, a2, a3, a4}, P ′2 = {a1, a2, a3, x1} and P ′3 = {a1, a2, a4, x2},
with {x1, x2} = {a5, a6}. If x1 = 5, then f corresponds to f3; if x1 = 6, then f
is equivalent to f3 by the involution α = (a5 a6). The assertion follows.
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2.2 Palette index and connected components

Let G1, G2, . . . , Gt be the connected components of a graph G. It is obvious
that

š(G) ≥ max{š(Gi) : 1 ≤ i ≤ t},

that is, the palette index of G is at least as bad as the palette index of the
worst component. It is also clear that š(G) could be strictly larger than the
maximum among the palette indices of its components. Take for instance a
graph G given by the disjoint union of t i-regular class 1 graphs Gi: š(G) = m
whereas š(Gi) = 1, for every i = 1, . . . ,m. Looking at this example one could
wonder whether š(G) is effectively equal to the maximum among the palette
indices š(Gi), when the components Gi are all d-regular and so G itself is d-
regular. It is not hard to verify that this is the case for 2 and 3-regular graphs.
In this section we exhibit examples which prove that the situation is completely
different for 4-regular graphs. One of the main reason is that the set of palettes
used in an edge-coloring of a 4-regular graph with prescribed š(G) is not uniquely
determined (as happens for 2-regular and 3-regular graphs).

Proposition 3. Let G be a 4-regular graph and let G1, G2 be connected com-
ponents of G such that š(G1) = š(G2) = 3; G1 has no perfect matching; G2 has
no even cycle decomposition. Then 4 ≤ š(G) ≤ 5.

Proof. The graph G is class 2, since G1 has no perfect matching; hence
š(G) ≥ 3. We show that š(G) > 3. Suppose that š(G) = 3, then G has an even
2-factor or an even cycle decomposition of size 3, since Corollary 1 holds. That
yields a contradiction, since G1 has no even 2-factor and G2 has no even cycle
decomposition. Hence, 4 ≤ š(G) ≤ 5.

In Example 1 and 2 we use Proposition 3 to construct non-connected 4-
regular graphs with palette index 4 and 5, respectively.

Example 1. The graph in Figure 2(a), say G1, is a 4-regular graph with no
perfect matching (its order is odd) and palette index 3, since the graph G1

admits the coloring f2 defined in Proposition 1. The graph in Figure 3 is a
4-regular graph, say G2, of class 2 since no perfect matching contains the edge
[u1, v]. The graph G2 admits the coloring f1 defined in Proposition 1. The graph
G2 has no even cycle decomposition since it has a cut-vertex. By Proposition
3, the palette index of the graph union G = G1 ∪G2 is at least 4. In Figure 4 it
is shown that the graph G admits the coloring f3 defined in Proposition 2, that
is, š(G) = 4.

In the construction of a non-connected 4-regular graph with palette index 5
we use the graph in Figure 2(b). This graph is obtained by connecting three
copies of the graph H in Figure 6(a). The following statement holds for 4-
regular graphs with palette index 4 containing a subgraph isomorphic to H; it
will be used in Example 2 and in the proof of Proposition 9.
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a1
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a1

a1

a2
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a1
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a5
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a4

a3
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a2
a5

a4

a3

a4

a4

a4

a1 a4

Figure 2: (a) A 4-regular with no perfect matching and palette index 3; (b) a
4-regular graph with no even cycle decomposition and palette index 3.

Lemma 2. Let H be the graph obtained by subdividing an edge of the complete
graph K5 with the insertion of a new vertex u. Let G be a 4-regular graph
with palette index 4 containing a subgraph isomorphic to H. If G admits the
š-minimal coloring f3 with color-set C3 = {aj : 1 ≤ j ≤ 6} and palettes P1 =
{a1, a2, a3, a4}, P2 = {a1, a2, a3, a5}, P3 = {a1, a2, a4, a6}, P4 = {a3, a4, a5, a6},
then f3 induces a proper edge-coloring f̂ in H such that the vertex u has palette
Pf̂ (u) = {a3, a6} or Pf̂ (u) = {a4, a5} with respect to f̂ . Consequently, the vertex

u has palette Pf3(u) = {a3, a4, a5, a6} with respect to f3.

Proof. The coloring f3 induces a proper edge-coloring f̂ in H; therefore, the
palettes of the vertices in V (H) r {u} (with respect to f̂) form a subset Pf̂

of Pf3 = {P1, P2, P3, P4}. Since H is class 2, the set Pf̂ contains at least two
elements; hence, there exists at least one palette of Pf̂ containing the 2-subset

{a1, a2}. The edges with the colors a1 and a2 form an even circuit C in H.
Since |V (H)| = 6, the circuit C has length 6 or 4.

We show that C has length 4. Suppose that C has length 6, then the
complementary subgraph of C in H is a circuit C ′ of length 5. We denote
by A′ the set of distinct colors that f̂ assigns to the edges of C ′. Since C ′

is class 2, the set A′ contains at least three colors. Since the edges of C are
colored with a1 and a2, the set A′ cannot contain the colors a1, a2, that is,
A′ ⊆ {a3, a4, a5, a6}. If A′ = {a, b, c} ⊂ {a3, a4, a5, a6}, then f̂ assigns one of
the colors in A′, say c, to exactly one edge of C ′ and assigns the color a (respec-
tively, b) to two non-adjacent edges of C ′. Consequently, the set Pf̂ contains

9



a1

a2a3

a4

a1

a2

a2

a3
a1

a2

a3

a2

a5 a1

a4

a1

a5

a3

a1

a2

a4 u1

a4 a2

a3

a1

a4 a1

a4

a4a3a3 a2

u2

v

Figure 3: A 4-regular graph with no even cycle decomposition and palette index
3.
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Figure 4: A non-connected 4-regular graph with palette index 4 and two con-
nected components having palette index 3.
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the palettes {a1, a2, a, b}, {a1, a2, a, c}, {a1, a2, b, c}. That yields a contradic-
tion, since Pf̂ ⊆ Pf and at least one of the palettes {a1, a2, a, b}, {a1, a2, a, c},
{a1, a2, b, c} does not belong to Pf3 , for every {a, b, c} ⊂ {a3, a4, a5, a6}. Hence,
A′ = {a3, a4, a5, a6}. Since A′ has cardinality 4 and C ′ has length 5, the coloring

f̂ assigns one of the colors in A′, say a, to exactly two non-adjacent edges of C ′

and assigns each color b ∈ A′, b 6= a, to exactly one edge of C ′. Consequently, the
set Pf̂ contains at least one of the palettes {a1, a2, a3, a6}, {a1, a2, a4, a5}. That

yields a contradiction, since Pf̂ ⊆ Pf3 and {a1, a2, a3, a6}, {a1, a2, a4, a5} 6∈ Pf3 .
It is thus proved that C cannot have length 6, that is, C has length 4.

A circuit of length 4 in H can pass through the vertex u or not. We
show that u 6∈ V (C). Suppose that u ∈ V (C). Without loss of generality,
we can set C = (u, v1, v3, v5, u). Since the edges of C are colored with a1,
a2 and C does not pass through the vertices v2, v4, the palette of v2 and v4

(with respect to f̂) is {a3, a4, a5, a6}. We denote by d ∈ {a3, a4, a5, a6} the
color of the edge [v2, v4] and set {a, b, c} = {a3, a4, a5, a6} r {d}. Each color
` ∈ {a, b, c} induces a perfect matching M` in H consisting of exactly two
edges belonging to the set E′ = {[v2, vi], [v4, vi] : i = 1, 3, 5}. The match-
ings Ma, Mb, Mc partition the edges in E′. This fact implies that the ver-
tices v1, v3, v5 have three distinct palettes, namely, the palettes {a1, a2, a, b},
{a1, a2, a, c}, {a1, a2, b, c}. That yields a contradiction, since at least one of
the palettes {a1, a2, a, b}, {a1, a2, a, c}, {a1, a2, b, c} does not belong to Pf3 , for
every {a, b, c} ⊂ {a3, a4, a5, a6}. It is thus proved that u 6∈ V (C).

Without loss of generality, we can set C = (v2, v3, v4, v5). Since the edges of
C are colored with a1 and a2, the palettes of the vertices v2 and v4 share exactly
three colors, namely, Pf̂ (v2)∩Pf̂ (v4) = {a1, a2, a} with a ∈ {a3, a4}. Therefore,

{Pf̂ (v2), Pf̂ (v4)} ={P1, P2} or {Pf̂ (v2), Pf̂ (v4)} ={P1, P3}. In the former case,

the coloring f̂ assigns the colors a3 and a6 to the edges [v1, v3], [v1, u], since
Pf̂ (v1) = {a3, a4, a5, a6} and the edges [v1, v2], [v1, v4] are colored with a4 and

a5; if [v1, v3] is colored with a6, then the edge [v3, v5] is colored with a4, since
the unique palette of f3 containing {a1, a2, a6} is P3; consequently, the edge
[v5, u] is colored with a6, since [v1, u] is colored with a3 and the unique palettes
of f containing {a1, a2, a4} are P1 and P2. Therefore, Pf̂ (u) = {a3, a6}. The

same arguments can be repeated when [v1, v3] is colored with a3 and also when
{Pf̂ (v2), Pf̂ (v4)} ={P1, P3}. In this last case, the palette of u with respect to

f̂ is Pf̂ (u) = {a4, a5}. It is straightforward to see that the palette of u with

respect to f3 is Pf3(u) = {a3, a4, a5, a6}, since the unique palette of f3 containing
Pf̂ (u) is P4 = {a3, a4, a5, a6}.

Now we are in position to construct a non-connected 4-regular graph with
palette index 5.

Example 2. As already remarked in Example 1, the graph G1 in Figure 2(a)
has palette index 3 and no perfect matching. The graph in Figure 2(b), say G2,
has three subgraphs isomorphic to H, say Hi, with 1 ≤ i ≤ 3. For every Hi, we
denote by ui the unique vertex of degree 2 in Hi. The graph G2 has no even cycle
decomposition, since it has a cut-vertex. Furthermore, it has palette index 3 and
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admits the coloring f1 defined in Proposition 1. By Proposition 3, the palette
index of the graph union G = G1 ∪ G2 is at least 4. We show that š(G) > 4.
Suppose that š(G) = 4. Since Proposition 2 holds, the graph G admits the

coloring f3. By Lemma 2, the coloring f3 induces a proper edge-coloring f̂ in
each Hi such that the vertices ui have palette {a3, a6} or {a4, a5} with respect

to f̂ and palette P4 = {a3, a4, a5, a6} with respect to f3. Suppose that u1 and

u2 have distinct palettes with respect to f̂ , then the edge [u1, u2] is colored with
a1 or a2, as f3 is proper. That yields a contradiction since u1, u2 have palette
P4 = {a3, a4, a5, a6} and a1, a2 6∈ P4. Hence u1, u2 have the same palette with

respect to f̂ , say {a3, a6}. Since u1, u2 have palette P4 = {a3, a4, a5, a6} with
respect to f3, the edges [u1, u2], [u1, u3], [u2, u3] are colored with the colors a4,
a5. That yields a contradiction, since f is proper.

In the following statements we highlight some connections between the (edge)
connectivity of the graph and its palette index.

Proposition 4. Let G be a 4-regular graph with a perfect matching, then š(G) =
1, 3 or 4.

Proof. Denote by M a perfect matching of G and by G′ the complementary
cubic subgraph of M in G. By [7, Theorem 9], š(G′) ∈ {1, 3, 4}. Denote by f ′

an edge-coloring of G′ with š(G′) palettes. We color all the edges of M with the
same color a (not belonging to the palettes of f ′) and add a to the palettes of f ′.
We obtain an edge-coloring of G with š(G′) palettes, whence š(G) ≤ š(G′).

Corollary 2. Let G be a 4-regular graph with palette index 5. Then, either G
has a connected component of odd order or all connected components of G are
even and G is not 4-edge-connected.

Proof. The graph G has no perfect matching, otherwise by Proposition 4
š(G) ≤ 4. Suppose that all components of G are even and 4-edge-connected,
then G has a perfect matching, since [12, Theorem 2.2] holds. The at least one
component either is odd or is not 4-edge-connected.

Proposition 5. Let G be a 4-regular graph having a connected component with
no perfect matching and a cut-vertex. Then 4 ≤ š(G) ≤ 5.

Proof. The graph G is not a class 1 graph because it has no perfect matching,
hence š(G) ≥ 3. Furthermore, G has not an even cycle decomposition since it
has a cut-vertex and G has no even 2-factor (G has no perfect matching). It
follows by Corollary 1 that š(G) > 3.

2.3 Connected 4-regular graphs with palette index 4 and
5.

As we have already remarked, the existence of 4-regular graphs with palette
index 1 and 3 can be easily proved and graphs with palette index 3 can be used
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to construct non-connected 4-regular graphs with palette index 4 and 5 (see
Example 1 and 2).

In this section we consider the connected case. As remarked in Section
1, connected 4-regular graphs with palette index > 3 seem to be rare. We
distinguish two types of 4-regular graphs with palette index 4: those who have
and those who have not a perfect matching.

In Proposition 6 we shall see that the existence of 4-regular graphs with no
perfect matching and palette index 4 can be easily obtained. The existence of
4-regular graphs with a perfect matching and palette index 4 or of 4-regular
graphs with palette index 5 is harder to prove. We give some examples in
Proposition 8 and 9. We also note that a 4-regular graph with palette index
> 3 has no even 2-factor, nevertheless the non-existence of even 2-factors does
not imply that the palette index is bigger than 3 (see Proposition 7).

The complete graph K5 is the smallest example of 4-regular graph with no
perfect matching and palette index 4 (the palette index of K5 is calculated in
[7]). In the following proposition we show that K5 can be used to construct
other examples of 4-regular graphs with no perfect matching and palette index
4.

Proposition 6. Let K5 be the complete graph on the vertices {ui : 1 ≤ i ≤ 5}
and let G be a class 1 4-regular graph. Delete an edge in K5, say e = [u1, u2],
and an edge in G, say e′ = [w1, w2]; connect K5-e and G-e′ by adding the
edges [u1, w1], [u2, w2]. The resulting graph is a 4-regular graph with no perfect
matching and palette index 4.

Proof. Denote by G′ the 4-regular graph obtained by connecting K5-e and
G-e′. The graph G′ is class 2 because it has no perfect matching (its order is
odd); hence š(G′) ≥ 3. We show that š(G′) > 3. Suppose that š(G′) = 3.
Since G′ has no perfect matching and Corollary 1 holds, the graph G′ has an
even cycle decomposition of size 3. That yields a contradiction since a graph
having K5-e as induced subgraph has no even cycle decomposition. Therefore
š(G′) > 3.

a3

a5 a6
a4a3

a1

a4

a2a2

Figure 5: An edge-coloring of K5-e.

We show that š(G′) = 4. The graph G has palette index 1, since G is class
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1. Without loss of generality we can say that every vertex of G has palette
P1 = {a1, a2, a3, a4} and the edge e′ has color a1. The edges of K5-e can be
colored as in Figure 5. We color the edges [u1, w1], [u2, w2] with a1. We obtain
an edge-coloring of G′ with exactly 4 palettes; therefore š(G′) = 4.

A 4-regular graph, with a perfect matching and palette index 4, has no
pair of edge-disjoint perfect matchings, that is, no even 2-factor. This fact also
follows from the proof of Proposition 4. The non-existence of even 2-factors in
a 4-regular graph G with a perfect matching does not guarantee that G has
palette index 4. It might well happen that G has palette index 3 and admits the
coloring f2 defined in Proposition 1. This is the case of the graph G in Figure
7.

u u

w w
u

(b) (c)

v1

v2

v3

v4

v5

(a)

Figure 6: (a) The graph H. (b) The graph J . (c) The graph K.

The graph G can be constructed as follows: consider four copies of the graph
J in Figure 6(b), say Ji with 1 ≤ i ≤ 4; label the vertices u, w of each copy Ji
by ui, wi, respectively; connect the graphs Ji and two new vertices u0, w0 by
adding the edges [w1, w2], [w3, u0], [w0, w4], [u0, w0], [u0, u1], [u0, u4], [w0, u2],
[w0, u3]. The resulting graph G is 4-regular of order 30. The following statement
holds.

Proposition 7. The graph G has a perfect matching and no even 2-factor.
Furthermore, the graph G admits the š-minimal coloring f3 with color-set C3 =
{aj : 1 ≤ j ≤ 6} and palettes P1 = {a1, a2, a3, a4}, P2 = {a1, a2, a5, a6},
P3 = {a3, a4, a5, a6}, that is, G has palette index 3.

Proof. A perfect matching in G can be constructed by taking a perfect
matching in each graph Ji − {wi} together with the edges [w1, w2], [u0, w3],
[w0, w4]. We show that G has no even 2-factor, that is, G has no pair of edge-
disjoint perfect matchings. To this end we prove that every perfect matching of
G contains the edge [w1, w2]. Suppose that M is a perfect matching of G not
containing the edge [w1, w2]. Since [w1, w2] 6∈ M and J1, J2 have odd order,
the matching M contains the edges [u0, u1], [w0, u2] and consequently it also
contains a perfect matching of J3. That yields a contradiction, since J3 has
odd order. It is thus proved that every perfect matching of G contains the edge
[w1, w2], that is, G has no pair of edge-disjoint perfect matchings.
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w4

w1
F1

Figure 7: An even cycle decomposition of G of size 3.

We show that G admits the coloring f2 defined in Proposition 1. This is
equivalent to show that the edge-set of G can be partitioned into three even
cycles, say F1, F2, F3 (the edges of each cycle Fi, with 1 ≤ i ≤ 3, can be colored
alternately with the colors a2i−1 and a2i). The subgraphs F1, F2, F3 can be
defined as in Figure 7. The assertion follows.

We slightly change the construction of G and obtain a 4-regular graph with a
perfect matching and palette index 4. More specifically, we replace the subgraph
J4 of G with the graph K in Figure 6(c) and denote by G̃ the 4-regular graph
thus obtained (see Figure 8).

Proposition 8. The graph G̃ has a perfect matching and palette index 4.

Proof. As for the graph G, every perfect matching of G̃ contains the edge
[w1, w2]; therefore G̃ has no even 2-factor. The non-existence of an even 2-factor
implies that G̃ is class 2 and no š-minimal coloring of G̃ is equivalent to the
coloring f1 defined in Proposition 1. Therefore, š(G̃) ≥ 3 and if š(G̃) = 3,
then G̃ has an even cycle decomposition of size 3 (see Corollary 1). The graph
G̃ has no even cycle decomposition because the graph K contains a subgraph
isomorphic to K5 − e (the complete graph K5 with an edge deleted). Therefore
š(G̃) ≥ 4. Since G̃ has a perfect matching (see Figure 8) and Proposition 4
holds, the palette index is 4.

We construct connected 4-regular graphs with palette index 5. Consider two
copies of the graph H in Figure 6(a), say H1 and H2. For i = 1, 2, denote by ui
the unique vertex of degree 2 in Hi. Connect the graphs H1 and H2 to a new
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w2w1

u1

u3

M

w0u0 u2

w3w4

u4

Figure 8: The graph G̃ (dashed edges form a perfect matching M of G̃).

vertex w by adding the edges [ui, w], with i = 1, 2. Also add the edge [u1, u2]
and denote by L∗ the graph thus obtained. The following statement holds.

w

u1 u2

Figure 9: The graph L∗ used in the proof of Proposition 9.

Proposition 9. Let G1 and G2 be graphs of even order with all vertices of
degree 4 but one of degree 2, say w1 and w2, respectively. Let G∗ be the graph
obtained from the graph union G∗ = G1 ∪G2 ∪ L∗ by adding the edges [w,w1],
[w,w2], [w1, w2]. The graph G∗ has palette index 5.

Proof. The graph G∗ is class 2, as its order is odd. Therefore, š(G) ≥
3. Since the graph G∗ has no even circuit passing through the vertex w and
Corollary 1 holds, the palette index of G∗ is at least 4.

Suppose that š(G) = 4, then we can color the edges of G∗ using the color-
ing f3 defined in Proposition 1. By Lemma 2, the vertices u1 and u2 have
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u1

u4

u2

u3

w

Figure 10: A connected 4-regular graph with palette index 5.

palette P4 = {a3, a4, a5, a6} with respect to f3. By the same lemma, the

coloring f3 induces a coloring f̂ in H1 and H2 such that {Pf̂ (u1), Pf̂ (u2)} ⊆
{{a3, a6}, {a4, a5}}. If Pf̂ (u1) 6= Pf̂ (u2), then we cannot color the edge [u1, u2]

using the colors in P4 = {a3, a4, a5, a6}. Therefore Pf̂ (u1) = Pf̂ (u2). Without

loss of generality, we can set Pf̂ (u1) = Pf̂ (u2) = {a3, a6}, whence f3([u1, u2]),

f3([u1, w]), f3([u2, w]) ∈ {a4, a5}, that is, the coloring f3 assigns the same color
to at least two adjacent edges. That yields a contradiction, since f3 is proper.
It it thus proved that š(G∗) = 5.

In Figure 10 we show a connected 4-regular graph with palette index 5 that
can be obtained from Proposition 9 by taking the graphs G1 and G2 equal to
the graph H in Figure 6(a).

3 Palette index and even cycle decompositions.

A regular graph of even degree 2r and palette index 1 (class 1) always possesses
an even cycle decomposition of size r (each cycle is an even 2-factor obtained
as the union of two different color classes of a minimum edge-coloring). We
consider class 2 regular graphs. By Corollary 1, a 4-regular graph with no
perfect matching and palette index 3 has an even cycle decomposition of size 3.
In Proposition 10 we extend this property to a family of 4r-regular graphs.

Proposition 10. Let G be a 4r-regular graph, r ≥ 1, with no perfect matching
and palette index 3. Then G possesses an even cycle decomposition of size 3r.

Proof. Let f be an edge-coloring of G having three palettes, say P1, P2 and
P3. For i = 1, 2, 3, denote by Vi the set of vertices of G having palette Pi.
Given a palette Pi, we show that every color a ∈ Pi is contained in exactly

17



one of the other two palettes of f distinct from Pi. We first show that the set
Pi r (Pj ∪ Pk), with {i, j, k} = {1, 2, 3}, is empty.

Suppose that there exists a color a in Pi which does not belong to Pj ∪ Pk.
The edges colored with a form a perfect matching Ma of the subgraph G[Vi]
(G[Vi] is the subgraph of G induced by the vertices in Vi). If there exists a
color b in Pj ∩ Pk, then the edges colored with b form a perfect matching Mb

in the subgraph G[Vj ∪ Vk] and the set Ma ∪Mb is a perfect matching in G, a
contradiction. Therefore, Pj ∩ Pk = ∅. Since Pj 6= Pi and Pk 6= Pi, there exists
at least one color b ∈ Pj r Pi and at least one color c ∈ Pk r Pi. The color b
(respectively, c) does not belong to Pk (respectively, to Pj) since Pj ∩ Pk = ∅.
Therefore the edges colored with b (respectively, with c) form a perfect matching
Mb (respectively, Mc) in G[Vj ] (respectively, in G[Vk]). Then Ma∪Mb∪Mc is a
perfect matching in G, a contradiction. It is thus proved that Pir(Pj∪Pk) = ∅,
that is, every color a ∈ Pi is contained in at least one of the other two palettes
Pj , Pk. Since G has no perfect matching, every color a ∈ Pi is contained in
exactly one of the two palettes Pj , Pk. We can thus write Pi has the disjoint
union Pi = (Pi ∩ Pj)∪̇(Pi ∩ Pk) and set |Pi ∩ Pj | = h > 0, |Pi ∩ Pk| = 4r − h,
whence 4r = |Pk| = 2(4r − h), that is, h = 2r. We have thus proved that
every pair of palettes share 2r colors, therefore we can write the palettes P1,
P2, P3 as follows: P1 = {ai, bi|1 ≤ i ≤ 2r}, P2 = {ai, ci|1 ≤ i ≤ 2r} and
P3 = {bi, ci|1 ≤ i ≤ 2r}.

We construct an even cycle decomposition of G. For every i = 1, . . . , 2r, the
edges colored with ai, bi, ci form a perfect matching Ai, Bi, Ci, respectively, in
the subgraph G[V1 ∪ V2], G[V1 ∪ V3], G[V2 ∪ V3], respectively. Then Ai ∪ Ai+r,
Bi ∪Bi+r, Ci ∪ Ci+r, with 1 ≤ i ≤ r, are even cycles of G[V1 ∪ V2], G[V1 ∪ V3],
G[V2 ∪ V3], respectively. The set {Ai ∪Ai+r, Bi ∪Bi+r, Ci ∪ Ci+r|1 ≤ i ≤ r} is
an even cycle decomposition of G of size 3r.

Proposition 10 can be inverted in the case of 4-regular graphs as follows.

Proposition 11. Let G be a 4-regular graph with an even cycle decomposition
of size 3, then š(G) ≤ 3.

Proof. Let E = {F1, F2, F3} be an even cycle decomposition of G. Since
the elements of E are even cycles, we can color alternately the edges of each Fi,
1 ≤ i ≤ 3, with exactly two colors, say a2i−1 and a2i. In this way we define an
edge-coloring f : C → E(G) with color-set C = {aj : 1 ≤ j ≤ 6}. The coloring
f has palettes P1 = {a1, a2, a3, a4}, P2 = {a1, a2, a5, a6}, P3 = {a3, a4, a5, a6},
since a vertex of G belongs to exactly two elements of E . Therefore G has palette
index ≤ 3.

Not all the graphs with palette index 3 have an even cycle decomposition.
See for instance the graph in Figure 3 and the discussion in Example 1.

The graph in Figure 3 and Proposition 11 show that the family of 4-regular
graphs with an even cycle decomposition of size ≤ 3 is strictly contained in the
class of 4-regular graphs with palette index ≤ 3. We do not know whether the
whole family of 4-regular graphs with an even cycle decomposition is strictly
contained in the family of 4-regular graphs with palette index ≤ 3. The con-
struction of a counterexample, that is, the construction of a 4-regular graph with
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an even cycle decomposition and palette index > 3, seems to be hard: if this
graph exists, then it has no even cycle decomposition of size less than 3, since
Proposition 11 holds; by the result in [9] and the conjecture in [10], 4-regular
graphs with even cycle decompositions of size > 3 do not seem easy to find (see
the remarks in Section 1).

4 Open problems.

As remarked in Section 1, the palette index of a d-regular graph G of class
2 satisfies the inequalities 3 ≤ š(G) ≤ d + 1. For 2 ≤ d ≤ 4 we know that
there exists a (connected) d-regular graph with palette index d + 1: it suffices
to consider a cycle with at least one circuit of odd length for d = 2; a cubic
graph with no perfect matching for d = 3 (see [7]); the graphs constructed in
Proposition 9 for d = 4. We leave as an open problem the construction of a
(connected) d-regular graph with palette index d+ 1 for every integer d ≥ 5.

Differently from the regular case, the palette index of a non-regular graph
G satisfies the inequalities 2 ≤ š(G) ≤ 2∆(G)+1: since G is non-regular, it has
at least two vertices with different degree, that is, every proper edge-coloring of
G has at least two palettes of different cardinality; hence š(G) ≥ 2; by Vizing’s
Theorem, we can find a proper edge-coloring f of G whose color-set C contains
χ′(G) ≤ ∆(G) + 1 colors, that is, the set Pf is a subset of the power-set of C;
hence š(G) ≤ |Pf | ≤ 2∆(G)+1. In a forthcoming paper the authors study the
relationship between the palette index and the maximum degree ∆(G). They
also consider the problem of constructing a non-regular graph with palette index
2∆(G)+1 (see [3]).

In Sections 2.2 and 2.3 we have constructed 4-regular graphs with palette
index 4 and 5. None of our examples has an even cycle decomposition. It would
be interesting to prove the existence (or non-existence) of a 4-regular graph
with palette index > 3 and an even cycle decomposition. This problem seems
to be related to the problem of finding a 4-regular graph with all even cycle
decompositions of size > 3. As far as we know, this general problem about the
size of an even cycle decomposition has never been considered before. To find
results in this direction, we are investigating some families of 4-regular graphs,
in particular, the family of line graphs of cubic graphs, [2].
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