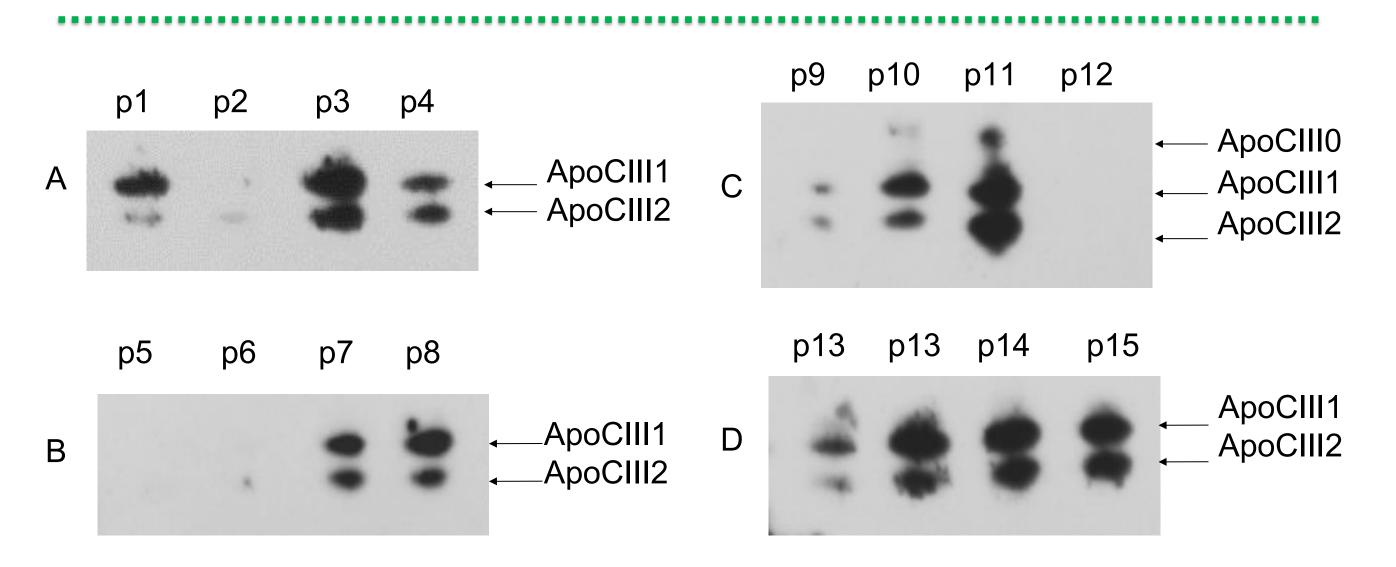

## ApoCIII glycoforms determination and proteomic analysis in plasma of coronary patients with different ApoCIII levels



<u>Carmela Chiariello</u><sup>a</sup>, Annalisa Castagna<sup>a</sup>, Marcello Manfredi<sup>b</sup>, Elia Ranzato<sup>c</sup>, Simona Martinotti<sup>c</sup>, Emilio Marengo<sup>c</sup>, Daniela Cecconi<sup>d</sup>, Oliviero Olivieri<sup>a</sup>.

<sup>a</sup>Department of Medicine, Section of Internal Medicine B, University of Verona, Italy. <sup>b</sup>ISALIT S.r.I., Novara, Italy. <sup>c</sup>Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy. <sup>d</sup>Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy.

BACKGROUND: The aims of this study were:i) to analyze and quantify the apolipoproteinCIII glycoforms characterized by none, one or two sialic acids,(having different lipoprotein lipase-LPL-inhibitory activity), ii) to assess their relationship with LPL activity and ApoA-V in CAD patients, iii) to analyze some previously identified plasma proteins in relation to lipids status.


METHODS: ApoCIII glycoforms in four groups of patients (from "Verona Heart Study" biobank,) classified according to the total plasma concentration of ApoCIII and different triglyceride (TG) levels, were analyzed by a classical (isoelectric focusing/western blotting) and by a shotgun MS approach. LPL activity (Fluorescent assay) and ApoA-V concentration (ELISA assay) were determined, and their correlations with lipid metabolism parameters were analyzed.

## **RESULTS & DISCUSSION:**

Tabel 1. Characteristics of the subjects

| groups | Number of samples | ApoCIII<br>levels             | Fatty acids profile         |
|--------|-------------------|-------------------------------|-----------------------------|
| 1      | 7                 | low (7.25 $\pm$ 1.45 mg/dL)   | A (poly- unsaturated > 40%) |
| 2      | 5                 | low (7.25 $\pm$ 1.45 mg/dL)   | B (poly- unsaturated < 40%) |
| 3      | 7                 | high (17.31 $\pm$ 3.98 mg/dL) | A (poly- unsaturated > 40%) |
| 4      | 7                 | high (17.31 $\pm$ 3.98 mg/dL) | B (poly- unsaturated < 40%) |

Note: The level of apolipoprotein C-III was determined using an automated turbidimetric immunoassay; are considered low values <9.2 mg / dL and higher than ≥ 12.6 mg / dL. The polyunsaturated (PUFA) profile has been defined by gas chromatography.



**Figure1**. ApoCIII detection after IEF and diffusion blotting. (A) GROUP 1 low ApoCIII; (B) GROUP 2 low ApoCIII; (C) GROUP 3 high ApoCIII; (D) GROUP 4 high ApoCIII

The distribution of the three ApoCIII glycoforms in the selected groups of patients are related to the TG levels, particularly the mono-sialylated isoform (ApoCIII-1) prevails in patients with the highest TG levels.


Table2. ApoAV and LPL correlations with apolipoprotein CIII and triglycerides

| .034         | r= 0,188 | r= 0,153     |
|--------------|----------|--------------|
| ,805         | p= 0,165 | p= 0,259     |
| ,245<br>,143 | -        | -            |
|              | ,245     | ,245<br>,143 |

Table 3. Mean values, with standard deviation, range and normal values, relative to the concentration of apolipoprotein and LPL activity

| Variable             |                            | Range (min-max) | Normality value |
|----------------------|----------------------------|-----------------|-----------------|
| Apo C-III<br>(mg/dl) | 11,81 ± 3,84               | 3,17 - 20,44    | < 10.5          |
| LPL<br>(μmol/ml)*    | 3,10<br>(2,72 -3,53)       | 0,78 - 7,21     | _               |
| Apo A-V<br>ng/ml*    | 496,90<br>(369,70 -667,87) | 66 - 2395,95    | -               |

The mean concentration of ApoAV measured in our study group (496.90 ng / ml, Cl 369.70 to 667.87), falls within the normal range, however upper than prevoiusly reported. LPL activity, measured as Vmax, does not show significant correlations with ApoCIII.



**Figure2**. (A)workflow MS analysis;(B) Chromatogram of the LC-MS analysis of intact ApoC3 glycoforms (left-up) and skyline interface for glycoforms quantification (left-down); chromatogram of the LC-SWATH-MS analysis of proteomic profile of plasma sample (right-up) and skyline interface protein quantification (right-down);

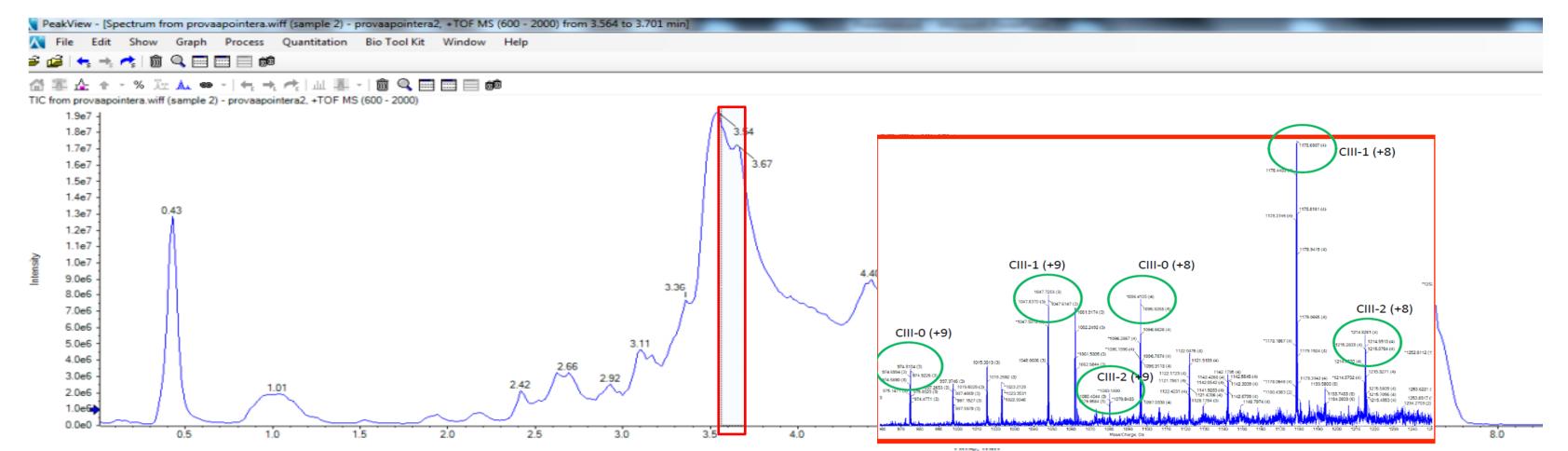



Figure3.Chromatogram and TOF MS with the ions of the glycoforms Sum of the three most abundant ions for +8 and +9 charge state of each glycoforms for relative quantification

Good agreement between IEF analysis and MS approach in terms of abundance % of isoforms. The MS analysis on a new set (n=60) of CAD patients is actually ongoing!

**CONCLUSIONS:** As compared with the other ones, mono – sialylated isoform of apo CIII is preferentially associated with TG levels. Samples with elevated levels of apoCIII are characterized by specific proteomic patterns.

## **REFERENCES:**

Olivieri O. et al. 2010 Apolipoprotein C-III predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced plasma thrombin generation. Journal of thrombosis and haemostasis 2010; 8(3): 463–47. Yoshinao Wada et al.2012 Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient

Wenying Jian et al., 2013 Relative Quantitation of Glycoisoforms of Intact Apolipoprotein C3 in Human Plasma by Liquid Chromatography—High-Resolution Mass Spectrometry

carmela.chiariello@univr.it